Ejemplo n.º 1
0
/**
  * @brief  Indicate error condition with LED3
  * @param  None
  * @retval None
  */
void IndicateError(void)
{
  /* Switch LED3 on and off in case of error */
  LEDOn(LED3);
  Delay(BLINK_DELAY);
  LEDOff(LED3);
}
Ejemplo n.º 2
0
void MinuteView(void)
  {
       unsigned int OnTime = 10*minute;
       unsigned int OffTime = 120/minute;
         for(LEDPointer=1, bitpointer=1;LEDPointer <= 6;LEDPointer++)
         {
           if(minute & bitpointer)
           {
             LEDOn();
           }
             delay(OnTime);
           if(!(minute & bitpointer))
           {
             LEDOff();
           }
             delay(OffTime);

            // All LEDs Off
             P1DIR &= (~LED_MASK);
             P1OUT &= (~LED_MASK);

           bitpointer<<=1;
           if (bitpointer==64) bitpointer=1;
         }
  }
Ejemplo n.º 3
0
/**
	@brief Sends a photo via telemetry
	@warning Executing this function takes ages. (About 0,5 to 4 seconds, depending on the resolution.)
*/
void sendPhoto(uint16_t image_size_send, uint8_t ** current_image, uint8_t ** previous_image){
	uint16_t image_width_send;
	uint16_t image_height_send;

	image_width_send = global_data.param[PARAM_IMAGE_WIDTH];
	image_height_send = global_data.param[PARAM_IMAGE_HEIGHT];
	//delay(250);
	mavlink_msg_data_transmission_handshake_send(
			MAVLINK_COMM_2,
			MAVLINK_DATA_STREAM_IMG_RAW8U,
			image_size_send,
			image_width_send,
			image_height_send,
			image_size_send / MAVLINK_MSG_ENCAPSULATED_DATA_FIELD_DATA_LEN + 1,
			MAVLINK_MSG_ENCAPSULATED_DATA_FIELD_DATA_LEN,
			100);
	//send_image_now = false;
	
	uint16_t frame = 0;
	//delay(250);
	
	dma_copy_image_buffers(current_image, previous_image, image_size_send, 1);

	for (frame = 0; frame < image_size_send / MAVLINK_MSG_ENCAPSULATED_DATA_FIELD_DATA_LEN + 1; frame++)
	{
		LEDOn(LED_ERR);
		mavlink_msg_encapsulated_data_send(MAVLINK_COMM_2, frame, ((uint8_t *) current_image)[frame * MAVLINK_MSG_ENCAPSULATED_DATA_FIELD_DATA_LEN]);
		LEDOff(LED_ERR);
		//delay(250);
		//send_image_now = false;
	}
}
Ejemplo n.º 4
0
void GoToSleep()
{
	gFlags.light_sleep = !( gFlags.has_x32 || dfStatus.lsloff || gFlags.noclock );

	ScreenOff();
	LEDOff();
	gFlags.firing = 0;
	BatReadTimer = 50;
	RTCSleep();
	DevicesOnOff( 1 );
	CLK_SysTickDelay( 250 );
	CLK_SysTickDelay( 250 );
	CLK_SysTickDelay( 250 );
	if ( dfStatus.off || PE0 || KeyPressTime == 1100 )
	{
		SYS_UnlockReg();
		WDT_Close();
		FlushAndSleep();
		PreheatDelay = 0;
	}
	WDT_Open( WDT_TIMEOUT_2POW14, WDT_RESET_DELAY_18CLK, TRUE, FALSE );
	SYS_LockReg();
	gFlags.refresh_battery = 1;
	DevicesOnOff( 0 );
	RTCWakeUp();
	InitDisplay();
}
Ejemplo n.º 5
0
void loop()
{ 
    while (Serial.available() > 0) {
        int mode = Serial.parseInt();
        Serial.println(mode);
        
        switch (mode) {
            case 1: 
                red();
                break;
            case 2: 
                green();
                break;
            case 3: 
                blue();
                break;
            case 4:
                yellow();
                break;
            case 5: 
                pink();
                break;
            default: 
                LEDOff();
                break;
        }
    }
}
Ejemplo n.º 6
0
/**
Init pin mode
**/
void setup()
{
  pinMode(r, OUTPUT);
  pinMode(g, OUTPUT);
  pinMode(b, OUTPUT);
  
  LEDOff();
  
  Serial.begin(9600);  // initialize serial communications at 9600 bps
}
Ejemplo n.º 7
0
/**
  * @brief  Blink with LED1
  * @param  num - blinks number
  * @param  del - delay
  * @retval None
  */
void BlinkLED1(uint32_t num, uint32_t del)
{
uint32_t cnt;

  for ( cnt = 0; cnt < num; cnt++)
  {
    LEDOn(LED1);
    Delay(del);
    LEDOff(LED1);
    Delay(del);
  }
}
Ejemplo n.º 8
0
void HourView(void)
  {
    j = 5000/hour;
     for(i=0;i<j;i++)
     {
       unsigned int OnTime = 10*hour;
       unsigned int OffTime = 120/hour;
         for(LEDPointer = 1;LEDPointer <= hour;LEDPointer++)
         {
             LEDOn();
             delay(OnTime);
             LEDOff();
             delay(OffTime);
         }
     }
  }
Ejemplo n.º 9
0
/**
 * @fn void Alarm(unsigned int * pBuffer)
 *
 * @brief Alarm implementation
 *
 * @param pBuffer an unsigned integer pointer
 */
void Alarm(unsigned int * pBuffer)
{
  unsigned int r = 0;
  unsigned char i;
  for (i=1;i<MAX_NODES;i++) {
    if (Nodes[i].ID) {                                                          // Is it a valid network member
      r |= Nodes[i].Data[2] & 0x8000;                                           // 'OR' all red LED's (alarm)
    }
  }
  Nodes[0].Data[2] = (Nodes[0].Data[2] & (~0x8000)) | r;                        // Update our local copy for a red LED Alarm
  if (r) {                                                                      // Write to the HW the red LED (redundant)
    LEDOn(__BSP_LEDRED1);
  } else {
    LEDOff(__BSP_LEDRED1);
  }
}
Ejemplo n.º 10
0
Archivo: main.c Proyecto: leitwert/Flow
void send_video_fn(void) {
	/* update the rate */
	timer_update(send_video_fn, global_data.param[PARAM_VIDEO_RATE]);

	if (previous_image == NULL) return;
	
	/*  transmit raw 8-bit image */
	if (global_data.param[PARAM_USB_SEND_VIDEO] && !global_data.param[PARAM_VIDEO_ONLY])
	{
		mavlink_send_image(previous_image);
		LEDToggle(LED_COM);
	}
	else if (!global_data.param[PARAM_USB_SEND_VIDEO])
	{
		LEDOff(LED_COM);
	}
}
Ejemplo n.º 11
0
void compassLEDs(float ftiltheading){

	LEDOff();

	if(337.5 < ftiltheading || ftiltheading <= 22.5 ) {
		// NORTH
		setLed(NORTH, 1);
	}
	else if(22.5 < ftiltheading && ftiltheading <= 67.5) {
		// NORTH - WEST
		setLed(NORTH, 1);
		setLed(WEST, 1);
	}
	else if(67.5 < ftiltheading && ftiltheading <= 112.5) {
		// WEST
		setLed(WEST, 1);
	}
	else if(112.5 < ftiltheading && ftiltheading <= 157.5) {
		// SOUTH- WEST
		setLed(SOUTH, 1);
		setLed(WEST, 1);
	}
	else if(157.5 < ftiltheading && ftiltheading <= 205.5) {
		// SOUTH
		setLed(SOUTH, 1);
	}
	else if(205.5 < ftiltheading && ftiltheading <= 247.5) {
		// SOUTH -EAST
		setLed(SOUTH, 1);
		setLed(EAST, 1);
	}
	else if(247.5 < ftiltheading && ftiltheading <= 292.5) {
		// EAST
		setLed(EAST, 1);
	}
	else if(292.5 < ftiltheading && ftiltheading <= 337.5) {
		// NORTH - EAST
		setLed(NORTH, 1);
		setLed(EAST, 1);
	}
	else{
		/* not valid value */
	}

}
Ejemplo n.º 12
0
void AllLEDOff() {
    uint8_t i;
    for (i = 0; i < 8; i++)
        LEDOff(i);
}
Ejemplo n.º 13
0
int main(void) {
	// Setup pins
	DDRB = 0x00;	// All pins inputs
	DDRC = 0x07;	// PC0,1,2 as outputs for the LEDs
	DDRD = 0x0b;	// PD0 as output for LED, PD1 for TXD, PD3 for buzzer
	
	PORTD = 0xe0;	// Pullups for switches
	PORTB = 0x3f;	// Pullups for switches
	
	// LEDs
	LEDOff();
	
	// ADC
	ADMUX = 0x4f; // start off with mux on internal input
	ADCSRA = 0x80; // ADC EN
	DIDR0 = 0x38; // disable digital buffers on ADC pins
	
	// Timer
	TCCR0A = 0x00;  // Normal mode
	TCCR0B = 0x03;  // prescaler at 64 results in 125kHz ticks
	
	// UART
	cli(); // disable global interrupts

	stickInit(); // initialise stick input
	
	spektrumInit();
	
	// Get startup mode
	trainerPlugged = TRAINERPIN;
	bindSwitch = BINDPIN;
	transmitMode = 0;
	if(trainerPlugged == 0) transmitMode = eTM_trainer_master; // fixme or trainer slave, if PPM signal present

	if(bindSwitch == 0) transmitMode = eTM_bind;
	
	// Timer loop!
	static uint8_t fastScaler = 255;
	static uint8_t slowScaler = 255;
	static uint16_t secondScaler = 0xffff;
	
	// Buzzer
	TCCR2B = 0x03; // prescaler at 64
	stopNote();
	noteBuffer[0] = NOTE6G;
	noteBuffer[1] = NOTE6GS;

	noteBuffer[2] = NOTESTOP;
	noteCounter = 0;
	noteInterruptable = 0;
	

	
	while(1) {
		
		
		while(TCNT0 < FASTLOOPCOUNT)
		{
			if(TCNT0 < FASTLOOPCOUNT && TCNT0 >= FASTLOOPCOUNT-LED0Duty/3) LED0On(); // red LED too bright, reduce duty
			if(TCNT0 < FASTLOOPCOUNT && TCNT0 >= FASTLOOPCOUNT-LED1Duty) LED1On();
			if(TCNT0 < FASTLOOPCOUNT && TCNT0 >= FASTLOOPCOUNT-LED2Duty) LED2On();
			if(TCNT0 < FASTLOOPCOUNT && TCNT0 >= FASTLOOPCOUNT-LED3Duty) LED3On();
		}
		TCNT0 = 0; // reduce jitter by resetting soon (SPEKTRUM does not like jitter!)
		LEDOff();
		
		// should be going at about 625Hz
		getDigital();
		stickGetRawADC(rawstickvalues);
		
	
		if(++fastScaler >= OVERSAMPLE) //should be 22ms for DSMX (Nano Board can not handle it faster!!)
		{ 
			fastScaler = 0;
			
			// this loop runs slower than 50Hz
			fastLoop();
			/*throVoltage = 0;
			ruddVoltage = 0;
			elevVoltage = 0;
			aileVoltage = 0;*/
			rawstickvalues[0]=0;
			rawstickvalues[1]=0;
			rawstickvalues[2]=0;
			rawstickvalues[3]=0;
			
			if(++slowScaler >= 6) 
			{ // should be going at about 10Hz
				slowScaler = 0;
				slowLoop();
			}
		}
		
		// we are here every 2ms
		if(++secondScaler >=500)
		{
			// every second
			secondScaler=0;
			IdleSeconds++;
			if(auxSwitch && mixToggle)
			{	
				FlySeconds++;
					
				if(FlySeconds == FLYSECONDS_MAX)
					oneTone(NOTE7B);
				if(FlySeconds == FLYSECONDS_MAX+10)
					twoTone(NOTE7C);
			
				if(IdleSeconds >= FLYSECONDS_MAX*2)
				{
					twoTone(NOTE7C);
				}
			}
		}
	}
}
Ejemplo n.º 14
0
int main(void)
{
	#warning change clock hse_value to 25m	
	SYSTIM_Init();
	
	LEDInit(LED_ACT);
	LEDInit(LED_COM);
	LEDInit(LED_ERR);
	
	LEDOn(LED_ACT);
	LEDOff(LED_COM);
	LEDOff(LED_ERR);
	SYSTIM_DelayTms(1000);
	LEDOff(LED_ACT);	
	
//	USBD_Init(&USB_OTG_dev,
//				USB_OTG_FS_CORE_ID,
//				&USR_desc,
//				&USBD_CDC_cb,
//				&USR_cb);

	usart_init();
	UART_DMAInit();
	if (!CheckXCLK())
	{
		XCLK_ON();	
		SYSTIM_DelayTms(100);
	}
#ifdef USE_MT9V034
	MT9V034_Init();
#endif
#ifdef USE_MT9D111	
	MT9D111_Init();	
#endif	
	#warning already enable i2c when init camera
	//mpu6050_enable();	
	memset(Cam_Capture,'1',FULL_IMAGE_SIZE);	
	Cam_Capture[FULL_IMAGE_SIZE] = 's';
	Cam_Capture[FULL_IMAGE_SIZE + 1] = 't';	
	Cam_Capture[FULL_IMAGE_SIZE + 2] = 'p';	
	DCMI_CaptureCmd(ENABLE);	
	while(1)
	{
		int i=0;
#ifdef TEST_MPU6050
		bool res;
		res = I2C_ReadBytes(I2C2,data,MPU_ADDR, MPU_DATA, 14);
		if (!res)
		{
			LEDOn(LED_ERR);		
		}
		ax = (double)(data[1] + (data[0]<<8));
		ay = (double)(data[3] + (data[2]<<8));
		az = (double)(data[5] + (data[4]<<8));
		wx = (double)(data[9] + (data[8]<<8));
		wy = (double)(data[11] + (data[10]<<8));
		wz = (double)(data[13] + (data[12]<<8));					
		SYSTIM_DelayTms(100);
#endif		

		if (DCMI_Flag)
		{
			DCMI_Flag = 0;
			LEDToggle(LED_ACT);
//			SendImageDMA((uint32_t*)&Cam_Capture[0], FULL_IMAGE_SIZE);			
//			for (i=0;i<FULL_IMAGE_SIZE;i++)
//			{
//				Cam_Buffer[i] = Cam_Capture[i];
//			}
			VCP_DataTx(Cam_Capture,FULL_IMAGE_SIZE+3);
			SYSTIM_DelayTms(5000);
 			DCMI_CaptureCmd(ENABLE); 	
		}	
	}
}
Ejemplo n.º 15
0
/**
  * @brief  Main function.
  */
int main(void)
{
	/* load settings and parameters */
	global_data_reset_param_defaults();
	global_data_reset();

	/* init led */
	LEDInit(LED_ACT);
	LEDInit(LED_COM);
	LEDInit(LED_ERR);
	LEDOff(LED_ACT);
	LEDOff(LED_COM);
	LEDOff(LED_ERR);

	/* enable FPU on Cortex-M4F core */
	SCB_CPACR |= ((3UL << 10 * 2) | (3UL << 11 * 2)); /* set CP10 Full Access and set CP11 Full Access */

	/* init clock */
	if (SysTick_Config(SystemCoreClock / 1000))
	{
		/* capture clock error */
		LEDOn(LED_ERR);
		while (1);
	}

	/* init usb */
	USBD_Init(	&USB_OTG_dev,
				USB_OTG_FS_CORE_ID,
				&USR_desc,
				&USBD_CDC_cb,
				&USR_cb);

	/* init mavlink */
	communication_init();

	/* enable image capturing */
	enable_image_capture();

	/* gyro config */
	gyro_config();

	/* init and clear fast image buffers */
	for (int i = 0; i < global_data.param[PARAM_IMAGE_WIDTH] * global_data.param[PARAM_IMAGE_HEIGHT]; i++)
	{
		image_buffer_8bit_1[i] = 0;
		image_buffer_8bit_2[i] = 0;
	}

	uint8_t * current_image = image_buffer_8bit_1;
	uint8_t * previous_image = image_buffer_8bit_2;

	/* usart config*/
	usart_init();

    /* i2c config*/
    i2c_init();

	/* sonar config*/
	float sonar_distance_filtered = 0.0f; // distance in meter
	float sonar_distance_raw = 0.0f; // distance in meter
	bool distance_valid = false;
	sonar_config();

	/* reset/start timers */
	timer[TIMER_SONAR] = SONAR_TIMER_COUNT;
	timer[TIMER_SYSTEM_STATE] = SYSTEM_STATE_COUNT;
	timer[TIMER_RECEIVE] = SYSTEM_STATE_COUNT / 2;
	timer[TIMER_PARAMS] = PARAMS_COUNT;
	timer[TIMER_IMAGE] = global_data.param[PARAM_VIDEO_RATE];

	/* variables */
	uint32_t counter = 0;
	uint8_t qual = 0;

	/* bottom flow variables */
	float pixel_flow_x = 0.0f;
	float pixel_flow_y = 0.0f;
	float pixel_flow_x_sum = 0.0f;
	float pixel_flow_y_sum = 0.0f;
	float velocity_x_sum = 0.0f;
	float velocity_y_sum = 0.0f;
	float velocity_x_lp = 0.0f;
	float velocity_y_lp = 0.0f;
	int valid_frame_count = 0;
	int pixel_flow_count = 0;

	/* main loop */
	while (1)
	{
		/* reset flow buffers if needed */
		if(buffer_reset_needed)
		{
			buffer_reset_needed = 0;
			for (int i = 0; i < global_data.param[PARAM_IMAGE_WIDTH] * global_data.param[PARAM_IMAGE_HEIGHT]; i++)
			{
				image_buffer_8bit_1[i] = 0;
				image_buffer_8bit_2[i] = 0;
			}
			delay(500);
			continue;
		}

		/* calibration routine */
		if(global_data.param[PARAM_CALIBRATION_ON])
		{
			while(global_data.param[PARAM_CALIBRATION_ON])
			{
				dcmi_restart_calibration_routine();

				/* waiting for first quarter of image */
				while(get_frame_counter() < 2){}
				dma_copy_image_buffers(&current_image, &previous_image, FULL_IMAGE_SIZE, 1);

				/* waiting for second quarter of image */
				while(get_frame_counter() < 3){}
				dma_copy_image_buffers(&current_image, &previous_image, FULL_IMAGE_SIZE, 1);

				/* waiting for all image parts */
				while(get_frame_counter() < 4){}

				send_calibration_image(&previous_image, &current_image);

				if (global_data.param[PARAM_SYSTEM_SEND_STATE])
					communication_system_state_send();

				communication_receive_usb();
				debug_message_send_one();
				communication_parameter_send();

				LEDToggle(LED_COM);
			}

			dcmi_restart_calibration_routine();
			LEDOff(LED_COM);
		}

		uint16_t image_size = global_data.param[PARAM_IMAGE_WIDTH] * global_data.param[PARAM_IMAGE_HEIGHT];

		/* new gyroscope data */
		float x_rate_sensor, y_rate_sensor, z_rate_sensor;
		gyro_read(&x_rate_sensor, &y_rate_sensor, &z_rate_sensor);

		/* gyroscope coordinate transformation */
		float x_rate = y_rate_sensor; // change x and y rates
		float y_rate = - x_rate_sensor;
		float z_rate = z_rate_sensor; // z is correct

		/* calculate focal_length in pixel */
		const float focal_length_px = (global_data.param[PARAM_FOCAL_LENGTH_MM]) / (4.0f * 6.0f) * 1000.0f; //original focal lenght: 12mm pixelsize: 6um, binning 4 enabled

		/* debug */
		float x_rate_pixel = x_rate * (get_time_between_images() / 1000.0f) * focal_length_px;
		float y_rate_pixel = y_rate * (get_time_between_images() / 1000.0f) * focal_length_px;

		//FIXME for the old sensor PX4FLOW v1.2 uncomment this!!!!
//		x_rate = x_rate_raw_sensor; // change x and y rates
//		y_rate = y_rate_raw_sensor;

		/* get sonar data */
		sonar_read(&sonar_distance_filtered, &sonar_distance_raw);

		/* compute optical flow */
		if(global_data.param[PARAM_SENSOR_POSITION] == BOTTOM)
		{
			/* copy recent image to faster ram */
			dma_copy_image_buffers(&current_image, &previous_image, image_size, 1);

			/* compute optical flow */
			qual = compute_flow(previous_image, current_image, x_rate, y_rate, z_rate, &pixel_flow_x, &pixel_flow_y);

			if (sonar_distance_filtered > 5.0f || sonar_distance_filtered == 0.0f)
			{
				/* distances above 5m are considered invalid */
				sonar_distance_filtered = 0.0f;
				distance_valid = false;
			}
			else
			{
				distance_valid = true;
			}

			/*
			 * real point P (X,Y,Z), image plane projection p (x,y,z), focal-length f, distance-to-scene Z
			 * x / f = X / Z
			 * y / f = Y / Z
			 */
			float flow_compx = pixel_flow_x / focal_length_px / (get_time_between_images() / 1000.0f);
			float flow_compy = pixel_flow_y / focal_length_px / (get_time_between_images() / 1000.0f);

			/* integrate velocity and output values only if distance is valid */
			if (distance_valid)
			{
				/* calc velocity (negative of flow values scaled with distance) */
				float new_velocity_x = - flow_compx * sonar_distance_filtered;
				float new_velocity_y = - flow_compy * sonar_distance_filtered;

				if (qual > 0)
				{
					velocity_x_sum += new_velocity_x;
					velocity_y_sum += new_velocity_y;
					valid_frame_count++;

					/* lowpass velocity output */
					velocity_x_lp = global_data.param[PARAM_BOTTOM_FLOW_WEIGHT_NEW] * new_velocity_x +
							(1.0f - global_data.param[PARAM_BOTTOM_FLOW_WEIGHT_NEW]) * velocity_x_lp;
					velocity_y_lp = global_data.param[PARAM_BOTTOM_FLOW_WEIGHT_NEW] * new_velocity_y +
							(1.0f - global_data.param[PARAM_BOTTOM_FLOW_WEIGHT_NEW]) * velocity_y_lp;
				}
				else
				{
					/* taking flow as zero */
					velocity_x_lp = (1.0f - global_data.param[PARAM_BOTTOM_FLOW_WEIGHT_NEW]) * velocity_x_lp;
					velocity_y_lp = (1.0f - global_data.param[PARAM_BOTTOM_FLOW_WEIGHT_NEW]) * velocity_y_lp;
				}
			}
			else
			{
				/* taking flow as zero */
				velocity_x_lp = (1.0f - global_data.param[PARAM_BOTTOM_FLOW_WEIGHT_NEW]) * velocity_x_lp;
				velocity_y_lp = (1.0f - global_data.param[PARAM_BOTTOM_FLOW_WEIGHT_NEW]) * velocity_y_lp;
			}

			pixel_flow_x_sum += pixel_flow_x;
			pixel_flow_y_sum += pixel_flow_y;
			pixel_flow_count++;

		}

		counter++;

		/* TODO for debugging */
		//mavlink_msg_named_value_float_send(MAVLINK_COMM_2, boot_time_ms, "blabla", blabla);

		if(global_data.param[PARAM_SENSOR_POSITION] == BOTTOM)
		{
			/* send bottom flow if activated */
			if (counter % 2 == 0)
			{
				float flow_comp_m_x = 0.0f;
				float flow_comp_m_y = 0.0f;
				float ground_distance = 0.0f;
				if(global_data.param[PARAM_BOTTOM_FLOW_LP_FILTERED])
				{
					flow_comp_m_x = velocity_x_lp;
					flow_comp_m_y = velocity_y_lp;
				}
				else
				{
					flow_comp_m_x = velocity_x_sum/valid_frame_count;
					flow_comp_m_y = velocity_y_sum/valid_frame_count;
				}

				if(global_data.param[PARAM_SONAR_FILTERED])
					ground_distance = sonar_distance_filtered;
				else
					ground_distance = sonar_distance_raw;

				if (valid_frame_count > 0)
				{
					// send flow
					mavlink_msg_optical_flow_send(MAVLINK_COMM_0, get_boot_time_ms() * 1000, global_data.param[PARAM_SENSOR_ID],
							pixel_flow_x_sum * 10.0f, pixel_flow_y_sum * 10.0f,
							flow_comp_m_x, flow_comp_m_y, qual, ground_distance);

					if (global_data.param[PARAM_USB_SEND_FLOW])
						mavlink_msg_optical_flow_send(MAVLINK_COMM_2, get_boot_time_ms() * 1000, global_data.param[PARAM_SENSOR_ID],
							pixel_flow_x_sum * 10.0f, pixel_flow_y_sum * 10.0f,
							flow_comp_m_x, flow_comp_m_y, qual, ground_distance);

                    update_TX_buffer(pixel_flow_x_sum * 10.0f, pixel_flow_y_sum * 10.0f, flow_comp_m_x, flow_comp_m_y, qual,
                            ground_distance, x_rate, y_rate, z_rate);

				}
				else
				{
					// send distance
					mavlink_msg_optical_flow_send(MAVLINK_COMM_0, get_boot_time_ms() * 1000, global_data.param[PARAM_SENSOR_ID],
						pixel_flow_x_sum * 10.0f, pixel_flow_y_sum * 10.0f,
						0.0f, 0.0f, 0, ground_distance);

					if (global_data.param[PARAM_USB_SEND_FLOW])
						mavlink_msg_optical_flow_send(MAVLINK_COMM_2, get_boot_time_ms() * 1000, global_data.param[PARAM_SENSOR_ID],
							pixel_flow_x_sum * 10.0f, pixel_flow_y_sum * 10.0f,
							0.0f, 0.0f, 0, ground_distance);
	
                    update_TX_buffer(pixel_flow_x_sum * 10.0f, pixel_flow_y_sum * 10.0f, 0.0f, 0.0f, 0, ground_distance, x_rate, y_rate,
                            z_rate);
                }

				if(global_data.param[PARAM_USB_SEND_GYRO])
				{
					mavlink_msg_debug_vect_send(MAVLINK_COMM_2, "GYRO", get_boot_time_ms() * 1000, x_rate, y_rate, z_rate);
				}

				velocity_x_sum = 0.0f;
				velocity_y_sum = 0.0f;
				pixel_flow_x_sum = 0.0f;
				pixel_flow_y_sum = 0.0f;
				valid_frame_count = 0;
				pixel_flow_count = 0;
			}
		}

		/* forward flow from other sensors */
		if (counter % 2)
		{
			communication_receive_forward();
		}

		/* send system state, receive commands */
		if (send_system_state_now)
		{
			/* every second */
			if (global_data.param[PARAM_SYSTEM_SEND_STATE])
			{
				communication_system_state_send();
			}
			send_system_state_now = false;
		}

		/* receive commands */
		if (receive_now)
		{
			/* test every second */
			communication_receive();
			communication_receive_usb();
			receive_now = false;
		}

		/* sending debug msgs and requested parameters */
		if (send_params_now)
		{
			debug_message_send_one();
			communication_parameter_send();
			send_params_now = false;
		}

		/*  transmit raw 8-bit image */
		if (global_data.param[PARAM_USB_SEND_VIDEO] && send_image_now)
		{
			/* get size of image to send */
			uint16_t image_size_send;
			uint16_t image_width_send;
			uint16_t image_height_send;

			image_size_send = image_size;
			image_width_send = global_data.param[PARAM_IMAGE_WIDTH];
			image_height_send = global_data.param[PARAM_IMAGE_HEIGHT];

			if (global_data.param[PARAM_VIDEO_USB_MODE] == CAM_VIDEO)
			{
				mavlink_msg_data_transmission_handshake_send(
						MAVLINK_COMM_2,
						MAVLINK_DATA_STREAM_IMG_RAW8U,
						image_size_send,
						image_width_send,
						image_height_send,
						image_size_send / 253 + 1,
						253,
						100);
				LEDToggle(LED_COM);
				uint16_t frame;
				for (frame = 0; frame < image_size_send / 253 + 1; frame++)
				{
					mavlink_msg_encapsulated_data_send(MAVLINK_COMM_2, frame, &((uint8_t *) current_image)[frame * 253]);
				}

			}
			else if (global_data.param[PARAM_VIDEO_USB_MODE] == FLOW_VIDEO)
			{
				mavlink_msg_data_transmission_handshake_send(
						MAVLINK_COMM_2,
						MAVLINK_DATA_STREAM_IMG_RAW8U,
						image_size_send,
						image_width_send,
						image_height_send,
						image_size_send / 253 + 1,
						253,
						100);
				LEDToggle(LED_COM);
				uint16_t frame;
				for (frame = 0; frame < image_size / 253 + 1; frame++)
				{
					mavlink_msg_encapsulated_data_send(MAVLINK_COMM_2, frame, &((uint8_t *) previous_image)[frame * 253]);
				}
			}
			send_image_now = false;
		}
		else if (!global_data.param[PARAM_USB_SEND_VIDEO])
		{
			LEDOff(LED_COM);
		}
	}
}
//****************************************************************************
//
// This command allows setting, clearing or toggling the Status LED.
//
// The first argument should be one of the following:
// on     - Turn on the LED.
// off    - Turn off the LEd.
// toggle - Toggle the current LED status.
// activity - Set the LED mode to monitor serial activity.
//
//****************************************************************************
int
Cmd_led(int argc, char *argv[])
{
    //
    // These values only check the second character since all parameters are
    // different in that character.
    //
    if(argv[1][1] == 'n')
    {
        //
        // Turn on the LED.
        //
        LEDOn();

        //
        // Switch off activity mode.
        //
        HWREGBITW(&g_ulFlags, FLAG_LED_ACTIVITY) = 0;
    }
    else if(argv[1][1] == 'f')
    {
        //
        // Turn off the LED.
        //
        LEDOff();

        //
        // Switch off activity mode.
        //
        HWREGBITW(&g_ulFlags, FLAG_LED_ACTIVITY) = 0;
    }
    else if(argv[1][1] == 'o')
    {
        //
        // Toggle the LED.
        //
        LEDToggle();

        //
        // Switch off activity mode.
        //
        HWREGBITW(&g_ulFlags, FLAG_LED_ACTIVITY) = 0;
    }
    else if(argv[1][1] == 'c')
    {
        //
        // If this is the "activity" value then set the activity mode.
        //
        HWREGBITW(&g_ulFlags, FLAG_LED_ACTIVITY) = 1;
    }
    else
    {
        //
        // The command format was not correct so print out some help.
        //
        CommandPrint("\nled <on|off|toggle|activity>\n");
        CommandPrint("  on       - Turn on the LED.\n");
        CommandPrint("  off      - Turn off the LED.\n");
        CommandPrint("  toggle   - Toggle the LED state.\n");
        CommandPrint("  activity - LED state will toggle on UART activity.\n");
    }

    return(0);
}
//****************************************************************************
//
// Handles CDC driver notifications related to control and setup of the
// device.
//
// \param pvCBData is the client-supplied callback pointer for this channel.
// \param ulEvent identifies the event we are being notified about.
// \param ulMsgValue is an event-specific value.
// \param pvMsgData is an event-specific pointer.
//
// This function is called by the CDC driver to perform control-related
// operations on behalf of the USB host.  These functions include setting
// and querying the serial communication parameters, setting handshake line
// states and sending break conditions.
//
// \return The return value is event-specific.
//
//****************************************************************************
unsigned long
SerialHandler(void *pvCBData, unsigned long ulEvent, unsigned long ulMsgValue,
              void *pvMsgData)
{
    tLineCoding *psLineCoding;

    //
    // Which event are we being asked to process?
    //
    switch(ulEvent)
    {
        //
        // We are connected to a host and communication is now possible.
        //
        case USB_EVENT_CONNECTED:
        {
            //
            // Flush our buffers.
            //
            USBBufferFlush(&g_sTxBuffer);
            USBBufferFlush(&g_sRxBuffer);

            //
            // Turn on the user LED.
            //
            LEDOn();

            break;
        }

        case USB_EVENT_DISCONNECTED:
        {
            //
            // Turn off the user LED.
            //
            LEDOff();

            break;
        }

        //
        // Return the current serial communication parameters.
        //
        case USBD_CDC_EVENT_GET_LINE_CODING:
        {
            //
            // Create a pointer to the line coding information.
            //
            psLineCoding = (tLineCoding *)pvMsgData;

            //
            // Copy the current line coding information into the structure.
            //
            psLineCoding->ulRate = g_sLineCoding.ulRate;
            psLineCoding->ucStop = g_sLineCoding.ucStop;
            psLineCoding->ucParity = g_sLineCoding.ucParity;
            psLineCoding->ucDatabits = g_sLineCoding.ucDatabits;
            break;
        }

        //
        // Set the current serial communication parameters.
        //
        case USBD_CDC_EVENT_SET_LINE_CODING:
        {
            //
            // Create a pointer to the line coding information.
            //
            psLineCoding = (tLineCoding *)pvMsgData;

            //
            // Copy the line coding information into the current line coding
            // structure.
            //
            g_sLineCoding.ulRate = psLineCoding->ulRate;
            g_sLineCoding.ucStop = psLineCoding->ucStop;
            g_sLineCoding.ucParity = psLineCoding->ucParity;
            g_sLineCoding.ucDatabits = psLineCoding->ucDatabits;
            break;
        }

        //
        // Set the current serial communication parameters.
        //
        case USBD_CDC_EVENT_SET_CONTROL_LINE_STATE:
        {
            break;
        }

        //
        // All other events are ignored.
        //
        default:
        {
            break;
        }
    }

    return(0);
}
Ejemplo n.º 18
0
Archivo: main.c Proyecto: leitwert/Flow
/**
  * @brief  Main function.
  */
int main(void)
{
	__enable_irq();
	snapshot_buffer = BuildCameraImageBuffer(snapshot_buffer_mem);

	/* load settings and parameters */
	global_data_reset_param_defaults();
	global_data_reset();

	/* init led */
	LEDInit(LED_ACT);
	LEDInit(LED_COM);
	LEDInit(LED_ERR);
	LEDOff(LED_ACT);
	LEDOff(LED_COM);
	LEDOff(LED_ERR);

	/* enable FPU on Cortex-M4F core */
	SCB_CPACR |= ((3UL << 10 * 2) | (3UL << 11 * 2)); /* set CP10 Full Access and set CP11 Full Access */

	/* init timers */
	timer_init();

	/* init usb */
	USBD_Init(	&USB_OTG_dev,
				USB_OTG_FS_CORE_ID,
				&USR_desc,
				&USBD_CDC_cb,
				&USR_cb);

	/* init mavlink */
	communication_init();

	/* initialize camera: */
	img_stream_param.size.x = FLOW_IMAGE_SIZE;
	img_stream_param.size.y = FLOW_IMAGE_SIZE;
	img_stream_param.binning = 4;
	{
		camera_image_buffer buffers[5] = {
			BuildCameraImageBuffer(image_buffer_8bit_1),
			BuildCameraImageBuffer(image_buffer_8bit_2),
			BuildCameraImageBuffer(image_buffer_8bit_3),
			BuildCameraImageBuffer(image_buffer_8bit_4),
			BuildCameraImageBuffer(image_buffer_8bit_5)
		};
		camera_init(&cam_ctx, mt9v034_get_sensor_interface(), dcmi_get_transport_interface(), 
					mt9v034_get_clks_per_row(64, 4) * 1, mt9v034_get_clks_per_row(64, 4) * 64, 2.0,
					&img_stream_param, buffers, 5);
	}

	/* gyro config */
	gyro_config();

	/* usart config*/
	usart_init();

    /* i2c config*/
    i2c_init();

	/* sonar config*/
	float sonar_distance_filtered = 0.0f; // distance in meter
	float sonar_distance_raw = 0.0f; // distance in meter
	bool distance_valid = false;
	sonar_config();

	/* reset/start timers */
	timer_register(sonar_update_fn, SONAR_POLL_MS);
	timer_register(system_state_send_fn, SYSTEM_STATE_MS);
	timer_register(system_receive_fn, SYSTEM_STATE_MS / 2);
	timer_register(send_params_fn, PARAMS_MS);
	timer_register(send_video_fn, global_data.param[PARAM_VIDEO_RATE]);
	timer_register(take_snapshot_fn, 500);
	//timer_register(switch_params_fn, 2000);

	/* variables */
	uint32_t counter = 0;

	result_accumulator_ctx mavlink_accumulator;

	result_accumulator_init(&mavlink_accumulator);
	
	uint32_t fps_timing_start = get_boot_time_us();
	uint16_t fps_counter = 0;
	uint16_t fps_skipped_counter = 0;
	
	uint32_t last_frame_index = 0;
	
	/* main loop */
	while (1)
	{
		/* check timers */
		timer_check();
		
		if (snap_capture_done) {
			snap_capture_done = false;
			camera_snapshot_acknowledge(&cam_ctx);
			snap_ready = true;
			if (snap_capture_success) {
				/* send the snapshot! */
				LEDToggle(LED_COM);
				mavlink_send_image(&snapshot_buffer);
			}
		}

		/* calculate focal_length in pixel */
		const float focal_length_px = (global_data.param[PARAM_FOCAL_LENGTH_MM]) / (4.0f * 0.006f); //original focal lenght: 12mm pixelsize: 6um, binning 4 enabled

		/* new gyroscope data */
		float x_rate_sensor, y_rate_sensor, z_rate_sensor;
		int16_t gyro_temp;
		gyro_read(&x_rate_sensor, &y_rate_sensor, &z_rate_sensor,&gyro_temp);

		/* gyroscope coordinate transformation to flow sensor coordinates */
		float x_rate =   y_rate_sensor; // change x and y rates
		float y_rate = - x_rate_sensor;
		float z_rate =   z_rate_sensor; // z is correct

		/* get sonar data */
		distance_valid = sonar_read(&sonar_distance_filtered, &sonar_distance_raw);
		/* reset to zero for invalid distances */
		if (!distance_valid) {
			sonar_distance_filtered = 0.0f;
			sonar_distance_raw = 0.0f;
		}

		bool use_klt = global_data.param[PARAM_ALGORITHM_CHOICE] != 0;

		uint32_t start_computations = 0;
		
		/* get recent images */
		camera_image_buffer *frames[2];
		camera_img_stream_get_buffers(&cam_ctx, frames, 2, true);
		
		start_computations = get_boot_time_us();
		
		int frame_delta = ((int32_t)frames[0]->frame_number - (int32_t)last_frame_index);
		last_frame_index = frames[0]->frame_number;
		fps_skipped_counter += frame_delta - 1;
		
		flow_klt_image *klt_images[2] = {NULL, NULL};
		{
			/* make sure that the new images get the correct treatment */
			/* this algorithm will still work if both images are new */
			int i;
			bool used_klt_image[2] = {false, false};
			for (i = 0; i < 2; ++i) {
				if (frames[i]->frame_number != frames[i]->meta) {
					// the image is new. apply pre-processing:
					/* filter the new image */
					if (global_data.param[PARAM_ALGORITHM_IMAGE_FILTER]) {
						filter_image(frames[i]->buffer, frames[i]->param.p.size.x);
					}
					/* update meta data to mark it as an up-to date image: */
					frames[i]->meta = frames[i]->frame_number;
				} else {
					// the image has the preprocessing already applied.
					if (use_klt) {
						int j;
						/* find the klt image that matches: */
						for (j = 0; j < 2; ++j) {
							if (flow_klt_images[j].meta == frames[i]->frame_number) {
								used_klt_image[j] = true;
								klt_images[i] = &flow_klt_images[j];
							}
						}
					}
				}
			}
			if (use_klt) {
				/* only for KLT: */
				/* preprocess the images if they are not yet preprocessed */
				for (i = 0; i < 2; ++i) {
					if (klt_images[i] == NULL) {
						// need processing. find unused KLT image:
						int j;
						for (j = 0; j < 2; ++j) {
							if (!used_klt_image[j]) {
								used_klt_image[j] = true;
								klt_images[i] = &flow_klt_images[j];
								break;
							}
						}
						klt_preprocess_image(frames[i]->buffer, klt_images[i]);
					}
				}
			}
		}
		
		float frame_dt = (frames[0]->timestamp - frames[1]->timestamp) * 0.000001f;

		/* compute gyro rate in pixels and change to image coordinates */
		float x_rate_px = - y_rate * (focal_length_px * frame_dt);
		float y_rate_px =   x_rate * (focal_length_px * frame_dt);
		float z_rate_fr = - z_rate * frame_dt;

		/* compute optical flow in pixels */
		flow_raw_result flow_rslt[32];
		uint16_t flow_rslt_count = 0;
		if (!use_klt) {
			flow_rslt_count = compute_flow(frames[1]->buffer, frames[0]->buffer, x_rate_px, y_rate_px, z_rate_fr, flow_rslt, 32);
		} else {
			flow_rslt_count =  compute_klt(klt_images[1], klt_images[0], x_rate_px, y_rate_px, z_rate_fr, flow_rslt, 32);
		}

		/* calculate flow value from the raw results */
		float pixel_flow_x;
		float pixel_flow_y;
		float outlier_threshold = global_data.param[PARAM_ALGORITHM_OUTLIER_THR_RATIO];
		float min_outlier_threshold = 0;
		if(global_data.param[PARAM_ALGORITHM_CHOICE] == 0)
		{
			min_outlier_threshold = global_data.param[PARAM_ALGORITHM_OUTLIER_THR_BLOCK];
		}else
		{
			min_outlier_threshold = global_data.param[PARAM_ALGORITHM_OUTLIER_THR_KLT];
		}
		uint8_t qual = flow_extract_result(flow_rslt, flow_rslt_count, &pixel_flow_x, &pixel_flow_y, 
							outlier_threshold,  min_outlier_threshold);

		/* create flow image if needed (previous_image is not needed anymore)
		 * -> can be used for debugging purpose
		 */
		previous_image = frames[1];
		if (global_data.param[PARAM_USB_SEND_VIDEO])
		{
			uint16_t frame_size = global_data.param[PARAM_IMAGE_WIDTH];
			uint8_t *prev_img = previous_image->buffer;
			for (int i = 0; i < flow_rslt_count; i++) {
				if (flow_rslt[i].quality > 0) {
					prev_img[flow_rslt[i].at_y * frame_size + flow_rslt[i].at_x] = 255;
					int ofs = (int)floor(flow_rslt[i].at_y + flow_rslt[i].y * 2 + 0.5f) * frame_size + (int)floor(flow_rslt[i].at_x + flow_rslt[i].x * 2 + 0.5f);
					if (ofs >= 0 && ofs < frame_size * frame_size) {
						prev_img[ofs] = 200;
					}
				}
			}
		}

		/* return the image buffers */
		camera_img_stream_return_buffers(&cam_ctx, frames, 2);
		
		/* decide which distance to use */
		float ground_distance = 0.0f;

		if(global_data.param[PARAM_SONAR_FILTERED])
		{
			ground_distance = sonar_distance_filtered;
		}
		else
		{
			ground_distance = sonar_distance_raw;
		}

		/* update I2C transmit buffer */
		update_TX_buffer(frame_dt, 
						 x_rate, y_rate, z_rate, gyro_temp, 
						 qual, pixel_flow_x, pixel_flow_y, 1.0f / focal_length_px, 
						 distance_valid, ground_distance, get_time_delta_us(get_sonar_measure_time()));

		/* accumulate the results */
		result_accumulator_feed(&mavlink_accumulator, frame_dt, 
								x_rate, y_rate, z_rate, gyro_temp, 
								qual, pixel_flow_x, pixel_flow_y, 1.0f / focal_length_px, 
								distance_valid, ground_distance, get_time_delta_us(get_sonar_measure_time()));

		uint32_t computaiton_time_us = get_time_delta_us(start_computations);

		counter++;
		fps_counter++;

        /* serial mavlink  + usb mavlink output throttled */
		if (counter % (uint32_t)global_data.param[PARAM_FLOW_SERIAL_THROTTLE_FACTOR] == 0)//throttling factor
		{
			float fps = 0;
			float fps_skip = 0;
			if (fps_counter + fps_skipped_counter > 100) {
				uint32_t dt = get_time_delta_us(fps_timing_start);
				fps_timing_start += dt;
				fps = (float)fps_counter / ((float)dt * 1e-6f);
				fps_skip = (float)fps_skipped_counter / ((float)dt * 1e-6f);
				fps_counter = 0;
				fps_skipped_counter = 0;

				mavlink_msg_debug_vect_send(MAVLINK_COMM_2, "TIMING", get_boot_time_us(), computaiton_time_us, fps, fps_skip);
			}
			mavlink_msg_debug_vect_send(MAVLINK_COMM_2, "EXPOSURE", get_boot_time_us(), 
					frames[0]->param.exposure, frames[0]->param.analog_gain, cam_ctx.last_brightness);
			
			/* calculate the output values */
			result_accumulator_output_flow output_flow;
			result_accumulator_output_flow_rad output_flow_rad;
			int min_valid_ratio = global_data.param[PARAM_ALGORITHM_MIN_VALID_RATIO];
			result_accumulator_calculate_output_flow(&mavlink_accumulator, min_valid_ratio, &output_flow);
			result_accumulator_calculate_output_flow_rad(&mavlink_accumulator, min_valid_ratio, &output_flow_rad);

			// send flow
			mavlink_msg_optical_flow_send(MAVLINK_COMM_0, get_boot_time_us(), global_data.param[PARAM_SENSOR_ID],
					output_flow.flow_x, output_flow.flow_y,
					output_flow.flow_comp_m_x, output_flow.flow_comp_m_y, 
					output_flow.quality, output_flow.ground_distance);

			mavlink_msg_optical_flow_rad_send(MAVLINK_COMM_0, get_boot_time_us(), global_data.param[PARAM_SENSOR_ID],
					output_flow_rad.integration_time, 
					output_flow_rad.integrated_x, output_flow_rad.integrated_y,
					output_flow_rad.integrated_xgyro, output_flow_rad.integrated_ygyro, output_flow_rad.integrated_zgyro,
					output_flow_rad.temperature, output_flow_rad.quality,
					output_flow_rad.time_delta_distance_us,output_flow_rad.ground_distance);

			if (global_data.param[PARAM_USB_SEND_FLOW] && (output_flow.quality > 0 || global_data.param[PARAM_USB_SEND_QUAL_0]))
			{
				mavlink_msg_optical_flow_send(MAVLINK_COMM_2, get_boot_time_us(), global_data.param[PARAM_SENSOR_ID],
						output_flow.flow_x, output_flow.flow_y,
						output_flow.flow_comp_m_x, output_flow.flow_comp_m_y, 
						output_flow.quality, output_flow.ground_distance);

				mavlink_msg_optical_flow_rad_send(MAVLINK_COMM_2, get_boot_time_us(), global_data.param[PARAM_SENSOR_ID],
						output_flow_rad.integration_time, 
						output_flow_rad.integrated_x, output_flow_rad.integrated_y,
						output_flow_rad.integrated_xgyro, output_flow_rad.integrated_ygyro, output_flow_rad.integrated_zgyro,
						output_flow_rad.temperature, output_flow_rad.quality,
						output_flow_rad.time_delta_distance_us,output_flow_rad.ground_distance);
			}

			if(global_data.param[PARAM_USB_SEND_GYRO])
			{
				mavlink_msg_debug_vect_send(MAVLINK_COMM_2, "GYRO", get_boot_time_us(), x_rate, y_rate, z_rate);
			}

			result_accumulator_reset(&mavlink_accumulator);
		}

		/* forward flow from other sensors */
		if (counter % 2)
		{
			communication_receive_forward();
		}
	}
}
Ejemplo n.º 19
0
void main(void)
#endif
{

  RST_CLK_PCLKcmd(RST_CLK_PCLK_PORTD, ENABLE);

  /* Configure all unused PORT pins to low power consumption */

  PORT_StructInit(&PORT_InitStructure);
  PORT_InitStructure.PORT_Pin = (PORT_Pin_All & ~(PORT_Pin_10 | PORT_Pin_11 |
                                                  PORT_Pin_12 | PORT_Pin_13 |
                                                  PORT_Pin_14));
  PORT_Init(MDR_PORTD, &PORT_InitStructure);


  /* Configure PORTD pins 10..14 for output to switch LEDs on/off */

  PORT_InitStructure.PORT_Pin   = (PORT_Pin_10 | PORT_Pin_11 | PORT_Pin_12 |
                                   PORT_Pin_13 | PORT_Pin_14);
  PORT_InitStructure.PORT_OE    = PORT_OE_OUT;
  PORT_InitStructure.PORT_FUNC  = PORT_FUNC_PORT;
  PORT_InitStructure.PORT_MODE  = PORT_MODE_DIGITAL;
  PORT_InitStructure.PORT_SPEED = PORT_SPEED_SLOW;

  PORT_Init(MDR_PORTD, &PORT_InitStructure);

  /* Consequently turn all three used LEDs on and off */

  LEDOn(LED1);
  Delay(4*BLINK_DELAY);
  LEDOff(LED1);
  Delay(4*BLINK_DELAY);
  LEDOn(LED2);
  Delay(4*BLINK_DELAY);
  LEDOff(LED2);
  Delay(4*BLINK_DELAY);
  LEDOn(LED3);
  Delay(4*BLINK_DELAY);
  LEDOff(LED3);
  Delay(4*BLINK_DELAY);

  /* Infinite loop that demonstrates different input clock sources using */

  while (1)
  {
    /* Set RST_CLK to default */
    RST_CLK_DeInit();
    RST_CLK_PCLKcmd(RST_CLK_PCLK_PORTD, ENABLE);

    /* 1. CPU_CLK = HSI clock */

    /* Enable HSI clock source */
    RST_CLK_HSIcmd(ENABLE);
    /* Switch LED2 on and wait for HSI ready status */
    LEDOn(LED2);
    Delay(BLINK_DELAY);
    if (RST_CLK_HSIstatus() == SUCCESS)                     /* Good HSI clock */
    {
      /* Switch LED2 off */
      LEDOff(LED2);
      /* Select HSI clock on the CPU clock MUX */
      RST_CLK_CPUclkSelection(RST_CLK_CPUclkHSI);
      /* LED1 blinking with HSI clock as input clock source */
      BlinkLED1(BLINK_NUM, BLINK_DELAY);
    }
    else                                                    /* HSI timeout */
    {
      IndicateError();
    }

    /* 2. CPU_CLK = HSI/2 clock */

    /* Enable HSI clock source */
    RST_CLK_HSIcmd(ENABLE);
    /* Disable CPU_PLL */
    RST_CLK_CPU_PLLcmd(DISABLE);
    /* Select HSI/2 clock as CPU_PLL input clock source */
    RST_CLK_CPU_PLLconfig(RST_CLK_CPU_PLLsrcHSIdiv2, 1);
    /* Switch LED2 on and wait for HSI ready status */
    LEDOn(LED2);
    Delay(BLINK_DELAY);
    if (RST_CLK_HSIstatus() == SUCCESS)                     /* Good HSI clock */
    {
      /* Switch LED2 off */
      LEDOff(LED2);
      /* Set CPU_C3_prescaler to 1 */
      RST_CLK_CPUclkPrescaler(RST_CLK_CPUclkDIV1);
      /* Switch CPU_C2_SEL to CPU_C1 clock instead of CPU_PLL output */
      RST_CLK_CPU_PLLuse(DISABLE);
      /* LED1 blinking with HSI/2 clock as input clock source */
      BlinkLED1(BLINK_NUM, BLINK_DELAY);
    }
    else                                                    /* HSI timeout */
    {
      IndicateError();
    }

    /* 3. CPU_CLK = 7*HSE/2 clock */

    /* Enable HSE clock oscillator */
    RST_CLK_HSEconfig(RST_CLK_HSE_ON);
    /* Switch LED2 on and wait for HSE ready status */
    LEDOn(LED2);
    Delay(BLINK_DELAY);
    if (RST_CLK_HSEstatus() == SUCCESS)                     /* Good HSE clock */
    {
      /* Select HSE clock as CPU_PLL input clock source */
      /* Set PLL multiplier to 7                        */
      RST_CLK_CPU_PLLconfig(RST_CLK_CPU_PLLsrcHSEdiv1, 7);
      /* Enable CPU_PLL */
      RST_CLK_CPU_PLLcmd(ENABLE);
      /* Switch LED2 on and wait for PLL ready status */
      if (RST_CLK_HSEstatus() == SUCCESS)                     /* Good CPU PLL */
      {
        /* Switch LED2 off */
        LEDOff(LED2);
        /* Set CPU_C3_prescaler to 2 */
        RST_CLK_CPUclkPrescaler(RST_CLK_CPUclkDIV2);
        /* Set CPU_C2_SEL to CPU_PLL output instead of CPU_C1 clock */
        RST_CLK_CPU_PLLuse(ENABLE);
        /* Select CPU_C3 clock on the CPU clock MUX */
        RST_CLK_CPUclkSelection(RST_CLK_CPUclkCPU_C3);
        /* LED1 blinking with 7*HSE/2 clock as input clock source */
        BlinkLED1(BLINK_NUM, BLINK_DELAY);
      }
      else                                                    /* CPU_PLL timeout */
      {
        IndicateError();
      }
    }
    else                                                    /* HSE timeout */
    {
      IndicateError();
    }

    /* 4. CPU_CLK = LSI clock */

    /* Enable LSI clock source */
    RST_CLK_LSIcmd(ENABLE);
    /* Switch LED2 on and wait for LSI ready status */
    LEDOn(LED2);
    Delay(BLINK_DELAY);
    if (RST_CLK_LSIstatus() == SUCCESS)                     /* Good LSI clock */
    {
      /* Switch LED2 off */
      LEDOff(LED2);
      /* Select LSI clock on the CPU clock MUX */
      RST_CLK_CPUclkSelection(RST_CLK_CPUclkLSI);
      /* LED1 blinking with LSI clock as input clock source */
      BlinkLED1(BLINK_NUM, BLINK_DELAY);
    }
    else                                                    /* LSI timeout */
    {
      IndicateError();
    }
  }
}
Ejemplo n.º 20
0
Archivo: main.c Proyecto: PX4/Flow
/**
  * @brief  Main function.
  */
int main(void)
{
	__enable_irq();

	/* load settings and parameters */
	global_data_reset_param_defaults();
	global_data_reset();
	PROBE_INIT();
	/* init led */
	LEDInit(LED_ACT);
	LEDInit(LED_COM);
	LEDInit(LED_ERR);
	LEDOff(LED_ACT);
	LEDOff(LED_COM);
	LEDOff(LED_ERR);
        board_led_rgb(255,255,255, 1);
        board_led_rgb(  0,  0,255, 0);
        board_led_rgb(  0,  0, 0, 0);
        board_led_rgb(255,  0,  0, 1);
        board_led_rgb(255,  0,  0, 2);
        board_led_rgb(255,  0,  0, 3);
                board_led_rgb(  0,255,  0, 3);
        board_led_rgb(  0,  0,255, 4);

	/* enable FPU on Cortex-M4F core */
	SCB_CPACR |= ((3UL << 10 * 2) | (3UL << 11 * 2)); /* set CP10 Full Access and set CP11 Full Access */

	/* init clock */
	if (SysTick_Config(SystemCoreClock / 100000))/*set timer to trigger interrupt every 10 microsecond */
	{
		/* capture clock error */
		LEDOn(LED_ERR);
		while (1);
	}

	/* init usb */
	USBD_Init(	&USB_OTG_dev,
				USB_OTG_FS_CORE_ID,
				&USR_desc,
				&USBD_CDC_cb,
				&USR_cb);

	/* init mavlink */
	communication_init();

	/* enable image capturing */
	enable_image_capture();

	/* gyro config */
	gyro_config();

	/* init and clear fast image buffers */
	for (int i = 0; i < global_data.param[PARAM_IMAGE_WIDTH] * global_data.param[PARAM_IMAGE_HEIGHT]; i++)
	{
		image_buffer_8bit_1[i] = 0;
		image_buffer_8bit_2[i] = 0;
	}

	uint8_t * current_image = image_buffer_8bit_1;
	uint8_t * previous_image = image_buffer_8bit_2;

	/* usart config*/
	usart_init();

    /* i2c config*/
    i2c_init();

	/* sonar config*/
	float sonar_distance_filtered = 0.0f; // distance in meter
	float sonar_distance_raw = 0.0f; // distance in meter
	bool distance_valid = false;
	sonar_config();

	/* reset/start timers */
	timer[TIMER_SONAR] = SONAR_TIMER_COUNT;
	timer[TIMER_SYSTEM_STATE] = SYSTEM_STATE_COUNT;
	timer[TIMER_RECEIVE] = SYSTEM_STATE_COUNT / 2;
	timer[TIMER_PARAMS] = PARAMS_COUNT;
	timer[TIMER_IMAGE] = global_data.param[PARAM_VIDEO_RATE];

	/* variables */
	uint32_t counter = 0;
	uint8_t qual = 0;

	/* bottom flow variables */
	float pixel_flow_x = 0.0f;
	float pixel_flow_y = 0.0f;
	float pixel_flow_x_sum = 0.0f;
	float pixel_flow_y_sum = 0.0f;
	float velocity_x_sum = 0.0f;
	float velocity_y_sum = 0.0f;
	float velocity_x_lp = 0.0f;
	float velocity_y_lp = 0.0f;
	int valid_frame_count = 0;
	int pixel_flow_count = 0;

	static float accumulated_flow_x = 0;
	static float accumulated_flow_y = 0;
	static float accumulated_gyro_x = 0;
	static float accumulated_gyro_y = 0;
	static float accumulated_gyro_z = 0;
	static uint16_t accumulated_framecount = 0;
	static uint16_t accumulated_quality = 0;
	static uint32_t integration_timespan = 0;
	static uint32_t lasttime = 0;
	uint32_t time_since_last_sonar_update= 0;
	uint32_t time_last_pub= 0;

	uavcan_start();
	/* main loop */
	while (1)
	{
                PROBE_1(false);
                uavcan_run();
                PROBE_1(true);
		/* reset flow buffers if needed */
		if(buffer_reset_needed)
		{
			buffer_reset_needed = 0;
			for (int i = 0; i < global_data.param[PARAM_IMAGE_WIDTH] * global_data.param[PARAM_IMAGE_HEIGHT]; i++)
			{
				image_buffer_8bit_1[i] = 0;
				image_buffer_8bit_2[i] = 0;
			}
			delay(500);
			continue;
		}

		/* calibration routine */
		if(FLOAT_AS_BOOL(global_data.param[PARAM_VIDEO_ONLY]))
		{
			while(FLOAT_AS_BOOL(global_data.param[PARAM_VIDEO_ONLY]))
			{
				dcmi_restart_calibration_routine();

				/* waiting for first quarter of image */
				while(get_frame_counter() < 2){}
				dma_copy_image_buffers(&current_image, &previous_image, FULL_IMAGE_SIZE, 1);

				/* waiting for second quarter of image */
				while(get_frame_counter() < 3){}
				dma_copy_image_buffers(&current_image, &previous_image, FULL_IMAGE_SIZE, 1);

				/* waiting for all image parts */
				while(get_frame_counter() < 4){}

				send_calibration_image(&previous_image, &current_image);

				if (FLOAT_AS_BOOL(global_data.param[PARAM_SYSTEM_SEND_STATE]))
					communication_system_state_send();

				communication_receive_usb();
				debug_message_send_one();
				communication_parameter_send();

				LEDToggle(LED_COM);
			}

			dcmi_restart_calibration_routine();
			LEDOff(LED_COM);
		}

		uint16_t image_size = global_data.param[PARAM_IMAGE_WIDTH] * global_data.param[PARAM_IMAGE_HEIGHT];

		/* new gyroscope data */
		float x_rate_sensor, y_rate_sensor, z_rate_sensor;
		int16_t gyro_temp;
		gyro_read(&x_rate_sensor, &y_rate_sensor, &z_rate_sensor,&gyro_temp);

		/* gyroscope coordinate transformation */
		float x_rate = y_rate_sensor; // change x and y rates
		float y_rate = - x_rate_sensor;
		float z_rate = z_rate_sensor; // z is correct

		/* calculate focal_length in pixel */
		const float focal_length_px = (global_data.param[PARAM_FOCAL_LENGTH_MM]) / (4.0f * 6.0f) * 1000.0f; //original focal lenght: 12mm pixelsize: 6um, binning 4 enabled

		/* get sonar data */
		distance_valid = sonar_read(&sonar_distance_filtered, &sonar_distance_raw);

		/* reset to zero for invalid distances */
		if (!distance_valid) {
			sonar_distance_filtered = 0.0f;
			sonar_distance_raw = 0.0f;
		}

		/* compute optical flow */
		if (FLOAT_EQ_INT(global_data.param[PARAM_SENSOR_POSITION], BOTTOM))
		{
			/* copy recent image to faster ram */
			dma_copy_image_buffers(&current_image, &previous_image, image_size, 1);

			/* compute optical flow */
			qual = compute_flow(previous_image, current_image, x_rate, y_rate, z_rate, &pixel_flow_x, &pixel_flow_y);

			/*
			 * real point P (X,Y,Z), image plane projection p (x,y,z), focal-length f, distance-to-scene Z
			 * x / f = X / Z
			 * y / f = Y / Z
			 */
			float flow_compx = pixel_flow_x / focal_length_px / (get_time_between_images() / 1000000.0f);
			float flow_compy = pixel_flow_y / focal_length_px / (get_time_between_images() / 1000000.0f);

			if (qual > 0)
			{
				valid_frame_count++;

				uint32_t deltatime = (get_boot_time_us() - lasttime);
				integration_timespan += deltatime;
				accumulated_flow_x += pixel_flow_y  / focal_length_px * 1.0f; //rad axis swapped to align x flow around y axis
				accumulated_flow_y += pixel_flow_x  / focal_length_px * -1.0f;//rad
				accumulated_gyro_x += x_rate * deltatime / 1000000.0f;	//rad
				accumulated_gyro_y += y_rate * deltatime / 1000000.0f;	//rad
				accumulated_gyro_z += z_rate * deltatime / 1000000.0f;	//rad
				accumulated_framecount++;
				accumulated_quality += qual;
			}


			/* integrate velocity and output values only if distance is valid */
			if (distance_valid)
			{
				/* calc velocity (negative of flow values scaled with distance) */
				float new_velocity_x = - flow_compx * sonar_distance_filtered;
				float new_velocity_y = - flow_compy * sonar_distance_filtered;

				time_since_last_sonar_update = (get_boot_time_us()- get_sonar_measure_time());

				if (qual > 0)
				{
					velocity_x_sum += new_velocity_x;
					velocity_y_sum += new_velocity_y;

					/* lowpass velocity output */
					velocity_x_lp = global_data.param[PARAM_BOTTOM_FLOW_WEIGHT_NEW] * new_velocity_x +
							(1.0f - global_data.param[PARAM_BOTTOM_FLOW_WEIGHT_NEW]) * velocity_x_lp;
					velocity_y_lp = global_data.param[PARAM_BOTTOM_FLOW_WEIGHT_NEW] * new_velocity_y +
							(1.0f - global_data.param[PARAM_BOTTOM_FLOW_WEIGHT_NEW]) * velocity_y_lp;
				}
				else
				{
					/* taking flow as zero */
					velocity_x_lp = (1.0f - global_data.param[PARAM_BOTTOM_FLOW_WEIGHT_NEW]) * velocity_x_lp;
					velocity_y_lp = (1.0f - global_data.param[PARAM_BOTTOM_FLOW_WEIGHT_NEW]) * velocity_y_lp;
				}
			}
			else
			{
				/* taking flow as zero */
				velocity_x_lp = (1.0f - global_data.param[PARAM_BOTTOM_FLOW_WEIGHT_NEW]) * velocity_x_lp;
				velocity_y_lp = (1.0f - global_data.param[PARAM_BOTTOM_FLOW_WEIGHT_NEW]) * velocity_y_lp;
			}
			//update lasttime
			lasttime = get_boot_time_us();

			pixel_flow_x_sum += pixel_flow_x;
			pixel_flow_y_sum += pixel_flow_y;
			pixel_flow_count++;

		}

		counter++;

		if (FLOAT_EQ_INT(global_data.param[PARAM_SENSOR_POSITION], BOTTOM))
		{
			/* send bottom flow if activated */

			float ground_distance = 0.0f;


			if(FLOAT_AS_BOOL(global_data.param[PARAM_SONAR_FILTERED]))
			{
				ground_distance = sonar_distance_filtered;
			}
			else
			{
				ground_distance = sonar_distance_raw;
			}

                        uavcan_define_export(i2c_data, legacy_12c_data_t, ccm);
                        uavcan_define_export(range_data, range_data_t, ccm);
			uavcan_timestamp_export(i2c_data);
                        uavcan_assign(range_data.time_stamp_utc, i2c_data.time_stamp_utc);
			//update I2C transmitbuffer
			if(valid_frame_count>0)
			{
				update_TX_buffer(pixel_flow_x, pixel_flow_y, velocity_x_sum/valid_frame_count, velocity_y_sum/valid_frame_count, qual,
						ground_distance, x_rate, y_rate, z_rate, gyro_temp, uavcan_use_export(i2c_data));
			}
			else
			{
				update_TX_buffer(pixel_flow_x, pixel_flow_y, 0.0f, 0.0f, qual,
						ground_distance, x_rate, y_rate, z_rate, gyro_temp, uavcan_use_export(i2c_data));
			}
	                PROBE_2(false);
                        uavcan_publish(range, 40, range_data);
	                PROBE_2(true);

                        PROBE_3(false);
                        uavcan_publish(flow, 40, i2c_data);
                        PROBE_3(true);

            //serial mavlink  + usb mavlink output throttled
			uint32_t now = get_boot_time_us();
			uint32_t time_since_last_pub = now - time_last_pub;
			if (time_since_last_pub > (1.0e6f/global_data.param[PARAM_BOTTOM_FLOW_PUB_RATE]))
			{
				time_last_pub = now;

				float flow_comp_m_x = 0.0f;
				float flow_comp_m_y = 0.0f;

				if(FLOAT_AS_BOOL(global_data.param[PARAM_BOTTOM_FLOW_LP_FILTERED]))
				{
					flow_comp_m_x = velocity_x_lp;
					flow_comp_m_y = velocity_y_lp;
				}
				else
				{
					if(valid_frame_count>0)
					{
						flow_comp_m_x = velocity_x_sum/valid_frame_count;
						flow_comp_m_y = velocity_y_sum/valid_frame_count;
					}
					else
					{
						flow_comp_m_x = 0.0f;
						flow_comp_m_y = 0.0f;
					}
				}


				// send flow
				mavlink_msg_optical_flow_send(MAVLINK_COMM_0, get_boot_time_us(), global_data.param[PARAM_SENSOR_ID],
						pixel_flow_x_sum * 10.0f, pixel_flow_y_sum * 10.0f,
						flow_comp_m_x, flow_comp_m_y, qual, ground_distance);

				mavlink_msg_optical_flow_rad_send(MAVLINK_COMM_0, get_boot_time_us(), global_data.param[PARAM_SENSOR_ID],
						integration_timespan, accumulated_flow_x, accumulated_flow_y,
						accumulated_gyro_x, accumulated_gyro_y, accumulated_gyro_z,
						gyro_temp, accumulated_quality/accumulated_framecount,
						time_since_last_sonar_update,ground_distance);

				/* send approximate local position estimate without heading */
				if (FLOAT_AS_BOOL(global_data.param[PARAM_SYSTEM_SEND_LPOS]))
				{
					/* rough local position estimate for unit testing */
					lpos.x += ground_distance*accumulated_flow_x;
					lpos.y += ground_distance*accumulated_flow_y;
					lpos.z = -ground_distance;
					lpos.vx = ground_distance*accumulated_flow_x/integration_timespan;
					lpos.vy = ground_distance*accumulated_flow_y/integration_timespan;
					lpos.vz = 0; // no direct measurement, just ignore

				} else {
					/* toggling param allows user reset */
					lpos.x = 0;
					lpos.y = 0;
					lpos.z = 0;
					lpos.vx = 0;
					lpos.vy = 0;
					lpos.vz = 0;
				}

				if (FLOAT_AS_BOOL(global_data.param[PARAM_USB_SEND_FLOW]))
				{
					mavlink_msg_optical_flow_send(MAVLINK_COMM_2, get_boot_time_us(), global_data.param[PARAM_SENSOR_ID],
							pixel_flow_x_sum * 10.0f, pixel_flow_y_sum * 10.0f,
						flow_comp_m_x, flow_comp_m_y, qual, ground_distance);


					mavlink_msg_optical_flow_rad_send(MAVLINK_COMM_2, get_boot_time_us(), global_data.param[PARAM_SENSOR_ID],
							integration_timespan, accumulated_flow_x, accumulated_flow_y,
							accumulated_gyro_x, accumulated_gyro_y, accumulated_gyro_z,
							gyro_temp, accumulated_quality/accumulated_framecount,
							time_since_last_sonar_update,ground_distance);
				}


				if(FLOAT_AS_BOOL(global_data.param[PARAM_USB_SEND_GYRO]))
				{
					mavlink_msg_debug_vect_send(MAVLINK_COMM_2, "GYRO", get_boot_time_us(), x_rate, y_rate, z_rate);
				}

				integration_timespan = 0;
				accumulated_flow_x = 0;
				accumulated_flow_y = 0;
				accumulated_framecount = 0;
				accumulated_quality = 0;
				accumulated_gyro_x = 0;
				accumulated_gyro_y = 0;
				accumulated_gyro_z = 0;

				velocity_x_sum = 0.0f;
				velocity_y_sum = 0.0f;
				pixel_flow_x_sum = 0.0f;
				pixel_flow_y_sum = 0.0f;
				valid_frame_count = 0;
				pixel_flow_count = 0;
			}
		}

		/* forward flow from other sensors */
		if (counter % 2)
		{
			communication_receive_forward();
		}

		/* send system state, receive commands */
		if (send_system_state_now)
		{
			/* every second */
			if (FLOAT_AS_BOOL(global_data.param[PARAM_SYSTEM_SEND_STATE]))
			{
				communication_system_state_send();
			}
			send_system_state_now = false;
		}

		/* receive commands */
		if (receive_now)
		{
			/* test every second */
			communication_receive();
			communication_receive_usb();
			receive_now = false;
		}

		/* sending debug msgs and requested parameters */
		if (send_params_now)
		{
			debug_message_send_one();
			communication_parameter_send();
			send_params_now = false;
		}

		/* send local position estimate, for testing only, doesn't account for heading */
		if (send_lpos_now)
		{
			if (FLOAT_AS_BOOL(global_data.param[PARAM_SYSTEM_SEND_LPOS]))
			{
				mavlink_msg_local_position_ned_send(MAVLINK_COMM_2, timer_ms, lpos.x, lpos.y, lpos.z, lpos.vx, lpos.vy, lpos.vz);
			}
			send_lpos_now = false;
		}

		/*  transmit raw 8-bit image */
		if (FLOAT_AS_BOOL(global_data.param[PARAM_USB_SEND_VIDEO])&& send_image_now)
		{
			/* get size of image to send */
			uint16_t image_size_send;
			uint16_t image_width_send;
			uint16_t image_height_send;

			image_size_send = image_size;
			image_width_send = global_data.param[PARAM_IMAGE_WIDTH];
			image_height_send = global_data.param[PARAM_IMAGE_HEIGHT];

			mavlink_msg_data_transmission_handshake_send(
					MAVLINK_COMM_2,
					MAVLINK_DATA_STREAM_IMG_RAW8U,
					image_size_send,
					image_width_send,
					image_height_send,
					image_size_send / MAVLINK_MSG_ENCAPSULATED_DATA_FIELD_DATA_LEN + 1,
					MAVLINK_MSG_ENCAPSULATED_DATA_FIELD_DATA_LEN,
					100);
			LEDToggle(LED_COM);
			uint16_t frame = 0;
			for (frame = 0; frame < image_size_send / MAVLINK_MSG_ENCAPSULATED_DATA_FIELD_DATA_LEN + 1; frame++)
			{
				mavlink_msg_encapsulated_data_send(MAVLINK_COMM_2, frame, &((uint8_t *) previous_image)[frame * MAVLINK_MSG_ENCAPSULATED_DATA_FIELD_DATA_LEN]);
			}

			send_image_now = false;
		}
		else if (!FLOAT_AS_BOOL(global_data.param[PARAM_USB_SEND_VIDEO]))
		{
			LEDOff(LED_COM);
		}
	}
}
Ejemplo n.º 21
0
void SDCardReadWriteTextTask(void* parameters)
{
	uint8_t outbuf[512];
	uint8_t inbuf[512];
	int i;

	//LED_LowLevel_Init();
	//UART_LowLevel_Init();
	SD_LowLevel_Init();   //Initialize PINS, vector table and SDIO interface
	//UART_SendLine("Ready...Steady\n");

	printf("SSD\n\r");
	LEDOn(LED2);

	//Initialize the SD
	SD_Init();  //After return from this function sd is in transfer mode.
	//UART_SendLine("GO\n");

	printf("SDI\n\r");
	LEDOff(LED2);

	//Write a single block to the SD
	for (i=0;i<512;i++) {
		outbuf[i]='a';
	}

	//Single Block Test
	SD_WriteSingleBlock(outbuf, 3000);
	SD_ReadSingleBlock(inbuf, 3000);
	//UART_SendLine("First Block\n");
	//UART_Send(inbuf,512);
	printf("\n\r%s", "First Block");
	printf("\n\r%i,%i,%i,%i", (int)inbuf[0], (int)inbuf[1], (int)inbuf[2], (int)inbuf[3]);

	SD_WriteSingleBlock(outbuf, 3001);
	SD_ReadSingleBlock(inbuf, 3001);
	//UART_SendLine("Second Block\n");
	//UART_Send(inbuf,512);
	printf("\n\r%s", "Second Block");
	printf("\n\r%i,%i,%i,%i", (int)inbuf[0], (int)inbuf[1], (int)inbuf[2], (int)inbuf[3]);

	//Multiple block
	SD_StartMultipleBlockWrite(1000);
	SD_WriteData(outbuf,500);
	SD_WriteData(outbuf+50,50);
	SD_WriteData(outbuf,500);
	SD_StopMultipleBlockWrite();


	SD_ReadSingleBlock(inbuf, 1000);
	//UART_SendLine("Mult. Block 1\n");
	//UART_Send(inbuf,512);
	printf("\n\r%s", "Mult. Block 1");
	printf("\n\r%i,%i,%i,%i", (int)inbuf[0], (int)inbuf[1], (int)inbuf[2], (int)inbuf[3]);
	SD_WaitTransmissionEnd();
	SD_ReadSingleBlock(inbuf, 1001);
	//UART_SendLine("Mult. Block 2\n");
	//UART_Send(inbuf,512);
	printf("\n\r%s", "Mult. Block 2");
	printf("\n\r%i,%i,%i,%i", (int)inbuf[0], (int)inbuf[1], (int)inbuf[2], (int)inbuf[3]);

//	LEDOn(LED6);

	portTickType lastExecutionTime = xTaskGetTickCount();
	for (;;)
	{
		DelayUntilTime( &lastExecutionTime, SDCardReadWriteTextTaskT);

	}
}
Ejemplo n.º 22
0
void main(void)
{
/******************************************************************************/
// Init
/******************************************************************************/
  WDTCTL = WDTPW + WDTHOLD;     // watchdog timer off
  configureClocks();
  init_PWM_TimerA();

  hour = 6;
  hour24 = 6;
  minute = 1;					// Set to one because with 0 no LED is on which is confusing.
  second = 0;
  state = SET_HOUR;
  capsense=0;
  LEDState=OFF;
  timer=0;
  DEMOPointer = 1;

  P1REN = BIT6 + BIT7;          // P1REN = pullup/down enable
  P1OUT = BIT6 + BIT7;          // P1OUT = define pullup
  P1IFG = 0;
  P1IES = BIT6 + BIT7;          // set high to low transition for P1.6&7 interrupt
  P1IE  = BIT6 + BIT7;          // enable P1.6&7 interrupt

  P1REN |= BIT4 + BIT5;         // P1REN = pullup/down enable
  P1OUT |= BIT4 + BIT5;         // P1OUT = pullup
  P2REN |= BIT0;                // P2REN = pullup/down enable
  P2OUT |= BIT0;                // P2OUT = pullup
  P2OUT |= BIT3;
  P2DIR |= BIT3;
  P3REN = 0xFF;                 // Tie all P3 ports which are not available on N package
  P3OUT = 0xFF;

  WDTCTL = WDTPW + WDTTMSEL + WDTCNTCL + WDTSSEL; // watchdog counter mode, ACLK, /32768
  IFG1 &= ~WDTIFG;              // Clear WDT interrupt flag
  IE1 |= WDTIE;                 // WDT interrupt enable

  measure_count();              // Establish baseline capacitance
    base_cnt = meas_cnt;

  for(i=15; i>0; i--)           // Repeat and avg base measurement
  {
    measure_count();
      base_cnt = (meas_cnt+base_cnt)/2;
  }


/******************************************************************************/
// Mainloop
/******************************************************************************/

  __enable_interrupt();

  while(1)
  {
      switch(state)
        {
          case NORMAL:
            if (capsense)
            {
              CapTouch();
            }
            if (LEDState==ON)
            {
                HourView();
            }
            if (LEDState==ON && ((hour24>=7) && (hour24<18)))
                {
                  MoonOff();
                  SunOn();
                }
            if (LEDState==ON && ((hour24>=18) || (hour24<7)))
                {
                  SunOff();
                  MoonOn();
                }

            break;
          case SET_HOUR:
            capsense=OFF;
              MoonOff();
              SunOff();
              HourView();
            break;
          case SET_MINUTE:
            capsense=OFF;
              MoonOff();
              SunOff();
              MinuteView();
            break;
          case DEMO:
            if (DEMOPointer==1)
             {
               MoonOn();
               SunOff();
             }
             if (DEMOPointer==7)
             {
               MoonOff();
               SunOn();
             }
             j = 5000/DEMOPointer;
             for(i=0;i<j;i++)
             {
               unsigned int OnTime = 10*DEMOPointer;
               unsigned int OffTime = 120/DEMOPointer;
                 for(LEDPointer = 1;LEDPointer <= DEMOPointer;LEDPointer++)
                 {
                     LEDOn();
                     delay(OnTime);
                     LEDOff();
                     delay(OffTime);
                 }
             }
               DEMOPointer++;
               if (DEMOPointer==13)
               {
               DEMOPointer=1;
               }

            break;

        }
  }

} // main()
Ejemplo n.º 23
0
/**
  * @brief  Main function.
  */
int main(void)
{
	/* load settings and parameters */
	global_data_reset_param_defaults();
	global_data_reset();

	/* init led */
	LEDInit(LED_ACT);
	LEDInit(LED_COM);
	LEDInit(LED_ERR);
	LEDOff(LED_ACT);
	LEDOff(LED_COM);
	LEDOff(LED_ERR);

	/* enable FPU on Cortex-M4F core */
	SCB_CPACR |= ((3UL << 10 * 2) | (3UL << 11 * 2)); /* set CP10 Full Access and set CP11 Full Access */

	/* init clock */
	if (SysTick_Config(SystemCoreClock / 100000))/*set timer to trigger interrupt every 10 microsecond */
	{
		/* capture clock error */
		LEDOn(LED_ERR);
		while (1);
	}

	/* init usb */
	USBD_Init(	&USB_OTG_dev,
				USB_OTG_FS_CORE_ID,
				&USR_desc,
				&USBD_CDC_cb,
				&USR_cb);

	/* init mavlink */
	communication_init();

	/* enable image capturing */
	enable_image_capture();

	/* gyro config */
	gyro_config();

	/* init and clear fast image buffers */
	for (int i = 0; i < global_data.param[PARAM_IMAGE_WIDTH] * global_data.param[PARAM_IMAGE_HEIGHT]; i++)
	{
		image_buffer_8bit_1[i] = 0;
		image_buffer_8bit_2[i] = 0;
	}

	uint8_t * current_image = image_buffer_8bit_1;
	uint8_t * previous_image = image_buffer_8bit_2;
    
    uint8_t   current_image1[64][64];
    uint8_t   current_image2[64][64];
    uint8_t   current_image3[64][64];
    uint8_t   current_image4[64][64];
    uint8_t   previous_image1[64][64];
    uint8_t   previous_image2[64][64];
    uint8_t   previous_image3[64][64];
    uint8_t   previous_image4[64][64];
    for(int i=0;i<64;++i)
    {
        for(int j=0;j<64;++j)
        {
            current_image1[i][j]=0;
            previous_image1[i][j]=0;
            current_image2[i][j]=0;
            previous_image2[i][j]=0;
            current_image3[i][j]=0;
            previous_image3[i][j]=0;
            current_image4[i][j]=0;
            previous_image4[i][j]=0;
        }
    }
    
    uint8_t ourImage[OurSize];
    for(int i=0;i<OurSize;++i)
    {
        ourImage[i]=0;
    }
    
	/* usart config*/
	usart_init();

    /* i2c config*/
    i2c_init();

	/* sonar config*/
	float sonar_distance_filtered = 0.0f; // distance in meter
	float sonar_distance_raw = 0.0f; // distance in meter
	bool distance_valid = false;
	sonar_config();

	/* reset/start timers */
	timer[TIMER_SONAR] = SONAR_TIMER_COUNT;
	timer[TIMER_SYSTEM_STATE] = SYSTEM_STATE_COUNT;
	timer[TIMER_RECEIVE] = SYSTEM_STATE_COUNT / 2;
	timer[TIMER_PARAMS] = PARAMS_COUNT;
	timer[TIMER_IMAGE] = global_data.param[PARAM_VIDEO_RATE];

	/* variables */
	uint32_t counter = 0;
	uint8_t qual = 0;

	/* bottom flow variables */
	float pixel_flow_x = 0.0f;
	float pixel_flow_y = 0.0f;
	float pixel_flow_x_sum = 0.0f;
	float pixel_flow_y_sum = 0.0f;
	float velocity_x_sum = 0.0f;
	float velocity_y_sum = 0.0f;
	float velocity_x_lp = 0.0f;
	float velocity_y_lp = 0.0f;
	int valid_frame_count = 0;
	int pixel_flow_count = 0;
	float pixel_flow_x_lp = 0.0f;
	float pixel_flow_y_lp = 0.0f;

	static float accumulated_flow_x = 0;
	static float accumulated_flow_y = 0;
	static float accumulated_gyro_x = 0;
	static float accumulated_gyro_y = 0;
	static float accumulated_gyro_z = 0;
	static uint16_t accumulated_framecount = 0;
	static uint16_t accumulated_quality = 0;
	static uint32_t integration_timespan = 0;
	static uint32_t lasttime = 0;
	uint32_t time_since_last_sonar_update= 0;

	static float last_vel_x = 0;
	static float last_vel_y = 0;
	float vel_x = 0, vel_y = 0;

    //Change
    int count=1;
    //int gyroCount=1;
    uint8_t * tmp_image1 = *previous_image;
    uint8_t * tmp_image2 = *current_image;
    float x_temprate=0;
    float y_temprate=0;
    float z_temprate=0;
    
    int defCount=3;
    
    
    
    for (uint16_t pixel = 0; pixel < global_data.param[PARAM_IMAGE_WIDTH] * global_data.param[PARAM_IMAGE_HEIGHT]; pixel++)
    {
        *(tmp_image1+pixel)=0;
        *(tmp_image2+pixel)=0;
    }
    uint16_t image_sum1=0;
    uint16_t image_sum2=0;
    uint16_t image_sum3=0;
    uint16_t image_sum4=0;
    //EndChange


	/* main loop */
	while (1)
	{
        
        
        uint16_t image_size = global_data.param[PARAM_IMAGE_WIDTH] * global_data.param[PARAM_IMAGE_HEIGHT];
        
		/* reset flow buffers if needed */
		if(buffer_reset_needed)
		{
			buffer_reset_needed = 0;
			for (int i = 0; i < global_data.param[PARAM_IMAGE_WIDTH] * global_data.param[PARAM_IMAGE_HEIGHT]; i++)
			{
				image_buffer_8bit_1[i] = 0;
				image_buffer_8bit_2[i] = 0;
			}
			delay(500);
			continue;
		}

		/* calibration routine */
		if(global_data.param[PARAM_VIDEO_ONLY])
		{
			while(global_data.param[PARAM_VIDEO_ONLY])
			{
				dcmi_restart_calibration_routine();

				/* waiting for first quarter of image */
				while(get_frame_counter() < 2){}
				dma_copy_image_buffers(&current_image, &previous_image, FULL_IMAGE_SIZE, 1);

				/* waiting for second quarter of image */
				while(get_frame_counter() < 3){}
				dma_copy_image_buffers(&current_image, &previous_image, FULL_IMAGE_SIZE, 1);

				/* waiting for all image parts */
				while(get_frame_counter() < 4){}

				send_calibration_image(&previous_image, &current_image);

				if (global_data.param[PARAM_SYSTEM_SEND_STATE])
					communication_system_state_send();

				communication_receive_usb();
				debug_message_send_one();
				communication_parameter_send();

				LEDToggle(LED_COM);
			}

			dcmi_restart_calibration_routine();
			LEDOff(LED_COM);
		}

        
        //StartChange
        if(count<=defCount)
        {
            if(count==1)
            {
                for (uint16_t pixel = 0; pixel < image_size; pixel++)
                {
                    image_sum1+=*(previous_image+pixel);
                }
                for (uint16_t pixel = 0; pixel < image_size; pixel++)
                {
                    *(tmp_image1+pixel)=(uint8_t)(*(previous_image+pixel));
                }
            }
            else
            {
                for (uint16_t pixel = 0; pixel < image_size; pixel++)
                {
                    image_sum2+=*(previous_image+pixel);
                }
                if(image_sum1<image_sum2)
                {
                    image_sum1=image_sum2;
                    for (uint16_t pixel = 0; pixel < image_size; pixel++)
                    {
                        *(tmp_image1+pixel)=(uint8_t)(*(previous_image+pixel));
                    }
                }
                image_sum2=0;
            }
        }
        if(count>defCount&&count<=2*defCount)
        {
//            uint16_t image_sum1=0;
//            uint16_t image_sum2=0;
            if(count==defCount+1)
            {
                for (uint16_t pixel = 0; pixel < image_size; pixel++)
                {
                    image_sum3+=*(current_image+pixel);
                }
                for (uint16_t pixel = 0; pixel < image_size; pixel++)
                {
                    *(tmp_image2+pixel)=(uint8_t)(*(previous_image+pixel));
                }
            }
            else
            {
                for (uint16_t pixel = 0; pixel < image_size; pixel++)
                {
                    image_sum4+=*(current_image+pixel);
                }
                if(image_sum3<image_sum4)
                {
                    image_sum3=image_sum4;
                    for (uint16_t pixel = 0; pixel < image_size; pixel++)
                    {
                        *(tmp_image2+pixel)=(uint8_t)(*(previous_image+pixel));
                    }
                }
                image_sum4=0;
            }
        }
//        if(count<=defCount)
//        {
//            for (uint16_t pixel = 0; pixel < image_size; pixel++)
//            {
//                *(tmp_image1+pixel)+=(uint8_t)(*(previous_image+pixel)/defCount);
//            }
//        }
//        if(count>defCount&&count<=2*defCount)
//        {
//            for (uint16_t pixel = 0; pixel < image_size; pixel++)
//            {
//                *(tmp_image2+pixel)+=(uint8_t)(*(current_image+pixel)/defCount);
//            }
//           
//        }
        count++;
        if(count==2*defCount+1)
        {
            
            /* new gyroscope data */
            float x_rate_sensor, y_rate_sensor, z_rate_sensor;
            int16_t gyro_temp;
            gyro_read(&x_rate_sensor, &y_rate_sensor, &z_rate_sensor,&gyro_temp);
            
            /* gyroscope coordinate transformation */
            x_temprate += y_rate_sensor/(2*defCount); // change x and y rates
            y_temprate += - x_rate_sensor/(2*defCount);
            z_temprate += z_rate_sensor/(2*defCount); // z is correct
            
            /* calculate focal_length in pixel */
            const float focal_length_px = (global_data.param[PARAM_FOCAL_LENGTH_MM]) / (4.0f * 6.0f) * 1000.0f; //original focal lenght: 12mm pixelsize: 6um, binning 4 enabled
            
            /* get sonar data */
            distance_valid = sonar_read(&sonar_distance_filtered, &sonar_distance_raw);
            
            /* reset to zero for invalid distances */
            if (!distance_valid) {
                sonar_distance_filtered = 0.0f;
                sonar_distance_raw = 0.0f;
            }
            
            float x_rate = x_temprate; // change x and y rates
            float y_rate = - y_temprate;
            float z_rate = z_temprate; // z is correct
            x_temprate =0.0f;
            y_temprate =0.0f;
            z_temprate =0.0f;
            
//            /* calculate focal_length in pixel */
//            const float focal_length_px = (global_data.param[PARAM_FOCAL_LENGTH_MM]) / (4.0f * 6.0f) * 1000.0f; //original focal lenght: 12mm pixelsize: 6um, binning 4 enabled
//            
//            /* get sonar data */
//            distance_valid = sonar_read(&sonar_distance_filtered, &sonar_distance_raw);
            
            
            *previous_image=tmp_image1;
            *current_image=tmp_image2;
            count=1;
            for (uint16_t pixel = 0; pixel < image_size; pixel++)
            {
                *(tmp_image1+pixel)=0;
                *(tmp_image2+pixel)=0;
            }
            image_sum1=0;
            image_sum2=0;
            image_sum3=0;
            image_sum4=0;
            /* compute optical flow */
            if(global_data.param[PARAM_SENSOR_POSITION] == BOTTOM)
            {
                /* copy recent image to faster ram */
                dma_copy_image_buffers(&current_image, &previous_image, image_size, 1);
                
                for(int i=0;i<64;++i)
                {
                    for(int j=0;j<64;++j)
                    {
                        previous_image1[i][j]=*(previous_image+64*i+j);
                        current_image1[i][j]=*(current_image+64*i+j);
                    }
                }
                
                /* compute optical flow */
                qual = compute_flow(previous_image, current_image, x_rate, y_rate, z_rate, &pixel_flow_x, &pixel_flow_y);
                
                /*
                 * real point P (X,Y,Z), image plane projection p (x,y,z), focal-length f, distance-to-scene Z
                 * x / f = X / Z
                 * y / f = Y / Z
                 */
                float flow_compx = pixel_flow_x / focal_length_px / (get_time_between_images() / 1000000.0f);
                float flow_compy = pixel_flow_y / focal_length_px / (get_time_between_images() / 1000000.0f);
                
                /* integrate velocity and output values only if distance is valid */
                if (distance_valid)
                {
                    /* calc velocity (negative of flow values scaled with distance) */
                    float new_velocity_x = - flow_compx * sonar_distance_filtered;
                    float new_velocity_y = - flow_compy * sonar_distance_filtered;
                    
                    time_since_last_sonar_update = (get_boot_time_us()- get_sonar_measure_time());
                    
                    if (qual > 0)
                    {
                        velocity_x_sum += new_velocity_x;
                        velocity_y_sum += new_velocity_y;
                        valid_frame_count++;
                        
                        uint32_t deltatime = (get_boot_time_us() - lasttime);
                        integration_timespan += deltatime;
                        accumulated_flow_x += pixel_flow_y  / focal_length_px * 1.0f; //rad axis swapped to align x flow around y axis
                        accumulated_flow_y += pixel_flow_x  / focal_length_px * -1.0f;//rad
                        accumulated_gyro_x += x_rate * deltatime / 1000000.0f;	//rad
                        accumulated_gyro_y += y_rate * deltatime / 1000000.0f;	//rad
                        accumulated_gyro_z += z_rate * deltatime / 1000000.0f;	//rad
                        accumulated_framecount++;
                        accumulated_quality += qual;
                        
                        /* lowpass velocity output */
                        velocity_x_lp = global_data.param[PARAM_BOTTOM_FLOW_WEIGHT_NEW] * new_velocity_x +
                        (1.0f - global_data.param[PARAM_BOTTOM_FLOW_WEIGHT_NEW]) * velocity_x_lp;
                        velocity_y_lp = global_data.param[PARAM_BOTTOM_FLOW_WEIGHT_NEW] * new_velocity_y +
                        (1.0f - global_data.param[PARAM_BOTTOM_FLOW_WEIGHT_NEW]) * velocity_y_lp;
                    }
                    else
                    {
                        /* taking flow as zero */
                        velocity_x_lp = (1.0f - global_data.param[PARAM_BOTTOM_FLOW_WEIGHT_NEW]) * velocity_x_lp;
                        velocity_y_lp = (1.0f - global_data.param[PARAM_BOTTOM_FLOW_WEIGHT_NEW]) * velocity_y_lp;
                    }
                }
                else
                {
                    /* taking flow as zero */
                    velocity_x_lp = (1.0f - global_data.param[PARAM_BOTTOM_FLOW_WEIGHT_NEW]) * velocity_x_lp;
                    velocity_y_lp = (1.0f - global_data.param[PARAM_BOTTOM_FLOW_WEIGHT_NEW]) * velocity_y_lp;
                }
                //update lasttime
                lasttime = get_boot_time_us();
                
                pixel_flow_x_sum += pixel_flow_x;
                pixel_flow_y_sum += pixel_flow_y;
                pixel_flow_count++;
                
            }
            
            counter++;
            
            if(global_data.param[PARAM_SENSOR_POSITION] == BOTTOM)
            {
                /* send bottom flow if activated */
                
                float ground_distance = 0.0f;
                
                
                if(global_data.param[PARAM_SONAR_FILTERED])
                {
                    ground_distance = sonar_distance_filtered;
                }
                else
                {
                    ground_distance = sonar_distance_raw;
                }
                
                if(global_data.param[PARAM_BOTTOM_FLOW_LP_FILTERED])
                {
                    /* lowpass velocity output */
                    pixel_flow_x_lp = global_data.param[PARAM_BOTTOM_FLOW_WEIGHT_NEW] * pixel_flow_x +
                    (1.0f - global_data.param[PARAM_BOTTOM_FLOW_WEIGHT_NEW]) * pixel_flow_x_lp;
                    pixel_flow_y_lp = global_data.param[PARAM_BOTTOM_FLOW_WEIGHT_NEW] * pixel_flow_y +
                    (1.0f - global_data.param[PARAM_BOTTOM_FLOW_WEIGHT_NEW]) * pixel_flow_y_lp;
                }
                else
                {
                    pixel_flow_x_lp = pixel_flow_x;
                    pixel_flow_y_lp = pixel_flow_y;
                }
                //update I2C transmitbuffer
                if(valid_frame_count>0)
                {
                    update_TX_buffer(pixel_flow_x_lp, pixel_flow_y_lp, velocity_x_sum/valid_frame_count, velocity_y_sum/valid_frame_count, qual,
                                     ground_distance, x_rate, y_rate, z_rate, gyro_temp);
                    last_vel_x = velocity_x_sum/valid_frame_count;
                    last_vel_y = velocity_y_sum/valid_frame_count;
                    vel_x = last_vel_x;
                    vel_y = last_vel_y;
                }
                else
                {
                    /*
                     update_TX_buffer(pixel_flow_x_lp, pixel_flow_y_lp, last_vel_x, last_vel_y, qual,
                     ground_distance, x_rate, y_rate, z_rate, gyro_temp);
                     vel_x = 0;
                     vel_y = 0;
                     */
                }
                
                //serial mavlink  + usb mavlink output throttled
                if (counter % (uint32_t)global_data.param[PARAM_BOTTOM_FLOW_SERIAL_THROTTLE_FACTOR] == 0)//throttling factor
                {
                    float flow_comp_m_x = 0.0f;
                    float flow_comp_m_y = 0.0f;
                    
                    if(global_data.param[PARAM_BOTTOM_FLOW_LP_FILTERED])
                    {
                        flow_comp_m_x = velocity_x_lp;
                        flow_comp_m_y = velocity_y_lp;
                    }
                    else
                    {
                        if(valid_frame_count>0)
                        {
                            flow_comp_m_x = velocity_x_sum/valid_frame_count;
                            flow_comp_m_y = velocity_y_sum/valid_frame_count;
                        }
                        else
                        {
                            flow_comp_m_x = 0.0f;
                            flow_comp_m_y = 0.0f;
                        }
                    }
                    
                    
                    // send flow
                    mavlink_msg_optical_flow_send(MAVLINK_COMM_0, get_boot_time_us(), global_data.param[PARAM_SENSOR_ID],
                                                  pixel_flow_x_sum * 10.0f, pixel_flow_y_sum * 10.0f,
                                                  flow_comp_m_x, flow_comp_m_y, qual, ground_distance);
                    
                    
                    mavlink_msg_optical_flow_rad_send(MAVLINK_COMM_0, get_boot_time_us(), global_data.param[PARAM_SENSOR_ID],
                                                      integration_timespan, accumulated_flow_x, accumulated_flow_y,
                                                      accumulated_gyro_x, accumulated_gyro_y, accumulated_gyro_z,
                                                      gyro_temp, accumulated_quality/accumulated_framecount,
                                                      time_since_last_sonar_update,ground_distance);
                    
                    /*
                     mavlink_msg_optical_flow_rad_send(MAVLINK_COMM_0, get_boot_time_us(), global_data.param[PARAM_SENSOR_ID],
                     integration_timespan, accumulated_flow_x, accumulated_flow_y,
                     vel_x, vel_y, accumulated_gyro_z,
                     gyro_temp, accumulated_quality/accumulated_framecount,
                     time_since_last_sonar_update,ground_distance);
                     */
                    /*
                     mavlink_msg_optical_flow_rad_send(MAVLINK_COMM_0, get_boot_time_us(), global_data.param[PARAM_SENSOR_ID],
                     integration_timespan, accumulated_flow_x, accumulated_flow_y,
                     last_vel_x, last_vel_y, accumulated_gyro_z,
                     gyro_temp, accumulated_quality/accumulated_framecount,
                     time_since_last_sonar_update,ground_distance);
                     */
                    
                    
                    /* send approximate local position estimate without heading */
                    if (global_data.param[PARAM_SYSTEM_SEND_LPOS])
                    {
                        /* rough local position estimate for unit testing */
                        lpos.x += ground_distance*accumulated_flow_x;
                        lpos.y += ground_distance*accumulated_flow_y;
                        lpos.z = -ground_distance;
                        /* velocity not directly measured and not important for testing */
                        lpos.vx = 0;
                        lpos.vy = 0;
                        lpos.vz = 0;
                        
                    } else {
                        /* toggling param allows user reset */
                        lpos.x = 0;
                        lpos.y = 0;
                        lpos.z = 0;
                        lpos.vx = 0;
                        lpos.vy = 0;
                        lpos.vz = 0;
                    }
                    
                    if (global_data.param[PARAM_USB_SEND_FLOW])
                    {
                        mavlink_msg_optical_flow_send(MAVLINK_COMM_2, get_boot_time_us(), global_data.param[PARAM_SENSOR_ID],
                                                      pixel_flow_x_sum * 10.0f, pixel_flow_y_sum * 10.0f,
                                                      flow_comp_m_x, flow_comp_m_y, qual, ground_distance);
                        
                        
                        mavlink_msg_optical_flow_rad_send(MAVLINK_COMM_2, get_boot_time_us(), global_data.param[PARAM_SENSOR_ID],
                                                          integration_timespan, accumulated_flow_x, accumulated_flow_y,
                                                          accumulated_gyro_x, accumulated_gyro_y, accumulated_gyro_z,
                                                          gyro_temp, accumulated_quality/accumulated_framecount,
                                                          time_since_last_sonar_update,ground_distance);
                    }
                    
                    
                    if(global_data.param[PARAM_USB_SEND_GYRO])
                    {
                        mavlink_msg_debug_vect_send(MAVLINK_COMM_2, "GYRO", get_boot_time_us(), x_rate, y_rate, z_rate);
                    }
                    
                    integration_timespan = 0;
                    accumulated_flow_x = 0;
                    accumulated_flow_y = 0;
                    accumulated_framecount = 0;
                    accumulated_quality = 0;
                    accumulated_gyro_x = 0;
                    accumulated_gyro_y = 0;
                    accumulated_gyro_z = 0;
                    
                    velocity_x_sum = 0.0f;
                    velocity_y_sum = 0.0f;
                    pixel_flow_x_sum = 0.0f;
                    pixel_flow_y_sum = 0.0f;
                    valid_frame_count = 0;
                    pixel_flow_count = 0;
                }
            }
            
            /* forward flow from other sensors */
            if (counter % 2)
            {
                communication_receive_forward();
            }
            
            /* send system state, receive commands */
            if (send_system_state_now)
            {
                /* every second */
                if (global_data.param[PARAM_SYSTEM_SEND_STATE])
                {
                    communication_system_state_send();
                }
                send_system_state_now = false;
            }
            
            /* receive commands */
            if (receive_now)
            {
                /* test every second */
                communication_receive();
                communication_receive_usb();
                receive_now = false;
            }
            
            /* sending debug msgs and requested parameters */
            if (send_params_now)
            {
                debug_message_send_one();
                communication_parameter_send();
                send_params_now = false;
            }
            
            /* send local position estimate, for testing only, doesn't account for heading */
            if (send_lpos_now)
            {
                if (global_data.param[PARAM_SYSTEM_SEND_LPOS])
                {
                    mavlink_msg_local_position_ned_send(MAVLINK_COMM_2, timer_ms, lpos.x, lpos.y, lpos.z, lpos.vx, lpos.vy, lpos.vz);
                }
                send_lpos_now = false;
            }
            
            /*  transmit raw 8-bit image */
            if (global_data.param[PARAM_USB_SEND_VIDEO] && send_image_now)
            {
                /* get size of image to send */
                uint16_t image_size_send;
                uint16_t image_width_send;
                uint16_t image_height_send;
                
                image_size_send = image_size;
                image_width_send = global_data.param[PARAM_IMAGE_WIDTH];
                image_height_send = global_data.param[PARAM_IMAGE_HEIGHT];
                
                mavlink_msg_data_transmission_handshake_send(
                                                             MAVLINK_COMM_2,
                                                             MAVLINK_DATA_STREAM_IMG_RAW8U,
                                                             image_size_send,
                                                             image_width_send,
                                                             image_height_send,
                                                             image_size_send / MAVLINK_MSG_ENCAPSULATED_DATA_FIELD_DATA_LEN + 1,
                                                             MAVLINK_MSG_ENCAPSULATED_DATA_FIELD_DATA_LEN,
                                                             100);
                LEDToggle(LED_COM);
                uint16_t frame = 0;
                for (frame = 0; frame < image_size_send / MAVLINK_MSG_ENCAPSULATED_DATA_FIELD_DATA_LEN + 1; frame++)
                {
                    mavlink_msg_encapsulated_data_send(MAVLINK_COMM_2, frame, &((uint8_t *) current_image)[frame * MAVLINK_MSG_ENCAPSULATED_DATA_FIELD_DATA_LEN]);
                }
                
                send_image_now = false;
            }
            else if (!global_data.param[PARAM_USB_SEND_VIDEO])
            {
                LEDOff(LED_COM);
            }
        }
    
        
        //EndChange
	}
}