Ejemplo n.º 1
0
void poly_sine(FPU_REG *st0_ptr)
{
	int exponent, echange;
	Xsig accumulator, argSqrd, argTo4;
	unsigned long fix_up, adj;
	unsigned long long fixed_arg;
	FPU_REG result;

	exponent = exponent(st0_ptr);

	accumulator.lsw = accumulator.midw = accumulator.msw = 0;

	
	
	if ((exponent < -1)
	    || ((exponent == -1) && (st0_ptr->sigh <= 0xe21240aa))) {
		

		argSqrd.msw = st0_ptr->sigh;
		argSqrd.midw = st0_ptr->sigl;
		argSqrd.lsw = 0;
		mul64_Xsig(&argSqrd, &significand(st0_ptr));
		shr_Xsig(&argSqrd, 2 * (-1 - exponent));
		argTo4.msw = argSqrd.msw;
		argTo4.midw = argSqrd.midw;
		argTo4.lsw = argSqrd.lsw;
		mul_Xsig_Xsig(&argTo4, &argTo4);

		polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_l,
				N_COEFF_N - 1);
		mul_Xsig_Xsig(&accumulator, &argSqrd);
		negate_Xsig(&accumulator);

		polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_l,
				N_COEFF_P - 1);

		shr_Xsig(&accumulator, 2);	
		accumulator.msw |= 0x80000000;	

		mul64_Xsig(&accumulator, &significand(st0_ptr));
		mul64_Xsig(&accumulator, &significand(st0_ptr));
		mul64_Xsig(&accumulator, &significand(st0_ptr));

		
		exponent = 3 * exponent;

		
		shr_Xsig(&accumulator, exponent(st0_ptr) - exponent);

		negate_Xsig(&accumulator);
		XSIG_LL(accumulator) += significand(st0_ptr);

		echange = round_Xsig(&accumulator);

		setexponentpos(&result, exponent(st0_ptr) + echange);
	} else {
		
		

		fixed_arg = significand(st0_ptr);

		if (exponent == 0) {
			

			
			fixed_arg <<= 1;
		}
		
		fixed_arg = 0x921fb54442d18469LL - fixed_arg;
		
		if (fixed_arg == 0xffffffffffffffffLL)
			fixed_arg = 0;

		XSIG_LL(argSqrd) = fixed_arg;
		argSqrd.lsw = 0;
		mul64_Xsig(&argSqrd, &fixed_arg);

		XSIG_LL(argTo4) = XSIG_LL(argSqrd);
		argTo4.lsw = argSqrd.lsw;
		mul_Xsig_Xsig(&argTo4, &argTo4);

		polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_h,
				N_COEFF_NH - 1);
		mul_Xsig_Xsig(&accumulator, &argSqrd);
		negate_Xsig(&accumulator);

		polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_h,
				N_COEFF_PH - 1);
		negate_Xsig(&accumulator);

		mul64_Xsig(&accumulator, &fixed_arg);
		mul64_Xsig(&accumulator, &fixed_arg);

		shr_Xsig(&accumulator, 3);
		negate_Xsig(&accumulator);

		add_Xsig_Xsig(&accumulator, &argSqrd);

		shr_Xsig(&accumulator, 1);

		accumulator.lsw |= 1;	
		negate_Xsig(&accumulator);


		
		fix_up = 0x898cc517;
		
		if (argSqrd.msw & 0xffc00000) {
			
			fix_up -= mul_32_32(0x898cc517, argSqrd.msw) / 6;
		}
		fix_up = mul_32_32(fix_up, LL_MSW(fixed_arg));

		adj = accumulator.lsw;	
		accumulator.lsw -= fix_up;
		if (accumulator.lsw > adj)
			XSIG_LL(accumulator)--;

		echange = round_Xsig(&accumulator);

		setexponentpos(&result, echange - 1);
	}

	significand(&result) = XSIG_LL(accumulator);
	setsign(&result, getsign(st0_ptr));
	FPU_copy_to_reg0(&result, TAG_Valid);

#ifdef PARANOID
	if ((exponent(&result) >= 0)
	    && (significand(&result) > 0x8000000000000000LL)) {
		EXCEPTION(EX_INTERNAL | 0x150);
	}
#endif 

}
Ejemplo n.º 2
0
/*--- poly_sine() -----------------------------------------------------------+
 |                                                                           |
 +---------------------------------------------------------------------------*/
void	poly_sine(FPU_REG const *arg, FPU_REG *result)
{
  int                 exponent, echange;
  Xsig                accumulator, argSqrd, argTo4;
  unsigned long       fix_up, adj;
  unsigned long long  fixed_arg;


#ifdef PARANOID
  if ( arg->tag == TW_Zero )
    {
      /* Return 0.0 */
      reg_move(&CONST_Z, result);
      return;
    }
#endif PARANOID

  exponent = arg->exp - EXP_BIAS;

  accumulator.lsw = accumulator.midw = accumulator.msw = 0;

  /* Split into two ranges, for arguments below and above 1.0 */
  /* The boundary between upper and lower is approx 0.88309101259 */
  if ( (exponent < -1) || ((exponent == -1) && (arg->sigh <= 0xe21240aa)) )
    {
      /* The argument is <= 0.88309101259 */

      argSqrd.msw = arg->sigh; argSqrd.midw = arg->sigl; argSqrd.lsw = 0;
      mul64_Xsig(&argSqrd, &significand(arg));
      shr_Xsig(&argSqrd, 2*(-1-exponent));
      argTo4.msw = argSqrd.msw; argTo4.midw = argSqrd.midw;
      argTo4.lsw = argSqrd.lsw;
      mul_Xsig_Xsig(&argTo4, &argTo4);

      polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_l,
		      N_COEFF_N-1);
      mul_Xsig_Xsig(&accumulator, &argSqrd);
      negate_Xsig(&accumulator);

      polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_l,
		      N_COEFF_P-1);

      shr_Xsig(&accumulator, 2);    /* Divide by four */
      accumulator.msw |= 0x80000000;  /* Add 1.0 */

      mul64_Xsig(&accumulator, &significand(arg));
      mul64_Xsig(&accumulator, &significand(arg));
      mul64_Xsig(&accumulator, &significand(arg));

      /* Divide by four, FPU_REG compatible, etc */
      exponent = 3*exponent + EXP_BIAS;

      /* The minimum exponent difference is 3 */
      shr_Xsig(&accumulator, arg->exp - exponent);

      negate_Xsig(&accumulator);
      XSIG_LL(accumulator) += significand(arg);

      echange = round_Xsig(&accumulator);

      result->exp = arg->exp + echange;
    }
  else
    {
      /* The argument is > 0.88309101259 */
      /* We use sin(arg) = cos(pi/2-arg) */

      fixed_arg = significand(arg);

      if ( exponent == 0 )
	{
	  /* The argument is >= 1.0 */

	  /* Put the binary point at the left. */
	  fixed_arg <<= 1;
	}
      /* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */
      fixed_arg = 0x921fb54442d18469LL - fixed_arg;

      XSIG_LL(argSqrd) = fixed_arg; argSqrd.lsw = 0;
      mul64_Xsig(&argSqrd, &fixed_arg);

      XSIG_LL(argTo4) = XSIG_LL(argSqrd); argTo4.lsw = argSqrd.lsw;
      mul_Xsig_Xsig(&argTo4, &argTo4);

      polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_h,
		      N_COEFF_NH-1);
      mul_Xsig_Xsig(&accumulator, &argSqrd);
      negate_Xsig(&accumulator);

      polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_h,
		      N_COEFF_PH-1);
      negate_Xsig(&accumulator);

      mul64_Xsig(&accumulator, &fixed_arg);
      mul64_Xsig(&accumulator, &fixed_arg);

      shr_Xsig(&accumulator, 3);
      negate_Xsig(&accumulator);

      add_Xsig_Xsig(&accumulator, &argSqrd);

      shr_Xsig(&accumulator, 1);

      accumulator.lsw |= 1;  /* A zero accumulator here would cause problems */
      negate_Xsig(&accumulator);

      /* The basic computation is complete. Now fix the answer to
	 compensate for the error due to the approximation used for
	 pi/2
	 */

      /* This has an exponent of -65 */
      fix_up = 0x898cc517;
      /* The fix-up needs to be improved for larger args */
      if ( argSqrd.msw & 0xffc00000 )
	{
	  /* Get about 32 bit precision in these: */
	  mul_32_32(0x898cc517, argSqrd.msw, &adj);
	  fix_up -= adj/6;
	}
      mul_32_32(fix_up, LL_MSW(fixed_arg), &fix_up);

      adj = accumulator.lsw;    /* temp save */
      accumulator.lsw -= fix_up;
      if ( accumulator.lsw > adj )
	XSIG_LL(accumulator) --;

      echange = round_Xsig(&accumulator);

      result->exp = EXP_BIAS - 1 + echange;
    }

  significand(result) = XSIG_LL(accumulator);
  result->tag = TW_Valid;
  result->sign = arg->sign;

#ifdef PARANOID
  if ( (result->exp >= EXP_BIAS)
      && (significand(result) > 0x8000000000000000LL) )
    {
      EXCEPTION(EX_INTERNAL|0x150);
    }
#endif PARANOID

}
Ejemplo n.º 3
0
void poly_cos(FPU_REG *st0_ptr)
{
	FPU_REG result;
	long int exponent, exp2, echange;
	Xsig accumulator, argSqrd, fix_up, argTo4;
	unsigned long long fixed_arg;

#ifdef PARANOID
	if ((exponent(st0_ptr) > 0)
	    || ((exponent(st0_ptr) == 0)
		&& (significand(st0_ptr) > 0xc90fdaa22168c234LL))) {
		EXCEPTION(EX_Invalid);
		FPU_copy_to_reg0(&CONST_QNaN, TAG_Special);
		return;
	}
#endif 

	exponent = exponent(st0_ptr);

	accumulator.lsw = accumulator.midw = accumulator.msw = 0;

	if ((exponent < -1)
	    || ((exponent == -1) && (st0_ptr->sigh <= 0xb00d6f54))) {
		

		argSqrd.msw = st0_ptr->sigh;
		argSqrd.midw = st0_ptr->sigl;
		argSqrd.lsw = 0;
		mul64_Xsig(&argSqrd, &significand(st0_ptr));

		if (exponent < -1) {
			
			shr_Xsig(&argSqrd, 2 * (-1 - exponent));
		}

		argTo4.msw = argSqrd.msw;
		argTo4.midw = argSqrd.midw;
		argTo4.lsw = argSqrd.lsw;
		mul_Xsig_Xsig(&argTo4, &argTo4);

		polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_h,
				N_COEFF_NH - 1);
		mul_Xsig_Xsig(&accumulator, &argSqrd);
		negate_Xsig(&accumulator);

		polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_h,
				N_COEFF_PH - 1);
		negate_Xsig(&accumulator);

		mul64_Xsig(&accumulator, &significand(st0_ptr));
		mul64_Xsig(&accumulator, &significand(st0_ptr));
		shr_Xsig(&accumulator, -2 * (1 + exponent));

		shr_Xsig(&accumulator, 3);
		negate_Xsig(&accumulator);

		add_Xsig_Xsig(&accumulator, &argSqrd);

		shr_Xsig(&accumulator, 1);

		negate_Xsig(&accumulator);

		if (accumulator.lsw & 0x80000000)
			XSIG_LL(accumulator)++;
		if (accumulator.msw == 0) {
			
			FPU_copy_to_reg0(&CONST_1, TAG_Valid);
			return;
		} else {
			significand(&result) = XSIG_LL(accumulator);

			
			setexponentpos(&result, -1);
		}
	} else {
		fixed_arg = significand(st0_ptr);

		if (exponent == 0) {
			

			
			fixed_arg <<= 1;
		}
		
		fixed_arg = 0x921fb54442d18469LL - fixed_arg;
		
		if (fixed_arg == 0xffffffffffffffffLL)
			fixed_arg = 0;

		exponent = -1;
		exp2 = -1;

		if (!(LL_MSW(fixed_arg) & 0xffff0000)) {
			fixed_arg <<= 16;
			exponent -= 16;
			exp2 -= 16;
		}

		XSIG_LL(argSqrd) = fixed_arg;
		argSqrd.lsw = 0;
		mul64_Xsig(&argSqrd, &fixed_arg);

		if (exponent < -1) {
			
			shr_Xsig(&argSqrd, 2 * (-1 - exponent));
		}

		argTo4.msw = argSqrd.msw;
		argTo4.midw = argSqrd.midw;
		argTo4.lsw = argSqrd.lsw;
		mul_Xsig_Xsig(&argTo4, &argTo4);

		polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_l,
				N_COEFF_N - 1);
		mul_Xsig_Xsig(&accumulator, &argSqrd);
		negate_Xsig(&accumulator);

		polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_l,
				N_COEFF_P - 1);

		shr_Xsig(&accumulator, 2);	
		accumulator.msw |= 0x80000000;	

		mul64_Xsig(&accumulator, &fixed_arg);
		mul64_Xsig(&accumulator, &fixed_arg);
		mul64_Xsig(&accumulator, &fixed_arg);

		
		exponent = 3 * exponent;

		
		shr_Xsig(&accumulator, exp2 - exponent);

		negate_Xsig(&accumulator);
		XSIG_LL(accumulator) += fixed_arg;


		
		XSIG_LL(fix_up) = 0x898cc51701b839a2ll;
		fix_up.lsw = 0;

		
		if (argSqrd.msw & 0xffc00000) {
			
			fix_up.msw -= mul_32_32(0x898cc517, argSqrd.msw) / 2;
			fix_up.msw += mul_32_32(0x898cc517, argTo4.msw) / 24;
		}

		exp2 += norm_Xsig(&accumulator);
		shr_Xsig(&accumulator, 1);	
		exp2++;
		shr_Xsig(&fix_up, 65 + exp2);

		add_Xsig_Xsig(&accumulator, &fix_up);

		echange = round_Xsig(&accumulator);

		setexponentpos(&result, exp2 + echange);
		significand(&result) = XSIG_LL(accumulator);
	}

	FPU_copy_to_reg0(&result, TAG_Valid);

#ifdef PARANOID
	if ((exponent(&result) >= 0)
	    && (significand(&result) > 0x8000000000000000LL)) {
		EXCEPTION(EX_INTERNAL | 0x151);
	}
#endif 

}
Ejemplo n.º 4
0
/*--- poly_cos() ------------------------------------------------------------+
 |                                                                           |
 +---------------------------------------------------------------------------*/
void	poly_cos(FPU_REG const *arg, FPU_REG *result)
{
  long int            exponent, exp2, echange;
  Xsig                accumulator, argSqrd, fix_up, argTo4;
  unsigned long       adj;
  unsigned long long  fixed_arg;


#ifdef PARANOID
  if ( arg->tag == TW_Zero )
    {
      /* Return 1.0 */
      reg_move(&CONST_1, result);
      return;
    }

  if ( (arg->exp > EXP_BIAS)
      || ((arg->exp == EXP_BIAS)
	  && (significand(arg) > 0xc90fdaa22168c234LL)) )
    {
      EXCEPTION(EX_Invalid);
      reg_move(&CONST_QNaN, result);
      return;
    }
#endif PARANOID

  exponent = arg->exp - EXP_BIAS;

  accumulator.lsw = accumulator.midw = accumulator.msw = 0;

  if ( (exponent < -1) || ((exponent == -1) && (arg->sigh <= 0xb00d6f54)) )
    {
      /* arg is < 0.687705 */

      argSqrd.msw = arg->sigh; argSqrd.midw = arg->sigl; argSqrd.lsw = 0;
      mul64_Xsig(&argSqrd, &significand(arg));

      if ( exponent < -1 )
	{
	  /* shift the argument right by the required places */
	  shr_Xsig(&argSqrd, 2*(-1-exponent));
	}

      argTo4.msw = argSqrd.msw; argTo4.midw = argSqrd.midw;
      argTo4.lsw = argSqrd.lsw;
      mul_Xsig_Xsig(&argTo4, &argTo4);

      polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_h,
		      N_COEFF_NH-1);
      mul_Xsig_Xsig(&accumulator, &argSqrd);
      negate_Xsig(&accumulator);

      polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_h,
		      N_COEFF_PH-1);
      negate_Xsig(&accumulator);

      mul64_Xsig(&accumulator, &significand(arg));
      mul64_Xsig(&accumulator, &significand(arg));
      shr_Xsig(&accumulator, -2*(1+exponent));

      shr_Xsig(&accumulator, 3);
      negate_Xsig(&accumulator);

      add_Xsig_Xsig(&accumulator, &argSqrd);

      shr_Xsig(&accumulator, 1);

      /* It doesn't matter if accumulator is all zero here, the
	 following code will work ok */
      negate_Xsig(&accumulator);

      if ( accumulator.lsw & 0x80000000 )
	XSIG_LL(accumulator) ++;
      if ( accumulator.msw == 0 )
	{
	  /* The result is 1.0 */
	  reg_move(&CONST_1, result);
	}
      else
	{
	  significand(result) = XSIG_LL(accumulator);
      
	  /* will be a valid positive nr with expon = -1 */
	  *(short *)&(result->sign) = 0;
	  result->exp = EXP_BIAS - 1;
	}
    }
  else
    {
      fixed_arg = significand(arg);

      if ( exponent == 0 )
	{
	  /* The argument is >= 1.0 */

	  /* Put the binary point at the left. */
	  fixed_arg <<= 1;
	}
      /* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */
      fixed_arg = 0x921fb54442d18469LL - fixed_arg;

      exponent = -1;
      exp2 = -1;

      /* A shift is needed here only for a narrow range of arguments,
	 i.e. for fixed_arg approx 2^-32, but we pick up more... */
      if ( !(LL_MSW(fixed_arg) & 0xffff0000) )
	{
	  fixed_arg <<= 16;
	  exponent -= 16;
	  exp2 -= 16;
	}

      XSIG_LL(argSqrd) = fixed_arg; argSqrd.lsw = 0;
      mul64_Xsig(&argSqrd, &fixed_arg);

      if ( exponent < -1 )
	{
	  /* shift the argument right by the required places */
	  shr_Xsig(&argSqrd, 2*(-1-exponent));
	}

      argTo4.msw = argSqrd.msw; argTo4.midw = argSqrd.midw;
      argTo4.lsw = argSqrd.lsw;
      mul_Xsig_Xsig(&argTo4, &argTo4);

      polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_l,
		      N_COEFF_N-1);
      mul_Xsig_Xsig(&accumulator, &argSqrd);
      negate_Xsig(&accumulator);

      polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_l,
		      N_COEFF_P-1);

      shr_Xsig(&accumulator, 2);    /* Divide by four */
      accumulator.msw |= 0x80000000;  /* Add 1.0 */

      mul64_Xsig(&accumulator, &fixed_arg);
      mul64_Xsig(&accumulator, &fixed_arg);
      mul64_Xsig(&accumulator, &fixed_arg);

      /* Divide by four, FPU_REG compatible, etc */
      exponent = 3*exponent;

      /* The minimum exponent difference is 3 */
      shr_Xsig(&accumulator, exp2 - exponent);

      negate_Xsig(&accumulator);
      XSIG_LL(accumulator) += fixed_arg;

      /* The basic computation is complete. Now fix the answer to
	 compensate for the error due to the approximation used for
	 pi/2
	 */

      /* This has an exponent of -65 */
      XSIG_LL(fix_up) = 0x898cc51701b839a2ll;
      fix_up.lsw = 0;

      /* The fix-up needs to be improved for larger args */
      if ( argSqrd.msw & 0xffc00000 )
	{
	  /* Get about 32 bit precision in these: */
	  mul_32_32(0x898cc517, argSqrd.msw, &adj);
	  fix_up.msw -= adj/2;
	  mul_32_32(0x898cc517, argTo4.msw, &adj);
	  fix_up.msw += adj/24;
	}

      exp2 += norm_Xsig(&accumulator);
      shr_Xsig(&accumulator, 1); /* Prevent overflow */
      exp2++;
      shr_Xsig(&fix_up, 65 + exp2);

      add_Xsig_Xsig(&accumulator, &fix_up);

      echange = round_Xsig(&accumulator);

      result->exp = exp2 + EXP_BIAS + echange;
      *(short *)&(result->sign) = 0;      /* Is a valid positive nr */
      significand(result) = XSIG_LL(accumulator);
    }

#ifdef PARANOID
  if ( (result->exp >= EXP_BIAS)
      && (significand(result) > 0x8000000000000000LL) )
    {
      EXCEPTION(EX_INTERNAL|0x151);
    }
#endif PARANOID

}