/****************************************************
 *      Especialización del método dibujar          *
 *  Comienza por dibujar los títulos y etiquetas    *
 *  con funciones del manejador de ventanas GLUT de *
 *  OpenGL. Luego dibuja los datos en pantalla con  *
 *  una línea de la clase Linea2D. Los datos, por   *
 *  estándar de esta biblioteca se representan de   *
 *	0-450 pixeles en el eje Y positivo, de 0-(-150) *
 *  pixeles en el eje Y negativo, de 0-325 pixeles  *
 *  en el eje X positivo y de 0-(-325) pixeles en   *
 *  el eje X negativo. La altura de una linea es    *
 *  una representación del valor contenido en el    *
 *  arreglo. Además se dibuja un círculo de la      *
 *  clase Circulo2D para identificar en que punto   *
 *  de la gráfica está representado un valor.       *
 ****************************************************/
void Grafico2D::dibujar() {
	//Establece el color en Negro
	glColor3f(0.0, 0.0, 0.0);
	//Se mueve hasta la posicion especificada para 
	//imprimir el título
	glRasterPos2i(-40, 400);

	//Imprime el título caracter por caracter con una 
	//letra Helvetica de 18 puntos
	for (GLuint i = 0; i < nombreLen; i++) {
		glutBitmapCharacter(GLUT_BITMAP_HELVETICA_18, nombre[i]);
	}

	//Modifica xRaster para comenzar a imprimir las etiquetas
	//desde la parte izquierda de la pantalla
	GLint xRaster = -270;

	//Imprime las etiquetas caracter por caracter
	//sumando 50 pixeles cuando se llega al delimitador
	//de caracteres, eso asegura de que las etiquetas se
	//mantengan separadas
	for (GLuint i = 0; i < etiquetasLen; i++) {
		if (i % delimitador == 0) {
			glRasterPos2i(xRaster, 0);
			xRaster += 50;
		}

		//Imprime las etiquetas con letra Helvetica de 12 puntos
		glutBitmapCharacter(GLUT_BITMAP_HELVETICA_12, etiquetas[i]);
	}

	//Modifica el valor de xRaster para comenzar a imprimir 
	//las líneas de la gráfica
	xRaster = -260;

	//Recorre el arreglo hasta hacer una linea por cada dato - 1
	//dentro del arreglo de datos
	for (GLuint i = 0; i < datosLen - 1; i++) {
		//Inicializa un punto en el dato en cuestión
		Punto2D Ptmp1(xRaster, datos[i]);
		//Inicializa otro punto en el dato siguiente
		Punto2D Ptmp2(xRaster + 50, datos[i + 1]);
		//Crea una línea a partir de los dos puntos
		//anteriores
		Linea2D Ltmp(Ptmp1, Ptmp2);
		//modifica el color de la línea a un derivado del 
		//Azul
		glColor3f(0.0, 0.3, 1.0);
		//dibuja la linea
		Ltmp.dibujar();
		//Cambia el color a un derivado del rojo (un tono de
		//anaranjado)
		glColor3f(1.0, 0.3, 0.0);
		//Crea un circulo en el punto que representa el dato
		//en cuestion, con un radio de 4 pixeles
		Circulo2D Ctmp(Ptmp1, 4);
		//Dibuja el círculo
		Ctmp.dibujar();

		//Verifica que si es el último circulo a dibujar
		//lo dibuja cuando llega al último dato al que ingresa
		//el ciclo de lo contrario no podrá ser representado
		if (i == datosLen - 2) {
			Circulo2D Ctmp2(Ptmp2, 4);
			Ctmp2.dibujar();
		}

		//Si ya fue representado todo en orden, suma 50 pixeles
		//a la coordenada del xRaster para representar otro punto
		//con 50 pixeles de separación del anterior
		xRaster += 50;
	}
}
Ejemplo n.º 2
0
// Right-hand side of the Lax-Wendroff discretization:
//
//      ( q(t+dt) - q(t) )/dt = -F_{x} - G_{y}.
//
// This routine constructs the 'time-integrated' flux functions F and G using the
// Cauchy-Kowalewski procedure.
//
// First, consider time derivatives of q
//
//    q^{n+1} = q^n + dt * (q^n_t + dt/2 * q^n_tt + dt^3/6 q^n_ttt ).
//
// Formally, these are given by
//
//   q_{t}    = ( -f(q) )_x + ( -g(q) )_y, 
//   q_{tt}   = ( f'(q) * ( f_x + g_y )_x + ( g'(q) * ( f_x + g_y )_y
//   q_{ttt}  = ...
//
// Now, considering Taylor expansions of f and g, centered about t = t^n
//
//  F = f^n + (t-t^n) \dot{f^n} + \cdots
//  G = g^n + (t-t^n) \dot{g^n} + \cdots
//
// We have the following form, after integrating in time
//
//  F: = ( f - dt/2 * ( f'(q)*( f_x+g_y ) 
//           + dt^2/6 ( \pd2{f}{q} \cdot (f_x+g_y,f_x+g_y) +
//                        \pd{f}{q} (  f_x + g_y )_t  ) + \cdots
//
//  G: = ( g - dt/2 * ( g'(q)*( f_x+g_y )
//           + dt^2/6 ( \pd2{g}{q} \cdot (f_x+g_y,f_x+g_y) +
//                        \pd{g}{q} (  f_x + g_y )_t ) + \cdots
//
// where the final ingredient is
//
//  (f_x+g_y)_t = \pd2{f}{q} \cdot (q_x, f_x+g_y ) + \pd{f}{q} ( f_xx + g_xy ) +
//                \pd2{g}{q} \cdot (q_y, f_x+g_y ) + \pd{g}{q} ( f_xy + g_yy ).
//
// At the end of the day, we set
//
//    L(q) := -F_x - G_y.
//
// See also: ConstructL.
void LaxWendroff(double dt, 
    const dTensorBC4& aux, const dTensorBC4& q,    // set bndy values modifies these
    dTensorBC4& Lstar, dTensorBC3& smax)
{

printf("This call hasn't been tested \n");

    if ( !dogParams.get_flux_term() )
    {  return;  }

    const edge_data& edgeData = Legendre2d::get_edgeData();
    const int space_order = dogParams.get_space_order();
    const int mx   = q.getsize(1);
    const int my   = q.getsize(2);
    const int meqn = q.getsize(3);
    const int kmax = q.getsize(4);
    const int mbc  = q.getmbc();
    const int maux = aux.getsize(3);

    // Flux values
    //
    // Space-order = number of quadrature points needed for 1D integration
    // along cell edges.
    //
    dTensorBC4 Fm(mx, my, meqn, space_order, mbc);
    dTensorBC4 Fp(mx, my, meqn, space_order, mbc);
    dTensorBC4 Gm(mx, my, meqn, space_order, mbc);
    dTensorBC4 Gp(mx, my, meqn, space_order, mbc);

    // Flux function
    void FluxFunc(const dTensor2& xpts,
                  const dTensor2& Q,
                  const dTensor2& Aux,
                  dTensor3& flux);

    // Jacobian of the flux function:
    void DFluxFunc(const dTensor2& xpts, 
                   const dTensor2& Q,
                   const dTensor2& Aux, 
                   dTensor4& Dflux );

    // Hessian of the flux function:
    void D2FluxFunc(const dTensor2& xpts, 
                   const dTensor2& Q,
                   const dTensor2& Aux, 
                   dTensor5& D2flux );


    // Riemann solver that relies on the fact that we already have 
    // f(ql) and f(qr) already computed:
    double RiemannSolveLxW(const dTensor1& nvec,
        const dTensor1& xedge,
        const dTensor1& Ql,   const dTensor1& Qr,
        const dTensor1& Auxl, const dTensor1& Auxr,
        const dTensor1& ffl,  const dTensor1& ffr,
        dTensor1& Fl, dTensor1& Fr);

    void LstarExtra(const dTensorBC4*,
            const dTensorBC4*,
            dTensorBC4*);
    void ArtificialViscosity(const dTensorBC4* aux, 
            const dTensorBC4* q, 
            dTensorBC4* Lstar);

    // Grid information
    const double xlower = dogParamsCart2.get_xlow();
    const double ylower = dogParamsCart2.get_ylow();
    const double dx = dogParamsCart2.get_dx();
    const double dy = dogParamsCart2.get_dy();

    // --------------------------------------------------------------------- //
    // Boundary data:
    // --------------------------------------------------------------------- //
    // TODO - call this routine before calling this function.
//  void SetBndValues(dTensorBC4& q, dTensorBC4& aux);
//  SetBndValues(q, aux);
    // ---------------------------------------------------------

    // --------------------------------------------------------------------- //
    // Part 0: Compute the Lax-Wendroff "flux" function:
    //
    // Here, we include the extra information about time derivatives.
    // --------------------------------------------------------------------- //
    dTensorBC4 F(mx, my, meqn, kmax, mbc);  F.setall(0.);
    dTensorBC4 G(mx, my, meqn, kmax, mbc);  G.setall(0.);
    void L2ProjectLxW( const int mterms, 
        const double alpha, const double beta_dt, const double charlie_dt,
        const int istart, const int iend, 
        const int jstart, const int jend,
        const int QuadOrder,
        const int BasisOrder_auxin,
        const int BasisOrder_fout,    
        const dTensorBC4* qin,
        const dTensorBC4* auxin,
        dTensorBC4* F,
        dTensorBC4* G,
        void FluxFunc (const dTensor2& xpts, 
            const dTensor2& Q, const dTensor2& Aux, dTensor3& flux),
        void DFluxFunc (const dTensor2& xpts, 
            const dTensor2& Q, const dTensor2& aux, dTensor4& Dflux),
        void D2FluxFunc (const dTensor2& xpts, 
            const dTensor2& Q, const dTensor2& aux, dTensor5& D2flux) );
printf("hello\n");
    L2ProjectLxW( 3, 1.0, 0.5*dt, dt*dt/6.0,
        1-mbc, mx+mbc, 1-mbc, my+mbc,
        space_order, space_order, space_order,
        &q, &aux, &F, &G, &FluxFunc, &DFluxFunc, D2FluxFunc );

    // ---------------------------------------------------------
    // Part I: compute source term
    // --------------------------------------------------------- 
    if( dogParams.get_source_term() > 0 )
    {
        // eprintf("error: have not implemented source term for LxW solver.");
        printf("Source term has not been implemented for LxW solver.  Terminating program.");
        exit(1);
    }
    Lstar.setall( 0. );

    // ---------------------------------------------------------
    // Part II: compute inter-element interaction fluxes
    //
    //   N = int( F(q,x,t) * phi_x, x ) / dA
    //
    // ---------------------------------------------------------

    // 1-direction: loop over interior edges and solve Riemann problems
    dTensor1 nvec(2);
    nvec.set(1, 1.0e0 );
    nvec.set(2, 0.0e0 );

#pragma omp parallel for
    for (int i=(2-mbc); i<=(mx+mbc); i++)
    {

        dTensor1 Ql(meqn),   Qr(meqn);
        dTensor1 ffl(meqn),  ffr(meqn);
        dTensor1 Fl(meqn),   Fr(meqn);
        dTensor1 DFl(meqn),  DFr(meqn);
        dTensor1 Auxl(maux), Auxr(maux);

        dTensor1 xedge(2);

        for (int j=(2-mbc); j<=(my+mbc-1); j++)
        {
            // ell indexes Riemann point along the edge
            for (int ell=1; ell<=space_order; ell++)
            {
                // Riemann data - q and f (from basis functions/q)
                for (int m=1; m<=meqn; m++)
                {
                    Ql.set (m, 0.0 );
                    Qr.set (m, 0.0 );
                    ffl.set(m, 0.0 );
                    ffr.set(m, 0.0 );

                    for (int k=1; k<=kmax; k++)
                    {
                        // phi_xl( xi=1.0, eta ), phi_xr( xi=-1.0, eta )
                        Ql.fetch(m)  += edgeData.phi_xl->get(ell,k)*q.get(i-1, j, m, k );
                        Qr.fetch(m)  += edgeData.phi_xr->get(ell,k)*q.get(i,   j, m, k );
                        ffl.fetch(m) += edgeData.phi_xl->get(ell,k)*F.get(i-1, j, m, k );
                        ffr.fetch(m) += edgeData.phi_xr->get(ell,k)*F.get(i,   j, m, k );
                    }

                }

                // Riemann data - aux
                for (int m=1; m<=maux; m++)
                {
                    Auxl.set(m, 0.0 );
                    Auxr.set(m, 0.0 );

                    for (int k=1; k<=kmax; k++)
                    {
                        Auxl.fetch(m) += edgeData.phi_xl->get(ell,k)*aux.get(i-1, j, m, k);
                        Auxr.fetch(m) += edgeData.phi_xr->get(ell,k)*aux.get(i,   j, m, k);
                    }
                }

                // Solve Riemann problem
                xedge.set(1, xlower + (double(i)-1.0)*dx );
                xedge.set(2, ylower + (double(j)-0.5)*dy );

                const double smax_edge = RiemannSolveLxW(
                    nvec, xedge, Ql, Qr, Auxl, Auxr, ffl, ffr, Fl, Fr);

                smax.set(i-1, j, 1, Max(dy*smax_edge,smax.get(i-1, j, 1)) );
                smax.set(i,   j, 1, Max(dy*smax_edge,smax.get(i,   j, 1)) );

                // Construct fluxes
                for (int m=1; m<=meqn; m++)
                {
                    Fm.set(i  , j, m, ell,  Fr.get(m) );
                    Fp.set(i-1, j, m, ell,  Fl.get(m) );
                }
            }
        }
    }


    // 2-direction: loop over interior edges and solve Riemann problems
    nvec.set(1, 0.0e0 );
    nvec.set(2, 1.0e0 );

#pragma omp parallel for
    for (int i=(2-mbc); i<=(mx+mbc-1); i++)
    {
        dTensor1  Ql(meqn),   Qr(meqn);
        dTensor1  Fl(meqn),   Fr(meqn);
        dTensor1 ffl(meqn),  ffr(meqn);
        dTensor1 Auxl(maux),Auxr(maux);
        dTensor1 xedge(2);

        for (int j=(2-mbc); j<=(my+mbc); j++)
        for (int ell=1; ell<=space_order; ell++)
        {
            // Riemann data - q
            for (int m=1; m<=meqn; m++)
            {

                Ql.set  (m, 0.0 );
                Qr.set  (m, 0.0 );
                ffl.set (m, 0.0 );
                ffr.set (m, 0.0 );

                for (int k=1; k<=kmax; k++)
                {
                    Ql.fetch(m)  += edgeData.phi_yl->get(ell, k)*q.get(i, j-1, m, k );
                    Qr.fetch(m)  += edgeData.phi_yr->get(ell, k)*q.get(i, j,   m, k );
                    ffl.fetch(m) += edgeData.phi_yl->get(ell, k)*G.get(i, j-1, m, k );
                    ffr.fetch(m) += edgeData.phi_yr->get(ell, k)*G.get(i,   j, m, k );
                }
            }

            // Riemann data - aux
            for (int m=1; m<=maux; m++)
            {
                Auxl.set(m, 0.0 );
                Auxr.set(m, 0.0 );

                for (int k=1; k<=kmax; k++)
                {
                    Auxl.fetch(m) += edgeData.phi_yl->get(ell,k)*aux.get(i,j-1,m,k);
                    Auxr.fetch(m) += edgeData.phi_yr->get(ell,k)*aux.get(i,j,m,k);
                }
            }

            // Solve Riemann problem
            xedge.set(1, xlower + (double(i)-0.5)*dx );
            xedge.set(2, ylower + (double(j)-1.0)*dy );

            const double smax_edge = RiemannSolveLxW(
                nvec, xedge, Ql, Qr, Auxl, Auxr, ffl, ffr, Fl, Fr);

            smax.set(i, j-1, 2,  Max(dx*smax_edge, smax.get(i, j-1, 2)) );
            smax.set(i, j,   2,  Max(dx*smax_edge, smax.get(i, j,   2)) );

            // Construct fluxes
            for (int m=1; m<=meqn; m++)
            {
                Gm.set(i, j,   m, ell, Fr.get(m) );
                Gp.set(i, j-1, m, ell, Fl.get(m) );
            }
        }
    }

    // Compute ``flux differences'' dF and dG    
    const double half_dx_inv = 0.5/dx;
    const double half_dy_inv = 0.5/dy;
    const int mlength = Lstar.getsize(3);   assert_eq( meqn, mlength );

    // Use the four values, Gm, Gp, Fm, Fp to construct the boundary integral:
#pragma omp parallel for
    for (int i=(2-mbc); i<=(mx+mbc-1); i++)    
    for (int j=(2-mbc); j<=(my+mbc-1); j++)
    for (int m=1; m<=mlength; m++)
    for (int k=1; k<=kmax; k++)
    {
        // 1-direction: dF
        double F1 = 0.0;
        double F2 = 0.0;
        for (int ell=1; ell<=space_order; ell++)
        {
            F1 = F1 + edgeData.wght_phi_xr->get(ell,k)*Fm.get(i,j,m,ell);
            F2 = F2 + edgeData.wght_phi_xl->get(ell,k)*Fp.get(i,j,m,ell);
        }

        // 2-direction: dG
        double G1 = 0.0;
        double G2 = 0.0;
        for (int ell=1; ell<=space_order; ell++)
        {
            G1 = G1 + edgeData.wght_phi_yr->get(ell,k)*Gm.get(i,j,m,ell);
            G2 = G2 + edgeData.wght_phi_yl->get(ell,k)*Gp.get(i,j,m,ell);
        }

        Lstar.fetch(i,j,m,k) -= (half_dx_inv*(F2-F1) + half_dy_inv*(G2-G1));

    }
    // ---------------------------------------------------------


    // ---------------------------------------------------------
    // Part III: compute intra-element contributions
    // ---------------------------------------------------------
    // No need to call this if first-order in space
    if(dogParams.get_space_order()>1)
    {

        dTensorBC4 Ltmp( mx, my, meqn, kmax, mbc );
        void L2ProjectGradAddLegendre(const int istart, 
                const int iend, 
                const int jstart, 
                const int jend,
                const int QuadOrder, 
                const dTensorBC4* F, 
                const dTensorBC4* G, 
                dTensorBC4* fout );
        L2ProjectGradAddLegendre( 1-mbc, mx+mbc, 1-mbc, my+mbc,
            space_order, &F, &G, &Lstar );

    }
    // ---------------------------------------------------------  

    // ---------------------------------------------------------
    // Part IV: add extra contributions to Lstar
    // ---------------------------------------------------------
    // Call LstarExtra
    LstarExtra(&q,&aux,&Lstar);
    // ---------------------------------------------------------


    // ---------------------------------------------------------
    // Part V: artificial viscosity limiter
    // ---------------------------------------------------------  
    if (dogParams.get_space_order()>1  &&
            dogParams.using_viscosity_limiter())
    {  ArtificialViscosity(&aux,&q,&Lstar);  }
    // ---------------------------------------------------------

}