Ejemplo n.º 1
0
int GModel::readMED(const std::string &name)
{
  med_idt fid = MEDouvrir((char*)name.c_str(), MED_LECTURE);
  if(fid < 0) {
    Msg::Error("Unable to open file '%s'", name.c_str());
    return 0;
  }

  med_int v[3], vf[3];
  MEDversionDonner(&v[0], &v[1], &v[2]);
  MEDversionLire(fid, &vf[0], &vf[1], &vf[2]);
  Msg::Info("Reading MED file V%d.%d.%d using MED library V%d.%d.%d",
            vf[0], vf[1], vf[2], v[0], v[1], v[2]);
  if(vf[0] < 2 || (vf[0] == 2 && vf[1] < 2)){
    Msg::Error("Cannot read MED file older than V2.2");
    return 0;
  }

  std::vector<std::string> meshNames;
  for(int i = 0; i < MEDnMaa(fid); i++){
    char meshName[MED_TAILLE_NOM + 1], meshDesc[MED_TAILLE_DESC + 1];
    med_int spaceDim;
    med_maillage meshType;
#if (MED_MAJOR_NUM == 3)
    med_int meshDim, nStep;
    char dtUnit[MED_SNAME_SIZE + 1];
    char axisName[3 * MED_SNAME_SIZE + 1], axisUnit[3 * MED_SNAME_SIZE + 1];
    med_sorting_type sortingType;
    med_axis_type axisType;
    if(MEDmeshInfo(fid, i + 1, meshName, &spaceDim, &meshDim, &meshType, meshDesc,
                   dtUnit, &sortingType, &nStep, &axisType, axisName, axisUnit) < 0){
#else
    if(MEDmaaInfo(fid, i + 1, meshName, &spaceDim, &meshType, meshDesc) < 0){
#endif
      Msg::Error("Unable to read mesh information");
      return 0;
    }
    meshNames.push_back(meshName);
  }

  if(MEDfermer(fid) < 0){
    Msg::Error("Unable to close file '%s'", (char*)name.c_str());
    return 0;
  }

  int ret = 1;
  for(unsigned int i = 0; i < meshNames.size(); i++){
    // we use the filename as a kind of "partition" indicator, allowing to
    // complete a model part by part (used e.g. in DDM, since MED does not store
    // a partition index)
    GModel *m = findByName(meshNames[i], name);
    if(!m) m = new GModel(meshNames[i]);
    ret = m->readMED(name, i);
    if(!ret) return 0;
  }
  return ret;
}

int GModel::readMED(const std::string &name, int meshIndex)
{
  med_idt fid = MEDouvrir((char*)name.c_str(), MED_LECTURE);
  if(fid < 0){
    Msg::Error("Unable to open file '%s'", name.c_str());
    return 0;
  }

  int numMeshes = MEDnMaa(fid);
  if(meshIndex >= numMeshes){
    Msg::Info("Could not find mesh %d in MED file", meshIndex);
    return 0;
  }

  checkPointMaxNumbers();
  GModel::setCurrent(this); // make sure we increment max nums in this model

  // read mesh info
  char meshName[MED_TAILLE_NOM + 1], meshDesc[MED_TAILLE_DESC + 1];
  med_int spaceDim, nStep = 1;
  med_maillage meshType;
#if (MED_MAJOR_NUM == 3)
  med_int meshDim;
  char dtUnit[MED_SNAME_SIZE + 1];
  char axisName[3 * MED_SNAME_SIZE + 1], axisUnit[3 * MED_SNAME_SIZE + 1];
  med_sorting_type sortingType;
  med_axis_type axisType;
  if(MEDmeshInfo(fid, meshIndex + 1, meshName, &spaceDim, &meshDim, &meshType, meshDesc,
                 dtUnit, &sortingType, &nStep, &axisType, axisName, axisUnit) < 0){
#else
  if(MEDmaaInfo(fid, meshIndex + 1, meshName, &spaceDim, &meshType, meshDesc) < 0){
#endif
    Msg::Error("Unable to read mesh information");
    return 0;
  }

  // FIXME: we should support multi-step MED3 meshes (probably by
  // storing each mesh as a separate model, with a naming convention
  // e.g. meshName_step%d). This way we could also handle multi-mesh
  // time sequences in MED3.
  if(nStep > 1)
    Msg::Warning("Discarding %d last meshes in multi-step MED mesh", nStep - 1);

  setName(meshName);
  setFileName(name);
  if(meshType == MED_NON_STRUCTURE){
    Msg::Info("Reading %d-D unstructured mesh <<%s>>", spaceDim, meshName);
  }
  else{
    Msg::Error("Reading structured MED meshes is not supported");
    return 0;
  }
  med_int vf[3];
  MEDversionLire(fid, &vf[0], &vf[1], &vf[2]);

  // read nodes
#if (MED_MAJOR_NUM == 3)
  med_bool changeOfCoord, geoTransform;
  med_int numNodes = MEDmeshnEntity(fid, meshName, MED_NO_DT, MED_NO_IT, MED_NODE,
                                    MED_NO_GEOTYPE, MED_COORDINATE, MED_NO_CMODE,
                                    &changeOfCoord, &geoTransform);
#else
  med_int numNodes = MEDnEntMaa(fid, meshName, MED_COOR, MED_NOEUD, MED_NONE,
                                MED_NOD);
#endif
  if(numNodes < 0){
    Msg::Error("Could not read number of MED nodes");
    return 0;
  }
  if(numNodes == 0){
    Msg::Error("No nodes in MED mesh");
    return 0;
  }
  std::vector<MVertex*> verts(numNodes);
  std::vector<med_float> coord(spaceDim * numNodes);
#if (MED_MAJOR_NUM == 3)
  if(MEDmeshNodeCoordinateRd(fid, meshName, MED_NO_DT, MED_NO_IT, MED_FULL_INTERLACE,
                             &coord[0]) < 0){
#else
  std::vector<char> coordName(spaceDim * MED_TAILLE_PNOM + 1);
  std::vector<char> coordUnit(spaceDim * MED_TAILLE_PNOM + 1);
  med_repere rep;
  if(MEDcoordLire(fid, meshName, spaceDim, &coord[0], MED_FULL_INTERLACE,
                  MED_ALL, 0, 0, &rep, &coordName[0], &coordUnit[0]) < 0){
#endif
    Msg::Error("Could not read MED node coordinates");
    return 0;
  }

  std::vector<med_int> nodeTags(numNodes);
#if (MED_MAJOR_NUM == 3)
  if(MEDmeshEntityNumberRd(fid, meshName, MED_NO_DT, MED_NO_IT, MED_NODE,
                           MED_NO_GEOTYPE, &nodeTags[0]) < 0)
#else
  if(MEDnumLire(fid, meshName, &nodeTags[0], numNodes, MED_NOEUD, MED_NONE) < 0)
#endif
    nodeTags.clear();

  for(int i = 0; i < numNodes; i++)
    verts[i] = new MVertex(coord[spaceDim * i],
                           (spaceDim > 1) ? coord[spaceDim * i + 1] : 0.,
                           (spaceDim > 2) ? coord[spaceDim * i + 2] : 0.,
                           0, nodeTags.empty() ? 0 : nodeTags[i]);

  // read elements (loop over all possible MSH element types)
  for(int mshType = 0; mshType < MSH_NUM_TYPE; mshType++){
    med_geometrie_element type = msh2medElementType(mshType);
    if(type == MED_NONE) continue;
#if (MED_MAJOR_NUM == 3)
    med_bool changeOfCoord;
    med_bool geoTransform;
    med_int numEle = MEDmeshnEntity(fid, meshName, MED_NO_DT, MED_NO_IT, MED_CELL,
                                    type, MED_CONNECTIVITY, MED_NODAL, &changeOfCoord,
                                    &geoTransform);
#else
    med_int numEle = MEDnEntMaa(fid, meshName, MED_CONN, MED_MAILLE, type, MED_NOD);
#endif
    if(numEle <= 0) continue;
    int numNodPerEle = type % 100;
    std::vector<med_int> conn(numEle * numNodPerEle);
#if (MED_MAJOR_NUM == 3)
    if(MEDmeshElementConnectivityRd(fid, meshName, MED_NO_DT, MED_NO_IT, MED_CELL,
                                    type, MED_NODAL, MED_FULL_INTERLACE, &conn[0]) < 0){
#else
    if(MEDconnLire(fid, meshName, spaceDim, &conn[0], MED_FULL_INTERLACE, 0, MED_ALL,
                   MED_MAILLE, type, MED_NOD) < 0){
#endif
      Msg::Error("Could not read MED elements");
      return 0;
    }
    std::vector<med_int> fam(numEle, 0);
#if (MED_MAJOR_NUM == 3)
    if(MEDmeshEntityFamilyNumberRd(fid, meshName, MED_NO_DT, MED_NO_IT, MED_CELL,
                                   type, &fam[0]) < 0){
#else
    if(MEDfamLire(fid, meshName, &fam[0], numEle, MED_MAILLE, type) < 0){
#endif
      Msg::Info("No family number for elements: using 0 as default family number");
    }
    std::vector<med_int> eleTags(numEle);
#if (MED_MAJOR_NUM == 3)
    if(MEDmeshEntityNumberRd(fid, meshName, MED_NO_DT, MED_NO_IT, MED_CELL,
                             type, &eleTags[0]) < 0)
#else
    if(MEDnumLire(fid, meshName, &eleTags[0], numEle, MED_MAILLE, type) < 0)
#endif
      eleTags.clear();
    std::map<int, std::vector<MElement*> > elements;
    MElementFactory factory;
    for(int j = 0; j < numEle; j++){
      std::vector<MVertex*> v(numNodPerEle);
      for(int k = 0; k < numNodPerEle; k++)
        v[k] = verts[conn[numNodPerEle * j + med2mshNodeIndex(type, k)] - 1];
      MElement *e = factory.create(mshType, v, eleTags.empty() ? 0 : eleTags[j]);
      if(e) elements[-fam[j]].push_back(e);
    }
    _storeElementsInEntities(elements);
  }
  _associateEntityWithMeshVertices();
  _storeVerticesInEntities(verts);

  // read family info
  med_int numFamilies = MEDnFam(fid, meshName);
  if(numFamilies < 0){
    Msg::Error("Could not read MED families");
    return 0;
  }
  for(int i = 0; i < numFamilies; i++){
#if (MED_MAJOR_NUM == 3)
    med_int numAttrib = (vf[0] == 2) ? MEDnFamily23Attribute(fid, meshName, i + 1) : 0;
    med_int numGroups = MEDnFamilyGroup(fid, meshName, i + 1);
#else
    med_int numAttrib = MEDnAttribut(fid, meshName, i + 1);
    med_int numGroups = MEDnGroupe(fid, meshName, i + 1);
#endif
    if(numAttrib < 0 || numGroups < 0){
      Msg::Error("Could not read MED groups or attributes");
      return 0;
    }
    std::vector<med_int> attribId(numAttrib + 1);
    std::vector<med_int> attribVal(numAttrib + 1);
    std::vector<char> attribDes(MED_TAILLE_DESC * numAttrib + 1);
    std::vector<char> groupNames(MED_TAILLE_LNOM * numGroups + 1);
    char familyName[MED_TAILLE_NOM + 1];
    med_int familyNum;
#if (MED_MAJOR_NUM == 3)
    if(vf[0] == 2){ // MED2 file
      if(MEDfamily23Info(fid, meshName, i + 1, familyName, &attribId[0],
                         &attribVal[0], &attribDes[0], &familyNum,
                         &groupNames[0]) < 0){
        Msg::Error("Could not read info for MED2 family %d", i + 1);
        continue;
      }
    }
    else{
      if(MEDfamilyInfo(fid, meshName, i + 1, familyName, &familyNum,
                       &groupNames[0]) < 0){
        Msg::Error("Could not read info for MED3 family %d", i + 1);
        continue;
      }
    }
#else
    if(MEDfamInfo(fid, meshName, i + 1, familyName, &familyNum, &attribId[0],
                  &attribVal[0], &attribDes[0], &numAttrib, &groupNames[0],
                  &numGroups) < 0){
      Msg::Error("Could not read info for MED family %d", i + 1);
      continue;
    }
#endif
    // family tags are unique (for all dimensions)
    GEntity *ge;
    if((ge = getRegionByTag(-familyNum))){}
    else if((ge = getFaceByTag(-familyNum))){}
    else if((ge = getEdgeByTag(-familyNum))){}
    else ge = getVertexByTag(-familyNum);
    if(ge){
      elementaryNames[std::pair<int, int>(ge->dim(), -familyNum)] = familyName;
      if(numGroups > 0){
        for(int j = 0; j < numGroups; j++){
          char tmp[MED_TAILLE_LNOM + 1];
          strncpy(tmp, &groupNames[j * MED_TAILLE_LNOM], MED_TAILLE_LNOM);
          tmp[MED_TAILLE_LNOM] = '\0';
          // don't use same physical number across dimensions, as e.g. getdp
          // does not support this
          int pnum = setPhysicalName(tmp, ge->dim(), getMaxPhysicalNumber(-1) + 1);
          if(std::find(ge->physicals.begin(), ge->physicals.end(), pnum) ==
             ge->physicals.end())
            ge->physicals.push_back(pnum);
        }
      }
    }
  }

  // check if we need to read some post-processing data later
#if (MED_MAJOR_NUM == 3)
  bool postpro = (MEDnField(fid) > 0) ? true : false;
#else
  bool postpro = (MEDnChamp(fid, 0) > 0) ? true : false;
#endif

  if(MEDfermer(fid) < 0){
    Msg::Error("Unable to close file '%s'", (char*)name.c_str());
    return 0;
  }

  return postpro ? 2 : 1;
}

template<class T>
static void fillElementsMED(med_int family, std::vector<T*> &elements,
                            std::vector<med_int> &conn, std::vector<med_int> &fam,
                            med_geometrie_element &type)
{
  if(elements.empty()) return;
  type = msh2medElementType(elements[0]->getTypeForMSH());
  if(type == MED_NONE){
    Msg::Warning("Unsupported element type in MED format");
    return;
  }
  for(unsigned int i = 0; i < elements.size(); i++){
    elements[i]->setVolumePositive();
    for(int j = 0; j < elements[i]->getNumVertices(); j++)
      conn.push_back(elements[i]->getVertex(med2mshNodeIndex(type, j))->getIndex());
    fam.push_back(family);
  }
}

static void writeElementsMED(med_idt &fid, char *meshName, std::vector<med_int> &conn,
                             std::vector<med_int> &fam, med_geometrie_element type)
{
  if(fam.empty()) return;
#if (MED_MAJOR_NUM == 3)
  if(MEDmeshElementWr(fid, meshName, MED_NO_DT, MED_NO_IT, 0., MED_CELL, type,
                      MED_NODAL, MED_FULL_INTERLACE, (med_int)fam.size(),
                      &conn[0], MED_FALSE, 0, MED_FALSE, 0, MED_TRUE, &fam[0]) < 0)
#else
  if(MEDelementsEcr(fid, meshName, (med_int)3, &conn[0], MED_FULL_INTERLACE,
                    0, MED_FAUX, 0, MED_FAUX, &fam[0], (med_int)fam.size(),
                    MED_MAILLE, type, MED_NOD) < 0)
#endif
    Msg::Error("Could not write MED elements");
}

int GModel::writeMED(const std::string &name, bool saveAll, double scalingFactor)
{
  med_idt fid = MEDouvrir((char*)name.c_str(), MED_CREATION);
  if(fid < 0){
    Msg::Error("Unable to open file '%s'", name.c_str());
    return 0;
  }

  // write header
  if(MEDfichDesEcr(fid, (char*)"MED file generated by Gmsh") < 0){
    Msg::Error("Unable to write MED descriptor");
    return 0;
  }

  char *meshName = (char*)getName().c_str();

  // Gmsh always writes 3D unstructured meshes
#if (MED_MAJOR_NUM == 3)
  char dtUnit[MED_SNAME_SIZE + 1] = "";
  char axisName[3 * MED_SNAME_SIZE + 1] = "";
  char axisUnit[3 * MED_SNAME_SIZE + 1] = "";
  if(MEDmeshCr(fid, meshName, 3, 3, MED_UNSTRUCTURED_MESH, "Mesh created with Gmsh",
               dtUnit, MED_SORT_DTIT, MED_CARTESIAN, axisName, axisUnit) < 0){
#else
  if(MEDmaaCr(fid, meshName, 3, MED_NON_STRUCTURE,
              (char*)"Mesh created with Gmsh") < 0){
#endif
    Msg::Error("Could not create MED mesh");
    return 0;
  }

  // if there are no physicals we save all the elements
  if(noPhysicalGroups()) saveAll = true;

  // index the vertices we save in a continuous sequence (MED
  // connectivity is given in terms of vertex indices)
  indexMeshVertices(saveAll);

  // get a vector containing all the geometrical entities in the
  // model (the ordering of the entities must be the same as the one
  // used during the indexing of the vertices)
  std::vector<GEntity*> entities;
  getEntities(entities);

  std::map<GEntity*, int> families;
  // write the families
  {
    // always create a "0" family, with no groups or attributes
#if (MED_MAJOR_NUM == 3)
    if(MEDfamilyCr(fid, meshName, "F_0", 0, 0, "") < 0)
#else
    if(MEDfamCr(fid, meshName, (char*)"F_0", 0, 0, 0, 0, 0, 0, 0) < 0)
#endif
      Msg::Error("Could not create MED family 0");

    // create one family per elementary entity, with one group per
    // physical entity and no attributes
    for(unsigned int i = 0; i < entities.size(); i++){
      if(saveAll || entities[i]->physicals.size()){
        int num = - ((int)families.size() + 1);
        families[entities[i]] = num;
        std::ostringstream fs;
        fs << entities[i]->dim() << "D_" << entities[i]->tag();
        std::string familyName = "F_" + fs.str();
        std::string groupName;
        for(unsigned j = 0; j < entities[i]->physicals.size(); j++){
          std::string tmp = getPhysicalName
            (entities[i]->dim(), entities[i]->physicals[j]);
          if(tmp.empty()){ // create unique name
            std::ostringstream gs;
            gs << entities[i]->dim() << "D_" << entities[i]->physicals[j];
            groupName += "G_" + gs.str();
          }
          else
            groupName += tmp;
          groupName.resize((j + 1) * MED_TAILLE_LNOM, ' ');
        }
#if (MED_MAJOR_NUM == 3)
        if(MEDfamilyCr(fid, meshName, familyName.c_str(),
                       (med_int)num, (med_int)entities[i]->physicals.size(),
                       groupName.c_str()) < 0)
#else
        if(MEDfamCr(fid, meshName, (char*)familyName.c_str(),
                    (med_int)num, 0, 0, 0, 0, (char*)groupName.c_str(),
                    (med_int)entities[i]->physicals.size()) < 0)
#endif
          Msg::Error("Could not create MED family %d", num);
      }
    }
  }

  // write the nodes
  {
    std::vector<med_float> coord;
    std::vector<med_int> fam;
    for(unsigned int i = 0; i < entities.size(); i++){
      for(unsigned int j = 0; j < entities[i]->mesh_vertices.size(); j++){
        MVertex *v = entities[i]->mesh_vertices[j];
        if(v->getIndex() >= 0){
          coord.push_back(v->x() * scalingFactor);
          coord.push_back(v->y() * scalingFactor);
          coord.push_back(v->z() * scalingFactor);
          fam.push_back(0); // we never create node families
        }
      }
    }
    if(fam.empty()){
      Msg::Error("No nodes to write in MED mesh");
      return 0;
    }
#if (MED_MAJOR_NUM == 3)
    if(MEDmeshNodeWr(fid, meshName, MED_NO_DT, MED_NO_IT, 0., MED_FULL_INTERLACE,
                     (med_int)fam.size(), &coord[0], MED_FALSE, "", MED_FALSE, 0,
                     MED_TRUE, &fam[0]) < 0)
#else
    char coordName[3 * MED_TAILLE_PNOM + 1] =
      "x               y               z               ";
    char coordUnit[3 * MED_TAILLE_PNOM + 1] =
      "unknown         unknown         unknown         ";
    if(MEDnoeudsEcr(fid, meshName, (med_int)3, &coord[0], MED_FULL_INTERLACE,
                    MED_CART, coordName, coordUnit, 0, MED_FAUX, 0, MED_FAUX,
                    &fam[0], (med_int)fam.size()) < 0)
#endif
      Msg::Error("Could not write nodes");
  }

  // write the elements
  {
    { // points
      med_geometrie_element typ = MED_NONE;
      std::vector<med_int> conn, fam;
      for(viter it = firstVertex(); it != lastVertex(); it++)
        if(saveAll || (*it)->physicals.size())
          fillElementsMED(families[*it], (*it)->points, conn, fam, typ);
      writeElementsMED(fid, meshName, conn, fam, typ);
    }
    { // lines
      med_geometrie_element typ = MED_NONE;
      std::vector<med_int> conn, fam;
      for(eiter it = firstEdge(); it != lastEdge(); it++)
        if(saveAll || (*it)->physicals.size())
          fillElementsMED(families[*it], (*it)->lines, conn, fam, typ);
      writeElementsMED(fid, meshName, conn, fam, typ);
    }
    { // triangles
      med_geometrie_element typ = MED_NONE;
      std::vector<med_int> conn, fam;
      for(fiter it = firstFace(); it != lastFace(); it++)
        if(saveAll || (*it)->physicals.size())
          fillElementsMED(families[*it], (*it)->triangles, conn, fam, typ);
      writeElementsMED(fid, meshName, conn, fam, typ);
    }
    { // quads
      med_geometrie_element typ = MED_NONE;
      std::vector<med_int> conn, fam;
      for(fiter it = firstFace(); it != lastFace(); it++)
        if(saveAll || (*it)->physicals.size())
          fillElementsMED(families[*it], (*it)->quadrangles, conn, fam, typ);
      writeElementsMED(fid, meshName, conn, fam, typ);
    }
    { // tets
      med_geometrie_element typ = MED_NONE;
      std::vector<med_int> conn, fam;
      for(riter it = firstRegion(); it != lastRegion(); it++)
        if(saveAll || (*it)->physicals.size())
          fillElementsMED(families[*it], (*it)->tetrahedra, conn, fam, typ);
      writeElementsMED(fid, meshName, conn, fam, typ);
    }
    { // hexas
      med_geometrie_element typ = MED_NONE;
      std::vector<med_int> conn, fam;
      for(riter it = firstRegion(); it != lastRegion(); it++)
        if(saveAll || (*it)->physicals.size())
          fillElementsMED(families[*it], (*it)->hexahedra, conn, fam, typ);
      writeElementsMED(fid, meshName, conn, fam, typ);
    }
    { // prisms
      med_geometrie_element typ = MED_NONE;
      std::vector<med_int> conn, fam;
      for(riter it = firstRegion(); it != lastRegion(); it++)
        if(saveAll || (*it)->physicals.size())
          fillElementsMED(families[*it], (*it)->prisms, conn, fam, typ);
      writeElementsMED(fid, meshName, conn, fam, typ);
    }
    { // pyramids
      med_geometrie_element typ = MED_NONE;
      std::vector<med_int> conn, fam;
      for(riter it = firstRegion(); it != lastRegion(); it++)
        if(saveAll || (*it)->physicals.size())
          fillElementsMED(families[*it], (*it)->pyramids, conn, fam, typ);
      writeElementsMED(fid, meshName, conn, fam, typ);
    }
  }

  if(MEDfermer(fid) < 0){
    Msg::Error("Unable to close file '%s'", (char*)name.c_str());
    return 0;
  }

  return 1;
}

#else

int GModel::readMED(const std::string &name)
{
  Msg::Error("Gmsh must be compiled with MED support to read '%s'",
             name.c_str());
  return 0;
}
Ejemplo n.º 2
0
int main (int argc, char **argv)

{

  int     _i          = 0;
  int     _j          = 0;
  med_idt _fid        = 0;
  med_int _meshdim    = 3;
  med_int _rmeshdim   = 0;
  med_int _rspacedim  = 0;
  med_int _n          = 0;
  med_int _rnnoe      = 0;
  med_int _rnse2      = 0;
  med_int _rnaxis     = 0;

  const med_int _nnoe = 5;

  /* table des coordonnees
     (dimension * nombre de noeuds) */
  med_float coo[5*3] = {0.0, 0.0, 0.0, 0.1 , 0.0, 0.0,
			1.0, 0.0, 0.0, 1.1 , 0.0, 0.0,
			2.0, 0.0, 0.0  };
  med_float * _rcoo=NULL;

  med_int nse2 = 4;
  med_int se2[10] = {1,2, 2,3, 3,4, 4,5};
  med_int * _rse2=NULL;

  const char   _supportmeshname[]="SUPPORT_POUTRE";
  char         _axisname[3*MED_SNAME_SIZE+1]="";
  char         _axisunit[3*MED_SNAME_SIZE+1]="";

  char           _rsupportmeshname[MED_NAME_SIZE+1]="";
  char           _raxisname[3*MED_SNAME_SIZE+1]="";
  char           _raxisunit[3*MED_SNAME_SIZE+1]="";
  char           _rdescription[MED_COMMENT_SIZE+1]="";
  med_axis_type  _raxistype;
  med_bool       _chgt=MED_FALSE,_trsf=MED_FALSE;

  strcat(_axisname,"x               ");
  strcat(_axisname,"y               ");
  strcat(_axisname,"z               ");
  strcat(_axisunit,"cm              ");
  strcat(_axisunit,"cm              ");
  strcat(_axisunit,"cm              ");

 /* ouverture du fichier */
  if ((_fid = MEDfileOpen("current.med",MODE_ACCES)) < 0) {
    MESSAGE("Impossible de creer le fichier current.med");
    return -1;
  }

  if (MEDsupportMeshCr( _fid, _supportmeshname, _meshdim, _meshdim,"Maillage support ED de type poutre",
			MED_CARTESIAN,_axisname, _axisname) < 0) {
    MESSAGE("Erreur a la creation du maillage support : "); SSCRUTE(_supportmeshname);
    return -1;
  }

  /* Ecriture des coordonnees des noeuds en mode MED_FULL_INTERLACE :
     (X1,Y1, X2,Y2, X3,Y3, ...) dans un repere cartesien */
  if (MEDmeshNodeCoordinateWr(_fid,_supportmeshname,MED_NO_DT,MED_NO_IT,MED_UNDEF_DT,
			      MED_FULL_INTERLACE, _nnoe,  coo) < 0) {
    MESSAGE("Erreur a l'écriture des coordonnees des noeuds du maillage support");
    return -1;
  }


  /* ecriture des connectivites des segments */
  if ( MEDmeshElementConnectivityWr(_fid,_supportmeshname, MED_NO_DT, MED_NO_IT, MED_UNDEF_DT,
                                    MED_CELL, MED_SEG2, MED_NODAL,
				    MED_FULL_INTERLACE, nse2, se2) < 0 ) {
    MESSAGE("Impossible d'ecrire la connectivité des segments du maillage support : ");
    return -1;
  }

  if (MEDsupportMeshCr( _fid, "MED_BILLE_SUPPORT", _meshdim, _meshdim,"Maillage support ED de type bille",
			MED_CARTESIAN,_axisname, _axisname) < 0) {
    MESSAGE("Erreur a la creation du maillage support : "); SSCRUTE(_supportmeshname);
    return -1;
  }

  /* Ecriture des coordonnees des noeuds en mode MED_FULL_INTERLACE :
     (X1,Y1, X2,Y2, X3,Y3, ...) dans un repere cartesien */
  if (MEDmeshNodeCoordinateWr(_fid,"MED_BILLE_SUPPORT",MED_NO_DT,MED_NO_IT,MED_UNDEF_DT,
			      MED_FULL_INTERLACE, 1,  coo) < 0) {
    MESSAGE("Erreur a l'écriture des coordonnees des noeuds du maillage support : MED_BILLE_SUPPORT.");
    return -1;
  }


  if ( (_n =MEDnSupportMesh(_fid)) < 0 ) {
    MESSAGE("Erreur à la lecture du nombre de maillages supports : ");
    return -1;
  }

  for (_i=1; _i <= _n; ++_i) {

    if ( (_rnaxis = MEDsupportMeshnAxis(_fid, _i)) < 0) {
      MESSAGE("Erreur à la lecture du nombre d'axe du repère d'un maillage support : "); 
      return -1;
    }
    printf("\t -Dimension de l'espace : %d\n",_rnaxis);

    if ( MEDsupportMeshInfo(_fid, _i ,
			    _rsupportmeshname, &_rspacedim, &_rmeshdim, _rdescription,
			    &_raxistype, _raxisname, _raxisunit) < 0 ) {
      MESSAGE("Erreur à la lecture des informations sur le  maillage support : "); SSCRUTE(_supportmeshname);
      return -1;
    }

    printf("Maillage support de nom : |%s| , de dimension : %d.\n",_rsupportmeshname, _rmeshdim);
    printf("\t -Dimension de l'espace : %d\n",_rspacedim);
    printf("\t -Description du maillage : %s\n",_rdescription);
    printf("\t -Noms des axes : %s\n",_raxisname);
    printf("\t -Unités des axes : %s\n",_raxisunit);

    /* Combien de noeuds a lire ? */
    _rnnoe = MEDmeshnEntity(_fid,_rsupportmeshname,MED_NO_DT,MED_NO_IT,
			    MED_NODE,MED_NONE,MED_COORDINATE,MED_NO_CMODE,
			    &_chgt,&_trsf);
    if (_rnnoe < 0) {
      MESSAGE("Erreur a la lecture du nombre de noeuds. ");
      return -1;
    } else
      printf("Nombre de noeuds du maillage support: "IFORMAT" \n",_rnnoe);

    /* Allocations memoires */
    if (_rnnoe > 0) {
      /* table des coordonnees (dimension * nombre de noeuds ) */
      _rcoo = (med_float*) calloc(_rnnoe*_rspacedim,sizeof(med_float));

      if ( MEDmeshNodeCoordinateRd(_fid, _rsupportmeshname, MED_NO_DT, MED_NO_IT,MED_FULL_INTERLACE, _rcoo) < 0 ) {
	MESSAGE("Erreur a la lecture des coordonnees des noeuds");
	return -1;
      } else {
	printf("Valeur de _rcoo : ");
	for (_j=0;_j<_rnnoe*_rspacedim;_j++)  printf("%4.2f ",_rcoo[_j]);
	printf("\n");
      }

      free(_rcoo);
    }

    /* Combien de segments à lire ? */
    _rnse2 = MEDmeshnEntity(_fid,_rsupportmeshname,MED_NO_DT,MED_NO_IT,
			    MED_CELL,MED_SEG2,MED_CONNECTIVITY,MED_NODAL,
			    &_chgt,&_trsf);

    if (_rnse2 < 0) {
      MESSAGE("Erreur a la lecture du nombre de segments.");
      return -1;
    } else
      printf("Nombre de segments du maillage support: "IFORMAT" \n",_rnse2);

    if (_rnse2 > 0) {
      /* table des connectivités (_rnse2 * nombre de noeuds ds un MED_SE2) */
      _rse2 = (med_int*) calloc(_rnse2*2,sizeof(med_int));

      if ( MEDmeshElementConnectivityRd(_fid, _rsupportmeshname, MED_NO_DT, MED_NO_IT,
				       MED_CELL,MED_SEG2,MED_NODAL,MED_FULL_INTERLACE, _rse2) < 0 ) {
	MESSAGE("Erreur a la lecture des connectivités des segments");
	return -1;
      } else {
	printf("Valeur de _rse2 : ");
	for (_j=0;_j<_rnse2*2;_j++)  printf("%d ",_rse2[_j]);
	printf("\n");
      }

      free(_rse2);
    }

  }

  return 0;
}