Ejemplo n.º 1
0
/* This is a Mesh-based copy of the same function in DerivedMesh.c */
static void shapekey_layers_to_keyblocks(Mesh *mesh_src, Mesh *mesh_dst, int actshape_uid)
{
  KeyBlock *kb;
  int i, j, tot;

  if (!mesh_dst->key) {
    return;
  }

  tot = CustomData_number_of_layers(&mesh_src->vdata, CD_SHAPEKEY);
  for (i = 0; i < tot; i++) {
    CustomDataLayer *layer =
        &mesh_src->vdata.layers[CustomData_get_layer_index_n(&mesh_src->vdata, CD_SHAPEKEY, i)];
    float(*cos)[3], (*kbcos)[3];

    for (kb = mesh_dst->key->block.first; kb; kb = kb->next) {
      if (kb->uid == layer->uid) {
        break;
      }
    }

    if (!kb) {
      kb = BKE_keyblock_add(mesh_dst->key, layer->name);
      kb->uid = layer->uid;
    }

    if (kb->data) {
      MEM_freeN(kb->data);
    }

    cos = CustomData_get_layer_n(&mesh_src->vdata, CD_SHAPEKEY, i);
    kb->totelem = mesh_src->totvert;

    kb->data = kbcos = MEM_malloc_arrayN(kb->totelem, 3 * sizeof(float), __func__);
    if (kb->uid == actshape_uid) {
      MVert *mvert = mesh_src->mvert;

      for (j = 0; j < mesh_src->totvert; j++, kbcos++, mvert++) {
        copy_v3_v3(*kbcos, mvert->co);
      }
    }
    else {
      for (j = 0; j < kb->totelem; j++, cos++, kbcos++) {
        copy_v3_v3(*kbcos, *cos);
      }
    }
  }

  for (kb = mesh_dst->key->block.first; kb; kb = kb->next) {
    if (kb->totelem != mesh_src->totvert) {
      if (kb->data) {
        MEM_freeN(kb->data);
      }

      kb->totelem = mesh_src->totvert;
      kb->data = MEM_calloc_arrayN(kb->totelem, 3 * sizeof(float), __func__);
      CLOG_ERROR(&LOG, "lost a shapekey layer: '%s'! (bmesh internal error)", kb->name);
    }
  }
}
Ejemplo n.º 2
0
static void smooth_verts(CorrectiveSmoothModifierData *csmd,
                         Mesh *mesh,
                         MDeformVert *dvert,
                         const int defgrp_index,
                         float (*vertexCos)[3],
                         unsigned int numVerts)
{
  float *smooth_weights = NULL;

  if (dvert || (csmd->flag & MOD_CORRECTIVESMOOTH_PIN_BOUNDARY)) {

    smooth_weights = MEM_malloc_arrayN(numVerts, sizeof(float), __func__);

    if (dvert) {
      mesh_get_weights(dvert,
                       defgrp_index,
                       numVerts,
                       (csmd->flag & MOD_CORRECTIVESMOOTH_INVERT_VGROUP) != 0,
                       smooth_weights);
    }
    else {
      copy_vn_fl(smooth_weights, (int)numVerts, 1.0f);
    }

    if (csmd->flag & MOD_CORRECTIVESMOOTH_PIN_BOUNDARY) {
      mesh_get_boundaries(mesh, smooth_weights);
    }
  }

  smooth_iter(csmd, mesh, vertexCos, numVerts, smooth_weights, (unsigned int)csmd->repeat);

  if (smooth_weights) {
    MEM_freeN(smooth_weights);
  }
}
Ejemplo n.º 3
0
static void mask_data_init_mapping(SubdivCCGMaskEvaluator *mask_evaluator, const Mesh *mesh)
{
  GridPaintMaskData *data = mask_evaluator->user_data;
  const MPoly *mpoly = mesh->mpoly;
  const int num_ptex_faces = count_num_ptex_faces(mesh);
  /* Allocate memory. */
  data->ptex_poly_corner = MEM_malloc_arrayN(
      num_ptex_faces, sizeof(*data->ptex_poly_corner), "ptex poly corner");
  /* Fill in offsets. */
  int ptex_face_index = 0;
  PolyCornerIndex *ptex_poly_corner = data->ptex_poly_corner;
  for (int poly_index = 0; poly_index < mesh->totpoly; poly_index++) {
    const MPoly *poly = &mpoly[poly_index];
    if (poly->totloop == 4) {
      ptex_poly_corner[ptex_face_index].poly_index = poly_index;
      ptex_poly_corner[ptex_face_index].corner = 0;
      ptex_face_index++;
    }
    else {
      for (int corner = 0; corner < poly->totloop; corner++) {
        ptex_poly_corner[ptex_face_index].poly_index = poly_index;
        ptex_poly_corner[ptex_face_index].corner = corner;
        ptex_face_index++;
      }
    }
  }
}
Ejemplo n.º 4
0
static void layer_eval_view_layer(struct Depsgraph *depsgraph,
                                  struct Scene *UNUSED(scene),
                                  ViewLayer *view_layer)
{
  DEG_debug_print_eval(depsgraph, __func__, view_layer->name, view_layer);

  /* Create array of bases, for fast index-based lookup. */
  const int num_object_bases = BLI_listbase_count(&view_layer->object_bases);
  MEM_SAFE_FREE(view_layer->object_bases_array);
  view_layer->object_bases_array = MEM_malloc_arrayN(
      num_object_bases, sizeof(Base *), "view_layer->object_bases_array");
  int base_index = 0;
  for (Base *base = view_layer->object_bases.first; base; base = base->next) {
    view_layer->object_bases_array[base_index++] = base;
  }
}
Ejemplo n.º 5
0
static void add_shapekey_layers(Mesh *mesh_dest, Mesh *mesh_src)
{
  KeyBlock *kb;
  Key *key = mesh_src->key;
  int i;

  if (!mesh_src->key) {
    return;
  }

  /* ensure we can use mesh vertex count for derived mesh custom data */
  if (mesh_src->totvert != mesh_dest->totvert) {
    CLOG_ERROR(&LOG,
               "vertex size mismatch (mesh/dm) '%s' (%d != %d)",
               mesh_src->id.name + 2,
               mesh_src->totvert,
               mesh_dest->totvert);
    return;
  }

  for (i = 0, kb = key->block.first; kb; kb = kb->next, i++) {
    int ci;
    float *array;

    if (mesh_src->totvert != kb->totelem) {
      CLOG_ERROR(&LOG,
                 "vertex size mismatch (Mesh '%s':%d != KeyBlock '%s':%d)",
                 mesh_src->id.name + 2,
                 mesh_src->totvert,
                 kb->name,
                 kb->totelem);
      array = MEM_calloc_arrayN((size_t)mesh_src->totvert, 3 * sizeof(float), __func__);
    }
    else {
      array = MEM_malloc_arrayN((size_t)mesh_src->totvert, 3 * sizeof(float), __func__);
      memcpy(array, kb->data, (size_t)mesh_src->totvert * 3 * sizeof(float));
    }

    CustomData_add_layer_named(
        &mesh_dest->vdata, CD_SHAPEKEY, CD_ASSIGN, array, mesh_dest->totvert, kb->name);
    ci = CustomData_get_layer_index_n(&mesh_dest->vdata, CD_SHAPEKEY, i);

    mesh_dest->vdata.layers[ci].uid = kb->uid;
  }
}
Ejemplo n.º 6
0
/**
 * This calculates #CorrectiveSmoothModifierData.delta_cache
 * It's not run on every update (during animation for example).
 */
static void calc_deltas(CorrectiveSmoothModifierData *csmd,
                        Mesh *mesh,
                        MDeformVert *dvert,
                        const int defgrp_index,
                        const float (*rest_coords)[3],
                        unsigned int numVerts)
{
  float(*smooth_vertex_coords)[3] = MEM_dupallocN(rest_coords);
  float(*tangent_spaces)[3][3];
  unsigned int i;

  tangent_spaces = MEM_calloc_arrayN(numVerts, sizeof(float[3][3]), __func__);

  if (csmd->delta_cache_num != numVerts) {
    MEM_SAFE_FREE(csmd->delta_cache);
  }

  /* allocate deltas if they have not yet been allocated, otheriwse we will just write over them */
  if (!csmd->delta_cache) {
    csmd->delta_cache_num = numVerts;
    csmd->delta_cache = MEM_malloc_arrayN(numVerts, sizeof(float[3]), __func__);
  }

  smooth_verts(csmd, mesh, dvert, defgrp_index, smooth_vertex_coords, numVerts);

  calc_tangent_spaces(mesh, smooth_vertex_coords, tangent_spaces);

  for (i = 0; i < numVerts; i++) {
    float imat[3][3], delta[3];

#ifdef USE_TANGENT_CALC_INLINE
    calc_tangent_ortho(tangent_spaces[i]);
#endif

    sub_v3_v3v3(delta, rest_coords[i], smooth_vertex_coords[i]);
    if (UNLIKELY(!invert_m3_m3(imat, tangent_spaces[i]))) {
      transpose_m3_m3(imat, tangent_spaces[i]);
    }
    mul_v3_m3v3(csmd->delta_cache[i], imat, delta);
  }

  MEM_freeN(tangent_spaces);
  MEM_freeN(smooth_vertex_coords);
}
Ejemplo n.º 7
0
/* Note this modifies nos_new in-place. */
static void mix_normals(
        const float mix_factor, MDeformVert *dvert, const int defgrp_index, const bool use_invert_vgroup,
        const float mix_limit, const short mix_mode,
        const int num_verts, MLoop *mloop, float (*nos_old)[3], float (*nos_new)[3], const int num_loops)
{
	/* Mix with org normals... */
	float *facs = NULL, *wfac;
	float (*no_new)[3], (*no_old)[3];
	int i;

	if (dvert) {
		facs = MEM_malloc_arrayN((size_t)num_loops, sizeof(*facs), __func__);
		BKE_defvert_extract_vgroup_to_loopweights(
		            dvert, defgrp_index, num_verts, mloop, num_loops, facs, use_invert_vgroup);
	}

	for (i = num_loops, no_new = nos_new, no_old = nos_old, wfac = facs; i--; no_new++, no_old++, wfac++) {
		const float fac = facs ? *wfac * mix_factor : mix_factor;

		switch (mix_mode) {
			case MOD_NORMALEDIT_MIX_ADD:
				add_v3_v3(*no_new, *no_old);
				normalize_v3(*no_new);
				break;
			case MOD_NORMALEDIT_MIX_SUB:
				sub_v3_v3(*no_new, *no_old);
				normalize_v3(*no_new);
				break;
			case MOD_NORMALEDIT_MIX_MUL:
				mul_v3_v3(*no_new, *no_old);
				normalize_v3(*no_new);
				break;
			case MOD_NORMALEDIT_MIX_COPY:
				break;
		}

		interp_v3_v3v3_slerp_safe(
		        *no_new, *no_old, *no_new,
		        (mix_limit < (float)M_PI) ? min_ff(fac, mix_limit / angle_v3v3(*no_new, *no_old)) : fac);
	}

	MEM_SAFE_FREE(facs);
}
Ejemplo n.º 8
0
/* This is a Mesh-based copy of DM_to_meshkey() */
void BKE_mesh_nomain_to_meshkey(Mesh *mesh_src, Mesh *mesh_dst, KeyBlock *kb)
{
  int a, totvert = mesh_src->totvert;
  float *fp;
  MVert *mvert;

  if (totvert == 0 || mesh_dst->totvert == 0 || mesh_dst->totvert != totvert) {
    return;
  }

  if (kb->data) {
    MEM_freeN(kb->data);
  }
  kb->data = MEM_malloc_arrayN(mesh_dst->key->elemsize, mesh_dst->totvert, "kb->data");
  kb->totelem = totvert;

  fp = kb->data;
  mvert = mesh_src->mvert;

  for (a = 0; a < kb->totelem; a++, fp += 3, mvert++) {
    copy_v3_v3(fp, mvert->co);
  }
}
Ejemplo n.º 9
0
/**
 * Take as inputs two sets of verts, to be processed for detection of doubles and mapping.
 * Each set of verts is defined by its start within mverts array and its num_verts;
 * It builds a mapping for all vertices within source, to vertices within target, or -1 if no double found
 * The int doubles_map[num_verts_source] array must have been allocated by caller.
 */
static void dm_mvert_map_doubles(
        int *doubles_map,
        const MVert *mverts,
        const int target_start,
        const int target_num_verts,
        const int source_start,
        const int source_num_verts,
        const float dist)
{
	const float dist3 = ((float)M_SQRT3 + 0.00005f) * dist;   /* Just above sqrt(3) */
	int i_source, i_target, i_target_low_bound, target_end, source_end;
	SortVertsElem *sorted_verts_target, *sorted_verts_source;
	SortVertsElem *sve_source, *sve_target, *sve_target_low_bound;
	bool target_scan_completed;

	target_end = target_start + target_num_verts;
	source_end = source_start + source_num_verts;

	/* build array of MVerts to be tested for merging */
	sorted_verts_target = MEM_malloc_arrayN(target_num_verts, sizeof(SortVertsElem), __func__);
	sorted_verts_source = MEM_malloc_arrayN(source_num_verts, sizeof(SortVertsElem), __func__);

	/* Copy target vertices index and cos into SortVertsElem array */
	svert_from_mvert(sorted_verts_target, mverts + target_start, target_start, target_end);

	/* Copy source vertices index and cos into SortVertsElem array */
	svert_from_mvert(sorted_verts_source, mverts + source_start, source_start, source_end);

	/* sort arrays according to sum of vertex coordinates (sumco) */
	qsort(sorted_verts_target, target_num_verts, sizeof(SortVertsElem), svert_sum_cmp);
	qsort(sorted_verts_source, source_num_verts, sizeof(SortVertsElem), svert_sum_cmp);

	sve_target_low_bound = sorted_verts_target;
	i_target_low_bound = 0;
	target_scan_completed = false;

	/* Scan source vertices, in SortVertsElem sorted array, */
	/* all the while maintaining the lower bound of possible doubles in target vertices */
	for (i_source = 0, sve_source = sorted_verts_source;
	     i_source < source_num_verts;
	     i_source++, sve_source++)
	{
		int best_target_vertex = -1;
		float best_dist_sq = dist * dist;
		float sve_source_sumco;

		/* If source has already been assigned to a target (in an earlier call, with other chunks) */
		if (doubles_map[sve_source->vertex_num] != -1) {
			continue;
		}

		/* If target fully scanned already, then all remaining source vertices cannot have a double */
		if (target_scan_completed) {
			doubles_map[sve_source->vertex_num] = -1;
			continue;
		}

		sve_source_sumco = sum_v3(sve_source->co);

		/* Skip all target vertices that are more than dist3 lower in terms of sumco */
		/* and advance the overall lower bound, applicable to all remaining vertices as well. */
		while ((i_target_low_bound < target_num_verts) &&
		       (sve_target_low_bound->sum_co < sve_source_sumco - dist3))
		{
			i_target_low_bound++;
			sve_target_low_bound++;
		}
		/* If end of target list reached, then no more possible doubles */
		if (i_target_low_bound >= target_num_verts) {
			doubles_map[sve_source->vertex_num] = -1;
			target_scan_completed = true;
			continue;
		}
		/* Test target candidates starting at the low bound of possible doubles, ordered in terms of sumco */
		i_target = i_target_low_bound;
		sve_target = sve_target_low_bound;

		/* i_target will scan vertices in the [v_source_sumco - dist3;  v_source_sumco + dist3] range */

		while ((i_target < target_num_verts) &&
		       (sve_target->sum_co <= sve_source_sumco + dist3))
		{
			/* Testing distance for candidate double in target */
			/* v_target is within dist3 of v_source in terms of sumco;  check real distance */
			float dist_sq;
			if ((dist_sq = len_squared_v3v3(sve_source->co, sve_target->co)) <= best_dist_sq) {
				/* Potential double found */
				best_dist_sq = dist_sq;
				best_target_vertex = sve_target->vertex_num;

				/* If target is already mapped, we only follow that mapping if final target remains
				 * close enough from current vert (otherwise no mapping at all).
				 * Note that if we later find another target closer than this one, then we check it. But if other
				 * potential targets are farther, then there will be no mapping at all for this source. */
				while (best_target_vertex != -1 && !ELEM(doubles_map[best_target_vertex], -1, best_target_vertex)) {
					if (compare_len_v3v3(mverts[sve_source->vertex_num].co,
					                     mverts[doubles_map[best_target_vertex]].co,
					                     dist))
					{
						best_target_vertex = doubles_map[best_target_vertex];
					}
					else {
						best_target_vertex = -1;
					}
				}
			}
			i_target++;
			sve_target++;
		}
		/* End of candidate scan: if none found then no doubles */
		doubles_map[sve_source->vertex_num] = best_target_vertex;
	}

	MEM_freeN(sorted_verts_source);
	MEM_freeN(sorted_verts_target);
}
Ejemplo n.º 10
0
static void warpModifier_do(WarpModifierData *wmd,
                            const ModifierEvalContext *ctx,
                            Mesh *mesh,
                            float (*vertexCos)[3],
                            int numVerts)
{
  Object *ob = ctx->object;
  float obinv[4][4];
  float mat_from[4][4];
  float mat_from_inv[4][4];
  float mat_to[4][4];
  float mat_unit[4][4];
  float mat_final[4][4];

  float tmat[4][4];

  const float falloff_radius_sq = SQUARE(wmd->falloff_radius);
  float strength = wmd->strength;
  float fac = 1.0f, weight;
  int i;
  int defgrp_index;
  MDeformVert *dvert, *dv = NULL;

  float(*tex_co)[3] = NULL;

  if (!(wmd->object_from && wmd->object_to)) {
    return;
  }

  MOD_get_vgroup(ob, mesh, wmd->defgrp_name, &dvert, &defgrp_index);
  if (dvert == NULL) {
    defgrp_index = -1;
  }

  if (wmd->curfalloff == NULL) { /* should never happen, but bad lib linking could cause it */
    wmd->curfalloff = curvemapping_add(1, 0.0f, 0.0f, 1.0f, 1.0f);
  }

  if (wmd->curfalloff) {
    curvemapping_initialize(wmd->curfalloff);
  }

  invert_m4_m4(obinv, ob->obmat);

  mul_m4_m4m4(mat_from, obinv, wmd->object_from->obmat);
  mul_m4_m4m4(mat_to, obinv, wmd->object_to->obmat);

  invert_m4_m4(tmat, mat_from);  // swap?
  mul_m4_m4m4(mat_final, tmat, mat_to);

  invert_m4_m4(mat_from_inv, mat_from);

  unit_m4(mat_unit);

  if (strength < 0.0f) {
    float loc[3];
    strength = -strength;

    /* inverted location is not useful, just use the negative */
    copy_v3_v3(loc, mat_final[3]);
    invert_m4(mat_final);
    negate_v3_v3(mat_final[3], loc);
  }
  weight = strength;

  Tex *tex_target = wmd->texture;
  if (mesh != NULL && tex_target != NULL) {
    tex_co = MEM_malloc_arrayN(numVerts, sizeof(*tex_co), "warpModifier_do tex_co");
    MOD_get_texture_coords((MappingInfoModifierData *)wmd, ctx, ob, mesh, vertexCos, tex_co);

    MOD_init_texture((MappingInfoModifierData *)wmd, ctx);
  }

  for (i = 0; i < numVerts; i++) {
    float *co = vertexCos[i];

    if (wmd->falloff_type == eWarp_Falloff_None ||
        ((fac = len_squared_v3v3(co, mat_from[3])) < falloff_radius_sq &&
         (fac = (wmd->falloff_radius - sqrtf(fac)) / wmd->falloff_radius))) {
      /* skip if no vert group found */
      if (defgrp_index != -1) {
        dv = &dvert[i];
        weight = defvert_find_weight(dv, defgrp_index) * strength;
        if (weight <= 0.0f) {
          continue;
        }
      }

      /* closely match PROP_SMOOTH and similar */
      switch (wmd->falloff_type) {
        case eWarp_Falloff_None:
          fac = 1.0f;
          break;
        case eWarp_Falloff_Curve:
          fac = curvemapping_evaluateF(wmd->curfalloff, 0, fac);
          break;
        case eWarp_Falloff_Sharp:
          fac = fac * fac;
          break;
        case eWarp_Falloff_Smooth:
          fac = 3.0f * fac * fac - 2.0f * fac * fac * fac;
          break;
        case eWarp_Falloff_Root:
          fac = sqrtf(fac);
          break;
        case eWarp_Falloff_Linear:
          /* pass */
          break;
        case eWarp_Falloff_Const:
          fac = 1.0f;
          break;
        case eWarp_Falloff_Sphere:
          fac = sqrtf(2 * fac - fac * fac);
          break;
        case eWarp_Falloff_InvSquare:
          fac = fac * (2.0f - fac);
          break;
      }

      fac *= weight;

      if (tex_co) {
        struct Scene *scene = DEG_get_evaluated_scene(ctx->depsgraph);
        TexResult texres;
        texres.nor = NULL;
        BKE_texture_get_value(scene, tex_target, tex_co[i], &texres, false);
        fac *= texres.tin;
      }

      if (fac != 0.0f) {
        /* into the 'from' objects space */
        mul_m4_v3(mat_from_inv, co);

        if (fac == 1.0f) {
          mul_m4_v3(mat_final, co);
        }
        else {
          if (wmd->flag & MOD_WARP_VOLUME_PRESERVE) {
            /* interpolate the matrix for nicer locations */
            blend_m4_m4m4(tmat, mat_unit, mat_final, fac);
            mul_m4_v3(tmat, co);
          }
          else {
            float tvec[3];
            mul_v3_m4v3(tvec, mat_final, co);
            interp_v3_v3v3(co, co, tvec, fac);
          }
        }

        /* out of the 'from' objects space */
        mul_m4_v3(mat_from, co);
      }
    }
  }

  if (tex_co) {
    MEM_freeN(tex_co);
  }
}
Ejemplo n.º 11
0
static DerivedMesh *normalEditModifier_do(NormalEditModifierData *enmd, Object *ob, DerivedMesh *dm)
{
	Mesh *me = ob->data;

	const int num_verts = dm->getNumVerts(dm);
	const int num_edges = dm->getNumEdges(dm);
	const int num_loops = dm->getNumLoops(dm);
	const int num_polys = dm->getNumPolys(dm);
	MVert *mvert;
	MEdge *medge;
	MLoop *mloop;
	MPoly *mpoly;

	const bool use_invert_vgroup = ((enmd->flag & MOD_NORMALEDIT_INVERT_VGROUP) != 0);
	const bool use_current_clnors = !((enmd->mix_mode == MOD_NORMALEDIT_MIX_COPY) &&
	                                  (enmd->mix_factor == 1.0f) &&
	                                  (enmd->defgrp_name[0] == '\0') &&
	                                  (enmd->mix_limit == (float)M_PI));

	int defgrp_index;
	MDeformVert *dvert;

	float (*loopnors)[3] = NULL;
	short (*clnors)[2];

	float (*polynors)[3];
	bool free_polynors = false;

	/* Do not run that modifier at all if autosmooth is disabled! */
	if (!is_valid_target(enmd) || !num_loops) {
		return dm;
	}

	if (!(me->flag & ME_AUTOSMOOTH)) {
		modifier_setError((ModifierData *)enmd, "Enable 'Auto Smooth' option in mesh settings");
		return dm;
	}

	medge = dm->getEdgeArray(dm);
	if (me->medge == medge) {
		/* We need to duplicate data here, otherwise setting custom normals (which may also affect sharp edges) could
		 * modify org mesh, see T43671. */
		dm = CDDM_copy(dm);
		medge = dm->getEdgeArray(dm);
	}
	mvert = dm->getVertArray(dm);
	mloop = dm->getLoopArray(dm);
	mpoly = dm->getPolyArray(dm);

	if (use_current_clnors) {
		dm->calcLoopNormals(dm, true, me->smoothresh);
		loopnors = dm->getLoopDataArray(dm, CD_NORMAL);
	}

	clnors = CustomData_duplicate_referenced_layer(&dm->loopData, CD_CUSTOMLOOPNORMAL, num_loops);
	if (!clnors) {
		DM_add_loop_layer(dm, CD_CUSTOMLOOPNORMAL, CD_CALLOC, NULL);
		clnors = dm->getLoopDataArray(dm, CD_CUSTOMLOOPNORMAL);
	}

	polynors = dm->getPolyDataArray(dm, CD_NORMAL);
	if (!polynors) {
		polynors = MEM_malloc_arrayN((size_t)num_polys, sizeof(*polynors), __func__);
		BKE_mesh_calc_normals_poly(mvert, NULL, num_verts, mloop, mpoly, num_loops, num_polys, polynors, false);
		free_polynors = true;
	}

	modifier_get_vgroup(ob, dm, enmd->defgrp_name, &dvert, &defgrp_index);

	if (enmd->mode == MOD_NORMALEDIT_MODE_RADIAL) {
		normalEditModifier_do_radial(
		            enmd, ob, dm, clnors, loopnors, polynors,
		            enmd->mix_mode, enmd->mix_factor, enmd->mix_limit, dvert, defgrp_index, use_invert_vgroup,
		            mvert, num_verts, medge, num_edges, mloop, num_loops, mpoly, num_polys);
	}
	else if (enmd->mode == MOD_NORMALEDIT_MODE_DIRECTIONAL) {
		normalEditModifier_do_directional(
		            enmd, ob, dm, clnors, loopnors, polynors,
		            enmd->mix_mode, enmd->mix_factor, enmd->mix_limit, dvert, defgrp_index, use_invert_vgroup,
		            mvert, num_verts, medge, num_edges, mloop, num_loops, mpoly, num_polys);
	}

	if (free_polynors) {
		MEM_freeN(polynors);
	}

	return dm;
}
Ejemplo n.º 12
0
static void normalEditModifier_do_directional(
        NormalEditModifierData *enmd, Object *ob, DerivedMesh *dm,
        short (*clnors)[2], float (*loopnors)[3], float (*polynors)[3],
        const short mix_mode, const float mix_factor, const float mix_limit,
        MDeformVert *dvert, const int defgrp_index, const bool use_invert_vgroup,
        MVert *mvert, const int num_verts, MEdge *medge, const int num_edges,
        MLoop *mloop, const int num_loops, MPoly *mpoly, const int num_polys)
{
	const bool use_parallel_normals = (enmd->flag & MOD_NORMALEDIT_USE_DIRECTION_PARALLEL) != 0;

	float (*cos)[3] = MEM_malloc_arrayN((size_t)num_verts, sizeof(*cos), __func__);
	float (*nos)[3] = MEM_malloc_arrayN((size_t)num_loops, sizeof(*nos), __func__);

	float target_co[3];
	int i;

	dm->getVertCos(dm, cos);

	/* Get target's center coordinates in ob local coordinates. */
	{
		float mat[4][4];

		invert_m4_m4(mat, ob->obmat);
		mul_m4_m4m4(mat, mat, enmd->target->obmat);
		copy_v3_v3(target_co, mat[3]);
	}

	if (use_parallel_normals) {
		float no[3];

		sub_v3_v3v3(no, target_co, enmd->offset);
		normalize_v3(no);

		for (i = num_loops; i--; ) {
			copy_v3_v3(nos[i], no);
		}
	}
	else {
		BLI_bitmap *done_verts = BLI_BITMAP_NEW((size_t)num_verts, __func__);
		MLoop *ml;
		float (*no)[3];

		/* We reuse cos to now store the 'to target' normal of the verts! */
		for (i = num_loops, no = nos, ml = mloop; i--; no++, ml++) {
			const int vidx = ml->v;
			float *co = cos[vidx];

			if (!BLI_BITMAP_TEST(done_verts, vidx)) {
				sub_v3_v3v3(co, target_co, co);
				normalize_v3(co);

				BLI_BITMAP_ENABLE(done_verts, vidx);
			}

			copy_v3_v3(*no, co);
		}

		MEM_freeN(done_verts);
	}

	if (loopnors) {
		mix_normals(mix_factor, dvert, defgrp_index, use_invert_vgroup,
		            mix_limit, mix_mode, num_verts, mloop, loopnors, nos, num_loops);
	}

	if (polygons_check_flip(mloop, nos, dm->getLoopDataLayout(dm), mpoly, polynors, num_polys)) {
		dm->dirty |= DM_DIRTY_TESS_CDLAYERS;
	}

	BKE_mesh_normals_loop_custom_set(mvert, num_verts, medge, num_edges, mloop, nos, num_loops,
	                                 mpoly, (const float(*)[3])polynors, num_polys, clnors);

	MEM_freeN(cos);
	MEM_freeN(nos);
}
Ejemplo n.º 13
0
static void normalEditModifier_do_radial(
        NormalEditModifierData *enmd, Object *ob, DerivedMesh *dm,
        short (*clnors)[2], float (*loopnors)[3], float (*polynors)[3],
        const short mix_mode, const float mix_factor, const float mix_limit,
        MDeformVert *dvert, const int defgrp_index, const bool use_invert_vgroup,
        MVert *mvert, const int num_verts, MEdge *medge, const int num_edges,
        MLoop *mloop, const int num_loops, MPoly *mpoly, const int num_polys)
{
	int i;

	float (*cos)[3] = MEM_malloc_arrayN((size_t)num_verts, sizeof(*cos), __func__);
	float (*nos)[3] = MEM_malloc_arrayN((size_t)num_loops, sizeof(*nos), __func__);
	float size[3];

	BLI_bitmap *done_verts = BLI_BITMAP_NEW((size_t)num_verts, __func__);

	generate_vert_coordinates(dm, ob, enmd->target, enmd->offset, num_verts, cos, size);

	/**
	 * size gives us our spheroid coefficients ``(A, B, C)``.
	 * Then, we want to find out for each vert its (a, b, c) triple (proportional to (A, B, C) one).
	 *
	 * Ellipsoid basic equation: ``(x^2/a^2) + (y^2/b^2) + (z^2/c^2) = 1.``
	 * Since we want to find (a, b, c) matching this equation and proportional to (A, B, C), we can do:
	 * <pre>
	 *     m = B / A
	 *     n = C / A
	 * </pre>
	 *
	 * hence:
	 * <pre>
	 *     (x^2/a^2) + (y^2/b^2) + (z^2/c^2) = 1
	 *  -> b^2*c^2*x^2 + a^2*c^2*y^2 + a^2*b^2*z^2 = a^2*b^2*c^2
	 *     b = ma
	 *     c = na
	 *  -> m^2*a^2*n^2*a^2*x^2 + a^2*n^2*a^2*y^2 + a^2*m^2*a^2*z^2 = a^2*m^2*a^2*n^2*a^2
	 *  -> m^2*n^2*a^4*x^2 + n^2*a^4*y^2 + m^2*a^4*z^2 = m^2*n^2*a^6
	 *  -> a^2 = (m^2*n^2*x^2 + n^2y^2 + m^2z^2) / (m^2*n^2) = x^2 + (y^2 / m^2) + (z^2 / n^2)
	 *  -> b^2 = (m^2*n^2*x^2 + n^2y^2 + m^2z^2) / (n^2)     = (m^2 * x^2) + y^2 + (m^2 * z^2 / n^2)
	 *  -> c^2 = (m^2*n^2*x^2 + n^2y^2 + m^2z^2) / (m^2)     = (n^2 * x^2) + (n^2 * y^2 / m^2) + z^2
	 * </pre>
	 *
	 * All we have to do now is compute normal of the spheroid at that point:
	 * <pre>
	 *     n = (x / a^2, y / b^2, z / c^2)
	 * </pre>
	 * And we are done!
	 */
	{
		const float a = size[0], b = size[1], c = size[2];
		const float m2 = (b * b) / (a * a);
		const float n2 = (c * c) / (a * a);

		MLoop *ml;
		float (*no)[3];

		/* We reuse cos to now store the ellipsoid-normal of the verts! */
		for (i = num_loops, ml = mloop, no = nos; i-- ; ml++, no++) {
			const int vidx = ml->v;
			float *co = cos[vidx];

			if (!BLI_BITMAP_TEST(done_verts, vidx)) {
				const float x2 = co[0] * co[0];
				const float y2 = co[1] * co[1];
				const float z2 = co[2] * co[2];
				const float a2 = x2 + (y2 / m2) + (z2 / n2);
				const float b2 = (m2 * x2) + y2 + (m2 * z2 / n2);
				const float c2 = (n2 * x2) + (n2 * y2 / m2) + z2;

				co[0] /= a2;
				co[1] /= b2;
				co[2] /= c2;
				normalize_v3(co);

				BLI_BITMAP_ENABLE(done_verts, vidx);
			}
			copy_v3_v3(*no, co);
		}
	}

	if (loopnors) {
		mix_normals(mix_factor, dvert, defgrp_index, use_invert_vgroup,
		            mix_limit, mix_mode, num_verts, mloop, loopnors, nos, num_loops);
	}

	if (polygons_check_flip(mloop, nos, dm->getLoopDataLayout(dm), mpoly, polynors, num_polys)) {
		dm->dirty |= DM_DIRTY_TESS_CDLAYERS;
		/* We need to recompute vertex normals! */
		dm->calcNormals(dm);
	}

	BKE_mesh_normals_loop_custom_set(mvert, num_verts, medge, num_edges, mloop, nos, num_loops,
	                                 mpoly, (const float(*)[3])polynors, num_polys, clnors);

	MEM_freeN(cos);
	MEM_freeN(nos);
	MEM_freeN(done_verts);
}
Ejemplo n.º 14
0
static Mesh *applyModifier(ModifierData *md, const ModifierEvalContext *ctx, Mesh *mesh)
{
  BLI_assert(mesh != NULL);

  WeightVGMixModifierData *wmd = (WeightVGMixModifierData *)md;

  MDeformVert *dvert = NULL;
  MDeformWeight **dw1, **tdw1, **dw2, **tdw2;
  float *org_w;
  float *new_w;
  int *tidx, *indices = NULL;
  int numIdx = 0;
  int i;
  /* Flags. */
#if 0
  const bool do_prev = (wmd->modifier.mode & eModifierMode_DoWeightPreview) != 0;
#endif

  /* Get number of verts. */
  const int numVerts = mesh->totvert;

  /* Check if we can just return the original mesh.
   * Must have verts and therefore verts assigned to vgroups to do anything useful!
   */
  if ((numVerts == 0) || BLI_listbase_is_empty(&ctx->object->defbase)) {
    return mesh;
  }

  /* Get vgroup idx from its name. */
  const int defgrp_index = defgroup_name_index(ctx->object, wmd->defgrp_name_a);
  if (defgrp_index == -1) {
    return mesh;
  }
  /* Get second vgroup idx from its name, if given. */
  int defgrp_index_other = -1;
  if (wmd->defgrp_name_b[0] != '\0') {
    defgrp_index_other = defgroup_name_index(ctx->object, wmd->defgrp_name_b);
    if (defgrp_index_other == -1) {
      return mesh;
    }
  }

  const bool has_mdef = CustomData_has_layer(&mesh->vdata, CD_MDEFORMVERT);
  /* If no vertices were ever added to an object's vgroup, dvert might be NULL. */
  if (!has_mdef) {
    /* If not affecting all vertices, just return. */
    if (wmd->mix_set != MOD_WVG_SET_ALL) {
      return mesh;
    }
  }

  if (has_mdef) {
    dvert = CustomData_duplicate_referenced_layer(&mesh->vdata, CD_MDEFORMVERT, numVerts);
  }
  else {
    /* Add a valid data layer! */
    dvert = CustomData_add_layer(&mesh->vdata, CD_MDEFORMVERT, CD_CALLOC, NULL, numVerts);
  }
  /* Ultimate security check. */
  if (!dvert) {
    return mesh;
  }
  mesh->dvert = dvert;

  /* Find out which vertices to work on. */
  tidx = MEM_malloc_arrayN(numVerts, sizeof(int), "WeightVGMix Modifier, tidx");
  tdw1 = MEM_malloc_arrayN(numVerts, sizeof(MDeformWeight *), "WeightVGMix Modifier, tdw1");
  tdw2 = MEM_malloc_arrayN(numVerts, sizeof(MDeformWeight *), "WeightVGMix Modifier, tdw2");
  switch (wmd->mix_set) {
    case MOD_WVG_SET_A:
      /* All vertices in first vgroup. */
      for (i = 0; i < numVerts; i++) {
        MDeformWeight *dw = defvert_find_index(&dvert[i], defgrp_index);
        if (dw) {
          tdw1[numIdx] = dw;
          tdw2[numIdx] = (defgrp_index_other >= 0) ?
                             defvert_find_index(&dvert[i], defgrp_index_other) :
                             NULL;
          tidx[numIdx++] = i;
        }
      }
      break;
    case MOD_WVG_SET_B:
      /* All vertices in second vgroup. */
      for (i = 0; i < numVerts; i++) {
        MDeformWeight *dw = (defgrp_index_other >= 0) ?
                                defvert_find_index(&dvert[i], defgrp_index_other) :
                                NULL;
        if (dw) {
          tdw1[numIdx] = defvert_find_index(&dvert[i], defgrp_index);
          tdw2[numIdx] = dw;
          tidx[numIdx++] = i;
        }
      }
      break;
    case MOD_WVG_SET_OR:
      /* All vertices in one vgroup or the other. */
      for (i = 0; i < numVerts; i++) {
        MDeformWeight *adw = defvert_find_index(&dvert[i], defgrp_index);
        MDeformWeight *bdw = (defgrp_index_other >= 0) ?
                                 defvert_find_index(&dvert[i], defgrp_index_other) :
                                 NULL;
        if (adw || bdw) {
          tdw1[numIdx] = adw;
          tdw2[numIdx] = bdw;
          tidx[numIdx++] = i;
        }
      }
      break;
    case MOD_WVG_SET_AND:
      /* All vertices in both vgroups. */
      for (i = 0; i < numVerts; i++) {
        MDeformWeight *adw = defvert_find_index(&dvert[i], defgrp_index);
        MDeformWeight *bdw = (defgrp_index_other >= 0) ?
                                 defvert_find_index(&dvert[i], defgrp_index_other) :
                                 NULL;
        if (adw && bdw) {
          tdw1[numIdx] = adw;
          tdw2[numIdx] = bdw;
          tidx[numIdx++] = i;
        }
      }
      break;
    case MOD_WVG_SET_ALL:
    default:
      /* Use all vertices. */
      for (i = 0; i < numVerts; i++) {
        tdw1[i] = defvert_find_index(&dvert[i], defgrp_index);
        tdw2[i] = (defgrp_index_other >= 0) ? defvert_find_index(&dvert[i], defgrp_index_other) :
                                              NULL;
      }
      numIdx = -1;
      break;
  }
  if (numIdx == 0) {
    /* Use no vertices! Hence, return org data. */
    MEM_freeN(tdw1);
    MEM_freeN(tdw2);
    MEM_freeN(tidx);
    return mesh;
  }
  if (numIdx != -1) {
    indices = MEM_malloc_arrayN(numIdx, sizeof(int), "WeightVGMix Modifier, indices");
    memcpy(indices, tidx, sizeof(int) * numIdx);
    dw1 = MEM_malloc_arrayN(numIdx, sizeof(MDeformWeight *), "WeightVGMix Modifier, dw1");
    memcpy(dw1, tdw1, sizeof(MDeformWeight *) * numIdx);
    MEM_freeN(tdw1);
    dw2 = MEM_malloc_arrayN(numIdx, sizeof(MDeformWeight *), "WeightVGMix Modifier, dw2");
    memcpy(dw2, tdw2, sizeof(MDeformWeight *) * numIdx);
    MEM_freeN(tdw2);
  }
  else {
    /* Use all vertices. */
    numIdx = numVerts;
    /* Just copy MDeformWeight pointers arrays, they will be freed at the end. */
    dw1 = tdw1;
    dw2 = tdw2;
  }
  MEM_freeN(tidx);

  org_w = MEM_malloc_arrayN(numIdx, sizeof(float), "WeightVGMix Modifier, org_w");
  new_w = MEM_malloc_arrayN(numIdx, sizeof(float), "WeightVGMix Modifier, new_w");

  /* Mix weights. */
  for (i = 0; i < numIdx; i++) {
    float weight2;
    org_w[i] = dw1[i] ? dw1[i]->weight : wmd->default_weight_a;
    weight2 = dw2[i] ? dw2[i]->weight : wmd->default_weight_b;

    new_w[i] = mix_weight(org_w[i], weight2, wmd->mix_mode);
  }

  /* Do masking. */
  struct Scene *scene = DEG_get_evaluated_scene(ctx->depsgraph);
  weightvg_do_mask(ctx,
                   numIdx,
                   indices,
                   org_w,
                   new_w,
                   ctx->object,
                   mesh,
                   wmd->mask_constant,
                   wmd->mask_defgrp_name,
                   scene,
                   wmd->mask_texture,
                   wmd->mask_tex_use_channel,
                   wmd->mask_tex_mapping,
                   wmd->mask_tex_map_obj,
                   wmd->mask_tex_uvlayer_name);

  /* Update (add to) vgroup.
   * XXX Depending on the MOD_WVG_SET_xxx option chosen, we might have to add vertices to vgroup.
   */
  weightvg_update_vg(
      dvert, defgrp_index, dw1, numIdx, indices, org_w, true, -FLT_MAX, false, 0.0f);

  /* If weight preview enabled... */
#if 0 /* XXX Currently done in mod stack :/ */
  if (do_prev)
    DM_update_weight_mcol(ob, dm, 0, org_w, numIdx, indices);
#endif

  /* Freeing stuff. */
  MEM_freeN(org_w);
  MEM_freeN(new_w);
  MEM_freeN(dw1);
  MEM_freeN(dw2);
  MEM_SAFE_FREE(indices);

  /* Return the vgroup-modified mesh. */
  return mesh;
}
Ejemplo n.º 15
0
static bool edbm_bevel_init(bContext *C, wmOperator *op, const bool is_modal)
{
  Scene *scene = CTX_data_scene(C);
  BevelData *opdata;
  ViewLayer *view_layer = CTX_data_view_layer(C);
  float pixels_per_inch;
  int i, otype;

  if (is_modal) {
    RNA_float_set(op->ptr, "offset", 0.0f);
    RNA_float_set(op->ptr, "offset_pct", 0.0f);
  }

  op->customdata = opdata = MEM_mallocN(sizeof(BevelData), "beveldata_mesh_operator");
  uint objects_used_len = 0;
  opdata->max_obj_scale = FLT_MIN;

  {
    uint ob_store_len = 0;
    Object **objects = BKE_view_layer_array_from_objects_in_edit_mode_unique_data(
        view_layer, CTX_wm_view3d(C), &ob_store_len);
    opdata->ob_store = MEM_malloc_arrayN(ob_store_len, sizeof(*opdata->ob_store), __func__);
    for (uint ob_index = 0; ob_index < ob_store_len; ob_index++) {
      Object *obedit = objects[ob_index];
      float scale = mat4_to_scale(obedit->obmat);
      opdata->max_obj_scale = max_ff(opdata->max_obj_scale, scale);
      BMEditMesh *em = BKE_editmesh_from_object(obedit);
      if (em->bm->totvertsel > 0) {
        opdata->ob_store[objects_used_len].em = em;
        objects_used_len++;
      }
    }
    MEM_freeN(objects);
    opdata->ob_store_len = objects_used_len;
  }

  opdata->is_modal = is_modal;
  otype = RNA_enum_get(op->ptr, "offset_type");
  opdata->value_mode = (otype == BEVEL_AMT_PERCENT) ? OFFSET_VALUE_PERCENT : OFFSET_VALUE;
  opdata->segments = (float)RNA_int_get(op->ptr, "segments");
  pixels_per_inch = U.dpi * U.pixelsize;

  for (i = 0; i < NUM_VALUE_KINDS; i++) {
    opdata->shift_value[i] = -1.0f;
    opdata->initial_length[i] = -1.0f;
    /* note: scale for OFFSET_VALUE will get overwritten in edbm_bevel_invoke */
    opdata->scale[i] = value_scale_per_inch[i] / pixels_per_inch;

    initNumInput(&opdata->num_input[i]);
    opdata->num_input[i].idx_max = 0;
    opdata->num_input[i].val_flag[0] |= NUM_NO_NEGATIVE;
    if (i == SEGMENTS_VALUE) {
      opdata->num_input[i].val_flag[0] |= NUM_NO_FRACTION | NUM_NO_ZERO;
    }
    if (i == OFFSET_VALUE) {
      opdata->num_input[i].unit_sys = scene->unit.system;
    }
    /* Not sure this is a factor or a unit? */
    opdata->num_input[i].unit_type[0] = B_UNIT_NONE;
  }

  /* avoid the cost of allocating a bm copy */
  if (is_modal) {
    View3D *v3d = CTX_wm_view3d(C);
    ARegion *ar = CTX_wm_region(C);

    for (uint ob_index = 0; ob_index < opdata->ob_store_len; ob_index++) {
      opdata->ob_store[ob_index].mesh_backup = EDBM_redo_state_store(
          opdata->ob_store[ob_index].em);
    }
    opdata->draw_handle_pixel = ED_region_draw_cb_activate(
        ar->type, ED_region_draw_mouse_line_cb, opdata->mcenter, REGION_DRAW_POST_PIXEL);
    G.moving = G_TRANSFORM_EDIT;

    if (v3d) {
      opdata->gizmo_flag = v3d->gizmo_flag;
      v3d->gizmo_flag = V3D_GIZMO_HIDE;
    }
  }

  return true;
}
Ejemplo n.º 16
0
static DerivedMesh *applyModifier(ModifierData *md, Object *UNUSED(ob),
                                  DerivedMesh *derivedData,
                                  ModifierApplyFlag UNUSED(flag))
{
	DerivedMesh *dm = derivedData;
	DerivedMesh *result;
	BuildModifierData *bmd = (BuildModifierData *) md;
	int i, j, k;
	int numFaces_dst, numEdges_dst, numLoops_dst = 0;
	int *vertMap, *edgeMap, *faceMap;
	float frac;
	MPoly *mpoly_dst;
	MLoop *ml_dst, *ml_src /*, *mloop_dst */;
	GHashIterator gh_iter;
	/* maps vert indices in old mesh to indices in new mesh */
	GHash *vertHash = BLI_ghash_int_new("build ve apply gh");
	/* maps edge indices in new mesh to indices in old mesh */
	GHash *edgeHash = BLI_ghash_int_new("build ed apply gh");
	GHash *edgeHash2 = BLI_ghash_int_new("build ed apply gh");

	const int numVert_src = dm->getNumVerts(dm);
	const int numEdge_src = dm->getNumEdges(dm);
	const int numPoly_src = dm->getNumPolys(dm);
	MPoly *mpoly_src = dm->getPolyArray(dm);
	MLoop *mloop_src = dm->getLoopArray(dm);
	MEdge *medge_src = dm->getEdgeArray(dm);
	MVert *mvert_src = dm->getVertArray(dm);


	vertMap = MEM_malloc_arrayN(numVert_src, sizeof(*vertMap), "build modifier vertMap");
	edgeMap = MEM_malloc_arrayN(numEdge_src, sizeof(*edgeMap), "build modifier edgeMap");
	faceMap = MEM_malloc_arrayN(numPoly_src, sizeof(*faceMap), "build modifier faceMap");

	range_vn_i(vertMap, numVert_src, 0);
	range_vn_i(edgeMap, numEdge_src, 0);
	range_vn_i(faceMap, numPoly_src, 0);

	frac = (BKE_scene_frame_get(md->scene) - bmd->start) / bmd->length;
	CLAMP(frac, 0.0f, 1.0f);
	
	if (bmd->flag & MOD_BUILD_FLAG_REVERSE) {
		frac = 1.0f - frac;
	}
	
	numFaces_dst = numPoly_src * frac;
	numEdges_dst = numEdge_src * frac;

	/* if there's at least one face, build based on faces */
	if (numFaces_dst) {
		MPoly *mpoly, *mp;
		MLoop *ml, *mloop;
		MEdge *medge;
		uintptr_t hash_num, hash_num_alt;
		
		if (bmd->flag & MOD_BUILD_FLAG_RANDOMIZE) {
			BLI_array_randomize(faceMap, sizeof(*faceMap),
			                    numPoly_src, bmd->seed);
		}

		/* get the set of all vert indices that will be in the final mesh,
		 * mapped to the new indices
		 */
		mpoly = mpoly_src;
		mloop = mloop_src;
		hash_num = 0;
		for (i = 0; i < numFaces_dst; i++) {
			mp = mpoly + faceMap[i];
			ml = mloop + mp->loopstart;

			for (j = 0; j < mp->totloop; j++, ml++) {
				void **val_p;
				if (!BLI_ghash_ensure_p(vertHash, SET_INT_IN_POINTER(ml->v), &val_p)) {
					*val_p = (void *)hash_num;
					hash_num++;
				}
			}

			numLoops_dst += mp->totloop;
		}
		BLI_assert(hash_num == BLI_ghash_len(vertHash));

		/* get the set of edges that will be in the new mesh (i.e. all edges
		 * that have both verts in the new mesh)
		 */
		medge = medge_src;
		hash_num = 0;
		hash_num_alt = 0;
		for (i = 0; i < numEdge_src; i++, hash_num_alt++) {
			MEdge *me = medge + i;

			if (BLI_ghash_haskey(vertHash, SET_INT_IN_POINTER(me->v1)) &&
			    BLI_ghash_haskey(vertHash, SET_INT_IN_POINTER(me->v2)))
			{
				BLI_ghash_insert(edgeHash, (void *)hash_num, (void *)hash_num_alt);
				BLI_ghash_insert(edgeHash2, (void *)hash_num_alt, (void *)hash_num);
				hash_num++;
			}
		}
	}
	else if (numEdges_dst) {
		MEdge *medge, *me;
		uintptr_t hash_num;

		if (bmd->flag & MOD_BUILD_FLAG_RANDOMIZE)
			BLI_array_randomize(edgeMap, sizeof(*edgeMap),
			                    numEdge_src, bmd->seed);

		/* get the set of all vert indices that will be in the final mesh,
		 * mapped to the new indices
		 */
		medge = medge_src;
		hash_num = 0;
		BLI_assert(hash_num == BLI_ghash_len(vertHash));
		for (i = 0; i < numEdges_dst; i++) {
			void **val_p;
			me = medge + edgeMap[i];

			if (!BLI_ghash_ensure_p(vertHash, SET_INT_IN_POINTER(me->v1), &val_p)) {
				*val_p = (void *)hash_num;
				hash_num++;
			}
			if (!BLI_ghash_ensure_p(vertHash, SET_INT_IN_POINTER(me->v2), &val_p)) {
				*val_p = (void *)hash_num;
				hash_num++;
			}
		}
		BLI_assert(hash_num == BLI_ghash_len(vertHash));

		/* get the set of edges that will be in the new mesh */
		for (i = 0; i < numEdges_dst; i++) {
			j = BLI_ghash_len(edgeHash);
			
			BLI_ghash_insert(edgeHash, SET_INT_IN_POINTER(j),
			                 SET_INT_IN_POINTER(edgeMap[i]));
			BLI_ghash_insert(edgeHash2,  SET_INT_IN_POINTER(edgeMap[i]),
			                 SET_INT_IN_POINTER(j));
		}
	}
	else {
		int numVerts = numVert_src * frac;

		if (bmd->flag & MOD_BUILD_FLAG_RANDOMIZE) {
			BLI_array_randomize(vertMap, sizeof(*vertMap),
			                    numVert_src, bmd->seed);
		}

		/* get the set of all vert indices that will be in the final mesh,
		 * mapped to the new indices
		 */
		for (i = 0; i < numVerts; i++) {
			BLI_ghash_insert(vertHash, SET_INT_IN_POINTER(vertMap[i]), SET_INT_IN_POINTER(i));
		}
	}

	/* now we know the number of verts, edges and faces, we can create
	 * the mesh
	 */
	result = CDDM_from_template(dm, BLI_ghash_len(vertHash),
	                            BLI_ghash_len(edgeHash), 0, numLoops_dst, numFaces_dst);

	/* copy the vertices across */
	GHASH_ITER (gh_iter, vertHash) {
		MVert source;
		MVert *dest;
		int oldIndex = GET_INT_FROM_POINTER(BLI_ghashIterator_getKey(&gh_iter));
		int newIndex = GET_INT_FROM_POINTER(BLI_ghashIterator_getValue(&gh_iter));

		source = mvert_src[oldIndex];
		dest = CDDM_get_vert(result, newIndex);

		DM_copy_vert_data(dm, result, oldIndex, newIndex, 1);
		*dest = source;
	}
Ejemplo n.º 17
0
static DerivedMesh *arrayModifier_doArray(
        ArrayModifierData *amd,
        Scene *scene, Object *ob, DerivedMesh *dm,
        ModifierApplyFlag flag)
{
	const float eps = 1e-6f;
	const MVert *src_mvert;
	MVert *mv, *mv_prev, *result_dm_verts;

	MEdge *me;
	MLoop *ml;
	MPoly *mp;
	int i, j, c, count;
	float length = amd->length;
	/* offset matrix */
	float offset[4][4];
	float scale[3];
	bool offset_has_scale;
	float current_offset[4][4];
	float final_offset[4][4];
	int *full_doubles_map = NULL;
	int tot_doubles;

	const bool use_merge = (amd->flags & MOD_ARR_MERGE) != 0;
	const bool use_recalc_normals = (dm->dirty & DM_DIRTY_NORMALS) || use_merge;
	const bool use_offset_ob = ((amd->offset_type & MOD_ARR_OFF_OBJ) && amd->offset_ob);

	int start_cap_nverts = 0, start_cap_nedges = 0, start_cap_npolys = 0, start_cap_nloops = 0;
	int end_cap_nverts = 0, end_cap_nedges = 0, end_cap_npolys = 0, end_cap_nloops = 0;
	int result_nverts = 0, result_nedges = 0, result_npolys = 0, result_nloops = 0;
	int chunk_nverts, chunk_nedges, chunk_nloops, chunk_npolys;
	int first_chunk_start, first_chunk_nverts, last_chunk_start, last_chunk_nverts;

	DerivedMesh *result, *start_cap_dm = NULL, *end_cap_dm = NULL;

	int *vgroup_start_cap_remap = NULL;
	int vgroup_start_cap_remap_len = 0;
	int *vgroup_end_cap_remap = NULL;
	int vgroup_end_cap_remap_len = 0;

	chunk_nverts = dm->getNumVerts(dm);
	chunk_nedges = dm->getNumEdges(dm);
	chunk_nloops = dm->getNumLoops(dm);
	chunk_npolys = dm->getNumPolys(dm);

	count = amd->count;

	if (amd->start_cap && amd->start_cap != ob && amd->start_cap->type == OB_MESH) {
		vgroup_start_cap_remap = BKE_object_defgroup_index_map_create(amd->start_cap, ob, &vgroup_start_cap_remap_len);

		start_cap_dm = get_dm_for_modifier(amd->start_cap, flag);
		if (start_cap_dm) {
			start_cap_nverts = start_cap_dm->getNumVerts(start_cap_dm);
			start_cap_nedges = start_cap_dm->getNumEdges(start_cap_dm);
			start_cap_nloops = start_cap_dm->getNumLoops(start_cap_dm);
			start_cap_npolys = start_cap_dm->getNumPolys(start_cap_dm);
		}
	}
	if (amd->end_cap && amd->end_cap != ob && amd->end_cap->type == OB_MESH) {
		vgroup_end_cap_remap = BKE_object_defgroup_index_map_create(amd->end_cap, ob, &vgroup_end_cap_remap_len);

		end_cap_dm = get_dm_for_modifier(amd->end_cap, flag);
		if (end_cap_dm) {
			end_cap_nverts = end_cap_dm->getNumVerts(end_cap_dm);
			end_cap_nedges = end_cap_dm->getNumEdges(end_cap_dm);
			end_cap_nloops = end_cap_dm->getNumLoops(end_cap_dm);
			end_cap_npolys = end_cap_dm->getNumPolys(end_cap_dm);
		}
	}

	/* Build up offset array, cumulating all settings options */

	unit_m4(offset);
	src_mvert = dm->getVertArray(dm);

	if (amd->offset_type & MOD_ARR_OFF_CONST) {
		add_v3_v3(offset[3], amd->offset);
	}

	if (amd->offset_type & MOD_ARR_OFF_RELATIVE) {
		float min[3], max[3];
		const MVert *src_mv;

		INIT_MINMAX(min, max);
		for (src_mv = src_mvert, j = chunk_nverts; j--; src_mv++) {
			minmax_v3v3_v3(min, max, src_mv->co);
		}

		for (j = 3; j--; ) {
			offset[3][j] += amd->scale[j] * (max[j] - min[j]);
		}
	}

	if (use_offset_ob) {
		float obinv[4][4];
		float result_mat[4][4];

		if (ob)
			invert_m4_m4(obinv, ob->obmat);
		else
			unit_m4(obinv);

		mul_m4_series(result_mat, offset,
		              obinv, amd->offset_ob->obmat);
		copy_m4_m4(offset, result_mat);
	}

	/* Check if there is some scaling.  If scaling, then we will not translate mapping */
	mat4_to_size(scale, offset);
	offset_has_scale = !is_one_v3(scale);

	if (amd->fit_type == MOD_ARR_FITCURVE && amd->curve_ob) {
		Curve *cu = amd->curve_ob->data;
		if (cu) {
#ifdef CYCLIC_DEPENDENCY_WORKAROUND
			if (amd->curve_ob->curve_cache == NULL) {
				BKE_displist_make_curveTypes(scene, amd->curve_ob, false);
			}
#endif

			if (amd->curve_ob->curve_cache && amd->curve_ob->curve_cache->path) {
				float scale_fac = mat4_to_scale(amd->curve_ob->obmat);
				length = scale_fac * amd->curve_ob->curve_cache->path->totdist;
			}
		}
	}

	/* calculate the maximum number of copies which will fit within the
	 * prescribed length */
	if (amd->fit_type == MOD_ARR_FITLENGTH || amd->fit_type == MOD_ARR_FITCURVE) {
		float dist = len_v3(offset[3]);

		if (dist > eps) {
			/* this gives length = first copy start to last copy end
			 * add a tiny offset for floating point rounding errors */
			count = (length + eps) / dist + 1;
		}
		else {
			/* if the offset has no translation, just make one copy */
			count = 1;
		}
	}

	if (count < 1)
		count = 1;

	/* The number of verts, edges, loops, polys, before eventually merging doubles */
	result_nverts = chunk_nverts * count + start_cap_nverts + end_cap_nverts;
	result_nedges = chunk_nedges * count + start_cap_nedges + end_cap_nedges;
	result_nloops = chunk_nloops * count + start_cap_nloops + end_cap_nloops;
	result_npolys = chunk_npolys * count + start_cap_npolys + end_cap_npolys;

	/* Initialize a result dm */
	result = CDDM_from_template(dm, result_nverts, result_nedges, 0, result_nloops, result_npolys);
	result_dm_verts = CDDM_get_verts(result);

	if (use_merge) {
		/* Will need full_doubles_map for handling merge */
		full_doubles_map = MEM_malloc_arrayN(result_nverts, sizeof(int), "mod array doubles map");
		copy_vn_i(full_doubles_map, result_nverts, -1);
	}

	/* copy customdata to original geometry */
	DM_copy_vert_data(dm, result, 0, 0, chunk_nverts);
	DM_copy_edge_data(dm, result, 0, 0, chunk_nedges);
	DM_copy_loop_data(dm, result, 0, 0, chunk_nloops);
	DM_copy_poly_data(dm, result, 0, 0, chunk_npolys);

	/* Subsurf for eg won't have mesh data in the custom data arrays.
	 * now add mvert/medge/mpoly layers. */

	if (!CustomData_has_layer(&dm->vertData, CD_MVERT)) {
		dm->copyVertArray(dm, result_dm_verts);
	}
	if (!CustomData_has_layer(&dm->edgeData, CD_MEDGE)) {
		dm->copyEdgeArray(dm, CDDM_get_edges(result));
	}
	if (!CustomData_has_layer(&dm->polyData, CD_MPOLY)) {
		dm->copyLoopArray(dm, CDDM_get_loops(result));
		dm->copyPolyArray(dm, CDDM_get_polys(result));
	}

	/* Remember first chunk, in case of cap merge */
	first_chunk_start = 0;
	first_chunk_nverts = chunk_nverts;

	unit_m4(current_offset);
	for (c = 1; c < count; c++) {
		/* copy customdata to new geometry */
		DM_copy_vert_data(result, result, 0, c * chunk_nverts, chunk_nverts);
		DM_copy_edge_data(result, result, 0, c * chunk_nedges, chunk_nedges);
		DM_copy_loop_data(result, result, 0, c * chunk_nloops, chunk_nloops);
		DM_copy_poly_data(result, result, 0, c * chunk_npolys, chunk_npolys);

		mv_prev = result_dm_verts;
		mv = mv_prev + c * chunk_nverts;

		/* recalculate cumulative offset here */
		mul_m4_m4m4(current_offset, current_offset, offset);

		/* apply offset to all new verts */
		for (i = 0; i < chunk_nverts; i++, mv++, mv_prev++) {
			mul_m4_v3(current_offset, mv->co);

			/* We have to correct normals too, if we do not tag them as dirty! */
			if (!use_recalc_normals) {
				float no[3];
				normal_short_to_float_v3(no, mv->no);
				mul_mat3_m4_v3(current_offset, no);
				normalize_v3(no);
				normal_float_to_short_v3(mv->no, no);
			}
		}

		/* adjust edge vertex indices */
		me = CDDM_get_edges(result) + c * chunk_nedges;
		for (i = 0; i < chunk_nedges; i++, me++) {
			me->v1 += c * chunk_nverts;
			me->v2 += c * chunk_nverts;
		}

		mp = CDDM_get_polys(result) + c * chunk_npolys;
		for (i = 0; i < chunk_npolys; i++, mp++) {
			mp->loopstart += c * chunk_nloops;
		}

		/* adjust loop vertex and edge indices */
		ml = CDDM_get_loops(result) + c * chunk_nloops;
		for (i = 0; i < chunk_nloops; i++, ml++) {
			ml->v += c * chunk_nverts;
			ml->e += c * chunk_nedges;
		}

		/* Handle merge between chunk n and n-1 */
		if (use_merge && (c >= 1)) {
			if (!offset_has_scale && (c >= 2)) {
				/* Mapping chunk 3 to chunk 2 is a translation of mapping 2 to 1
				 * ... that is except if scaling makes the distance grow */
				int k;
				int this_chunk_index = c * chunk_nverts;
				int prev_chunk_index = (c - 1) * chunk_nverts;
				for (k = 0; k < chunk_nverts; k++, this_chunk_index++, prev_chunk_index++) {
					int target = full_doubles_map[prev_chunk_index];
					if (target != -1) {
						target += chunk_nverts; /* translate mapping */
						while (target != -1 && !ELEM(full_doubles_map[target], -1, target)) {
							/* If target is already mapped, we only follow that mapping if final target remains
							 * close enough from current vert (otherwise no mapping at all). */
							if (compare_len_v3v3(result_dm_verts[this_chunk_index].co,
							                     result_dm_verts[full_doubles_map[target]].co,
							                     amd->merge_dist))
							{
								target = full_doubles_map[target];
							}
							else {
								target = -1;
							}
						}
					}
					full_doubles_map[this_chunk_index] = target;
				}
			}
			else {
				dm_mvert_map_doubles(
				        full_doubles_map,
				        result_dm_verts,
				        (c - 1) * chunk_nverts,
				        chunk_nverts,
				        c * chunk_nverts,
				        chunk_nverts,
				        amd->merge_dist);
			}
		}
	}

	/* handle UVs */
	if (chunk_nloops > 0 && is_zero_v2(amd->uv_offset) == false) {
		const int totuv = CustomData_number_of_layers(&result->loopData, CD_MLOOPUV);
		for (i = 0; i < totuv; i++) {
			MLoopUV *dmloopuv = CustomData_get_layer_n(&result->loopData, CD_MLOOPUV, i);
			dmloopuv += chunk_nloops;
			for (c = 1; c < count; c++) {
				const float uv_offset[2] = {
					amd->uv_offset[0] * (float)c,
					amd->uv_offset[1] * (float)c,
				};
				int l_index = chunk_nloops;
				for (; l_index-- != 0; dmloopuv++) {
					dmloopuv->uv[0] += uv_offset[0];
					dmloopuv->uv[1] += uv_offset[1];
				}
			}
		}
	}

	last_chunk_start = (count - 1) * chunk_nverts;
	last_chunk_nverts = chunk_nverts;

	copy_m4_m4(final_offset, current_offset);

	if (use_merge && (amd->flags & MOD_ARR_MERGEFINAL) && (count > 1)) {
		/* Merge first and last copies */
		dm_mvert_map_doubles(
		        full_doubles_map,
		        result_dm_verts,
		        last_chunk_start,
		        last_chunk_nverts,
		        first_chunk_start,
		        first_chunk_nverts,
		        amd->merge_dist);
	}

	/* start capping */
	if (start_cap_dm) {
		float start_offset[4][4];
		int start_cap_start = result_nverts - start_cap_nverts - end_cap_nverts;
		invert_m4_m4(start_offset, offset);
		dm_merge_transform(
		        result, start_cap_dm, start_offset,
		        result_nverts - start_cap_nverts - end_cap_nverts,
		        result_nedges - start_cap_nedges - end_cap_nedges,
		        result_nloops - start_cap_nloops - end_cap_nloops,
		        result_npolys - start_cap_npolys - end_cap_npolys,
		        start_cap_nverts, start_cap_nedges, start_cap_nloops, start_cap_npolys,
		        vgroup_start_cap_remap, vgroup_start_cap_remap_len);
		/* Identify doubles with first chunk */
		if (use_merge) {
			dm_mvert_map_doubles(
			        full_doubles_map,
			        result_dm_verts,
			        first_chunk_start,
			        first_chunk_nverts,
			        start_cap_start,
			        start_cap_nverts,
			        amd->merge_dist);
		}
	}

	if (end_cap_dm) {
		float end_offset[4][4];
		int end_cap_start = result_nverts - end_cap_nverts;
		mul_m4_m4m4(end_offset, current_offset, offset);
		dm_merge_transform(
		        result, end_cap_dm, end_offset,
		        result_nverts - end_cap_nverts,
		        result_nedges - end_cap_nedges,
		        result_nloops - end_cap_nloops,
		        result_npolys - end_cap_npolys,
		        end_cap_nverts, end_cap_nedges, end_cap_nloops, end_cap_npolys,
		        vgroup_end_cap_remap, vgroup_end_cap_remap_len);
		/* Identify doubles with last chunk */
		if (use_merge) {
			dm_mvert_map_doubles(
			        full_doubles_map,
			        result_dm_verts,
			        last_chunk_start,
			        last_chunk_nverts,
			        end_cap_start,
			        end_cap_nverts,
			        amd->merge_dist);
		}
	}
	/* done capping */

	/* Handle merging */
	tot_doubles = 0;
	if (use_merge) {
		for (i = 0; i < result_nverts; i++) {
			int new_i = full_doubles_map[i];
			if (new_i != -1) {
				/* We have to follow chains of doubles (merge start/end especially is likely to create some),
				 * those are not supported at all by CDDM_merge_verts! */
				while (!ELEM(full_doubles_map[new_i], -1, new_i)) {
					new_i = full_doubles_map[new_i];
				}
				if (i == new_i) {
					full_doubles_map[i] = -1;
				}
				else {
					full_doubles_map[i] = new_i;
					tot_doubles++;
				}
			}
		}
		if (tot_doubles > 0) {
			result = CDDM_merge_verts(result, full_doubles_map, tot_doubles, CDDM_MERGE_VERTS_DUMP_IF_EQUAL);
		}
		MEM_freeN(full_doubles_map);
	}

	/* In case org dm has dirty normals, or we made some merging, mark normals as dirty in new dm!
	 * TODO: we may need to set other dirty flags as well?
	 */
	if (use_recalc_normals) {
		result->dirty |= DM_DIRTY_NORMALS;
	}

	if (vgroup_start_cap_remap) {
		MEM_freeN(vgroup_start_cap_remap);
	}
	if (vgroup_end_cap_remap) {
		MEM_freeN(vgroup_end_cap_remap);
	}

	return result;
}
Ejemplo n.º 18
0
static DerivedMesh *uvprojectModifier_do(UVProjectModifierData *umd,
                                         Object *ob, DerivedMesh *dm)
{
	float (*coords)[3], (*co)[3];
	MLoopUV *mloop_uv;
	MTexPoly *mtexpoly, *mt = NULL;
	int i, numVerts, numPolys, numLoops;
	Image *image = umd->image;
	MPoly *mpoly, *mp;
	MLoop *mloop;
	const bool override_image = (umd->flags & MOD_UVPROJECT_OVERRIDEIMAGE) != 0;
	Projector projectors[MOD_UVPROJECT_MAXPROJECTORS];
	int num_projectors = 0;
	char uvname[MAX_CUSTOMDATA_LAYER_NAME];
	float aspx = umd->aspectx ? umd->aspectx : 1.0f;
	float aspy = umd->aspecty ? umd->aspecty : 1.0f;
	float scax = umd->scalex ? umd->scalex : 1.0f;
	float scay = umd->scaley ? umd->scaley : 1.0f;
	int free_uci = 0;

	for (i = 0; i < umd->num_projectors; ++i)
		if (umd->projectors[i])
			projectors[num_projectors++].ob = umd->projectors[i];

	if (num_projectors == 0) return dm;

	/* make sure there are UV Maps available */

	if (!CustomData_has_layer(&dm->loopData, CD_MLOOPUV)) return dm;

	/* make sure we're using an existing layer */
	CustomData_validate_layer_name(&dm->loopData, CD_MLOOPUV, umd->uvlayer_name, uvname);

	/* calculate a projection matrix and normal for each projector */
	for (i = 0; i < num_projectors; ++i) {
		float tmpmat[4][4];
		float offsetmat[4][4];
		Camera *cam = NULL;
		/* calculate projection matrix */
		invert_m4_m4(projectors[i].projmat, projectors[i].ob->obmat);

		projectors[i].uci = NULL;

		if (projectors[i].ob->type == OB_CAMERA) {
			
			cam = (Camera *)projectors[i].ob->data;
			if (cam->type == CAM_PANO) {
				projectors[i].uci = BLI_uvproject_camera_info(projectors[i].ob, NULL, aspx, aspy);
				BLI_uvproject_camera_info_scale(projectors[i].uci, scax, scay);
				free_uci = 1;
			}
			else {
				CameraParams params;

				/* setup parameters */
				BKE_camera_params_init(&params);
				BKE_camera_params_from_object(&params, projectors[i].ob);

				/* compute matrix, viewplane, .. */
				BKE_camera_params_compute_viewplane(&params, 1, 1, aspx, aspy);

				/* scale the view-plane */
				params.viewplane.xmin *= scax;
				params.viewplane.xmax *= scax;
				params.viewplane.ymin *= scay;
				params.viewplane.ymax *= scay;

				BKE_camera_params_compute_matrix(&params);
				mul_m4_m4m4(tmpmat, params.winmat, projectors[i].projmat);
			}
		}
		else {
			copy_m4_m4(tmpmat, projectors[i].projmat);
		}

		unit_m4(offsetmat);
		mul_mat3_m4_fl(offsetmat, 0.5);
		offsetmat[3][0] = offsetmat[3][1] = offsetmat[3][2] = 0.5;

		mul_m4_m4m4(projectors[i].projmat, offsetmat, tmpmat);

		/* calculate worldspace projector normal (for best projector test) */
		projectors[i].normal[0] = 0;
		projectors[i].normal[1] = 0;
		projectors[i].normal[2] = 1;
		mul_mat3_m4_v3(projectors[i].ob->obmat, projectors[i].normal);
	}

	numPolys = dm->getNumPolys(dm);
	numLoops = dm->getNumLoops(dm);

	/* make sure we are not modifying the original UV map */
	mloop_uv = CustomData_duplicate_referenced_layer_named(&dm->loopData,
	                                                       CD_MLOOPUV, uvname, numLoops);

	/* can be NULL */
	mt = mtexpoly = CustomData_duplicate_referenced_layer_named(&dm->polyData,
	                                                            CD_MTEXPOLY, uvname, numPolys);

	numVerts = dm->getNumVerts(dm);

	coords = MEM_malloc_arrayN(numVerts, sizeof(*coords),
	                     "uvprojectModifier_do coords");
	dm->getVertCos(dm, coords);

	/* convert coords to world space */
	for (i = 0, co = coords; i < numVerts; ++i, ++co)
		mul_m4_v3(ob->obmat, *co);
	
	/* if only one projector, project coords to UVs */
	if (num_projectors == 1 && projectors[0].uci == NULL)
		for (i = 0, co = coords; i < numVerts; ++i, ++co)
			mul_project_m4_v3(projectors[0].projmat, *co);

	mpoly = dm->getPolyArray(dm);
	mloop = dm->getLoopArray(dm);

	/* apply coords as UVs, and apply image if tfaces are new */
	for (i = 0, mp = mpoly; i < numPolys; ++i, ++mp, ++mt) {
		if (override_image || !image || (mtexpoly == NULL || mt->tpage == image)) {
			if (num_projectors == 1) {
				if (projectors[0].uci) {
					unsigned int fidx = mp->totloop - 1;
					do {
						unsigned int lidx = mp->loopstart + fidx;
						unsigned int vidx = mloop[lidx].v;
						BLI_uvproject_from_camera(mloop_uv[lidx].uv, coords[vidx], projectors[0].uci);
					} while (fidx--);
				}
				else {
					/* apply transformed coords as UVs */
					unsigned int fidx = mp->totloop - 1;
					do {
						unsigned int lidx = mp->loopstart + fidx;
						unsigned int vidx = mloop[lidx].v;
						copy_v2_v2(mloop_uv[lidx].uv, coords[vidx]);
					} while (fidx--);
				}
			}
			else {
				/* multiple projectors, select the closest to face normal direction */
				float face_no[3];
				int j;
				Projector *best_projector;
				float best_dot;

				/* get the untransformed face normal */
				BKE_mesh_calc_poly_normal_coords(mp, mloop + mp->loopstart, (const float (*)[3])coords, face_no);

				/* find the projector which the face points at most directly
				 * (projector normal with largest dot product is best)
				 */
				best_dot = dot_v3v3(projectors[0].normal, face_no);
				best_projector = &projectors[0];

				for (j = 1; j < num_projectors; ++j) {
					float tmp_dot = dot_v3v3(projectors[j].normal,
					                         face_no);
					if (tmp_dot > best_dot) {
						best_dot = tmp_dot;
						best_projector = &projectors[j];
					}
				}

				if (best_projector->uci) {
					unsigned int fidx = mp->totloop - 1;
					do {
						unsigned int lidx = mp->loopstart + fidx;
						unsigned int vidx = mloop[lidx].v;
						BLI_uvproject_from_camera(mloop_uv[lidx].uv, coords[vidx], best_projector->uci);
					} while (fidx--);
				}
				else {
					unsigned int fidx = mp->totloop - 1;
					do {
						unsigned int lidx = mp->loopstart + fidx;
						unsigned int vidx = mloop[lidx].v;
						mul_v2_project_m4_v3(mloop_uv[lidx].uv, best_projector->projmat, coords[vidx]);
					} while (fidx--);
				}
			}
		}

		if (override_image && mtexpoly) {
			mt->tpage = image;
		}
	}

	MEM_freeN(coords);
	
	if (free_uci) {
		int j;
		for (j = 0; j < num_projectors; ++j) {
			if (projectors[j].uci) {
				MEM_freeN(projectors[j].uci);
			}
		}
	}

	/* Mark tessellated CD layers as dirty. */
	dm->dirty |= DM_DIRTY_TESS_CDLAYERS;

	return dm;
}
Ejemplo n.º 19
0
static DerivedMesh *applyModifier(
        ModifierData *md, Object *ob,
        DerivedMesh *dm,
        ModifierApplyFlag UNUSED(flag))
{
	MaskModifierData *mmd = (MaskModifierData *)md;
	const bool found_test = (mmd->flag & MOD_MASK_INV) == 0;
	DerivedMesh *result = NULL;
	GHash *vertHash = NULL, *edgeHash, *polyHash;
	GHashIterator gh_iter;
	MDeformVert *dvert, *dv;
	int numPolys = 0, numLoops = 0, numEdges = 0, numVerts = 0;
	int maxVerts, maxEdges, maxPolys;
	int i;

	const MVert *mvert_src;
	const MEdge *medge_src;
	const MPoly *mpoly_src;
	const MLoop *mloop_src;

	MPoly *mpoly_dst;
	MLoop *mloop_dst;
	MEdge *medge_dst;
	MVert *mvert_dst;

	int *loop_mapping;

	dvert = dm->getVertDataArray(dm, CD_MDEFORMVERT);
	if (dvert == NULL) {
		return found_test ? CDDM_from_template(dm, 0, 0, 0, 0, 0) : dm;
	}

	/* Overview of Method:
	 *	1. Get the vertices that are in the vertexgroup of interest
	 *	2. Filter out unwanted geometry (i.e. not in vertexgroup), by populating mappings with new vs old indices
	 *	3. Make a new mesh containing only the mapping data
	 */

	/* get original number of verts, edges, and faces */
	maxVerts = dm->getNumVerts(dm);
	maxEdges = dm->getNumEdges(dm);
	maxPolys = dm->getNumPolys(dm);

	/* check if we can just return the original mesh
	 *	- must have verts and therefore verts assigned to vgroups to do anything useful
	 */
	if (!(ELEM(mmd->mode, MOD_MASK_MODE_ARM, MOD_MASK_MODE_VGROUP)) ||
	    (maxVerts == 0) || BLI_listbase_is_empty(&ob->defbase))
	{
		return dm;
	}

	/* if mode is to use selected armature bones, aggregate the bone groups */
	if (mmd->mode == MOD_MASK_MODE_ARM) { /* --- using selected bones --- */
		Object *oba = mmd->ob_arm;
		bPoseChannel *pchan;
		bDeformGroup *def;
		bool *bone_select_array;
		int bone_select_tot = 0;
		const int defbase_tot = BLI_listbase_count(&ob->defbase);

		/* check that there is armature object with bones to use, otherwise return original mesh */
		if (ELEM(NULL, oba, oba->pose, ob->defbase.first))
			return dm;

		/* determine whether each vertexgroup is associated with a selected bone or not
		 * - each cell is a boolean saying whether bone corresponding to the ith group is selected
		 * - groups that don't match a bone are treated as not existing (along with the corresponding ungrouped verts)
		 */
		bone_select_array = MEM_malloc_arrayN((size_t)defbase_tot, sizeof(char), "mask array");

		for (i = 0, def = ob->defbase.first; def; def = def->next, i++) {
			pchan = BKE_pose_channel_find_name(oba->pose, def->name);
			if (pchan && pchan->bone && (pchan->bone->flag & BONE_SELECTED)) {
				bone_select_array[i] = true;
				bone_select_tot++;
			}
			else {
				bone_select_array[i] = false;
			}
		}

		/* verthash gives mapping from original vertex indices to the new indices (including selected matches only)
		 * key = oldindex, value = newindex
		 */
		vertHash = BLI_ghash_int_new_ex("mask vert gh", (unsigned int)maxVerts);

		/* add vertices which exist in vertexgroups into vertHash for filtering
		 * - dv = for each vertex, what vertexgroups does it belong to
		 * - dw = weight that vertex was assigned to a vertexgroup it belongs to
		 */
		for (i = 0, dv = dvert; i < maxVerts; i++, dv++) {
			MDeformWeight *dw = dv->dw;
			bool found = false;
			int j;

			/* check the groups that vertex is assigned to, and see if it was any use */
			for (j = 0; j < dv->totweight; j++, dw++) {
				if (dw->def_nr < defbase_tot) {
					if (bone_select_array[dw->def_nr]) {
						if (dw->weight != 0.0f) {
							found = true;
							break;
						}
					}
				}
			}

			if (found_test != found) {
				continue;
			}

			/* add to ghash for verts (numVerts acts as counter for mapping) */
			BLI_ghash_insert(vertHash, SET_INT_IN_POINTER(i), SET_INT_IN_POINTER(numVerts));
			numVerts++;
		}

		/* free temp hashes */
		MEM_freeN(bone_select_array);
	}
	else {  /* --- Using Nominated VertexGroup only --- */
		int defgrp_index = defgroup_name_index(ob, mmd->vgroup);

		/* if no vgroup (i.e. dverts) found, return the initial mesh */
		if (defgrp_index == -1)
			return dm;

		/* hashes for quickly providing a mapping from old to new - use key=oldindex, value=newindex */
		vertHash = BLI_ghash_int_new_ex("mask vert2 bh", (unsigned int)maxVerts);

		/* add vertices which exist in vertexgroup into ghash for filtering */
		for (i = 0, dv = dvert; i < maxVerts; i++, dv++) {
			const bool found = defvert_find_weight(dv, defgrp_index) != 0.0f;
			if (found_test != found) {
				continue;
			}

			/* add to ghash for verts (numVerts acts as counter for mapping) */
			BLI_ghash_insert(vertHash, SET_INT_IN_POINTER(i), SET_INT_IN_POINTER(numVerts));
			numVerts++;
		}
	}

	/* hashes for quickly providing a mapping from old to new - use key=oldindex, value=newindex */
	edgeHash = BLI_ghash_int_new_ex("mask ed2 gh", (unsigned int)maxEdges);
	polyHash = BLI_ghash_int_new_ex("mask fa2 gh", (unsigned int)maxPolys);

	mvert_src = dm->getVertArray(dm);
	medge_src = dm->getEdgeArray(dm);
	mpoly_src = dm->getPolyArray(dm);
	mloop_src = dm->getLoopArray(dm);

	/* overalloc, assume all polys are seen */
	loop_mapping = MEM_malloc_arrayN((size_t)maxPolys, sizeof(int), "mask loopmap");

	/* loop over edges and faces, and do the same thing to
	 * ensure that they only reference existing verts
	 */
	for (i = 0; i < maxEdges; i++) {
		const MEdge *me = &medge_src[i];

		/* only add if both verts will be in new mesh */
		if (BLI_ghash_haskey(vertHash, SET_INT_IN_POINTER(me->v1)) &&
		    BLI_ghash_haskey(vertHash, SET_INT_IN_POINTER(me->v2)))
		{
			BLI_ghash_insert(edgeHash, SET_INT_IN_POINTER(i), SET_INT_IN_POINTER(numEdges));
			numEdges++;
		}
	}
	for (i = 0; i < maxPolys; i++) {
		const MPoly *mp_src = &mpoly_src[i];
		const MLoop *ml_src = &mloop_src[mp_src->loopstart];
		bool ok = true;
		int j;

		for (j = 0; j < mp_src->totloop; j++, ml_src++) {
			if (!BLI_ghash_haskey(vertHash, SET_INT_IN_POINTER(ml_src->v))) {
				ok = false;
				break;
			}
		}

		/* all verts must be available */
		if (ok) {
			BLI_ghash_insert(polyHash, SET_INT_IN_POINTER(i), SET_INT_IN_POINTER(numPolys));
			loop_mapping[numPolys] = numLoops;
			numPolys++;
			numLoops += mp_src->totloop;
		}
	}


	/* now we know the number of verts, edges and faces,
	 * we can create the new (reduced) mesh
	 */
	result = CDDM_from_template(dm, numVerts, numEdges, 0, numLoops, numPolys);

	mpoly_dst = CDDM_get_polys(result);
	mloop_dst = CDDM_get_loops(result);
	medge_dst = CDDM_get_edges(result);
	mvert_dst = CDDM_get_verts(result);

	/* using ghash-iterators, map data into new mesh */
	/* vertices */
	GHASH_ITER (gh_iter, vertHash) {
		const MVert *v_src;
		MVert *v_dst;
		const int i_src = GET_INT_FROM_POINTER(BLI_ghashIterator_getKey(&gh_iter));
		const int i_dst = GET_INT_FROM_POINTER(BLI_ghashIterator_getValue(&gh_iter));

		v_src = &mvert_src[i_src];
		v_dst = &mvert_dst[i_dst];

		*v_dst = *v_src;
		DM_copy_vert_data(dm, result, i_src, i_dst, 1);
	}

	/* edges */
	GHASH_ITER (gh_iter, edgeHash) {
		const MEdge *e_src;
		MEdge *e_dst;
		const int i_src = GET_INT_FROM_POINTER(BLI_ghashIterator_getKey(&gh_iter));
		const int i_dst = GET_INT_FROM_POINTER(BLI_ghashIterator_getValue(&gh_iter));

		e_src = &medge_src[i_src];
		e_dst = &medge_dst[i_dst];

		DM_copy_edge_data(dm, result, i_src, i_dst, 1);
		*e_dst = *e_src;
		e_dst->v1 = GET_UINT_FROM_POINTER(BLI_ghash_lookup(vertHash, SET_UINT_IN_POINTER(e_src->v1)));
		e_dst->v2 = GET_UINT_FROM_POINTER(BLI_ghash_lookup(vertHash, SET_UINT_IN_POINTER(e_src->v2)));
	}

	/* faces */
	GHASH_ITER (gh_iter, polyHash) {
		const int i_src = GET_INT_FROM_POINTER(BLI_ghashIterator_getKey(&gh_iter));
		const int i_dst = GET_INT_FROM_POINTER(BLI_ghashIterator_getValue(&gh_iter));
		const MPoly *mp_src = &mpoly_src[i_src];
		MPoly *mp_dst = &mpoly_dst[i_dst];
		const int i_ml_src = mp_src->loopstart;
		const int i_ml_dst = loop_mapping[i_dst];
		const MLoop *ml_src = &mloop_src[i_ml_src];
		MLoop *ml_dst = &mloop_dst[i_ml_dst];

		DM_copy_poly_data(dm, result, i_src, i_dst, 1);
		DM_copy_loop_data(dm, result, i_ml_src, i_ml_dst, mp_src->totloop);

		*mp_dst = *mp_src;
		mp_dst->loopstart = i_ml_dst;
		for (i = 0; i < mp_src->totloop; i++) {
			ml_dst[i].v = GET_UINT_FROM_POINTER(BLI_ghash_lookup(vertHash, SET_UINT_IN_POINTER(ml_src[i].v)));
			ml_dst[i].e = GET_UINT_FROM_POINTER(BLI_ghash_lookup(edgeHash, SET_UINT_IN_POINTER(ml_src[i].e)));
		}
	}

	MEM_freeN(loop_mapping);

	/* why is this needed? - campbell */
	/* recalculate normals */
	result->dirty |= DM_DIRTY_NORMALS;

	/* free hashes */
	BLI_ghash_free(vertHash, NULL, NULL);
	BLI_ghash_free(edgeHash, NULL, NULL);
	BLI_ghash_free(polyHash, NULL, NULL);

	/* return the new mesh */
	return result;
}