int main(void) { REAL8TimeSeries *conv, *data, *response, *exactConv; const UINT4 N = 101; const LIGOTimeGPS zero = {0, 0}; UINT4 i; conv = XLALCreateREAL8TimeSeries("FFT Convolution", &zero, 0.0, 0.01, &lalDimensionlessUnit, N); data = XLALCreateREAL8TimeSeries("data", &zero, 0.0, 0.01, &lalDimensionlessUnit, N); response = XLALCreateREAL8TimeSeries("response function", &zero, 0.0, 0.01, &lalDimensionlessUnit, N); exactConv = XLALCreateREAL8TimeSeries("exact convolution", &zero, 0.0, 0.01, &lalDimensionlessUnit, N); data->data->data[0] = 1.0; for (i = 1; i < N; i++) { /* Data is 1/i */ data->data->data[i] = 1.0 / i; } response->data->data[0] = 1.0; for (i = 1; i <= (N-1)/2; i++) { response->data->data[i] = exp(-(i/10.0)); /* Decaying exponential with time constant 10. */ response->data->data[N-i] = exp(-(i/10.0)); /* Same in the negative, wrapped dimension. */ } if (N % 2 == 0) { response->data->data[N/2] = exp(-(N/20.0)); } /* Exact, O(N^2) convolution */ for (i = 0; i < N; i++) { REAL8 sum = 0.0; UINT4 j; for (j = MAX_INT(0, ((int)i)-((int) N/2)); j <= MIN_INT(i+N/2, N-1); j++) { UINT4 rIndex = (j > i ? i + (N - j) : i - j); sum += data->data->data[j]*response->data->data[rIndex]; } exactConv->data->data[i] = sum; } convolveTimeSeries(conv, data, response); for (i = 0; i < N; i++) { if (fabs(exactConv->data->data[i] - conv->data->data[i]) > 1e-8) { fprintf(stderr, "Index %d differs (exact = %g, FFT = %g)\n", i, exactConv->data->data[i], conv->data->data[i]); } } XLALDestroyREAL8TimeSeries(conv); XLALDestroyREAL8TimeSeries(data); XLALDestroyREAL8TimeSeries(response); XLALDestroyREAL8TimeSeries(exactConv); return 0; }
/** * Стартовые статы при любых условиях должны соответствовать границам ролла. * В случае старого ролла тут это всплывет из-за нулевых статов. */ bool bad_start_stats(CHAR_DATA *ch) { if (ch->get_start_stat(G_STR) > MAX_STR(ch) || ch->get_start_stat(G_STR) < MIN_STR(ch) || ch->get_start_stat(G_DEX) > MAX_DEX(ch) || ch->get_start_stat(G_DEX) < MIN_DEX(ch) || ch->get_start_stat(G_INT) > MAX_INT(ch) || ch->get_start_stat(G_INT) < MIN_INT(ch) || ch->get_start_stat(G_WIS) > MAX_WIS(ch) || ch->get_start_stat(G_WIS) < MIN_WIS(ch) || ch->get_start_stat(G_CON) > MAX_CON(ch) || ch->get_start_stat(G_CON) < MIN_CON(ch) || ch->get_start_stat(G_CHA) > MAX_CHA(ch) || ch->get_start_stat(G_CHA) < MIN_CHA(ch) || start_stats_count(ch) != SUM_ALL_STATS) { return 1; } return 0; }
int backgroundBlit(void) { SDL_Rect *camera = sdlStore(NULL,GET_CAMERA); if(camera == 0) { puts("DEBUG: backgroundBlit() 1"); return -1; } SDL_Surface *screen = sdlStore(NULL,GET_SCREEN); if(screen == 0) { puts("DEBUG: backgroundBlit() 2"); return -1; } struct bgData *initData = sdlStore(NULL,GET_BACKGROUND); if(initData == 0) { puts("DEBUG: backgroundBlit() 3"); return -1; } int *bgSizes = (int *)sdlStore(NULL,GET_BG_SIZE); if(bgSizes == 0) { puts("DEBUG: backgroundBlit() 4"); return -1; } int bgOffset[BG_AMOUNT][COORDS]; int i; for(i = 0;i < BG_AMOUNT;i++) { bgOffset[i][0] = ((camera->x * BG_MULT) / bgSizes[i]) % camera->w; bgOffset[i][1] = ((camera->y * BG_MULT) / bgSizes[i]) % camera->h; } //DEBUG //printf("bg0: x %d y %d cam: x %d y %d\n",bgOffset[0][0],bgOffset[0][1],camera->x,camera->y); //Iterate over background layers for(i = 0;i < BG_AMOUNT;i++) { //For tiling int mw; for(mw = 0;mw < (camera->w * 2);mw += BG_INIT_W_SIZE) { int mh; for(mh = 0;mh < (camera->h * 2);mh += BG_INIT_H_SIZE) { int k; for(k = 0;k < (MIN_INT(BG_INIT_W_SIZE,camera->w) * MIN_INT(BG_INIT_H_SIZE,camera->h)) / (BG_INIT_MAX_SPACING * BG_INIT_MAX_SPACING);k++) { int index = k * (i + 1); SDL_Rect tmpRect; tmpRect.x = initData[index].pos.x + mw - bgOffset[i][0]; tmpRect.y = initData[index].pos.y + mh - bgOffset[i][1]; //DEBUG //printf("x %5d y %5d w %5d h %5d\n",tmpRect.x,tmpRect.y,tmpRect.w,tmpRect.h); blitCircle(bgSizes[i],screen,tmpRect,(SDL_Color){255,255,255}); } } } } return 0; }
/** * Проверка стартовых и итоговых статов. * Если невалидные стартовые статы - чар отправляется на реролл. * Если невалидные только итоговые статы - идет перезапись со стартовых с учетом мортов и славы. */ bool check_stats(CHAR_DATA *ch) { // иммов травмировать не стоит if (IS_IMMORTAL(ch)) { return 1; } int have_stats = ch->get_inborn_str() + ch->get_inborn_dex() + ch->get_inborn_int() + ch->get_inborn_wis() + ch->get_inborn_con() + ch->get_inborn_cha(); // чар со старым роллом статов или после попыток поправить статы в файле if (bad_start_stats(ch)) { snprintf(buf, MAX_STRING_LENGTH, "\r\n%sВаши параметры за вычетом перевоплощений:\r\n" "Сила: %d, Ловкость: %d, Ум: %d, Мудрость: %d, Телосложение: %d, Обаяние: %d\r\n" "Если вы долго отсутствовали в игре, то изменения, касающиеся стартовых параметров были следующие:%s\r\n" "\r\n" "\tДобавлено ограничение на максимальный класс защиты:\r\n" "\tВоры, наемники и дружинники - -250\r\n" "\tКупцы, богатыри, витязи, охотники, кузнецы - -200\r\n" "\tЛекари, волхвы - -150\r\n" "\tКудесники, чернокнижники, колдуны, волшебники - -100\r\n" "\r\n" "\tТелосложение: изменились коэффициенты профессий и максимальное родное тело (50) в расчетах при\r\n" "\tполучении уровня, поэтому изменены границы стартового телосложения у некоторых профессий,\r\n" "\tв целом это увеличивает кол-во жизней персонажа тем сильнее, чем больше у него было ремортов.\r\n" "\r\n", CCIGRN(ch, C_SPR), ch->get_inborn_str() - GET_REMORT(ch), ch->get_inborn_dex() - GET_REMORT(ch), ch->get_inborn_int() - GET_REMORT(ch), ch->get_inborn_wis() - GET_REMORT(ch), ch->get_inborn_con() - GET_REMORT(ch), ch->get_inborn_cha() - GET_REMORT(ch), CCNRM(ch, C_SPR)); SEND_TO_Q(buf, ch->desc); // данную фигню мы делаем для того, чтобы из ролла нельзя было случайно так просто выйти // сразу, не раскидав статы, а то много любителей тригов и просто нажатий не глядя ch->set_str(MIN_STR(ch)); ch->set_dex(MIN_DEX(ch)); ch->set_int(MIN_INT(ch)); ch->set_wis(MIN_WIS(ch)); ch->set_con(MIN_CON(ch)); ch->set_cha(MIN_CHA(ch)); snprintf(buf, MAX_STRING_LENGTH, "%sПросим вас заново распределить основные параметры персонажа.%s\r\n", CCIGRN(ch, C_SPR), CCNRM(ch, C_SPR)); SEND_TO_Q(buf, ch->desc); SEND_TO_Q("\r\n* В связи с проблемами перевода фразы ANYKEY нажмите ENTER *", ch->desc); STATE(ch->desc) = CON_RESET_STATS; return 0; } // стартовые статы в поряде, но слава не сходится (снялась по времени или иммом) if (bad_real_stats(ch, have_stats)) { recalculate_stats(ch); } return 1; }
int uwerr (char* append) { const double epsilon = 2.0e-16; int i, n, label; int ndata, Wmax, W, Wopt, k; double **a_b, *a_bb, *a_proj, a_bb_proj; double *F_b, *F_bb, *F_bw; double *Gamma_F, C_F, C_Fopt, v_Fbb, dv_Fbb, tau, *tau_int; double *f_alpha, *h_alpha, *m_alpha, *data_ptr, func_res; double value, dvalue, ddvalue, tau_intbb, dtau_intbb; double chisqr, Qval, *p_r, p_r_mean, p_r_var, delta, lobd, *bins; char filename[80], format[80]; FILE *ofs; printf("[uwerr] The following arguments have been read:\n"); printf("[uwerr] nalpha = %d\n", nalpha); printf("[uwerr] nreplica = %d\n", nreplica); for(i=0; i<nreplica; i++) { printf("[uwerr] n_r(%2d) = %d\n", i, n_r[i]); } printf("[uwerr] npara = %d\n", npara); for(i=0; i<npara; i++) { printf("[uwerr] para(%2d) = %e\n", i, para[i]); } printf("[uwerr] ipo = %d\n", ipo); printf("[uwerr] s_tau = %e\n", s_tau); printf("[uwerr] obsname = %s\n", obsname); printf("[uwerr] append = %s\n", append); fprintf(stdout, "[uwerr]: Starting ...\n"); /************************************************************* * check if combination of values in ipo an func are allowed * *************************************************************/ label = ipo; if(ipo>0 && func!=NULL) { ipo = 0; } else if ( ipo==0 && func==NULL) { fprintf(stdout, "[uwerr] illegal values of func and ipo, return"); return(1); } fprintf(stdout, "[uwerr]: checked ipo and func\n"); /* ndata - total number of rows in data */ for( i=1, ndata = *n_r; i<nreplica; ndata += *(n_r + i++) ); /* Wmax - longest possible summation index + 1 */ MIN_INT(n_r, nreplica, &Wmax); fprintf(stdout, "[uwerr]: have ndata and Wmax ready\n"); /******************* * allocate memory * *******************/ F_b = (double *)calloc(nreplica, sizeof(double)); F_bb = (double *)calloc(1, sizeof(double)); F_bw = (double *)calloc(1, sizeof(double)); Gamma_F = (double *)calloc(Wmax, sizeof(double)); tau_int = (double *)calloc(Wmax, sizeof(double)); if (ipo==0 && func!=NULL) /* only necessary in case of derived quantity */ { a_b = (double**)calloc(nreplica, sizeof(double*)); a_bb = (double *)calloc(nalpha, sizeof(double)); for(n=0; n<nreplica; n++) { *(a_b+n)=(double*)calloc(nalpha, sizeof(double)); } } fprintf(stdout, "[uwerr]: allocated memory\n"); /********************************************************************* * calculate estimators for primary observable/derived quantity * *********************************************************************/ if(ipo>0 && func==NULL) /* here estimators for one of the prim. observables */ { data_ptr = *(data+ipo-1); /* points to column of ipo in data */ for(n=0; n<nreplica; n++) { ARITHMEAN(data_ptr, *(n_r+n), F_b+n); /* arithmetic mean for replia */ data_ptr = data_ptr + *(n_r+n); /* pointer set to beginning of next replia */ /* test */ fprintf(stdout, "[uwerr] F_b(%d) = %18.16e\n", n, *(F_b+n)); } ARITHMEAN(*(data+ipo-1), ndata, F_bb); /* mean including all data for ipo */ /* test */ fprintf(stdout, "[uwerr] F_bn = %18.16e\n", *F_bb); } else if (ipo==0 && func!=NULL) { /* estimators for derived quantity */ /* calculate means per replica and total mean */ for(i=0; i<nalpha; i++) { data_ptr = *(data+i); for(n=0; n<nreplica; n++) { ARITHMEAN(data_ptr, *(n_r+n), *(a_b+n)+i); data_ptr += *(n_r+n); } ARITHMEAN(*(data+i), ndata, a_bb+i); } /* calculate estimators per replica for derived quatity */ for(n=0; n<nreplica; n++) { func(nalpha, *(a_b+n), npara, para, F_b+n); /* est. for means per replicum */ } func(nalpha, a_bb, npara, para, F_bb); /* est. for total mean */ } /* in case of more than one replica calculate weighed mean of F_b's with weights n_r */ if(nreplica > 1) { WEIGHEDMEAN(F_b, nreplica, F_bw, n_r); /* test */ fprintf(stdout, "[uwerr] F_bw = %18.16e\n", *F_bw); } fprintf(stdout, "[uwerr]: have estimators ready\n"); /*********************************************** * calculate projection of data and mean value * ***********************************************/ if(ipo>0 && func==NULL) { a_proj = *(data + ipo - 1); /* data is projectet to itself in case of prim. observable */ a_bb_proj = *F_bb; /* projected mean is total mean */ } else if (ipo==0 && func!=NULL) { f_alpha = (double *)calloc(nalpha, sizeof(double)); h_alpha = (double *)calloc(nalpha, sizeof(double)); m_alpha = (double *)calloc(ndata, sizeof(double)); a_proj = (double *)calloc(ndata, sizeof(double)); /* calculate derivatives of func with respect to A_alpha */ for(i=0; i<nalpha; i++) { /* loop over all prim. observables */ SET_TO(h_alpha, nalpha, 0.0); STDDEV(*(data+i), ndata, h_alpha+i); /* test */ fprintf(stdout, "[uwerr] halpha = %18.16e\n", *(h_alpha+i)); if(*(h_alpha+i)==0.0) { fprintf(stdout, "[uwerr] Warning: no fluctuation in primary observable %d\n", i); *(f_alpha + i) = 0.0; } else { ADD_ASSIGN(m_alpha, a_bb, h_alpha, nalpha); func(nalpha, m_alpha, npara, para, &func_res); *(f_alpha+i) = func_res; SUB_ASSIGN(m_alpha, a_bb, h_alpha, nalpha); func(nalpha, m_alpha, npara, para, &func_res); *(f_alpha+i) -= func_res; *(f_alpha+i) = *(f_alpha+i) / (2.0 * *(h_alpha+i)); } } SET_TO(a_proj, ndata, 0.0); a_bb_proj = 0.0; for(i=0; i<nalpha; i++) { for(n=0; n<ndata; n++) { *(a_proj + n) = *(a_proj + n) + ( *(*(data+i)+n) ) * ( *(f_alpha+i) ); } a_bb_proj = a_bb_proj + *(a_bb+i) * (*(f_alpha+i)); } free(m_alpha); free(f_alpha); free(h_alpha); for(n=0; n<nreplica; n++) { free(*(a_b+n)); } free(a_b); free(a_bb); } fprintf(stdout, "[uwerr]: have projected data ready\n"); /********************************************************************** * calculate error, error of the error; automatic windowing condition * **********************************************************************/ /* (1) Gamma_F(t), t=0,...,Wmax */ SET_TO(Gamma_F, Wmax, 0.0); SET_TO(tau_int, Wmax, 0.0); for(i=0,v_Fbb=0.0; i<ndata; i++) { v_Fbb = v_Fbb + SQR( (*(a_proj+i) - a_bb_proj) ); } v_Fbb /= (double)ndata; C_F = v_Fbb; *Gamma_F = v_Fbb; /* test */ fprintf(stdout, "[uwerr] a_bb_proj = %18.16e\n", a_bb_proj); fprintf(stdout, "[uwerr] Gamma_F(%1d) = %18.16e\n", 0, *Gamma_F); if (*Gamma_F==0.0) { fprintf(stderr, "[uwerr] ERROR, no fluctuations; return\n"); strcpy(filename, obsname); strcat(filename,"_uwerr"); ofs = fopen(filename, append); if ((void*)ofs==NULL) { fprintf(stderr, "[uwerr] Could not open file %s\n", filename); return(1); } fprintf(ofs, "%d\t%18.16e\t%18.16e\t%18.16e\t%18.16e\t%18.16e\t%18.16e\t"\ "%18.16e\t%18.16e\n", label, *F_bb, 0.0, 0.0, 0.0, \ 0.0, -1.0, 0.0, 0.0); if (fclose(ofs)!=0) { fprintf(stderr, "[uwerr] Could not close file %s\n", filename); return(1); } return(-5); } *tau_int = 0.5; for(W=1; W<Wmax-1; W++) { /* calculate Gamma_F(W) */ data_ptr = a_proj; for(n=0; n<nreplica; n++) { for(i=0; i<(*(n_r+n)-W); i++) { *(Gamma_F+W) += (*(data_ptr+i) - a_bb_proj) * (*(data_ptr+i+W) - a_bb_proj); } data_ptr = data_ptr + *(n_r+n); } *(Gamma_F+W) = *(Gamma_F+W) / (double)(ndata-nreplica*W); /* test */ fprintf(stdout, "[uwerr] Gamma_F(%d) = %18.16e\n", W, *(Gamma_F+W)); C_F = C_F + 2.0 * *(Gamma_F+W); *tau_int = C_F / (2.0*v_Fbb); if(*tau_int < 0.5) { fprintf(stdout, "[uwerr] Warning: tau_int < 0.5; tau set to %f\n", TINY); tau = TINY; } else { tau = s_tau / log( (*tau_int+0.5) / (*tau_int-0.5) ); } /* test */ fprintf(stdout, "[uwerr] tau(%d) = %18.16e\n", W, tau); if( exp(-(double)W / tau) - tau / sqrt((double)(W*ndata)) < 0.0 ) { Wopt = W; /* test */ fprintf(stdout, "[uwerr] Wopt = %d\n", Wopt); break; } } if(W==Wmax-1) { fprintf(stdout, "[uwerr] windowing condition failed after W = %d\n", W); return(1); } else { SUM(Gamma_F+1, Wopt, &C_Fopt); C_Fopt = 2.0 * C_Fopt + *Gamma_F; /* test */ fprintf(stdout, "[uwerr] before: C_Fopt = %18.16e\n", C_Fopt); for(W=0; W<=Wopt; W++) { *(Gamma_F+W) = *(Gamma_F+W) + C_Fopt/((double)ndata); } SUM(Gamma_F+1, Wopt, &C_Fopt); C_Fopt = 2.0 * C_Fopt + *Gamma_F; /* test */ fprintf(stdout, "[uwerr] after: C_Fopt = %18.16e\n", C_Fopt); v_Fbb = *Gamma_F; *tau_int = 0.5*v_Fbb; for(W=1; W<=Wopt; W++) *(tau_int+W) = *(tau_int+W-1) + *(Gamma_F+W); for(W=0; W<=Wopt; W++) *(tau_int+W) /= v_Fbb; } fprintf(stdout, "[uwerr]: perfomed automatic windowing\n"); /*********************************** * bias cancellation of mean value * ***********************************/ if(nreplica > 1 ) { *F_bb = ( (double)nreplica * *F_bb - *F_bw ) / ((double)(nreplica-1)); } fprintf(stdout, "[uwerr]: leading bias cancelled\n"); /************************** * calculation of results * **************************/ value = *F_bb; dvalue = sqrt(C_Fopt/((double)ndata)); ddvalue = dvalue * sqrt((Wopt + 0.5)/ndata); tau_intbb = C_Fopt / (2.0 * v_Fbb); dtau_intbb = sqrt( 2.0 * ( 2.0*Wopt-3.0*tau_intbb + 1 + \ 1/(4.0*tau_intbb))/((double)ndata) ) * tau_intbb; dv_Fbb = sqrt(2.0*(tau_intbb + 1/(4.0*tau_intbb)) / (double)ndata) * v_Fbb; /******************************************* * consistency checks in case nreplica > 0 * *******************************************/ if(nreplica>1) { /* (1) calculate Q-value <---> determine goodness of the fit F_b(n) = F_bw = const. */ chisqr = 0.0; for(n=0; n<nreplica; n++) { chisqr = chisqr + SQR( *(F_b+n) - *F_bw ) / (C_Fopt/(double)(*(n_r+n))); } /* test */ fprintf(stdout, "[uwerr]: chisqr = %18.16e\n", chisqr); fprintf(stdout, "[uwerr]: n = %d \n", (nreplica-1)/2); Qval = 1.0 - incomp_gamma(chisqr/2.0, (nreplica-1)/2); /* (2) inspection of p_r's defined below in a histogramm */ p_r = (double *)calloc(nreplica, sizeof(double)); for(n=0; n<nreplica; n++) { *(p_r+n) = (*(F_b+n) - *F_bw) / \ (dvalue*sqrt(((double)ndata/(double)(*(n_r+n)))-1.0)); } ARITHMEAN(p_r, nreplica, &p_r_mean); VAR(p_r, nreplica, &p_r_var); k = 1 + (int)rint(log((double)nreplica)/log(2.0)); strcpy(filename, obsname); strcat(filename, "_uwerr_hist"); ofs = fopen(filename, append); fprintf(ofs, "# mean of p_r's:\tp_r_mean = %8.6e\n" \ "# variance of p_r's:\tp_r_var = %8.6e\n", \ p_r_mean, p_r_var); strcpy(format, "%%dst p_r(%2d) = %18.16e\n"); for(n=0; n<nreplica; n++) { fprintf(ofs, format, n, *(p_r+n)); } if(k<3) /* not enough classes for a meaningful histogramm */ { fprintf(ofs, "# [uwerr]: k = %d is to small\n", k); } else { ABS_MAX_DBL(p_r, nreplica, &lobd); /* max{|p_r's|} */ lobd = lobd *(1.0+TINY); delta = 2.0*lobd/(double)k; /* expected distribution around mean=0 */ lobd = -lobd; /* lower boundary of abscissa */ bins = (double *)calloc(k, sizeof(double)); /* contains number of entries */ SET_TO(bins, k, 0.0); /* for each class */ for(n=0; n<nreplica; n++) /* inc. bins(i) by 1, if p_r(n) is in class i */ { i = (int)((*(p_r+n) - lobd)/delta); *(bins + i) = *(bins + i) + 1.0; } fprintf(ofs, "# number of entries:\tnreplica = %d\n" \ "# number of classes:\tk = %d\n" \ "# lower boundary:\tlobd = %8.6e\n" \ "# bin width:\tdelta = %8.6e\n", \ nreplica, k, lobd, delta); strcpy(format, "%%hst %18.16e\t%18.16e\n"); for(i=0; i<k; i++) { fprintf(ofs, format, lobd+((double)i+0.5)*delta, *(bins+i)); } } fclose(ofs); } /************************** * output * **************************/ /* (1) value, dvalue, ... */ strcpy(filename, obsname); strcat(filename,"_uwerr"); ofs = fopen(filename, append); if ((void*)ofs==NULL) { fprintf(stderr, "[uwerr] Could not open file %s\n", filename); return(1); } strcpy(format, "%d\t%18.16e\t%18.16e\t%18.16e\t%18.16e\t%18.16e\t%18.16e\t%18.16e\t%18.16e\n"); fprintf(ofs, format, label, value, dvalue, ddvalue, tau_intbb, dtau_intbb, Qval, v_Fbb, dv_Fbb); if (fclose(ofs)!=0) { fprintf(stderr, "[uwerr] Could not close file %s\n", filename); return(1); } /* (2) Gamma_F */ strcpy(filename, obsname); strcat(filename, "_uwerr_Gamma"); ofs = fopen(filename, append); if ((void*)ofs==NULL) { fprintf(stderr, "[uwerr] Could not open file %s\n", filename); return(1); } strcpy(format, "%d\t%18.16e\n"); fprintf(ofs, "# obsname = %s \t ipo = %d", obsname, ipo); for(W=0; W<=Wopt; W++) { fprintf(ofs, format, W, *(Gamma_F+W)); } if (fclose(ofs)!=0) { fprintf(stderr, "[uwerr] Could not close file %s\n", filename); return(1); } /* (3) tau_int */ strcpy(filename, obsname); strcat(filename, "_uwerr_tauint"); ofs = fopen(filename, append); fprintf(ofs, "# obsname = %s \t ipo = %d", obsname, ipo); for(W=0; W<=Wopt; W++) { fprintf(ofs, format, W, *(tau_int+W)); } fclose(ofs); fprintf(stdout, "[uwerr]: output written\n"); /***************************** * free allocated disk space * *****************************/ free(F_b); free(F_bb); free(F_bw); free(Gamma_F); free(tau_int); if(ipo==0 && func!=NULL) { free(a_proj); } return(0); }