Ejemplo n.º 1
0
void EchoIt(MLINK stdlink,MLINK ml,bool b) {
  bool inCompound = false;
  int i;
  double d;
  char * s = 0;
  char * t = 0;
  long m,n;
  switch(MLGetType(stdlink)) {
  case MLTKINT;
     MLGetInteger(stdlink,&i);
     MLPutInteger(ml,i);
     break;
  case MLTKSYMB;
     MLGetSymbol(stdlink,&s);
     t = new char[strlen(s)+4];
     strcpy(t,s);
     strcat(t,"MXS");
     MLPutSymbol(ml,t);
     delete [] t;
     MLDisownSymbol(stdlink,s);
     break;
  case MLTKSTR;
     MLGetString(stdlink,&s);
     MLPutString(ml,s);
     MLDisownString(stdlink,s);
     break;
  case MLTKINT;
     MLGetInteger(stdlink,&i);
     MLPutInteger(ml,i);
     break;
  case MLTKFUNC;
     MLGetFunction(stdlink,&s,m);
     strcpy(t,s);
     strcat(t,"MXS");
     if(strcmp(s,"CompoundExpression")==0 && b) {
       inCompound = true;
       MLPutFunction(ml,t,2*m);
     } else {
       MLPutFunction(ml,t,m);
     };
     delete [] t;
     for(long n=1;n<=m;++n) {
       if(inCompound) {
         MLPutFunction(ml,"Print",4L); 
         MLPutString(ml,"Function:");
         MLPutString(ml,s);
         MLPutString(ml," ");
         MLPutInteger(ml,s_number);
         ++s_number;
       };
       EchoIt(stdlink,ml,b);
     };
     inCompound = false;
     break;
  default:
     DBG();
     break;
  };
};
Ejemplo n.º 2
0
PetscErrorCode  PetscViewerMathematicaPutMatrix(PetscViewer viewer, int m, int n, PetscReal *a)
{
    PetscViewer_Mathematica *vmath = (PetscViewer_Mathematica*) viewer->data;
    MLINK                   link   = vmath->link; /* The link to Mathematica */
    char                    *name;
    PetscErrorCode          ierr;

    PetscFunctionBegin;
    /* Determine the object name */
    if (!vmath->objName) name = "mat";
    else                 name = (char*) vmath->objName;

    /* Send the dense matrix object */
    MLPutFunction(link, "EvaluatePacket", 1);
    MLPutFunction(link, "Set", 2);
    MLPutSymbol(link, name);
    MLPutFunction(link, "Transpose", 1);
    MLPutFunction(link, "Partition", 2);
    MLPutRealList(link, a, m*n);
    MLPutInteger(link, m);
    MLEndPacket(link);
    /* Skip packets until ReturnPacket */
    ierr = PetscViewerMathematicaSkipPackets(viewer, RETURNPKT);
    CHKERRQ(ierr);
    /* Skip ReturnPacket */
    MLNewPacket(link);
    PetscFunctionReturn(0);
}
Ejemplo n.º 3
0
void dd_MLWriteError(dd_PolyhedraPtr poly)
{
  MLPutFunction(stdlink,"List",3);
  MLPutFunction(stdlink,"List",0);
  MLPutFunction(stdlink,"List",1);
  MLPutString(stdlink,"Error occured: code");
  MLPutFunction(stdlink,"List",1);
  MLPutInteger(stdlink,poly->child->Error);
}
Ejemplo n.º 4
0
void MmaSink::put(long long x) {
#ifdef DEBUG_MMASINK
  GBStream << "sink:long " << this << ' ' << x << '\n';
#endif
  MLPutInteger(d_mlink,x);
#ifdef DEBUG_MMASINK
  checkforerror();
#endif
  ++d_count;
};
Ejemplo n.º 5
0
void MmaSink::put(const Polynomial& x) {
#ifdef DEBUG_MMASINK
  GBStream << "sink:polynomial " << this << ' ' << x << '\n';
#endif
  int len = x.numberOfTerms();
  if(len==0) {
    MLPutInteger(d_mlink,0);
    ++d_count;
  } else if(len==1) {
    put(*x.begin());
  } else {
    MLPutFunction(d_mlink,"Plus",len);
    ++d_count;
    d_count -= len;
    PolynomialIterator w = x.begin();
    while(len) {
      put(*w);
      --len;++w;
    };
  };
#ifdef DEBUG_MMASINK
  checkforerror();
#endif
};
Ejemplo n.º 6
0
 void MmaSink::put(const Monomial& x) {
#ifdef DEBUG_MMASINK
   GBStream << "sink:monomial " << this << ' ' << x << '\n';
#endif
  int len = x.numberOfFactors();
  if(len==0) {
    MLPutInteger(d_mlink,1);
    ++d_count;
  } else if(len==1) {
    put(*x.begin());
  } else {
    MLPutFunction(d_mlink,"NonCommutativeMultiply",len);
    ++d_count;
    d_count -= len;
    MonomialIterator w = x.begin();
    while(len) {
      put(*w);
      --len;++w;
    };
  };
#ifdef DEBUG_MMASINK
  checkforerror();
#endif
};
Ejemplo n.º 7
0
PetscErrorCode  PetscViewerMathematicaPutCSRMatrix(PetscViewer viewer, int m, int n, int *i, int *j, PetscReal *a)
{
    PetscViewer_Mathematica *vmath = (PetscViewer_Mathematica*) viewer->data;
    MLINK                   link   = vmath->link; /* The link to Mathematica */
    const char              *symbol;
    char                    *name;
    PetscBool               match;
    PetscErrorCode          ierr;

    PetscFunctionBegin;
    /* Determine the object name */
    if (!vmath->objName) name = "mat";
    else                 name = (char*) vmath->objName;

    /* Make sure Mathematica recognizes sparse matrices */
    MLPutFunction(link, "EvaluatePacket", 1);
    MLPutFunction(link, "Needs", 1);
    MLPutString(link, "LinearAlgebra`CSRMatrix`");
    MLEndPacket(link);
    /* Skip packets until ReturnPacket */
    ierr = PetscViewerMathematicaSkipPackets(viewer, RETURNPKT);
    CHKERRQ(ierr);
    /* Skip ReturnPacket */
    MLNewPacket(link);

    /* Send the CSRMatrix object */
    MLPutFunction(link, "EvaluatePacket", 1);
    MLPutFunction(link, "Set", 2);
    MLPutSymbol(link, name);
    MLPutFunction(link, "CSRMatrix", 5);
    MLPutInteger(link, m);
    MLPutInteger(link, n);
    MLPutFunction(link, "Plus", 2);
    MLPutIntegerList(link, i, m+1);
    MLPutInteger(link, 1);
    MLPutFunction(link, "Plus", 2);
    MLPutIntegerList(link, j, i[m]);
    MLPutInteger(link, 1);
    MLPutRealList(link, a, i[m]);
    MLEndPacket(link);
    /* Skip packets until ReturnPacket */
    ierr = PetscViewerMathematicaSkipPackets(viewer, RETURNPKT);
    CHKERRQ(ierr);
    /* Skip ReturnPacket */
    MLNewPacket(link);

    /* Check that matrix is valid */
    MLPutFunction(link, "EvaluatePacket", 1);
    MLPutFunction(link, "ValidQ", 1);
    MLPutSymbol(link, name);
    MLEndPacket(link);
    ierr = PetscViewerMathematicaSkipPackets(viewer, RETURNPKT);
    CHKERRQ(ierr);
    MLGetSymbol(link, &symbol);
    ierr = PetscStrcmp("True", (char*) symbol, &match);
    CHKERRQ(ierr);
    if (!match) {
        MLDisownSymbol(link, symbol);
        SETERRQ(PETSC_COMM_SELF,PETSC_ERR_PLIB, "Invalid CSR matrix in Mathematica");
    }
    MLDisownSymbol(link, symbol);
    /* Skip ReturnPacket */
    MLNewPacket(link);
    PetscFunctionReturn(0);
}
Ejemplo n.º 8
0
// return list of live handles to Mathematica
// used for debugging
void eng_get_handles() {
    MLPutFunction(stdlink, "List", handles.data.size());
    for (MatlabHandleSet::mbmap::iterator i = handles.data.begin(); i != handles.data.end(); ++i)
        MLPutInteger(stdlink, i->first);
}
Ejemplo n.º 9
0
static int Integrate(This *t, real *integral, real *error, real *prob)
{
  TYPEDEFREGION;

  Totals totals[NCOMP];
  real nneed, weight;
  count dim, comp, iter, pass = 0, err, iregion;
  number nwant, nmin = INT_MAX;
  int fail;

  if( VERBOSE > 1 ) {
    char s[512];
    sprintf(s, "Divonne input parameters:\n"
      "  ndim " COUNT "\n  ncomp " COUNT "\n"
      "  epsrel " REAL "\n  epsabs " REAL "\n"
      "  flags %d\n  seed %d\n"
      "  mineval " NUMBER "\n  maxeval " NUMBER "\n"
      "  key1 %d\n  key2 %d\n  key3 %d\n  maxpass " COUNT "\n"
      "  border " REAL "\n  maxchisq " REAL "\n  mindeviation " REAL "\n"
      "  ngiven " NUMBER "\n  nextra " NUMBER,
      t->ndim, t->ncomp,
      t->epsrel, t->epsabs,
      t->flags, t->seed,
      t->mineval, t->maxeval,
      t->key1, t->key2, t->key3, t->maxpass,
      t->border.lower, t->maxchisq, t->mindeviation,
      t->ngiven, t->nextra);
    Print(s);
  }

  if( BadComponent(t) ) return -2;
  if( BadDimension(t, t->key1) ||
      BadDimension(t, t->key2) ||   
      ((t->key3 & -2) && BadDimension(t, t->key3)) ) return -1;

  t->neval_opt = t->neval_cut = 0;

  t->size = CHUNKSIZE;
  MemAlloc(t->voidregion, t->size*sizeof(Region));
  for( dim = 0; dim < t->ndim; ++dim ) {
    Bounds *b = &RegionPtr(0)->bounds[dim];
    b->lower = 0;
    b->upper = 1;
  }

  RuleIni(&t->rule7);
  RuleIni(&t->rule9);
  RuleIni(&t->rule11);
  RuleIni(&t->rule13);
  SamplesIni(&t->samples[0]);
  SamplesIni(&t->samples[1]);
  SamplesIni(&t->samples[2]);

  if( (fail = setjmp(t->abort)) ) goto abort;

  t->epsabs = Max(t->epsabs, NOTZERO);

  /* Step 1: partition the integration region */

  if( VERBOSE ) Print("Partitioning phase:");

  if( IsSobol(t->key1) || IsSobol(t->key2) || IsSobol(t->key3) )
    IniRandom(t);

  SamplesLookup(t, &t->samples[0], t->key1,
    (number)47, (number)INT_MAX, (number)0);
  SamplesAlloc(t, &t->samples[0]);

  t->totals = totals;
  Zap(totals);
  t->phase = 1;

  Explore(t, 0, &t->samples[0], INIDEPTH, 1);

  for( iter = 1; ; ++iter ) {
    Totals *maxtot;
    count valid;

    for( comp = 0; comp < t->ncomp; ++comp ) {
      Totals *tot = &totals[comp];
      tot->avg = tot->spreadsq = 0;
      tot->spread = tot->secondspread = -INFTY;
    }

    for( iregion = 0; iregion < t->nregions; ++iregion ) {
      Region *region = RegionPtr(iregion);
      for( comp = 0; comp < t->ncomp; ++comp ) {
        cResult *r = &region->result[comp];
        Totals *tot = &totals[comp];
        tot->avg += r->avg;
        tot->spreadsq += Sq(r->spread);
        if( r->spread > tot->spread ) {
          tot->secondspread = tot->spread;
          tot->spread = r->spread;
          tot->iregion = iregion;
        }
        else if( r->spread > tot->secondspread )
          tot->secondspread = r->spread;
      }
    }

    maxtot = totals;
    valid = 0;
    for( comp = 0; comp < t->ncomp; ++comp ) {
      Totals *tot = &totals[comp];
      integral[comp] = tot->avg;
      valid += tot->avg == tot->avg;
      if( tot->spreadsq > maxtot->spreadsq ) maxtot = tot;
      tot->spread = sqrt(tot->spreadsq);
      error[comp] = tot->spread*t->samples[0].weight;
    }

    if( VERBOSE ) {
      char s[128 + 64*NCOMP], *p = s;

      p += sprintf(p, "\n"
        "Iteration " COUNT " (pass " COUNT "):  " COUNT " regions\n"
        NUMBER7 " integrand evaluations so far,\n"
        NUMBER7 " in optimizing regions,\n"
        NUMBER7 " in finding cuts",
        iter, pass, t->nregions, t->neval, t->neval_opt, t->neval_cut);

      for( comp = 0; comp < t->ncomp; ++comp )
        p += sprintf(p, "\n[" COUNT "] "
          REAL " +- " REAL,
          comp + 1, integral[comp], error[comp]);

      Print(s);
    }

    if( valid == 0 ) goto abort;	/* all NaNs */

    if( t->neval > t->maxeval ) break;

    nneed = maxtot->spread/MaxErr(maxtot->avg);
    if( nneed < MAXPRIME ) {
      cnumber n = t->neval + t->nregions*(number)ceil(nneed);
      if( n < nmin ) {
        nmin = n;
        pass = 0;
      }
      else if( ++pass > t->maxpass && n >= t->mineval ) break;
    }

    Split(t, maxtot->iregion, DEPTH);
  }

  /* Step 2: do a "full" integration on each region */

/* nneed = t->samples[0].neff + 1; */
  nneed = 2*t->samples[0].neff;
  for( comp = 0; comp < t->ncomp; ++comp ) {
    Totals *tot = &totals[comp];
    creal maxerr = MaxErr(tot->avg);
    tot->nneed = tot->spread/maxerr;
    nneed = Max(nneed, tot->nneed);
    tot->maxerrsq = Sq(maxerr);
    tot->mindevsq = tot->maxerrsq*Sq(t->mindeviation);
  }
  nwant = (number)Min(ceil(nneed), MARKMASK/40.);

  err = SamplesLookup(t, &t->samples[1], t->key2, nwant,
    (t->maxeval - t->neval)/t->nregions + 1, t->samples[0].n + 1);

  /* the number of points needed to reach the desired accuracy */
  fail = Unmark(err)*t->nregions;

  if( Marked(err) ) {
    if( VERBOSE ) Print("\nNot enough samples left for main integration.");
    for( comp = 0; comp < t->ncomp; ++comp )
      prob[comp] = -999;
    weight = t->samples[0].weight;
  }
  else {
    bool can_adjust = (t->key3 == 1 && t->samples[1].sampler != SampleRule &&
      (t->key2 < 0 || t->samples[1].neff < MAXPRIME));
    count df, nlimit;

    SamplesAlloc(t, &t->samples[1]);

    if( VERBOSE ) {
      char s[128];
      sprintf(s, "\nMain integration on " COUNT
        " regions with " NUMBER " samples per region.",
        t->nregions, t->samples[1].neff);
      Print(s);
    }

    ResClear(integral);
    ResClear(error);
    ResClear(prob);

    nlimit = t->maxeval - t->nregions*t->samples[1].n;
    df = 0;

    for( iregion = 0; iregion < t->nregions; ++iregion ) {
      Region *region = RegionPtr(iregion);
      char s[64*NDIM + 256*NCOMP], *p = s;
      int todo;

refine:
      t->phase = 2;
      t->samples[1].sampler(t, &t->samples[1], region->bounds, region->vol);

      if( can_adjust )
        for( comp = 0; comp < t->ncomp; ++comp )
          totals[comp].spreadsq -= Sq(region->result[comp].spread);

      nlimit += t->samples[1].n;
      todo = 0;

      for( comp = 0; comp < t->ncomp; ++comp ) {
        cResult *r = &region->result[comp];
        Totals *tot = &totals[comp];

        t->samples[0].avg[comp] = r->avg;
        t->samples[0].err[comp] = r->err;

        if( t->neval < nlimit ) {
          creal avg2 = t->samples[1].avg[comp];
          creal err2 = t->samples[1].err[comp];
          creal diffsq = Sq(avg2 - r->avg);

#define Var(s) Sq((s.err[comp] == 0) ? r->spread*s.weight : s.err[comp])

          if( err2*tot->nneed > r->spread ||
              diffsq > Max(t->maxchisq*(Var(t->samples[0]) + Var(t->samples[1])),
                           EPS*Sq(avg2)) ) {
            if( t->key3 && diffsq > tot->mindevsq ) {
              if( t->key3 == 1 ) {
                ccount xregion = t->nregions;

                if( VERBOSE > 2 ) Print("\nSplit");

                t->phase = 1;
                Explore(t, iregion, &t->samples[1], POSTDEPTH, 2);

                if( can_adjust ) {
                  number nnew;
                  count ireg, xreg;

                  for( ireg = iregion, xreg = xregion;
                       ireg < t->nregions; ireg = xreg++ ) {
                    cResult *result = RegionPtr(ireg)->result;
                    count c;
                    for( c = 0; c < t->ncomp; ++c )
                      totals[c].spreadsq += Sq(result[c].spread);
                  }

                  nnew = (tot->spreadsq/Sq(MARKMASK) > tot->maxerrsq) ?
                    MARKMASK :
                    (number)ceil(sqrt(tot->spreadsq/tot->maxerrsq));
                  if( nnew > nwant + nwant/64 ) {
                    ccount err = SamplesLookup(t, &t->samples[1], t->key2, nnew,
                      (t->maxeval - t->neval)/t->nregions + 1, t->samples[1].n);
                    fail += Unmark(err)*t->nregions;
                    nwant = nnew;
                    SamplesFree(&t->samples[1]);
                    SamplesAlloc(t, &t->samples[1]);

                    if( t->key2 > 0 && t->samples[1].neff >= MAXPRIME )
                      can_adjust = false;

                    if( VERBOSE > 2 ) {
                      char s[128];
                      sprintf(s, "Sampling remaining " COUNT
                        " regions with " NUMBER " points per region.",
                        t->nregions, t->samples[1].neff);
                      Print(s);
                    }
                  }
                }

                goto refine;
              }
              todo |= 3;
            }
            todo |= 1;
          }
        }
      }

      if( can_adjust ) {
        for( comp = 0; comp < t->ncomp; ++comp )
          totals[comp].maxerrsq -=
            Sq(region->result[comp].spread*t->samples[1].weight);
      }

      switch( todo ) {
      case 1:	/* get spread right */
        Explore(t, iregion, &t->samples[1], 0, 2);
        break;

      case 3:	/* sample region again with more points */
        if( SamplesIniQ(&t->samples[2]) ) {
          SamplesLookup(t, &t->samples[2], t->key3,
            nwant, (number)INT_MAX, (number)0);
          SamplesAlloc(t, &t->samples[2]);
        }
        t->phase = 3;
        t->samples[2].sampler(t, &t->samples[2], region->bounds, region->vol);
        Explore(t, iregion, &t->samples[2], 0, 2);
        ++region->depth;	/* misused for df here */
        ++df;
      }

      ++region->depth;	/* misused for df here */

      if( VERBOSE > 2 ) {
        for( dim = 0; dim < t->ndim; ++dim ) {
          cBounds *b = &region->bounds[dim];
          p += sprintf(p,
            (dim == 0) ? "\nRegion (" REALF ") - (" REALF ")" :
                         "\n       (" REALF ") - (" REALF ")",
            b->lower, b->upper);
        }
      }

      for( comp = 0; comp < t->ncomp; ++comp ) {
        Result *r = &region->result[comp];

        creal x1 = t->samples[0].avg[comp];
        creal s1 = Var(t->samples[0]);
        creal x2 = t->samples[1].avg[comp];
        creal s2 = Var(t->samples[1]);
        creal r2 = (s1 == 0) ? Sq(t->samples[1].neff*t->samples[0].weight) : s2/s1;

        real norm = 1 + r2;
        real avg = x2 + r2*x1;
        real sigsq = s2;
        real chisq = Sq(x2 - x1);
        real chiden = s1 + s2;

        if( todo == 3 ) {
          creal x3 = t->samples[2].avg[comp];
          creal s3 = Var(t->samples[2]);
          creal r3 = (s2 == 0) ? Sq(t->samples[2].neff*t->samples[1].weight) : s3/s2;

          norm = 1 + r3*norm;
          avg = x3 + r3*avg;
          sigsq = s3;
          chisq = s1*Sq(x3 - x2) + s2*Sq(x3 - x1) + s3*chisq;
          chiden = s1*s2 + s3*chiden;
        }

        avg = LAST ? r->avg : (sigsq *= norm = 1/norm, avg*norm);
        if( chisq > EPS ) chisq /= Max(chiden, NOTZERO);

#define Out(s) s.avg[comp], r->spread*s.weight, s.err[comp]

        if( VERBOSE > 2 ) {
          p += sprintf(p, "\n[" COUNT "] "
            REAL " +- " REAL "(" REAL ")\n    "
            REAL " +- " REAL "(" REAL ")",
            comp + 1, Out(t->samples[0]), Out(t->samples[1]));
          if( todo == 3 ) p += sprintf(p, "\n    "
            REAL " +- " REAL "(" REAL ")",
            Out(t->samples[2]));
          p += sprintf(p, "  \tchisq " REAL, chisq);
        }

        integral[comp] += avg;
        error[comp] += sigsq;
        prob[comp] += chisq;

        r->avg = avg;
        r->spread = sqrt(sigsq);
        r->chisq = chisq;
      }

      if( VERBOSE > 2 ) Print(s);
    }

    for( comp = 0; comp < t->ncomp; ++comp )
      error[comp] = sqrt(error[comp]);

    df += t->nregions;

    if( VERBOSE > 2 ) {
      char s[16 + 128*NCOMP], *p = s;

      p += sprintf(p, "\nTotals:");

      for( comp = 0; comp < t->ncomp; ++comp )
        p += sprintf(p, "\n[" COUNT "] "
          REAL " +- " REAL "  \tchisq " REAL " (" COUNT " df)",
          comp + 1, integral[comp], error[comp], prob[comp], df);

      Print(s);
    }

    for( comp = 0; comp < t->ncomp; ++comp )
      prob[comp] = ChiSquare(prob[comp], df);

    weight = 1;
  }

#ifdef MLVERSION
  if( REGIONS ) {
    MLPutFunction(stdlink, "List", 2);
    MLPutFunction(stdlink, "List", t->nregions);
    for( iregion = 0; iregion < t->nregions; ++iregion ) {
      Region *region = RegionPtr(iregion);
      cBounds *b = region->bounds;
      real lower[NDIM], upper[NDIM];

      for( dim = 0; dim < t->ndim; ++dim ) {
        lower[dim] = b[dim].lower;
        upper[dim] = b[dim].upper;
      }

      MLPutFunction(stdlink, "Cuba`Divonne`region", 4);

      MLPutRealList(stdlink, lower, t->ndim);
      MLPutRealList(stdlink, upper, t->ndim);

      MLPutFunction(stdlink, "List", t->ncomp);
      for( comp = 0; comp < t->ncomp; ++comp ) {
        cResult *r = &region->result[comp];
        real res[] = {r->avg, r->spread*weight, r->chisq};
        MLPutRealList(stdlink, res, Elements(res));
      }

      MLPutInteger(stdlink, region->depth);  /* misused for df */
    }
  }
#endif

abort:
  SamplesFree(&t->samples[2]);
  SamplesFree(&t->samples[1]);
  SamplesFree(&t->samples[0]);
  RuleFree(&t->rule13);
  RuleFree(&t->rule11);
  RuleFree(&t->rule9);
  RuleFree(&t->rule7);

  free(t->voidregion);

  return fail;
}
Ejemplo n.º 10
0
static int Integrate(creal epsrel, creal epsabs,
  cint flags, cnumber mineval, cnumber maxeval,
  int key1, int key2, int key3, ccount maxpass, 
  creal maxchisq, creal mindeviation,
  real *integral, real *error, real *prob)
{
  TYPEDEFREGION;

  Region anchor, *region;
  Totals totals[NCOMP];
  real nneed, weight;
  count dim, comp, iter, nregions, pass = 0, err;
  number nwant, nmin = INT_MAX;
  int fail = -1;

  if( VERBOSE > 1 ) {
    char s[512];
    sprintf(s, "Divonne input parameters:\n"
      "  ndim " COUNT "\n  ncomp " COUNT "\n"
      "  epsrel " REAL "\n  epsabs " REAL "\n"
      "  flags %d\n  mineval " NUMBER "\n  maxeval " NUMBER "\n"
      "  key1 %d\n  key2 %d\n  key3 %d\n  maxpass " COUNT "\n"
      "  border " REAL "\n  maxchisq " REAL "\n  mindeviation " REAL "\n"
      "  ngiven " NUMBER "\n  nextra " NUMBER "\n",
      ndim_, ncomp_,
      epsrel, epsabs,
      flags, mineval, maxeval,
      key1, key2, key3, maxpass,
      border_.lower, maxchisq, mindeviation,
      ngiven_, nextra_);
    Print(s);
  }

  anchor.next = NULL;
  for( dim = 0; dim < ndim_; ++dim ) {
    Bounds *b = &anchor.bounds[dim];
    b->lower = 0;
    b->upper = 1;
  }

  RuleIni(&rule7_);
  RuleIni(&rule9_);
  RuleIni(&rule11_);
  RuleIni(&rule13_);
  SamplesIni(&samples_[0]);
  SamplesIni(&samples_[1]);
  SamplesIni(&samples_[2]);

#ifdef MLVERSION
  if( setjmp(abort_) ) goto abort;
#endif

  /* Step 1: partition the integration region */

  if( VERBOSE ) Print("Partitioning phase:");

  if( IsSobol(key1) || IsSobol(key2) || IsSobol(key3) )
    IniRandom(2*maxeval, flags);

  SamplesLookup(&samples_[0], key1,
    (number)47, (number)INT_MAX, (number)0);
  SamplesAlloc(&samples_[0]);

  totals_ = totals;
  Zap(totals);
  phase_ = 1;

  Explore(&anchor, &samples_[0], INIDEPTH, 1);

  for( iter = 1; ; ++iter ) {
    Totals *maxtot;

    for( comp = 0; comp < ncomp_; ++comp ) {
      Totals *tot = &totals[comp];
      tot->avg = tot->spreadsq = 0;
      tot->spread = tot->secondspread = -INFTY;
    }

    nregions = 0;
    for( region = anchor.next; region; region = region->next ) {
      ++nregions;
      for( comp = 0; comp < ncomp_; ++comp ) {
        cResult *r = &region->result[comp];
        Totals *tot = &totals[comp];
        tot->avg += r->avg;
        tot->spreadsq += Sq(r->spread);
        if( r->spread > tot->spread ) {
          tot->secondspread = tot->spread;
          tot->spread = r->spread;
          tot->region = region;
        }
        else if( r->spread > tot->secondspread )
          tot->secondspread = r->spread;
      }
    }

    maxtot = totals;
    for( comp = 0; comp < ncomp_; ++comp ) {
      Totals *tot = &totals[comp];
      integral[comp] = tot->avg;
      if( tot->spreadsq > maxtot->spreadsq ) maxtot = tot;
      tot->spread = sqrt(tot->spreadsq);
      error[comp] = tot->spread*samples_[0].weight;
    }

    if( VERBOSE ) {
      char s[128 + 64*NCOMP], *p = s;

      p += sprintf(p, "\n"
        "Iteration " COUNT " (pass " COUNT "):  " COUNT " regions\n"
        NUMBER7 " integrand evaluations so far,\n"
        NUMBER7 " in optimizing regions,\n"
        NUMBER7 " in finding cuts",
        iter, pass, nregions, neval_, neval_opt_, neval_cut_);

      for( comp = 0; comp < ncomp_; ++comp )
        p += sprintf(p, "\n[" COUNT "] "
          REAL " +- " REAL,
          comp + 1, integral[comp], error[comp]);

      Print(s);
    }

    if( neval_ > maxeval ) break;

    nneed = maxtot->spread/MaxErr(maxtot->avg);
    if( nneed < MAXPRIME ) {
      cnumber n = neval_ + nregions*(number)ceil(nneed);
      if( n < nmin ) {
        nmin = n;
        pass = 0;
      }
      else if( ++pass > maxpass && n >= mineval ) break;
    }

    Split(maxtot->region, DEPTH);
  }

  /* Step 2: do a "full" integration on each region */

/* nneed = samples_[0].neff + 1; */
  nneed = 2*samples_[0].neff;
  for( comp = 0; comp < ncomp_; ++comp ) {
    Totals *tot = &totals[comp];
    creal maxerr = MaxErr(tot->avg);
    tot->nneed = tot->spread/maxerr;
    nneed = Max(nneed, tot->nneed);
    tot->maxerrsq = Sq(maxerr);
    tot->mindevsq = tot->maxerrsq*Sq(mindeviation);
  }
  nwant = (number)Min(ceil(nneed), MARKMASK/40.);

  err = SamplesLookup(&samples_[1], key2, nwant,
    (maxeval - neval_)/nregions + 1, samples_[0].n + 1);

  /* the number of points needed to reach the desired accuracy */
  fail = Unmark(err)*nregions;

  if( Marked(err) ) {
    if( VERBOSE ) Print("\nNot enough samples left for main integration.");
    for( comp = 0; comp < ncomp_; ++comp )
      prob[comp] = -999;
    weight = samples_[0].weight;
    nregions_ = nregions;
  }
  else {
    bool can_adjust = (key3 == 1 && samples_[1].sampler != SampleRule &&
      (key2 < 0 || samples_[1].neff < MAXPRIME));
    count df, nlimit;

    SamplesAlloc(&samples_[1]);

    if( VERBOSE ) {
      char s[128];
      sprintf(s, "\nMain integration on " COUNT
        " regions with " NUMBER " samples per region.",
        nregions, samples_[1].neff);
      Print(s);
    }

    ResClear(integral);
    ResClear(error);
    ResClear(prob);

    nlimit = maxeval - nregions*samples_[1].n;
    df = nregions_ = 0;

    for( region = anchor.next; region; region = region->next ) {
      char s[64*NDIM + 256*NCOMP], *p = s;
      int todo;

refine:
      phase_ = 2;
      samples_[1].sampler(&samples_[1], region->bounds, region->vol);

      if( can_adjust ) {
        --nregions;
        for( comp = 0; comp < ncomp_; ++comp )
          totals[comp].spreadsq -= Sq(region->result[comp].spread);
      }

      nlimit += samples_[1].n;
      todo = 0;

      for( comp = 0; comp < ncomp_; ++comp ) {
        cResult *r = &region->result[comp];
        Totals *tot = &totals[comp];

        samples_[0].avg[comp] = r->avg;
        samples_[0].err[comp] = r->err;

        if( neval_ < nlimit ) {
          creal avg2 = samples_[1].avg[comp];
          creal err2 = samples_[1].err[comp];
          creal diffsq = Sq(avg2 - r->avg);

#define Var(s) Sq((s.err[comp] == 0) ? r->spread*s.weight : s.err[comp])

          if( err2*tot->nneed > r->spread ||
              diffsq > Max(maxchisq*(Var(samples_[0]) + Var(samples_[1])),
                           EPS*Sq(avg2)) ) {
            if( key3 && diffsq > tot->mindevsq ) {
              if( key3 == 1 ) {
                const Region *next = region->next;

                if( VERBOSE > 2 ) Print("\nSplit");

                phase_ = 1;
                Explore(region, &samples_[1], POSTDEPTH, 2);

                if( can_adjust ) {
                  number nnew;
                  Region *child;

                  for( child = region; child != next; child = child->next ) {
                    count c;
                    for( c = 0; c < ncomp_; ++c )
                      totals[c].spreadsq += Sq(child->result[c].spread);
                    ++nregions;
                  }

                  nnew = (tot->spreadsq/Sq(MARKMASK) > tot->maxerrsq) ?
                    MARKMASK :
                    (number)ceil(sqrt(tot->spreadsq/tot->maxerrsq));
                  if( nnew > nwant + nwant/64 ) {
                    ccount err = SamplesLookup(&samples_[1], key2, nnew,
                      (maxeval - neval_)/nregions + 1, samples_[1].n);
                    fail += Unmark(err)*nregions;
                    nwant = nnew;
                    SamplesFree(&samples_[1]);
                    SamplesAlloc(&samples_[1]);

                    if( key2 > 0 && samples_[1].neff >= MAXPRIME )
                      can_adjust = false;

                    if( VERBOSE > 2 ) {
                      char s[128];
                      sprintf(s, "Sampling remaining " COUNT
                        " regions with " NUMBER " points per region.",
                        nregions, samples_[1].neff);
                      Print(s);
                    }
                  }
                }

                goto refine;
              }
              todo |= 3;
            }
            todo |= 1;
          }
        }
      }

      if( can_adjust ) {
        for( comp = 0; comp < ncomp_; ++comp )
          totals[comp].maxerrsq -=
            Sq(region->result[comp].spread*samples_[1].weight);
      }

      switch( todo ) {
      case 1:	/* get spread right */
        Explore(region, &samples_[1], 0, 2);
        break;

      case 3:	/* sample region again with more points */
        if( MEM(&samples_[2]) == NULL ) {
          SamplesLookup(&samples_[2], key3,
            nwant, (number)INT_MAX, (number)0);
          SamplesAlloc(&samples_[2]);
        }
        phase_ = 3;
        samples_[2].sampler(&samples_[2], region->bounds, region->vol);
        Explore(region, &samples_[2], 0, 2);
        ++region->depth;	/* misused for df here */
        ++df;
      }

      ++region->depth;	/* misused for df here */
      ++nregions_;

      if( VERBOSE > 2 ) {
        for( dim = 0; dim < ndim_; ++dim ) {
          cBounds *b = &region->bounds[dim];
          p += sprintf(p,
            (dim == 0) ? "\nRegion (" REALF ") - (" REALF ")" :
                         "\n       (" REALF ") - (" REALF ")",
            b->lower, b->upper);
        }
      }

      for( comp = 0; comp < ncomp_; ++comp ) {
        Result *r = &region->result[comp];

        creal x1 = samples_[0].avg[comp];
        creal s1 = Var(samples_[0]);
        creal x2 = samples_[1].avg[comp];
        creal s2 = Var(samples_[1]);
        creal r2 = (s1 == 0) ? Sq(samples_[1].neff*samples_[0].weight) : s2/s1;

        real norm = 1 + r2;
        real avg = x2 + r2*x1;
        real sigsq = s2;
        real chisq = Sq(x2 - x1);
        real chiden = s1 + s2;

        if( todo == 3 ) {
          creal x3 = samples_[2].avg[comp];
          creal s3 = Var(samples_[2]);
          creal r3 = (s2 == 0) ? Sq(samples_[2].neff*samples_[1].weight) : s3/s2;

          norm = 1 + r3*norm;
          avg = x3 + r3*avg;
          sigsq = s3;
          chisq = s1*Sq(x3 - x2) + s2*Sq(x3 - x1) + s3*chisq;
          chiden = s1*s2 + s3*chiden;
        }

        avg = LAST ? r->avg : (sigsq *= norm = 1/norm, avg*norm);
        if( chisq > EPS ) chisq /= Max(chiden, NOTZERO);

#define Out(s) s.avg[comp], r->spread*s.weight, s.err[comp]

        if( VERBOSE > 2 ) {
          p += sprintf(p, "\n[" COUNT "] "
            REAL " +- " REAL "(" REAL ")\n    "
            REAL " +- " REAL "(" REAL ")",
            comp + 1, Out(samples_[0]), Out(samples_[1]));
          if( todo == 3 ) p += sprintf(p, "\n    "
            REAL " +- " REAL "(" REAL ")",
            Out(samples_[2]));
          p += sprintf(p, "  \tchisq " REAL, chisq);
        }

        integral[comp] += avg;
        error[comp] += sigsq;
        prob[comp] += chisq;

        r->avg = avg;
        r->spread = sqrt(sigsq);
        r->chisq = chisq;
      }

      if( VERBOSE > 2 ) Print(s);
    }

    for( comp = 0; comp < ncomp_; ++comp )
      error[comp] = sqrt(error[comp]);

    df += nregions_;

    if( VERBOSE > 2 ) {
      char s[16 + 128*NCOMP], *p = s;

      p += sprintf(p, "\nTotals:");

      for( comp = 0; comp < ncomp_; ++comp )
        p += sprintf(p, "\n[" COUNT "] "
          REAL " +- " REAL "  \tchisq " REAL " (" COUNT " df)",
          comp + 1, integral[comp], error[comp], prob[comp], df);

      Print(s);
    }

    for( comp = 0; comp < ncomp_; ++comp )
      prob[comp] = ChiSquare(prob[comp], df);

    weight = 1;
  }

#ifdef MLVERSION
  if( REGIONS ) {
    MLPutFunction(stdlink, "List", 2);
    MLPutFunction(stdlink, "List", nregions_);
    for( region = anchor.next; region; region = region->next ) {
      cBounds *b = region->bounds;
      real lower[NDIM], upper[NDIM];

      for( dim = 0; dim < ndim_; ++dim ) {
        lower[dim] = b[dim].lower;
        upper[dim] = b[dim].upper;
      }

      MLPutFunction(stdlink, "Cuba`Divonne`region", 4);

      MLPutRealList(stdlink, lower, ndim_);
      MLPutRealList(stdlink, upper, ndim_);

      MLPutFunction(stdlink, "List", ncomp_);
      for( comp = 0; comp < ncomp_; ++comp ) {
        cResult *r = &region->result[comp];
        real res[] = {r->avg, r->spread*weight, r->chisq};
        MLPutRealList(stdlink, res, Elements(res));
      }

      MLPutInteger(stdlink, region->depth);  /* misused for df */
    }
  }
#endif

#ifdef MLVERSION
abort:
#endif

  SamplesFree(&samples_[2]);
  SamplesFree(&samples_[1]);
  SamplesFree(&samples_[0]);
  RuleFree(&rule13_);
  RuleFree(&rule11_);
  RuleFree(&rule9_);
  RuleFree(&rule7_);

  for( region = anchor.next; region; ) {
    Region *next = region->next;
    free(region);
    region = next;
  }

  return fail;
}