Ejemplo n.º 1
0
int
mpfr_rint_floor (mpfr_ptr r, mpfr_srcptr u, mpfr_rnd_t rnd_mode)
{
  if (MPFR_UNLIKELY( MPFR_IS_SINGULAR(u) ) || mpfr_integer_p (u))
    return mpfr_set (r, u, rnd_mode);
  else
    {
      mpfr_t tmp;
      int inex;
      unsigned int saved_flags = __gmpfr_flags;
      MPFR_BLOCK_DECL (flags);

      mpfr_init2 (tmp, MPFR_PREC (u));
      /* floor(u) is representable in tmp unless an overflow occurs */
      MPFR_BLOCK (flags, mpfr_floor (tmp, u));
      __gmpfr_flags = saved_flags;
      inex = (MPFR_OVERFLOW (flags)
              ? mpfr_overflow (r, rnd_mode, MPFR_SIGN_NEG)
              : mpfr_set (r, tmp, rnd_mode));
      mpfr_clear (tmp);
      return inex;
    }
}
Ejemplo n.º 2
0
int
mpfr_rint_floor (mpfr_ptr r, mpfr_srcptr u, mpfr_rnd_t rnd_mode)
{
  if (MPFR_UNLIKELY( MPFR_IS_SINGULAR(u) ) || mpfr_integer_p (u))
    return mpfr_set (r, u, rnd_mode);
  else
    {
      mpfr_t tmp;
      int inex;
      MPFR_SAVE_EXPO_DECL (expo);
      MPFR_BLOCK_DECL (flags);

      MPFR_SAVE_EXPO_MARK (expo);
      mpfr_init2 (tmp, MPFR_PREC (u));
      /* floor(u) is representable in tmp unless an overflow occurs */
      MPFR_BLOCK (flags, mpfr_floor (tmp, u));
      inex = (MPFR_OVERFLOW (flags)
              ? mpfr_overflow (r, rnd_mode, MPFR_SIGN_NEG)
              : mpfr_set (r, tmp, rnd_mode));
      mpfr_clear (tmp);
      MPFR_SAVE_EXPO_FREE (expo);
      return mpfr_check_range (r, inex, rnd_mode);
    }
}
Ejemplo n.º 3
0
Archivo: gamma.c Proyecto: Canar/mpfr
/* We use the reflection formula
  Gamma(1+t) Gamma(1-t) = - Pi t / sin(Pi (1 + t))
  in order to treat the case x <= 1,
  i.e. with x = 1-t, then Gamma(x) = -Pi*(1-x)/sin(Pi*(2-x))/GAMMA(2-x)
*/
int
mpfr_gamma (mpfr_ptr gamma, mpfr_srcptr x, mpfr_rnd_t rnd_mode)
{
  mpfr_t xp, GammaTrial, tmp, tmp2;
  mpz_t fact;
  mpfr_prec_t realprec;
  int compared, is_integer;
  int inex = 0;  /* 0 means: result gamma not set yet */
  MPFR_GROUP_DECL (group);
  MPFR_SAVE_EXPO_DECL (expo);
  MPFR_ZIV_DECL (loop);

  MPFR_LOG_FUNC
    (("x[%Pu]=%.*Rg rnd=%d", mpfr_get_prec (x), mpfr_log_prec, x, rnd_mode),
     ("gamma[%Pu]=%.*Rg inexact=%d",
      mpfr_get_prec (gamma), mpfr_log_prec, gamma, inex));

  /* Trivial cases */
  if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
    {
      if (MPFR_IS_NAN (x))
        {
          MPFR_SET_NAN (gamma);
          MPFR_RET_NAN;
        }
      else if (MPFR_IS_INF (x))
        {
          if (MPFR_IS_NEG (x))
            {
              MPFR_SET_NAN (gamma);
              MPFR_RET_NAN;
            }
          else
            {
              MPFR_SET_INF (gamma);
              MPFR_SET_POS (gamma);
              MPFR_RET (0);  /* exact */
            }
        }
      else /* x is zero */
        {
          MPFR_ASSERTD(MPFR_IS_ZERO(x));
          MPFR_SET_INF(gamma);
          MPFR_SET_SAME_SIGN(gamma, x);
          MPFR_SET_DIVBY0 ();
          MPFR_RET (0);  /* exact */
        }
    }

  /* Check for tiny arguments, where gamma(x) ~ 1/x - euler + ....
     We know from "Bound on Runs of Zeros and Ones for Algebraic Functions",
     Proceedings of Arith15, T. Lang and J.-M. Muller, 2001, that the maximal
     number of consecutive zeroes or ones after the round bit is n-1 for an
     input of n bits. But we need a more precise lower bound. Assume x has
     n bits, and 1/x is near a floating-point number y of n+1 bits. We can
     write x = X*2^e, y = Y/2^f with X, Y integers of n and n+1 bits.
     Thus X*Y^2^(e-f) is near from 1, i.e., X*Y is near from 2^(f-e).
     Two cases can happen:
     (i) either X*Y is exactly 2^(f-e), but this can happen only if X and Y
         are themselves powers of two, i.e., x is a power of two;
     (ii) or X*Y is at distance at least one from 2^(f-e), thus
          |xy-1| >= 2^(e-f), or |y-1/x| >= 2^(e-f)/x = 2^(-f)/X >= 2^(-f-n).
          Since ufp(y) = 2^(n-f) [ufp = unit in first place], this means
          that the distance |y-1/x| >= 2^(-2n) ufp(y).
          Now assuming |gamma(x)-1/x| <= 1, which is true for x <= 1,
          if 2^(-2n) ufp(y) >= 2, the error is at most 2^(-2n-1) ufp(y),
          and round(1/x) with precision >= 2n+2 gives the correct result.
          If x < 2^E, then y > 2^(-E), thus ufp(y) > 2^(-E-1).
          A sufficient condition is thus EXP(x) + 2 <= -2 MAX(PREC(x),PREC(Y)).
  */
  if (MPFR_GET_EXP (x) + 2
      <= -2 * (mpfr_exp_t) MAX(MPFR_PREC(x), MPFR_PREC(gamma)))
    {
      int sign = MPFR_SIGN (x); /* retrieve sign before possible override */
      int special;
      MPFR_BLOCK_DECL (flags);

      MPFR_SAVE_EXPO_MARK (expo);

      /* for overflow cases, see below; this needs to be done
         before x possibly gets overridden. */
      special =
        MPFR_GET_EXP (x) == 1 - MPFR_EMAX_MAX &&
        MPFR_IS_POS_SIGN (sign) &&
        MPFR_IS_LIKE_RNDD (rnd_mode, sign) &&
        mpfr_powerof2_raw (x);

      MPFR_BLOCK (flags, inex = mpfr_ui_div (gamma, 1, x, rnd_mode));
      if (inex == 0) /* x is a power of two */
        {
          /* return RND(1/x - euler) = RND(+/- 2^k - eps) with eps > 0 */
          if (rnd_mode == MPFR_RNDN || MPFR_IS_LIKE_RNDU (rnd_mode, sign))
            inex = 1;
          else
            {
              mpfr_nextbelow (gamma);
              inex = -1;
            }
        }
      else if (MPFR_UNLIKELY (MPFR_OVERFLOW (flags)))
        {
          /* Overflow in the division 1/x. This is a real overflow, except
             in RNDZ or RNDD when 1/x = 2^emax, i.e. x = 2^(-emax): due to
             the "- euler", the rounded value in unbounded exponent range
             is 0.111...11 * 2^emax (not an overflow). */
          if (!special)
            MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, flags);
        }
      MPFR_SAVE_EXPO_FREE (expo);
      /* Note: an overflow is possible with an infinite result;
         in this case, the overflow flag will automatically be
         restored by mpfr_check_range. */
      return mpfr_check_range (gamma, inex, rnd_mode);
    }

  is_integer = mpfr_integer_p (x);
  /* gamma(x) for x a negative integer gives NaN */
  if (is_integer && MPFR_IS_NEG(x))
    {
      MPFR_SET_NAN (gamma);
      MPFR_RET_NAN;
    }

  compared = mpfr_cmp_ui (x, 1);
  if (compared == 0)
    return mpfr_set_ui (gamma, 1, rnd_mode);

  /* if x is an integer that fits into an unsigned long, use mpfr_fac_ui
     if argument is not too large.
     If precision is p, fac_ui costs O(u*p), whereas gamma costs O(p*M(p)),
     so for u <= M(p), fac_ui should be faster.
     We approximate here M(p) by p*log(p)^2, which is not a bad guess.
     Warning: since the generic code does not handle exact cases,
     we want all cases where gamma(x) is exact to be treated here.
  */
  if (is_integer && mpfr_fits_ulong_p (x, MPFR_RNDN))
    {
      unsigned long int u;
      mpfr_prec_t p = MPFR_PREC(gamma);
      u = mpfr_get_ui (x, MPFR_RNDN);
      if (u < 44787929UL && bits_fac (u - 1) <= p + (rnd_mode == MPFR_RNDN))
        /* bits_fac: lower bound on the number of bits of m,
           where gamma(x) = (u-1)! = m*2^e with m odd. */
        return mpfr_fac_ui (gamma, u - 1, rnd_mode);
      /* if bits_fac(...) > p (resp. p+1 for rounding to nearest),
         then gamma(x) cannot be exact in precision p (resp. p+1).
         FIXME: remove the test u < 44787929UL after changing bits_fac
         to return a mpz_t or mpfr_t. */
    }

  MPFR_SAVE_EXPO_MARK (expo);

  /* check for overflow: according to (6.1.37) in Abramowitz & Stegun,
     gamma(x) >= exp(-x) * x^(x-1/2) * sqrt(2*Pi)
              >= 2 * (x/e)^x / x for x >= 1 */
  if (compared > 0)
    {
      mpfr_t yp;
      mpfr_exp_t expxp;
      MPFR_BLOCK_DECL (flags);

      /* quick test for the default exponent range */
      if (mpfr_get_emax () >= 1073741823UL && MPFR_GET_EXP(x) <= 25)
        {
          MPFR_SAVE_EXPO_FREE (expo);
          return mpfr_gamma_aux (gamma, x, rnd_mode);
        }

      /* 1/e rounded down to 53 bits */
#define EXPM1_STR "0.010111100010110101011000110110001011001110111100111"
      mpfr_init2 (xp, 53);
      mpfr_init2 (yp, 53);
      mpfr_set_str_binary (xp, EXPM1_STR);
      mpfr_mul (xp, x, xp, MPFR_RNDZ);
      mpfr_sub_ui (yp, x, 2, MPFR_RNDZ);
      mpfr_pow (xp, xp, yp, MPFR_RNDZ); /* (x/e)^(x-2) */
      mpfr_set_str_binary (yp, EXPM1_STR);
      mpfr_mul (xp, xp, yp, MPFR_RNDZ); /* x^(x-2) / e^(x-1) */
      mpfr_mul (xp, xp, yp, MPFR_RNDZ); /* x^(x-2) / e^x */
      mpfr_mul (xp, xp, x, MPFR_RNDZ); /* lower bound on x^(x-1) / e^x */
      MPFR_BLOCK (flags, mpfr_mul_2ui (xp, xp, 1, MPFR_RNDZ));
      expxp = MPFR_GET_EXP (xp);
      mpfr_clear (xp);
      mpfr_clear (yp);
      MPFR_SAVE_EXPO_FREE (expo);
      return MPFR_OVERFLOW (flags) || expxp > __gmpfr_emax ?
        mpfr_overflow (gamma, rnd_mode, 1) :
        mpfr_gamma_aux (gamma, x, rnd_mode);
    }

  /* now compared < 0 */

  /* check for underflow: for x < 1,
     gamma(x) = Pi*(x-1)/sin(Pi*(2-x))/gamma(2-x).
     Since gamma(2-x) >= 2 * ((2-x)/e)^(2-x) / (2-x), we have
     |gamma(x)| <= Pi*(1-x)*(2-x)/2/((2-x)/e)^(2-x) / |sin(Pi*(2-x))|
                <= 12 * ((2-x)/e)^x / |sin(Pi*(2-x))|.
     To avoid an underflow in ((2-x)/e)^x, we compute the logarithm.
  */
  if (MPFR_IS_NEG(x))
    {
      int underflow = 0, sgn, ck;
      mpfr_prec_t w;

      mpfr_init2 (xp, 53);
      mpfr_init2 (tmp, 53);
      mpfr_init2 (tmp2, 53);
      /* we want an upper bound for x * [log(2-x)-1].
         since x < 0, we need a lower bound on log(2-x) */
      mpfr_ui_sub (xp, 2, x, MPFR_RNDD);
      mpfr_log (xp, xp, MPFR_RNDD);
      mpfr_sub_ui (xp, xp, 1, MPFR_RNDD);
      mpfr_mul (xp, xp, x, MPFR_RNDU);

      /* we need an upper bound on 1/|sin(Pi*(2-x))|,
         thus a lower bound on |sin(Pi*(2-x))|.
         If 2-x is exact, then the error of Pi*(2-x) is (1+u)^2 with u = 2^(-p)
         thus the error on sin(Pi*(2-x)) is less than 1/2ulp + 3Pi(2-x)u,
         assuming u <= 1, thus <= u + 3Pi(2-x)u */

      w = mpfr_gamma_2_minus_x_exact (x); /* 2-x is exact for prec >= w */
      w += 17; /* to get tmp2 small enough */
      mpfr_set_prec (tmp, w);
      mpfr_set_prec (tmp2, w);
      MPFR_DBGRES (ck = mpfr_ui_sub (tmp, 2, x, MPFR_RNDN));
      MPFR_ASSERTD (ck == 0); /* tmp = 2-x exactly */
      mpfr_const_pi (tmp2, MPFR_RNDN);
      mpfr_mul (tmp2, tmp2, tmp, MPFR_RNDN); /* Pi*(2-x) */
      mpfr_sin (tmp, tmp2, MPFR_RNDN); /* sin(Pi*(2-x)) */
      sgn = mpfr_sgn (tmp);
      mpfr_abs (tmp, tmp, MPFR_RNDN);
      mpfr_mul_ui (tmp2, tmp2, 3, MPFR_RNDU); /* 3Pi(2-x) */
      mpfr_add_ui (tmp2, tmp2, 1, MPFR_RNDU); /* 3Pi(2-x)+1 */
      mpfr_div_2ui (tmp2, tmp2, mpfr_get_prec (tmp), MPFR_RNDU);
      /* if tmp2<|tmp|, we get a lower bound */
      if (mpfr_cmp (tmp2, tmp) < 0)
        {
          mpfr_sub (tmp, tmp, tmp2, MPFR_RNDZ); /* low bnd on |sin(Pi*(2-x))| */
          mpfr_ui_div (tmp, 12, tmp, MPFR_RNDU); /* upper bound */
          mpfr_log2 (tmp, tmp, MPFR_RNDU);
          mpfr_add (xp, tmp, xp, MPFR_RNDU);
          /* The assert below checks that expo.saved_emin - 2 always
             fits in a long. FIXME if we want to allow mpfr_exp_t to
             be a long long, for instance. */
          MPFR_ASSERTN (MPFR_EMIN_MIN - 2 >= LONG_MIN);
          underflow = mpfr_cmp_si (xp, expo.saved_emin - 2) <= 0;
        }

      mpfr_clear (xp);
      mpfr_clear (tmp);
      mpfr_clear (tmp2);
      if (underflow) /* the sign is the opposite of that of sin(Pi*(2-x)) */
        {
          MPFR_SAVE_EXPO_FREE (expo);
          return mpfr_underflow (gamma, (rnd_mode == MPFR_RNDN) ? MPFR_RNDZ : rnd_mode, -sgn);
        }
    }

  realprec = MPFR_PREC (gamma);
  /* we want both 1-x and 2-x to be exact */
  {
    mpfr_prec_t w;
    w = mpfr_gamma_1_minus_x_exact (x);
    if (realprec < w)
      realprec = w;
    w = mpfr_gamma_2_minus_x_exact (x);
    if (realprec < w)
      realprec = w;
  }
  realprec = realprec + MPFR_INT_CEIL_LOG2 (realprec) + 20;
  MPFR_ASSERTD(realprec >= 5);

  MPFR_GROUP_INIT_4 (group, realprec + MPFR_INT_CEIL_LOG2 (realprec) + 20,
                     xp, tmp, tmp2, GammaTrial);
  mpz_init (fact);
  MPFR_ZIV_INIT (loop, realprec);
  for (;;)
    {
      mpfr_exp_t err_g;
      int ck;
      MPFR_GROUP_REPREC_4 (group, realprec, xp, tmp, tmp2, GammaTrial);

      /* reflection formula: gamma(x) = Pi*(x-1)/sin(Pi*(2-x))/gamma(2-x) */

      ck = mpfr_ui_sub (xp, 2, x, MPFR_RNDN); /* 2-x, exact */
      MPFR_ASSERTD(ck == 0);  (void) ck; /* use ck to avoid a warning */
      mpfr_gamma (tmp, xp, MPFR_RNDN);   /* gamma(2-x), error (1+u) */
      mpfr_const_pi (tmp2, MPFR_RNDN);   /* Pi, error (1+u) */
      mpfr_mul (GammaTrial, tmp2, xp, MPFR_RNDN); /* Pi*(2-x), error (1+u)^2 */
      err_g = MPFR_GET_EXP(GammaTrial);
      mpfr_sin (GammaTrial, GammaTrial, MPFR_RNDN); /* sin(Pi*(2-x)) */
      /* If tmp is +Inf, we compute exp(lngamma(x)). */
      if (mpfr_inf_p (tmp))
        {
          inex = mpfr_explgamma (gamma, x, &expo, tmp, tmp2, rnd_mode);
          if (inex)
            goto end;
          else
            goto ziv_next;
        }
      err_g = err_g + 1 - MPFR_GET_EXP(GammaTrial);
      /* let g0 the true value of Pi*(2-x), g the computed value.
         We have g = g0 + h with |h| <= |(1+u^2)-1|*g.
         Thus sin(g) = sin(g0) + h' with |h'| <= |(1+u^2)-1|*g.
         The relative error is thus bounded by |(1+u^2)-1|*g/sin(g)
         <= |(1+u^2)-1|*2^err_g. <= 2.25*u*2^err_g for |u|<=1/4.
         With the rounding error, this gives (0.5 + 2.25*2^err_g)*u. */
      ck = mpfr_sub_ui (xp, x, 1, MPFR_RNDN); /* x-1, exact */
      MPFR_ASSERTD(ck == 0);  (void) ck; /* use ck to avoid a warning */
      mpfr_mul (xp, tmp2, xp, MPFR_RNDN); /* Pi*(x-1), error (1+u)^2 */
      mpfr_mul (GammaTrial, GammaTrial, tmp, MPFR_RNDN);
      /* [1 + (0.5 + 2.25*2^err_g)*u]*(1+u)^2 = 1 + (2.5 + 2.25*2^err_g)*u
         + (0.5 + 2.25*2^err_g)*u*(2u+u^2) + u^2.
         For err_g <= realprec-2, we have (0.5 + 2.25*2^err_g)*u <=
         0.5*u + 2.25/4 <= 0.6875 and u^2 <= u/4, thus
         (0.5 + 2.25*2^err_g)*u*(2u+u^2) + u^2 <= 0.6875*(2u+u/4) + u/4
         <= 1.8*u, thus the rel. error is bounded by (4.5 + 2.25*2^err_g)*u. */
      mpfr_div (GammaTrial, xp, GammaTrial, MPFR_RNDN);
      /* the error is of the form (1+u)^3/[1 + (4.5 + 2.25*2^err_g)*u].
         For realprec >= 5 and err_g <= realprec-2, [(4.5 + 2.25*2^err_g)*u]^2
         <= 0.71, and for |y|<=0.71, 1/(1-y) can be written 1+a*y with a<=4.
         (1+u)^3 * (1+4*(4.5 + 2.25*2^err_g)*u)
         = 1 + (21 + 9*2^err_g)*u + (57+27*2^err_g)*u^2 + (55+27*2^err_g)*u^3
             + (18+9*2^err_g)*u^4
         <= 1 + (21 + 9*2^err_g)*u + (57+27*2^err_g)*u^2 + (56+28*2^err_g)*u^3
         <= 1 + (21 + 9*2^err_g)*u + (59+28*2^err_g)*u^2
         <= 1 + (23 + 10*2^err_g)*u.
         The final error is thus bounded by (23 + 10*2^err_g) ulps,
         which is <= 2^6 for err_g<=2, and <= 2^(err_g+4) for err_g >= 2. */
      err_g = (err_g <= 2) ? 6 : err_g + 4;

      if (MPFR_LIKELY (MPFR_CAN_ROUND (GammaTrial, realprec - err_g,
                                       MPFR_PREC(gamma), rnd_mode)))
        break;

    ziv_next:
      MPFR_ZIV_NEXT (loop, realprec);
    }

 end:
  MPFR_ZIV_FREE (loop);

  if (inex == 0)
    inex = mpfr_set (gamma, GammaTrial, rnd_mode);
  MPFR_GROUP_CLEAR (group);
  mpz_clear (fact);

  MPFR_SAVE_EXPO_FREE (expo);
  return mpfr_check_range (gamma, inex, rnd_mode);
}
Ejemplo n.º 4
0
/* Assumes that the exponent range has already been extended and if y is
   an integer, then the result is not exact in unbounded exponent range. */
int
mpfr_pow_general (mpfr_ptr z, mpfr_srcptr x, mpfr_srcptr y,
                  mpfr_rnd_t rnd_mode, int y_is_integer, mpfr_save_expo_t *expo)
{
  mpfr_t t, u, k, absx;
  int neg_result = 0;
  int k_non_zero = 0;
  int check_exact_case = 0;
  int inexact;
  /* Declaration of the size variable */
  mpfr_prec_t Nz = MPFR_PREC(z);               /* target precision */
  mpfr_prec_t Nt;                              /* working precision */
  mpfr_exp_t err;                              /* error */
  MPFR_ZIV_DECL (ziv_loop);


  MPFR_LOG_FUNC
    (("x[%Pu]=%.*Rg y[%Pu]=%.*Rg rnd=%d",
      mpfr_get_prec (x), mpfr_log_prec, x,
      mpfr_get_prec (y), mpfr_log_prec, y, rnd_mode),
     ("z[%Pu]=%.*Rg inexact=%d",
      mpfr_get_prec (z), mpfr_log_prec, z, inexact));

  /* We put the absolute value of x in absx, pointing to the significand
     of x to avoid allocating memory for the significand of absx. */
  MPFR_ALIAS(absx, x, /*sign=*/ 1, /*EXP=*/ MPFR_EXP(x));

  /* We will compute the absolute value of the result. So, let's
     invert the rounding mode if the result is negative. */
  if (MPFR_IS_NEG (x) && is_odd (y))
    {
      neg_result = 1;
      rnd_mode = MPFR_INVERT_RND (rnd_mode);
    }

  /* compute the precision of intermediary variable */
  /* the optimal number of bits : see algorithms.tex */
  Nt = Nz + 5 + MPFR_INT_CEIL_LOG2 (Nz);

  /* initialise of intermediary variable */
  mpfr_init2 (t, Nt);

  MPFR_ZIV_INIT (ziv_loop, Nt);
  for (;;)
    {
      MPFR_BLOCK_DECL (flags1);

      /* compute exp(y*ln|x|), using MPFR_RNDU to get an upper bound, so
         that we can detect underflows. */
      mpfr_log (t, absx, MPFR_IS_NEG (y) ? MPFR_RNDD : MPFR_RNDU); /* ln|x| */
      mpfr_mul (t, y, t, MPFR_RNDU);                              /* y*ln|x| */
      if (k_non_zero)
        {
          MPFR_LOG_MSG (("subtract k * ln(2)\n", 0));
          mpfr_const_log2 (u, MPFR_RNDD);
          mpfr_mul (u, u, k, MPFR_RNDD);
          /* Error on u = k * log(2): < k * 2^(-Nt) < 1. */
          mpfr_sub (t, t, u, MPFR_RNDU);
          MPFR_LOG_MSG (("t = y * ln|x| - k * ln(2)\n", 0));
          MPFR_LOG_VAR (t);
        }
      /* estimate of the error -- see pow function in algorithms.tex.
         The error on t is at most 1/2 + 3*2^(EXP(t)+1) ulps, which is
         <= 2^(EXP(t)+3) for EXP(t) >= -1, and <= 2 ulps for EXP(t) <= -2.
         Additional error if k_no_zero: treal = t * errk, with
         1 - |k| * 2^(-Nt) <= exp(-|k| * 2^(-Nt)) <= errk <= 1,
         i.e., additional absolute error <= 2^(EXP(k)+EXP(t)-Nt).
         Total error <= 2^err1 + 2^err2 <= 2^(max(err1,err2)+1). */
      err = MPFR_NOTZERO (t) && MPFR_GET_EXP (t) >= -1 ?
        MPFR_GET_EXP (t) + 3 : 1;
      if (k_non_zero)
        {
          if (MPFR_GET_EXP (k) > err)
            err = MPFR_GET_EXP (k);
          err++;
        }
      MPFR_BLOCK (flags1, mpfr_exp (t, t, MPFR_RNDN));  /* exp(y*ln|x|)*/
      /* We need to test */
      if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (t) || MPFR_UNDERFLOW (flags1)))
        {
          mpfr_prec_t Ntmin;
          MPFR_BLOCK_DECL (flags2);

          MPFR_ASSERTN (!k_non_zero);
          MPFR_ASSERTN (!MPFR_IS_NAN (t));

          /* Real underflow? */
          if (MPFR_IS_ZERO (t))
            {
              /* Underflow. We computed rndn(exp(t)), where t >= y*ln|x|.
                 Therefore rndn(|x|^y) = 0, and we have a real underflow on
                 |x|^y. */
              inexact = mpfr_underflow (z, rnd_mode == MPFR_RNDN ? MPFR_RNDZ
                                        : rnd_mode, MPFR_SIGN_POS);
              if (expo != NULL)
                MPFR_SAVE_EXPO_UPDATE_FLAGS (*expo, MPFR_FLAGS_INEXACT
                                             | MPFR_FLAGS_UNDERFLOW);
              break;
            }

          /* Real overflow? */
          if (MPFR_IS_INF (t))
            {
              /* Note: we can probably use a low precision for this test. */
              mpfr_log (t, absx, MPFR_IS_NEG (y) ? MPFR_RNDU : MPFR_RNDD);
              mpfr_mul (t, y, t, MPFR_RNDD);            /* y * ln|x| */
              MPFR_BLOCK (flags2, mpfr_exp (t, t, MPFR_RNDD));
              /* t = lower bound on exp(y * ln|x|) */
              if (MPFR_OVERFLOW (flags2))
                {
                  /* We have computed a lower bound on |x|^y, and it
                     overflowed. Therefore we have a real overflow
                     on |x|^y. */
                  inexact = mpfr_overflow (z, rnd_mode, MPFR_SIGN_POS);
                  if (expo != NULL)
                    MPFR_SAVE_EXPO_UPDATE_FLAGS (*expo, MPFR_FLAGS_INEXACT
                                                 | MPFR_FLAGS_OVERFLOW);
                  break;
                }
            }

          k_non_zero = 1;
          Ntmin = sizeof(mpfr_exp_t) * CHAR_BIT;
          if (Ntmin > Nt)
            {
              Nt = Ntmin;
              mpfr_set_prec (t, Nt);
            }
          mpfr_init2 (u, Nt);
          mpfr_init2 (k, Ntmin);
          mpfr_log2 (k, absx, MPFR_RNDN);
          mpfr_mul (k, y, k, MPFR_RNDN);
          mpfr_round (k, k);
          MPFR_LOG_VAR (k);
          /* |y| < 2^Ntmin, therefore |k| < 2^Nt. */
          continue;
        }
      if (MPFR_LIKELY (MPFR_CAN_ROUND (t, Nt - err, Nz, rnd_mode)))
        {
          inexact = mpfr_set (z, t, rnd_mode);
          break;
        }

      /* check exact power, except when y is an integer (since the
         exact cases for y integer have already been filtered out) */
      if (check_exact_case == 0 && ! y_is_integer)
        {
          if (mpfr_pow_is_exact (z, absx, y, rnd_mode, &inexact))
            break;
          check_exact_case = 1;
        }

      /* reactualisation of the precision */
      MPFR_ZIV_NEXT (ziv_loop, Nt);
      mpfr_set_prec (t, Nt);
      if (k_non_zero)
        mpfr_set_prec (u, Nt);
    }
  MPFR_ZIV_FREE (ziv_loop);

  if (k_non_zero)
    {
      int inex2;
      long lk;

      /* The rounded result in an unbounded exponent range is z * 2^k. As
       * MPFR chooses underflow after rounding, the mpfr_mul_2si below will
       * correctly detect underflows and overflows. However, in rounding to
       * nearest, if z * 2^k = 2^(emin - 2), then the double rounding may
       * affect the result. We need to cope with that before overwriting z.
       * This can occur only if k < 0 (this test is necessary to avoid a
       * potential integer overflow).
       * If inexact >= 0, then the real result is <= 2^(emin - 2), so that
       * o(2^(emin - 2)) = +0 is correct. If inexact < 0, then the real
       * result is > 2^(emin - 2) and we need to round to 2^(emin - 1).
       */
      MPFR_ASSERTN (MPFR_EXP_MAX <= LONG_MAX);
      lk = mpfr_get_si (k, MPFR_RNDN);
      /* Due to early overflow detection, |k| should not be much larger than
       * MPFR_EMAX_MAX, and as MPFR_EMAX_MAX <= MPFR_EXP_MAX/2 <= LONG_MAX/2,
       * an overflow should not be possible in mpfr_get_si (and lk is exact).
       * And one even has the following assertion. TODO: complete proof.
       */
      MPFR_ASSERTD (lk > LONG_MIN && lk < LONG_MAX);
      /* Note: even in case of overflow (lk inexact), the code is correct.
       * Indeed, for the 3 occurrences of lk:
       *   - The test lk < 0 is correct as sign(lk) = sign(k).
       *   - In the test MPFR_GET_EXP (z) == __gmpfr_emin - 1 - lk,
       *     if lk is inexact, then lk = LONG_MIN <= MPFR_EXP_MIN
       *     (the minimum value of the mpfr_exp_t type), and
       *     __gmpfr_emin - 1 - lk >= MPFR_EMIN_MIN - 1 - 2 * MPFR_EMIN_MIN
       *     >= - MPFR_EMIN_MIN - 1 = MPFR_EMAX_MAX - 1. However, from the
       *     choice of k, z has been chosen to be around 1, so that the
       *     result of the test is false, as if lk were exact.
       *   - In the mpfr_mul_2si (z, z, lk, rnd_mode), if lk is inexact,
       *     then |lk| >= LONG_MAX >= MPFR_EXP_MAX, and as z is around 1,
       *     mpfr_mul_2si underflows or overflows in the same way as if
       *     lk were exact.
       * TODO: give a bound on |t|, then on |EXP(z)|.
       */
      if (rnd_mode == MPFR_RNDN && inexact < 0 && lk < 0 &&
          MPFR_GET_EXP (z) == __gmpfr_emin - 1 - lk && mpfr_powerof2_raw (z))
        {
          /* Rounding to nearest, real result > z * 2^k = 2^(emin - 2),
           * underflow case: as the minimum precision is > 1, we will
           * obtain the correct result and exceptions by replacing z by
           * nextabove(z).
           */
          MPFR_ASSERTN (MPFR_PREC_MIN > 1);
          mpfr_nextabove (z);
        }
      MPFR_CLEAR_FLAGS ();
      inex2 = mpfr_mul_2si (z, z, lk, rnd_mode);
      if (inex2)  /* underflow or overflow */
        {
          inexact = inex2;
          if (expo != NULL)
            MPFR_SAVE_EXPO_UPDATE_FLAGS (*expo, __gmpfr_flags);
        }
      mpfr_clears (u, k, (mpfr_ptr) 0);
    }
  mpfr_clear (t);

  /* update the sign of the result if x was negative */
  if (neg_result)
    {
      MPFR_SET_NEG(z);
      inexact = -inexact;
    }

  return inexact;
}
Ejemplo n.º 5
0
int
mpfr_sinh (mpfr_ptr y, mpfr_srcptr xt, mpfr_rnd_t rnd_mode)
{
  mpfr_t x;
  int inexact;

  MPFR_LOG_FUNC
    (("x[%Pu]=%.*Rg rnd=%d", mpfr_get_prec (xt), mpfr_log_prec, xt, rnd_mode),
     ("y[%Pu]=%.*Rg inexact=%d",
      mpfr_get_prec (y), mpfr_log_prec, y, inexact));

  if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (xt)))
    {
      if (MPFR_IS_NAN (xt))
        {
          MPFR_SET_NAN (y);
          MPFR_RET_NAN;
        }
      else if (MPFR_IS_INF (xt))
        {
          MPFR_SET_INF (y);
          MPFR_SET_SAME_SIGN (y, xt);
          MPFR_RET (0);
        }
      else /* xt is zero */
        {
          MPFR_ASSERTD (MPFR_IS_ZERO (xt));
          MPFR_SET_ZERO (y);   /* sinh(0) = 0 */
          MPFR_SET_SAME_SIGN (y, xt);
          MPFR_RET (0);
        }
    }

  /* sinh(x) = x + x^3/6 + ... so the error is < 2^(3*EXP(x)-2) */
  MPFR_FAST_COMPUTE_IF_SMALL_INPUT (y, xt, -2 * MPFR_GET_EXP(xt), 2, 1,
                                    rnd_mode, {});

  MPFR_TMP_INIT_ABS (x, xt);

  {
    mpfr_t t, ti;
    mpfr_exp_t d;
    mpfr_prec_t Nt;    /* Precision of the intermediary variable */
    long int err;    /* Precision of error */
    MPFR_ZIV_DECL (loop);
    MPFR_SAVE_EXPO_DECL (expo);
    MPFR_GROUP_DECL (group);

    MPFR_SAVE_EXPO_MARK (expo);

    /* compute the precision of intermediary variable */
    Nt = MAX (MPFR_PREC (x), MPFR_PREC (y));
    /* the optimal number of bits : see algorithms.ps */
    Nt = Nt + MPFR_INT_CEIL_LOG2 (Nt) + 4;
    /* If x is near 0, exp(x) - 1/exp(x) = 2*x+x^3/3+O(x^5) */
    if (MPFR_GET_EXP (x) < 0)
      Nt -= 2*MPFR_GET_EXP (x);

    /* initialise of intermediary variables */
    MPFR_GROUP_INIT_2 (group, Nt, t, ti);

    /* First computation of sinh */
    MPFR_ZIV_INIT (loop, Nt);
    for (;;)
      {
        MPFR_BLOCK_DECL (flags);

        /* compute sinh */
        MPFR_BLOCK (flags, mpfr_exp (t, x, MPFR_RNDD));
        if (MPFR_OVERFLOW (flags))
          /* exp(x) does overflow */
          {
            /* sinh(x) = 2 * sinh(x/2) * cosh(x/2) */
            mpfr_div_2ui (ti, x, 1, MPFR_RNDD); /* exact */

            /* t <- cosh(x/2): error(t) <= 1 ulp(t) */
            MPFR_BLOCK (flags, mpfr_cosh (t, ti, MPFR_RNDD));
            if (MPFR_OVERFLOW (flags))
              /* when x>1 we have |sinh(x)| >= cosh(x/2), so sinh(x)
                 overflows too */
              {
                inexact = mpfr_overflow (y, rnd_mode, MPFR_SIGN (xt));
                MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, MPFR_FLAGS_OVERFLOW);
                break;
              }

            /* ti <- sinh(x/2): , error(ti) <= 1 ulp(ti)
               cannot overflow because 0 < sinh(x) < cosh(x) when x > 0 */
            mpfr_sinh (ti, ti, MPFR_RNDD);

            /* multiplication below, error(t) <= 5 ulp(t) */
            MPFR_BLOCK (flags, mpfr_mul (t, t, ti, MPFR_RNDD));
            if (MPFR_OVERFLOW (flags))
              {
                inexact = mpfr_overflow (y, rnd_mode, MPFR_SIGN (xt));
                MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, MPFR_FLAGS_OVERFLOW);
                break;
              }

            /* doubling below, exact */
            MPFR_BLOCK (flags, mpfr_mul_2ui (t, t, 1, MPFR_RNDN));
            if (MPFR_OVERFLOW (flags))
              {
                inexact = mpfr_overflow (y, rnd_mode, MPFR_SIGN (xt));
                MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, MPFR_FLAGS_OVERFLOW);
                break;
              }

            /* we have lost at most 3 bits of precision */
            err = Nt - 3;
            if (MPFR_LIKELY (MPFR_CAN_ROUND (t, err, MPFR_PREC (y),
                                             rnd_mode)))
              {
                inexact = mpfr_set4 (y, t, rnd_mode, MPFR_SIGN (xt));
                break;
              }
            err = Nt; /* double the precision */
          }
        else
          {
            d = MPFR_GET_EXP (t);
            mpfr_ui_div (ti, 1, t, MPFR_RNDU); /* 1/exp(x) */
            mpfr_sub (t, t, ti, MPFR_RNDN);    /* exp(x) - 1/exp(x) */
            mpfr_div_2ui (t, t, 1, MPFR_RNDN);  /* 1/2(exp(x) - 1/exp(x)) */

            /* it may be that t is zero (in fact, it can only occur when te=1,
               and thus ti=1 too) */
            if (MPFR_IS_ZERO (t))
              err = Nt; /* double the precision */
            else
              {
                /* calculation of the error */
                d = d - MPFR_GET_EXP (t) + 2;
                /* error estimate: err = Nt-(__gmpfr_ceil_log2(1+pow(2,d)));*/
                err = Nt - (MAX (d, 0) + 1);
                if (MPFR_LIKELY (MPFR_CAN_ROUND (t, err, MPFR_PREC (y),
                                                 rnd_mode)))
                  {
                    inexact = mpfr_set4 (y, t, rnd_mode, MPFR_SIGN (xt));
                    break;
                  }
              }
          }

        /* actualisation of the precision */
        Nt += err;
        MPFR_ZIV_NEXT (loop, Nt);
        MPFR_GROUP_REPREC_2 (group, Nt, t, ti);
      }
    MPFR_ZIV_FREE (loop);
    MPFR_GROUP_CLEAR (group);
    MPFR_SAVE_EXPO_FREE (expo);
  }

  return mpfr_check_range (y, inexact, rnd_mode);
}
Ejemplo n.º 6
0
int
mpfr_exp_3 (mpfr_ptr y, mpfr_srcptr x, mp_rnd_t rnd_mode)
{
  mpfr_t t, x_copy, tmp;
  mpz_t uk;
  mp_exp_t ttt, shift_x;
  unsigned long twopoweri;
  mpz_t *P;
  mp_prec_t *mult;
  int i, k, loop;
  int prec_x;
  mp_prec_t realprec, Prec;
  int iter;
  int inexact = 0;
  MPFR_SAVE_EXPO_DECL (expo);
  MPFR_ZIV_DECL (ziv_loop);

  MPFR_LOG_FUNC (("x[%#R]=%R rnd=%d", x, x, rnd_mode),
                 ("y[%#R]=%R inexact=%d", y, y, inexact));

  MPFR_SAVE_EXPO_MARK (expo);

  /* decompose x */
  /* we first write x = 1.xxxxxxxxxxxxx
     ----- k bits -- */
  prec_x = MPFR_INT_CEIL_LOG2 (MPFR_PREC (x)) - MPFR_LOG2_BITS_PER_MP_LIMB;
  if (prec_x < 0)
    prec_x = 0;

  ttt = MPFR_GET_EXP (x);
  mpfr_init2 (x_copy, MPFR_PREC(x));
  mpfr_set (x_copy, x, GMP_RNDD);

  /* we shift to get a number less than 1 */
  if (ttt > 0)
    {
      shift_x = ttt;
      mpfr_div_2ui (x_copy, x, ttt, GMP_RNDN);
      ttt = MPFR_GET_EXP (x_copy);
    }
  else
    shift_x = 0;
  MPFR_ASSERTD (ttt <= 0);

  /* Init prec and vars */
  realprec = MPFR_PREC (y) + MPFR_INT_CEIL_LOG2 (prec_x + MPFR_PREC (y));
  Prec = realprec + shift + 2 + shift_x;
  mpfr_init2 (t, Prec);
  mpfr_init2 (tmp, Prec);
  mpz_init (uk);

  /* Main loop */
  MPFR_ZIV_INIT (ziv_loop, realprec);
  for (;;)
    {
      int scaled = 0;
      MPFR_BLOCK_DECL (flags);

      k = MPFR_INT_CEIL_LOG2 (Prec) - MPFR_LOG2_BITS_PER_MP_LIMB;

      /* now we have to extract */
      twopoweri = BITS_PER_MP_LIMB;

      /* Allocate tables */
      P    = (mpz_t*) (*__gmp_allocate_func) (3*(k+2)*sizeof(mpz_t));
      for (i = 0; i < 3*(k+2); i++)
        mpz_init (P[i]);
      mult = (mp_prec_t*) (*__gmp_allocate_func) (2*(k+2)*sizeof(mp_prec_t));

      /* Particular case for i==0 */
      mpfr_extract (uk, x_copy, 0);
      MPFR_ASSERTD (mpz_cmp_ui (uk, 0) != 0);
      mpfr_exp_rational (tmp, uk, shift + twopoweri - ttt, k + 1, P, mult);
      for (loop = 0; loop < shift; loop++)
        mpfr_sqr (tmp, tmp, GMP_RNDD);
      twopoweri *= 2;

      /* General case */
      iter = (k <= prec_x) ? k : prec_x;
      for (i = 1; i <= iter; i++)
        {
          mpfr_extract (uk, x_copy, i);
          if (MPFR_LIKELY (mpz_cmp_ui (uk, 0) != 0))
            {
              mpfr_exp_rational (t, uk, twopoweri - ttt, k  - i + 1, P, mult);
              mpfr_mul (tmp, tmp, t, GMP_RNDD);
            }
          MPFR_ASSERTN (twopoweri <= LONG_MAX/2);
          twopoweri *=2;
        }

      /* Clear tables */
      for (i = 0; i < 3*(k+2); i++)
        mpz_clear (P[i]);
      (*__gmp_free_func) (P, 3*(k+2)*sizeof(mpz_t));
      (*__gmp_free_func) (mult, 2*(k+2)*sizeof(mp_prec_t));

      if (shift_x > 0)
        {
          MPFR_BLOCK (flags, {
              for (loop = 0; loop < shift_x - 1; loop++)
                mpfr_sqr (tmp, tmp, GMP_RNDD);
              mpfr_sqr (t, tmp, GMP_RNDD);
            } );

          if (MPFR_UNLIKELY (MPFR_OVERFLOW (flags)))
            {
              /* tmp <= exact result, so that it is a real overflow. */
              inexact = mpfr_overflow (y, rnd_mode, 1);
              MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, MPFR_FLAGS_OVERFLOW);
              break;
            }

          if (MPFR_UNLIKELY (MPFR_UNDERFLOW (flags)))
            {
              /* This may be a spurious underflow. So, let's scale
                 the result. */
              mpfr_mul_2ui (tmp, tmp, 1, GMP_RNDD);  /* no overflow, exact */
              mpfr_sqr (t, tmp, GMP_RNDD);
              if (MPFR_IS_ZERO (t))
                {
                  /* approximate result < 2^(emin - 3), thus
                     exact result < 2^(emin - 2). */
                  inexact = mpfr_underflow (y, (rnd_mode == GMP_RNDN) ?
                                            GMP_RNDZ : rnd_mode, 1);
                  MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, MPFR_FLAGS_UNDERFLOW);
                  break;
                }
              scaled = 1;
            }
        }
Ejemplo n.º 7
0
int
mpfr_sinh_cosh (mpfr_ptr sh, mpfr_ptr ch, mpfr_srcptr xt, mpfr_rnd_t rnd_mode)
{
    mpfr_t x;
    int inexact_sh, inexact_ch;

    MPFR_ASSERTN (sh != ch);

    MPFR_LOG_FUNC
    (("x[%Pu]=%.*Rg rnd=%d",
      mpfr_get_prec (xt), mpfr_log_prec, xt, rnd_mode),
     ("sh[%Pu]=%.*Rg ch[%Pu]=%.*Rg",
      mpfr_get_prec (sh), mpfr_log_prec, sh,
      mpfr_get_prec (ch), mpfr_log_prec, ch));

    if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (xt)))
    {
        if (MPFR_IS_NAN (xt))
        {
            MPFR_SET_NAN (ch);
            MPFR_SET_NAN (sh);
            MPFR_RET_NAN;
        }
        else if (MPFR_IS_INF (xt))
        {
            MPFR_SET_INF (sh);
            MPFR_SET_SAME_SIGN (sh, xt);
            MPFR_SET_INF (ch);
            MPFR_SET_POS (ch);
            MPFR_RET (0);
        }
        else /* xt is zero */
        {
            MPFR_ASSERTD (MPFR_IS_ZERO (xt));
            MPFR_SET_ZERO (sh);                   /* sinh(0) = 0 */
            MPFR_SET_SAME_SIGN (sh, xt);
            inexact_sh = 0;
            inexact_ch = mpfr_set_ui (ch, 1, rnd_mode); /* cosh(0) = 1 */
            return INEX(inexact_sh,inexact_ch);
        }
    }

    /* Warning: if we use MPFR_FAST_COMPUTE_IF_SMALL_INPUT here, make sure
       that the code also works in case of overlap (see sin_cos.c) */

    MPFR_TMP_INIT_ABS (x, xt);

    {
        mpfr_t s, c, ti;
        mpfr_exp_t d;
        mpfr_prec_t N;    /* Precision of the intermediary variables */
        long int err;    /* Precision of error */
        MPFR_ZIV_DECL (loop);
        MPFR_SAVE_EXPO_DECL (expo);
        MPFR_GROUP_DECL (group);

        MPFR_SAVE_EXPO_MARK (expo);

        /* compute the precision of intermediary variable */
        N = MPFR_PREC (ch);
        N = MAX (N, MPFR_PREC (sh));
        /* the optimal number of bits : see algorithms.ps */
        N = N + MPFR_INT_CEIL_LOG2 (N) + 4;

        /* initialise of intermediary variables */
        MPFR_GROUP_INIT_3 (group, N, s, c, ti);

        /* First computation of sinh_cosh */
        MPFR_ZIV_INIT (loop, N);
        for (;;)
        {
            MPFR_BLOCK_DECL (flags);

            /* compute sinh_cosh */
            MPFR_BLOCK (flags, mpfr_exp (s, x, MPFR_RNDD));
            if (MPFR_OVERFLOW (flags))
                /* exp(x) does overflow */
            {
                /* since cosh(x) >= exp(x), cosh(x) overflows too */
                inexact_ch = mpfr_overflow (ch, rnd_mode, MPFR_SIGN_POS);
                /* sinh(x) may be representable */
                inexact_sh = mpfr_sinh (sh, xt, rnd_mode);
                MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, MPFR_FLAGS_OVERFLOW);
                break;
            }
            d = MPFR_GET_EXP (s);
            mpfr_ui_div (ti, 1, s, MPFR_RNDU);  /* 1/exp(x) */
            mpfr_add (c, s, ti, MPFR_RNDU);     /* exp(x) + 1/exp(x) */
            mpfr_sub (s, s, ti, MPFR_RNDN);     /* exp(x) - 1/exp(x) */
            mpfr_div_2ui (c, c, 1, MPFR_RNDN);  /* 1/2(exp(x) + 1/exp(x)) */
            mpfr_div_2ui (s, s, 1, MPFR_RNDN);  /* 1/2(exp(x) - 1/exp(x)) */

            /* it may be that s is zero (in fact, it can only occur when exp(x)=1,
               and thus ti=1 too) */
            if (MPFR_IS_ZERO (s))
                err = N; /* double the precision */
            else
            {
                /* calculation of the error */
                d = d - MPFR_GET_EXP (s) + 2;
                /* error estimate: err = N-(__gmpfr_ceil_log2(1+pow(2,d)));*/
                err = N - (MAX (d, 0) + 1);
                if (MPFR_LIKELY (MPFR_CAN_ROUND (s, err, MPFR_PREC (sh),
                                                 rnd_mode) &&               \
                                 MPFR_CAN_ROUND (c, err, MPFR_PREC (ch),
                                                 rnd_mode)))
                {
                    inexact_sh = mpfr_set4 (sh, s, rnd_mode, MPFR_SIGN (xt));
                    inexact_ch = mpfr_set (ch, c, rnd_mode);
                    break;
                }
            }
            /* actualisation of the precision */
            N += err;
            MPFR_ZIV_NEXT (loop, N);
            MPFR_GROUP_REPREC_3 (group, N, s, c, ti);
        }
        MPFR_ZIV_FREE (loop);
        MPFR_GROUP_CLEAR (group);
        MPFR_SAVE_EXPO_FREE (expo);
    }

    /* now, let's raise the flags if needed */
    inexact_sh = mpfr_check_range (sh, inexact_sh, rnd_mode);
    inexact_ch = mpfr_check_range (ch, inexact_ch, rnd_mode);

    return INEX(inexact_sh,inexact_ch);
}
Ejemplo n.º 8
0
Archivo: pow_si.c Proyecto: Kirija/XPIR
int
mpfr_pow_si (mpfr_ptr y, mpfr_srcptr x, long int n, mpfr_rnd_t rnd)
{
  MPFR_LOG_FUNC
    (("x[%Pu]=%.*Rg n=%ld rnd=%d",
      mpfr_get_prec (x), mpfr_log_prec, x, n, rnd),
     ("y[%Pu]=%.*Rg", mpfr_get_prec (y), mpfr_log_prec, y));

  if (n >= 0)
    return mpfr_pow_ui (y, x, n, rnd);
  else
    {
      if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
        {
          if (MPFR_IS_NAN (x))
            {
              MPFR_SET_NAN (y);
              MPFR_RET_NAN;
            }
          else
            {
              int positive = MPFR_IS_POS (x) || ((unsigned long) n & 1) == 0;
              if (MPFR_IS_INF (x))
                MPFR_SET_ZERO (y);
              else /* x is zero */
                {
                  MPFR_ASSERTD (MPFR_IS_ZERO (x));
                  MPFR_SET_INF (y);
                  mpfr_set_divby0 ();
                }
              if (positive)
                MPFR_SET_POS (y);
              else
                MPFR_SET_NEG (y);
              MPFR_RET (0);
            }
        }

      /* detect exact powers: x^(-n) is exact iff x is a power of 2 */
      if (mpfr_cmp_si_2exp (x, MPFR_SIGN(x), MPFR_EXP(x) - 1) == 0)
        {
          mpfr_exp_t expx = MPFR_EXP (x) - 1, expy;
          MPFR_ASSERTD (n < 0);
          /* Warning: n * expx may overflow!
           *
           * Some systems (apparently alpha-freebsd) abort with
           * LONG_MIN / 1, and LONG_MIN / -1 is undefined.
           * http://www.freebsd.org/cgi/query-pr.cgi?pr=72024
           *
           * Proof of the overflow checking. The expressions below are
           * assumed to be on the rational numbers, but the word "overflow"
           * still has its own meaning in the C context. / still denotes
           * the integer (truncated) division, and // denotes the exact
           * division.
           * - First, (__gmpfr_emin - 1) / n and (__gmpfr_emax - 1) / n
           *   cannot overflow due to the constraints on the exponents of
           *   MPFR numbers.
           * - If n = -1, then n * expx = - expx, which is representable
           *   because of the constraints on the exponents of MPFR numbers.
           * - If expx = 0, then n * expx = 0, which is representable.
           * - If n < -1 and expx > 0:
           *   + If expx > (__gmpfr_emin - 1) / n, then
           *           expx >= (__gmpfr_emin - 1) / n + 1
           *                > (__gmpfr_emin - 1) // n,
           *     and
           *           n * expx < __gmpfr_emin - 1,
           *     i.e.
           *           n * expx <= __gmpfr_emin - 2.
           *     This corresponds to an underflow, with a null result in
           *     the rounding-to-nearest mode.
           *   + If expx <= (__gmpfr_emin - 1) / n, then n * expx cannot
           *     overflow since 0 < expx <= (__gmpfr_emin - 1) / n and
           *           0 > n * expx >= n * ((__gmpfr_emin - 1) / n)
           *                        >= __gmpfr_emin - 1.
           * - If n < -1 and expx < 0:
           *   + If expx < (__gmpfr_emax - 1) / n, then
           *           expx <= (__gmpfr_emax - 1) / n - 1
           *                < (__gmpfr_emax - 1) // n,
           *     and
           *           n * expx > __gmpfr_emax - 1,
           *     i.e.
           *           n * expx >= __gmpfr_emax.
           *     This corresponds to an overflow (2^(n * expx) has an
           *     exponent > __gmpfr_emax).
           *   + If expx >= (__gmpfr_emax - 1) / n, then n * expx cannot
           *     overflow since 0 > expx >= (__gmpfr_emax - 1) / n and
           *           0 < n * expx <= n * ((__gmpfr_emax - 1) / n)
           *                        <= __gmpfr_emax - 1.
           * Note: one could use expx bounds based on MPFR_EXP_MIN and
           * MPFR_EXP_MAX instead of __gmpfr_emin and __gmpfr_emax. The
           * current bounds do not lead to noticeably slower code and
           * allow us to avoid a bug in Sun's compiler for Solaris/x86
           * (when optimizations are enabled); known affected versions:
           *   cc: Sun C 5.8 2005/10/13
           *   cc: Sun C 5.8 Patch 121016-02 2006/03/31
           *   cc: Sun C 5.8 Patch 121016-04 2006/10/18
           */
          expy =
            n != -1 && expx > 0 && expx > (__gmpfr_emin - 1) / n ?
            MPFR_EMIN_MIN - 2 /* Underflow */ :
            n != -1 && expx < 0 && expx < (__gmpfr_emax - 1) / n ?
            MPFR_EMAX_MAX /* Overflow */ : n * expx;
          return mpfr_set_si_2exp (y, n % 2 ? MPFR_INT_SIGN (x) : 1,
                                   expy, rnd);
        }

      /* General case */
      {
        /* Declaration of the intermediary variable */
        mpfr_t t;
        /* Declaration of the size variable */
        mpfr_prec_t Ny;                              /* target precision */
        mpfr_prec_t Nt;                              /* working precision */
        mpfr_rnd_t rnd1;
        int size_n;
        int inexact;
        unsigned long abs_n;
        MPFR_SAVE_EXPO_DECL (expo);
        MPFR_ZIV_DECL (loop);

        abs_n = - (unsigned long) n;
        count_leading_zeros (size_n, (mp_limb_t) abs_n);
        size_n = GMP_NUMB_BITS - size_n;

        /* initial working precision */
        Ny = MPFR_PREC (y);
        Nt = Ny + size_n + 3 + MPFR_INT_CEIL_LOG2 (Ny);

        MPFR_SAVE_EXPO_MARK (expo);

        /* initialise of intermediary   variable */
        mpfr_init2 (t, Nt);

        /* We will compute rnd(rnd1(1/x) ^ |n|), where rnd1 is the rounding
           toward sign(x), to avoid spurious overflow or underflow, as in
           mpfr_pow_z. */
        rnd1 = MPFR_EXP (x) < 1 ? MPFR_RNDZ :
          (MPFR_SIGN (x) > 0 ? MPFR_RNDU : MPFR_RNDD);

        MPFR_ZIV_INIT (loop, Nt);
        for (;;)
          {
            MPFR_BLOCK_DECL (flags);

            /* compute (1/x)^|n| */
            MPFR_BLOCK (flags, mpfr_ui_div (t, 1, x, rnd1));
            MPFR_ASSERTD (! MPFR_UNDERFLOW (flags));
            /* t = (1/x)*(1+theta) where |theta| <= 2^(-Nt) */
            if (MPFR_UNLIKELY (MPFR_OVERFLOW (flags)))
              goto overflow;
            MPFR_BLOCK (flags, mpfr_pow_ui (t, t, abs_n, rnd));
            /* t = (1/x)^|n|*(1+theta')^(|n|+1) where |theta'| <= 2^(-Nt).
               If (|n|+1)*2^(-Nt) <= 1/2, which is satisfied as soon as
               Nt >= bits(n)+2, then we can use Lemma \ref{lemma_graillat}
               from algorithms.tex, which yields x^n*(1+theta) with
               |theta| <= 2(|n|+1)*2^(-Nt), thus the error is bounded by
               2(|n|+1) ulps <= 2^(bits(n)+2) ulps. */
            if (MPFR_UNLIKELY (MPFR_OVERFLOW (flags)))
              {
              overflow:
                MPFR_ZIV_FREE (loop);
                mpfr_clear (t);
                MPFR_SAVE_EXPO_FREE (expo);
                MPFR_LOG_MSG (("overflow\n", 0));
                return mpfr_overflow (y, rnd, abs_n & 1 ?
                                      MPFR_SIGN (x) : MPFR_SIGN_POS);
              }
            if (MPFR_UNLIKELY (MPFR_UNDERFLOW (flags)))
              {
                MPFR_ZIV_FREE (loop);
                mpfr_clear (t);
                MPFR_LOG_MSG (("underflow\n", 0));
                if (rnd == MPFR_RNDN)
                  {
                    mpfr_t y2, nn;

                    /* We cannot decide now whether the result should be
                       rounded toward zero or away from zero. So, like
                       in mpfr_pow_pos_z, let's use the general case of
                       mpfr_pow in precision 2. */
                    MPFR_ASSERTD (mpfr_cmp_si_2exp (x, MPFR_SIGN (x),
                                                    MPFR_EXP (x) - 1) != 0);
                    mpfr_init2 (y2, 2);
                    mpfr_init2 (nn, sizeof (long) * CHAR_BIT);
                    inexact = mpfr_set_si (nn, n, MPFR_RNDN);
                    MPFR_ASSERTN (inexact == 0);
                    inexact = mpfr_pow_general (y2, x, nn, rnd, 1,
                                                (mpfr_save_expo_t *) NULL);
                    mpfr_clear (nn);
                    mpfr_set (y, y2, MPFR_RNDN);
                    mpfr_clear (y2);
                    MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, MPFR_FLAGS_UNDERFLOW);
                    goto end;
                  }
                else
                  {
                    MPFR_SAVE_EXPO_FREE (expo);
                    return mpfr_underflow (y, rnd, abs_n & 1 ?
                                           MPFR_SIGN (x) : MPFR_SIGN_POS);
                  }
              }
            /* error estimate -- see pow function in algorithms.ps */
            if (MPFR_LIKELY (MPFR_CAN_ROUND (t, Nt - size_n - 2, Ny, rnd)))
              break;

            /* actualisation of the precision */
            MPFR_ZIV_NEXT (loop, Nt);
            mpfr_set_prec (t, Nt);
          }
        MPFR_ZIV_FREE (loop);

        inexact = mpfr_set (y, t, rnd);
        mpfr_clear (t);

      end:
        MPFR_SAVE_EXPO_FREE (expo);
        return mpfr_check_range (y, inexact, rnd);
      }
    }
}
Ejemplo n.º 9
0
int
mpfr_frexp (mpfr_exp_t *exp, mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd)
{
  int inex;
  mpfr_flags_t saved_flags = __gmpfr_flags;
  MPFR_BLOCK_DECL (flags);

  MPFR_LOG_FUNC
    (("x[%Pu]=%.*Rg rnd=%d", mpfr_get_prec (x), mpfr_log_prec, x, rnd),
     ("y[%Pu]=%.*Rg exp=%" MPFR_EXP_FSPEC "d inex=%d", mpfr_get_prec (y),
      mpfr_log_prec, y, (mpfr_eexp_t) *exp, inex));

  if (MPFR_UNLIKELY(MPFR_IS_SINGULAR(x)))
    {
      if (MPFR_IS_NAN(x))
        {
          MPFR_SET_NAN(y);
          MPFR_RET_NAN; /* exp is unspecified */
        }
      else if (MPFR_IS_INF(x))
        {
          MPFR_SET_INF(y);
          MPFR_SET_SAME_SIGN(y,x);
          MPFR_RET(0); /* exp is unspecified */
        }
      else
        {
          MPFR_SET_ZERO(y);
          MPFR_SET_SAME_SIGN(y,x);
          *exp = 0;
          MPFR_RET(0);
        }
    }

  MPFR_BLOCK (flags, inex = mpfr_set (y, x, rnd));
  __gmpfr_flags = saved_flags;

  /* Possible overflow due to the rounding, no possible underflow. */

  if (MPFR_UNLIKELY (MPFR_OVERFLOW (flags)))
    {
      int inex2;

      /* An overflow here means that the exponent of y would be larger than
         the one of x, thus x would be rounded to the next power of 2, and
         the returned y should be 1/2 in absolute value, rounded (i.e. with
         possible underflow or overflow). This also implies that x and y are
         different objects, so that the exponent of x has not been lost. */
      MPFR_LOG_MSG (("Internal overflow\n", 0));
      MPFR_ASSERTD (x != y);
      *exp = MPFR_GET_EXP (x) + 1;
      inex2 = mpfr_set_si_2exp (y, MPFR_INT_SIGN (x), -1, rnd);
      MPFR_LOG_MSG (("inex=%d inex2=%d\n", inex, inex2));
      if (inex2 != 0)
        inex = inex2;
      MPFR_RET (inex);
    }

  *exp = MPFR_GET_EXP (y);
  /* Do not use MPFR_SET_EXP because the range has not been checked yet. */
  MPFR_EXP (y) = 0;
  return mpfr_check_range (y, inex, rnd);
}
Ejemplo n.º 10
0
int
mpfr_atan2 (mpfr_ptr dest, mpfr_srcptr y, mpfr_srcptr x, mpfr_rnd_t rnd_mode)
{
  mpfr_t tmp, pi;
  int inexact;
  mpfr_prec_t prec;
  mpfr_exp_t e;
  MPFR_SAVE_EXPO_DECL (expo);
  MPFR_ZIV_DECL (loop);

  MPFR_LOG_FUNC
    (("y[%Pu]=%.*Rg x[%Pu]=%.*Rg rnd=%d",
      mpfr_get_prec (y), mpfr_log_prec, y,
      mpfr_get_prec (x), mpfr_log_prec, x, rnd_mode),
     ("atan[%Pu]=%.*Rg inexact=%d",
      mpfr_get_prec (dest), mpfr_log_prec, dest, inexact));

  /* Special cases */
  if (MPFR_ARE_SINGULAR (x, y))
    {
      /* atan2(0, 0) does not raise the "invalid" floating-point
         exception, nor does atan2(y, 0) raise the "divide-by-zero"
         floating-point exception.
         -- atan2(±0, -0) returns ±pi.313)
         -- atan2(±0, +0) returns ±0.
         -- atan2(±0, x) returns ±pi, for x < 0.
         -- atan2(±0, x) returns ±0, for x > 0.
         -- atan2(y, ±0) returns -pi/2 for y < 0.
         -- atan2(y, ±0) returns pi/2 for y > 0.
         -- atan2(±oo, -oo) returns ±3pi/4.
         -- atan2(±oo, +oo) returns ±pi/4.
         -- atan2(±oo, x) returns ±pi/2, for finite x.
         -- atan2(±y, -oo) returns ±pi, for finite y > 0.
         -- atan2(±y, +oo) returns ±0, for finite y > 0.
      */
      if (MPFR_IS_NAN (x) || MPFR_IS_NAN (y))
        {
          MPFR_SET_NAN (dest);
          MPFR_RET_NAN;
        }
      if (MPFR_IS_ZERO (y))
        {
          if (MPFR_IS_NEG (x)) /* +/- PI */
            {
            set_pi:
              if (MPFR_IS_NEG (y))
                {
                  inexact =  mpfr_const_pi (dest, MPFR_INVERT_RND (rnd_mode));
                  MPFR_CHANGE_SIGN (dest);
                  return -inexact;
                }
              else
                return mpfr_const_pi (dest, rnd_mode);
            }
          else /* +/- 0 */
            {
            set_zero:
              MPFR_SET_ZERO (dest);
              MPFR_SET_SAME_SIGN (dest, y);
              return 0;
            }
        }
      if (MPFR_IS_ZERO (x))
        {
          return pi_div_2ui (dest, 1, MPFR_IS_NEG (y), rnd_mode);
        }
      if (MPFR_IS_INF (y))
        {
          if (!MPFR_IS_INF (x)) /* +/- PI/2 */
            return pi_div_2ui (dest, 1, MPFR_IS_NEG (y), rnd_mode);
          else if (MPFR_IS_POS (x)) /* +/- PI/4 */
            return pi_div_2ui (dest, 2, MPFR_IS_NEG (y), rnd_mode);
          else /* +/- 3*PI/4: Ugly since we have to round properly */
            {
              mpfr_t tmp2;
              MPFR_ZIV_DECL (loop2);
              mpfr_prec_t prec2 = MPFR_PREC (dest) + 10;

              MPFR_SAVE_EXPO_MARK (expo);
              mpfr_init2 (tmp2, prec2);
              MPFR_ZIV_INIT (loop2, prec2);
              for (;;)
                {
                  mpfr_const_pi (tmp2, MPFR_RNDN);
                  mpfr_mul_ui (tmp2, tmp2, 3, MPFR_RNDN); /* Error <= 2  */
                  mpfr_div_2ui (tmp2, tmp2, 2, MPFR_RNDN);
                  if (mpfr_round_p (MPFR_MANT (tmp2), MPFR_LIMB_SIZE (tmp2),
                                    MPFR_PREC (tmp2) - 2,
                                    MPFR_PREC (dest) + (rnd_mode == MPFR_RNDN)))
                    break;
                  MPFR_ZIV_NEXT (loop2, prec2);
                  mpfr_set_prec (tmp2, prec2);
                }
              MPFR_ZIV_FREE (loop2);
              if (MPFR_IS_NEG (y))
                MPFR_CHANGE_SIGN (tmp2);
              inexact = mpfr_set (dest, tmp2, rnd_mode);
              mpfr_clear (tmp2);
              MPFR_SAVE_EXPO_FREE (expo);
              return mpfr_check_range (dest, inexact, rnd_mode);
            }
        }
      MPFR_ASSERTD (MPFR_IS_INF (x));
      if (MPFR_IS_NEG (x))
        goto set_pi;
      else
        goto set_zero;
    }

  /* When x is a power of two, we call directly atan(y/x) since y/x is
     exact. */
  if (MPFR_UNLIKELY (MPFR_IS_POWER_OF_2 (x)))
    {
      int r;
      mpfr_t yoverx;
      unsigned int saved_flags = __gmpfr_flags;

      mpfr_init2 (yoverx, MPFR_PREC (y));
      if (MPFR_LIKELY (mpfr_div_2si (yoverx, y, MPFR_GET_EXP (x) - 1,
                                     MPFR_RNDN) == 0))
        {
          /* Here the flags have not changed due to mpfr_div_2si. */
          r = mpfr_atan (dest, yoverx, rnd_mode);
          mpfr_clear (yoverx);
          return r;
        }
      else
        {
          /* Division is inexact because of a small exponent range */
          mpfr_clear (yoverx);
          __gmpfr_flags = saved_flags;
        }
    }

  MPFR_SAVE_EXPO_MARK (expo);

  /* Set up initial prec */
  prec = MPFR_PREC (dest) + 3 + MPFR_INT_CEIL_LOG2 (MPFR_PREC (dest));
  mpfr_init2 (tmp, prec);

  MPFR_ZIV_INIT (loop, prec);
  if (MPFR_IS_POS (x))
    /* use atan2(y,x) = atan(y/x) */
    for (;;)
      {
        int div_inex;
        MPFR_BLOCK_DECL (flags);

        MPFR_BLOCK (flags, div_inex = mpfr_div (tmp, y, x, MPFR_RNDN));
        if (div_inex == 0)
          {
            /* Result is exact. */
            inexact = mpfr_atan (dest, tmp, rnd_mode);
            goto end;
          }

        /* Error <= ulp (tmp) except in case of underflow or overflow. */

        /* If the division underflowed, since |atan(z)/z| < 1, we have
           an underflow. */
        if (MPFR_UNDERFLOW (flags))
          {
            int sign;

            /* In the case MPFR_RNDN with 2^(emin-2) < |y/x| < 2^(emin-1):
               The smallest significand value S > 1 of |y/x| is:
                 * 1 / (1 - 2^(-px))                        if py <= px,
                 * (1 - 2^(-px) + 2^(-py)) / (1 - 2^(-px))  if py >= px.
               Therefore S - 1 > 2^(-pz), where pz = max(px,py). We have:
               atan(|y/x|) > atan(z), where z = 2^(emin-2) * (1 + 2^(-pz)).
                           > z - z^3 / 3.
                           > 2^(emin-2) * (1 + 2^(-pz) - 2^(2 emin - 5))
               Assuming pz <= -2 emin + 5, we can round away from zero
               (this is what mpfr_underflow always does on MPFR_RNDN).
               In the case MPFR_RNDN with |y/x| <= 2^(emin-2), we round
               toward zero, as |atan(z)/z| < 1. */
            MPFR_ASSERTN (MPFR_PREC_MAX <=
                          2 * (mpfr_uexp_t) - MPFR_EMIN_MIN + 5);
            if (rnd_mode == MPFR_RNDN && MPFR_IS_ZERO (tmp))
              rnd_mode = MPFR_RNDZ;
            sign = MPFR_SIGN (tmp);
            mpfr_clear (tmp);
            MPFR_SAVE_EXPO_FREE (expo);
            return mpfr_underflow (dest, rnd_mode, sign);
          }

        mpfr_atan (tmp, tmp, MPFR_RNDN);   /* Error <= 2*ulp (tmp) since
                                             abs(D(arctan)) <= 1 */
        /* TODO: check that the error bound is correct in case of overflow. */
        /* FIXME: Error <= ulp(tmp) ? */
        if (MPFR_LIKELY (MPFR_CAN_ROUND (tmp, prec - 2, MPFR_PREC (dest),
                                         rnd_mode)))
          break;
        MPFR_ZIV_NEXT (loop, prec);
        mpfr_set_prec (tmp, prec);
      }
  else /* x < 0 */
    /*  Use sign(y)*(PI - atan (|y/x|)) */
    {
      mpfr_init2 (pi, prec);
      for (;;)
        {
          mpfr_div (tmp, y, x, MPFR_RNDN);   /* Error <= ulp (tmp) */
          /* If tmp is 0, we have |y/x| <= 2^(-emin-2), thus
             atan|y/x| < 2^(-emin-2). */
          MPFR_SET_POS (tmp);               /* no error */
          mpfr_atan (tmp, tmp, MPFR_RNDN);   /* Error <= 2*ulp (tmp) since
                                               abs(D(arctan)) <= 1 */
          mpfr_const_pi (pi, MPFR_RNDN);     /* Error <= ulp(pi) /2 */
          e = MPFR_NOTZERO(tmp) ? MPFR_GET_EXP (tmp) : __gmpfr_emin - 1;
          mpfr_sub (tmp, pi, tmp, MPFR_RNDN);          /* see above */
          if (MPFR_IS_NEG (y))
            MPFR_CHANGE_SIGN (tmp);
          /* Error(tmp) <= (1/2+2^(EXP(pi)-EXP(tmp)-1)+2^(e-EXP(tmp)+1))*ulp
                        <= 2^(MAX (MAX (EXP(PI)-EXP(tmp)-1, e-EXP(tmp)+1),
                                        -1)+2)*ulp(tmp) */
          e = MAX (MAX (MPFR_GET_EXP (pi)-MPFR_GET_EXP (tmp) - 1,
                        e - MPFR_GET_EXP (tmp) + 1), -1) + 2;
          if (MPFR_LIKELY (MPFR_CAN_ROUND (tmp, prec - e, MPFR_PREC (dest),
                                           rnd_mode)))
            break;
          MPFR_ZIV_NEXT (loop, prec);
          mpfr_set_prec (tmp, prec);
          mpfr_set_prec (pi, prec);
        }
      mpfr_clear (pi);
    }
  inexact = mpfr_set (dest, tmp, rnd_mode);

 end:
  MPFR_ZIV_FREE (loop);
  mpfr_clear (tmp);
  MPFR_SAVE_EXPO_FREE (expo);
  return mpfr_check_range (dest, inexact, rnd_mode);
}
Ejemplo n.º 11
0
Archivo: yn.c Proyecto: Kirija/XPIR
int
mpfr_yn (mpfr_ptr res, long n, mpfr_srcptr z, mpfr_rnd_t r)
{
  int inex;
  unsigned long absn;
  MPFR_SAVE_EXPO_DECL (expo);

  MPFR_LOG_FUNC
    (("n=%ld x[%Pu]=%.*Rg rnd=%d", n, mpfr_get_prec (z), mpfr_log_prec, z, r),
     ("y[%Pu]=%.*Rg inexact=%d", mpfr_get_prec (res), mpfr_log_prec, res, inex));

  absn = SAFE_ABS (unsigned long, n);

  if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (z)))
    {
      if (MPFR_IS_NAN (z))
        {
          MPFR_SET_NAN (res); /* y(n,NaN) = NaN */
          MPFR_RET_NAN;
        }
      /* y(n,z) tends to zero when z goes to +Inf, oscillating around
         0. We choose to return +0 in that case. */
      else if (MPFR_IS_INF (z))
        {
          if (MPFR_SIGN(z) > 0)
            return mpfr_set_ui (res, 0, r);
          else /* y(n,-Inf) = NaN */
            {
              MPFR_SET_NAN (res);
              MPFR_RET_NAN;
            }
        }
      else /* y(n,z) tends to -Inf for n >= 0 or n even, to +Inf otherwise,
              when z goes to zero */
        {
          MPFR_SET_INF(res);
          if (n >= 0 || ((unsigned long) n & 1) == 0)
            MPFR_SET_NEG(res);
          else
            MPFR_SET_POS(res);
          mpfr_set_divby0 ();
          MPFR_RET(0);
        }
    }

  /* for z < 0, y(n,z) is imaginary except when j(n,|z|) = 0, which we
     assume does not happen for a rational z. */
  if (MPFR_SIGN(z) < 0)
    {
      MPFR_SET_NAN (res);
      MPFR_RET_NAN;
    }

  /* now z is not singular, and z > 0 */

  MPFR_SAVE_EXPO_MARK (expo);

  /* Deal with tiny arguments. We have:
     y0(z) = 2 log(z)/Pi + 2 (euler - log(2))/Pi + O(log(z)*z^2), more
     precisely for 0 <= z <= 1/2, with g(z) = 2/Pi + 2(euler-log(2))/Pi/log(z),
                g(z) - 0.41*z^2 < y0(z)/log(z) < g(z)
     thus since log(z) is negative:
             g(z)*log(z) < y0(z) < (g(z) - z^2/2)*log(z)
     and since |g(z)| >= 0.63 for 0 <= z <= 1/2, the relative error on
     y0(z)/log(z) is bounded by 0.41*z^2/0.63 <= 0.66*z^2.
     Note: we use both the main term in log(z) and the constant term, because
     otherwise the relative error would be only in 1/log(|log(z)|).
  */
  if (n == 0 && MPFR_EXP(z) < - (mpfr_exp_t) (MPFR_PREC(res) / 2))
    {
      mpfr_t l, h, t, logz;
      mpfr_prec_t prec;
      int ok, inex2;

      prec = MPFR_PREC(res) + 10;
      mpfr_init2 (l, prec);
      mpfr_init2 (h, prec);
      mpfr_init2 (t, prec);
      mpfr_init2 (logz, prec);
      /* first enclose log(z) + euler - log(2) = log(z/2) + euler */
      mpfr_log (logz, z, MPFR_RNDD);    /* lower bound of log(z) */
      mpfr_set (h, logz, MPFR_RNDU);    /* exact */
      mpfr_nextabove (h);              /* upper bound of log(z) */
      mpfr_const_euler (t, MPFR_RNDD);  /* lower bound of euler */
      mpfr_add (l, logz, t, MPFR_RNDD); /* lower bound of log(z) + euler */
      mpfr_nextabove (t);              /* upper bound of euler */
      mpfr_add (h, h, t, MPFR_RNDU);    /* upper bound of log(z) + euler */
      mpfr_const_log2 (t, MPFR_RNDU);   /* upper bound of log(2) */
      mpfr_sub (l, l, t, MPFR_RNDD);    /* lower bound of log(z/2) + euler */
      mpfr_nextbelow (t);              /* lower bound of log(2) */
      mpfr_sub (h, h, t, MPFR_RNDU);    /* upper bound of log(z/2) + euler */
      mpfr_const_pi (t, MPFR_RNDU);     /* upper bound of Pi */
      mpfr_div (l, l, t, MPFR_RNDD);    /* lower bound of (log(z/2)+euler)/Pi */
      mpfr_nextbelow (t);              /* lower bound of Pi */
      mpfr_div (h, h, t, MPFR_RNDD);    /* upper bound of (log(z/2)+euler)/Pi */
      mpfr_mul_2ui (l, l, 1, MPFR_RNDD); /* lower bound on g(z)*log(z) */
      mpfr_mul_2ui (h, h, 1, MPFR_RNDU); /* upper bound on g(z)*log(z) */
      /* we now have l <= g(z)*log(z) <= h, and we need to add -z^2/2*log(z)
         to h */
      mpfr_mul (t, z, z, MPFR_RNDU);     /* upper bound on z^2 */
      /* since logz is negative, a lower bound corresponds to an upper bound
         for its absolute value */
      mpfr_neg (t, t, MPFR_RNDD);
      mpfr_div_2ui (t, t, 1, MPFR_RNDD);
      mpfr_mul (t, t, logz, MPFR_RNDU); /* upper bound on z^2/2*log(z) */
      mpfr_add (h, h, t, MPFR_RNDU);
      inex = mpfr_prec_round (l, MPFR_PREC(res), r);
      inex2 = mpfr_prec_round (h, MPFR_PREC(res), r);
      /* we need h=l and inex=inex2 */
      ok = (inex == inex2) && mpfr_equal_p (l, h);
      if (ok)
        mpfr_set (res, h, r); /* exact */
      mpfr_clear (l);
      mpfr_clear (h);
      mpfr_clear (t);
      mpfr_clear (logz);
      if (ok)
        goto end;
    }

  /* small argument check for y1(z) = -2/Pi/z + O(log(z)):
     for 0 <= z <= 1, |y1(z) + 2/Pi/z| <= 0.25 */
  if (n == 1 && MPFR_EXP(z) + 1 < - (mpfr_exp_t) MPFR_PREC(res))
    {
      mpfr_t y;
      mpfr_prec_t prec;
      mpfr_exp_t err1;
      int ok;
      MPFR_BLOCK_DECL (flags);

      /* since 2/Pi > 0.5, and |y1(z)| >= |2/Pi/z|, if z <= 2^(-emax-1),
         then |y1(z)| > 2^emax */
      prec = MPFR_PREC(res) + 10;
      mpfr_init2 (y, prec);
      mpfr_const_pi (y, MPFR_RNDU); /* Pi*(1+u)^2, where here and below u
                                      represents a quantity <= 1/2^prec */
      mpfr_mul (y, y, z, MPFR_RNDU); /* Pi*z * (1+u)^4, upper bound */
      MPFR_BLOCK (flags, mpfr_ui_div (y, 2, y, MPFR_RNDZ));
      /* 2/Pi/z * (1+u)^6, lower bound, with possible overflow */
      if (MPFR_OVERFLOW (flags))
        {
          mpfr_clear (y);
          MPFR_SAVE_EXPO_FREE (expo);
          return mpfr_overflow (res, r, -1);
        }
      mpfr_neg (y, y, MPFR_RNDN);
      /* (1+u)^6 can be written 1+7u [for another value of u], thus the
         error on 2/Pi/z is less than 7ulp(y). The truncation error is less
         than 1/4, thus if ulp(y)>=1/4, the total error is less than 8ulp(y),
         otherwise it is less than 1/4+7/8 <= 2. */
      if (MPFR_EXP(y) + 2 >= MPFR_PREC(y)) /* ulp(y) >= 1/4 */
        err1 = 3;
      else /* ulp(y) <= 1/8 */
        err1 = (mpfr_exp_t) MPFR_PREC(y) - MPFR_EXP(y) + 1;
      ok = MPFR_CAN_ROUND (y, prec - err1, MPFR_PREC(res), r);
      if (ok)
        inex = mpfr_set (res, y, r);
      mpfr_clear (y);
      if (ok)
        goto end;
    }

  /* we can use the asymptotic expansion as soon as z > p log(2)/2,
     but to get some margin we use it for z > p/2 */
  if (mpfr_cmp_ui (z, MPFR_PREC(res) / 2 + 3) > 0)
    {
      inex = mpfr_yn_asympt (res, n, z, r);
      if (inex != 0)
        goto end;
    }

  /* General case */
  {
    mpfr_prec_t prec;
    mpfr_exp_t err1, err2, err3;
    mpfr_t y, s1, s2, s3;
    MPFR_ZIV_DECL (loop);

    mpfr_init (y);
    mpfr_init (s1);
    mpfr_init (s2);
    mpfr_init (s3);

    prec = MPFR_PREC(res) + 2 * MPFR_INT_CEIL_LOG2 (MPFR_PREC (res)) + 13;
    MPFR_ZIV_INIT (loop, prec);
    for (;;)
      {
        mpfr_set_prec (y, prec);
        mpfr_set_prec (s1, prec);
        mpfr_set_prec (s2, prec);
        mpfr_set_prec (s3, prec);

        mpfr_mul (y, z, z, MPFR_RNDN);
        mpfr_div_2ui (y, y, 2, MPFR_RNDN); /* z^2/4 */

        /* store (z/2)^n temporarily in s2 */
        mpfr_pow_ui (s2, z, absn, MPFR_RNDN);
        mpfr_div_2si (s2, s2, absn, MPFR_RNDN);

        /* compute S1 * (z/2)^(-n) */
        if (n == 0)
          {
            mpfr_set_ui (s1, 0, MPFR_RNDN);
            err1 = 0;
          }
        else
          err1 = mpfr_yn_s1 (s1, y, absn - 1);
        mpfr_div (s1, s1, s2, MPFR_RNDN); /* (z/2)^(-n) * S1 */
        /* See algorithms.tex: the relative error on s1 is bounded by
           (3n+3)*2^(e+1-prec). */
        err1 = MPFR_INT_CEIL_LOG2 (3 * absn + 3) + err1 + 1;
        /* rel_err(s1) <= 2^(err1-prec), thus err(s1) <= 2^err1 ulps */

        /* compute (z/2)^n * S3 */
        mpfr_neg (y, y, MPFR_RNDN); /* -z^2/4 */
        err3 = mpfr_yn_s3 (s3, y, s2, absn); /* (z/2)^n * S3 */
        /* the error on s3 is bounded by 2^err3 ulps */

        /* add s1+s3 */
        err1 += MPFR_EXP(s1);
        mpfr_add (s1, s1, s3, MPFR_RNDN);
        /* the error is bounded by 1/2 + 2^err1*2^(- EXP(s1))
           + 2^err3*2^(EXP(s3) - EXP(s1)) */
        err3 += MPFR_EXP(s3);
        err1 = (err3 > err1) ? err3 + 1 : err1 + 1;
        err1 -= MPFR_EXP(s1);
        err1 = (err1 >= 0) ? err1 + 1 : 1;
        /* now the error on s1 is bounded by 2^err1*ulp(s1) */

        /* compute S2 */
        mpfr_div_2ui (s2, z, 1, MPFR_RNDN); /* z/2 */
        mpfr_log (s2, s2, MPFR_RNDN); /* log(z/2) */
        mpfr_const_euler (s3, MPFR_RNDN);
        err2 = MPFR_EXP(s2) > MPFR_EXP(s3) ? MPFR_EXP(s2) : MPFR_EXP(s3);
        mpfr_add (s2, s2, s3, MPFR_RNDN); /* log(z/2) + gamma */
        err2 -= MPFR_EXP(s2);
        mpfr_mul_2ui (s2, s2, 1, MPFR_RNDN); /* 2*(log(z/2) + gamma) */
        mpfr_jn (s3, absn, z, MPFR_RNDN); /* Jn(z) */
        mpfr_mul (s2, s2, s3, MPFR_RNDN); /* 2*(log(z/2) + gamma)*Jn(z) */
        err2 += 4; /* the error on s2 is bounded by 2^err2 ulps, see
                      algorithms.tex */

        /* add all three sums */
        err1 += MPFR_EXP(s1); /* the error on s1 is bounded by 2^err1 */
        err2 += MPFR_EXP(s2); /* the error on s2 is bounded by 2^err2 */
        mpfr_sub (s2, s2, s1, MPFR_RNDN); /* s2 - (s1+s3) */
        err2 = (err1 > err2) ? err1 + 1 : err2 + 1;
        err2 -= MPFR_EXP(s2);
        err2 = (err2 >= 0) ? err2 + 1 : 1;
        /* now the error on s2 is bounded by 2^err2*ulp(s2) */
        mpfr_const_pi (y, MPFR_RNDN); /* error bounded by 1 ulp */
        mpfr_div (s2, s2, y, MPFR_RNDN); /* error bounded by
                                           2^(err2+1)*ulp(s2) */
        err2 ++;

        if (MPFR_LIKELY (MPFR_CAN_ROUND (s2, prec - err2, MPFR_PREC(res), r)))
          break;
        MPFR_ZIV_NEXT (loop, prec);
      }
    MPFR_ZIV_FREE (loop);

    /* Assume two's complement for the test n & 1 */
    inex = mpfr_set4 (res, s2, r, n >= 0 || (n & 1) == 0 ?
                      MPFR_SIGN (s2) : - MPFR_SIGN (s2));

    mpfr_clear (y);
    mpfr_clear (s1);
    mpfr_clear (s2);
    mpfr_clear (s3);
  }

 end:
  MPFR_SAVE_EXPO_FREE (expo);
  return mpfr_check_range (res, inex, r);
}
Ejemplo n.º 12
0
int
mpfr_acosh (mpfr_ptr y, mpfr_srcptr x , mpfr_rnd_t rnd_mode)
{
    MPFR_SAVE_EXPO_DECL (expo);
    int inexact;
    int comp;

    MPFR_LOG_FUNC (
        ("x[%Pu]=%.*Rg rnd=%d", mpfr_get_prec (x), mpfr_log_prec, x, rnd_mode),
        ("y[%Pu]=%.*Rg inexact=%d", mpfr_get_prec (y), mpfr_log_prec, y,
         inexact));

    /* Deal with special cases */
    if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
    {
        /* Nan, or zero or -Inf */
        if (MPFR_IS_INF (x) && MPFR_IS_POS (x))
        {
            MPFR_SET_INF (y);
            MPFR_SET_POS (y);
            MPFR_RET (0);
        }
        else /* Nan, or zero or -Inf */
        {
            MPFR_SET_NAN (y);
            MPFR_RET_NAN;
        }
    }
    comp = mpfr_cmp_ui (x, 1);
    if (MPFR_UNLIKELY (comp < 0))
    {
        MPFR_SET_NAN (y);
        MPFR_RET_NAN;
    }
    else if (MPFR_UNLIKELY (comp == 0))
    {
        MPFR_SET_ZERO (y); /* acosh(1) = 0 */
        MPFR_SET_POS (y);
        MPFR_RET (0);
    }
    MPFR_SAVE_EXPO_MARK (expo);

    /* General case */
    {
        /* Declaration of the intermediary variables */
        mpfr_t t;
        /* Declaration of the size variables */
        mpfr_prec_t Ny = MPFR_PREC(y);   /* Precision of output variable */
        mpfr_prec_t Nt;                  /* Precision of the intermediary variable */
        mpfr_exp_t  err, exp_te, d;      /* Precision of error */
        MPFR_ZIV_DECL (loop);

        /* compute the precision of intermediary variable */
        /* the optimal number of bits : see algorithms.tex */
        Nt = Ny + 4 + MPFR_INT_CEIL_LOG2 (Ny);

        /* initialization of intermediary variables */
        mpfr_init2 (t, Nt);

        /* First computation of acosh */
        MPFR_ZIV_INIT (loop, Nt);
        for (;;)
        {
            MPFR_BLOCK_DECL (flags);

            /* compute acosh */
            MPFR_BLOCK (flags, mpfr_mul (t, x, x, MPFR_RNDD));  /* x^2 */
            if (MPFR_OVERFLOW (flags))
            {
                mpfr_t ln2;
                mpfr_prec_t pln2;

                /* As x is very large and the precision is not too large, we
                   assume that we obtain the same result by evaluating ln(2x).
                   We need to compute ln(x) + ln(2) as 2x can overflow. TODO:
                   write a proof and add an MPFR_ASSERTN. */
                mpfr_log (t, x, MPFR_RNDN);  /* err(log) < 1/2 ulp(t) */
                pln2 = Nt - MPFR_PREC_MIN < MPFR_GET_EXP (t) ?
                       MPFR_PREC_MIN : Nt - MPFR_GET_EXP (t);
                mpfr_init2 (ln2, pln2);
                mpfr_const_log2 (ln2, MPFR_RNDN);  /* err(ln2) < 1/2 ulp(t) */
                mpfr_add (t, t, ln2, MPFR_RNDN);  /* err <= 3/2 ulp(t) */
                mpfr_clear (ln2);
                err = 1;
            }
            else
            {
                exp_te = MPFR_GET_EXP (t);
                mpfr_sub_ui (t, t, 1, MPFR_RNDD);   /* x^2-1 */
                if (MPFR_UNLIKELY (MPFR_IS_ZERO (t)))
                {
                    /* This means that x is very close to 1: x = 1 + t with
                       t < 2^(-Nt). We have: acosh(x) = sqrt(2t) (1 - eps(t))
                       with 0 < eps(t) < t / 12. */
                    mpfr_sub_ui (t, x, 1, MPFR_RNDD);   /* t = x - 1 */
                    mpfr_mul_2ui (t, t, 1, MPFR_RNDN);  /* 2t */
                    mpfr_sqrt (t, t, MPFR_RNDN);        /* sqrt(2t) */
                    err = 1;
                }
                else
                {
                    d = exp_te - MPFR_GET_EXP (t);
                    mpfr_sqrt (t, t, MPFR_RNDN);        /* sqrt(x^2-1) */
                    mpfr_add (t, t, x, MPFR_RNDN);      /* sqrt(x^2-1)+x */
                    mpfr_log (t, t, MPFR_RNDN);         /* ln(sqrt(x^2-1)+x) */

                    /* error estimate -- see algorithms.tex */
                    err = 3 + MAX (1, d) - MPFR_GET_EXP (t);
                    /* error is bounded by 1/2 + 2^err <= 2^(max(0,1+err)) */
                    err = MAX (0, 1 + err);
                }
            }

            if (MPFR_LIKELY (MPFR_CAN_ROUND (t, Nt - err, Ny, rnd_mode)))
                break;

            /* reactualisation of the precision */
            MPFR_ZIV_NEXT (loop, Nt);
            mpfr_set_prec (t, Nt);
        }
        MPFR_ZIV_FREE (loop);

        inexact = mpfr_set (y, t, rnd_mode);

        mpfr_clear (t);
    }

    MPFR_SAVE_EXPO_FREE (expo);
    return mpfr_check_range (y, inexact, rnd_mode);
}