Ejemplo n.º 1
0
void mp_binary_set_val(char struct_type, char val_type, mp_obj_t val_in, byte **ptr) {
    byte *p = *ptr;
    mp_uint_t align;

    size_t size = mp_binary_get_size(struct_type, val_type, &align);
    if (struct_type == '@') {
        // Make pointer aligned
        p = (byte*)MP_ALIGN(p, (size_t)align);
        if (MP_ENDIANNESS_LITTLE) {
            struct_type = '<';
        } else {
            struct_type = '>';
        }
    }
    *ptr = p + size;

    mp_uint_t val;
    switch (val_type) {
        case 'O':
            val = (mp_uint_t)val_in;
            break;
#if MICROPY_PY_BUILTINS_FLOAT
        case 'f': {
            union { uint32_t i; float f; } fp_sp;
            fp_sp.f = mp_obj_get_float(val_in);
            val = fp_sp.i;
            break;
        }
        case 'd': {
            union { uint64_t i64; uint32_t i32[2]; double f; } fp_dp;
            fp_dp.f = mp_obj_get_float(val_in);
            if (BYTES_PER_WORD == 8) {
                val = fp_dp.i64;
            } else {
                int be = struct_type == '>';
                mp_binary_set_int(sizeof(uint32_t), be, p, fp_dp.i32[MP_ENDIANNESS_BIG ^ be]);
                p += sizeof(uint32_t);
                val = fp_dp.i32[MP_ENDIANNESS_LITTLE ^ be];
            }
            break;
        }
#endif
        default:
            #if MICROPY_LONGINT_IMPL != MICROPY_LONGINT_IMPL_NONE
            if (MP_OBJ_IS_TYPE(val_in, &mp_type_int)) {
                mp_obj_int_to_bytes_impl(val_in, struct_type == '>', size, p);
                return;
            } else
            #endif
            {
                val = mp_obj_get_int(val_in);
                // sign extend if needed
                if (BYTES_PER_WORD < 8 && size > sizeof(val) && is_signed(val_type) && (mp_int_t)val < 0) {
                    memset(p + sizeof(val), 0xff, size - sizeof(val));
                }
            }
    }

    mp_binary_set_int(MIN((size_t)size, sizeof(val)), struct_type == '>', p, val);
}
Ejemplo n.º 2
0
mp_obj_t mp_binary_get_val(char struct_type, char val_type, byte **ptr) {
    byte *p = *ptr;
    mp_uint_t align;

    size_t size = mp_binary_get_size(struct_type, val_type, &align);
    if (struct_type == '@') {
        // Make pointer aligned
        p = (byte*)MP_ALIGN(p, (size_t)align);
        #if MP_ENDIANNESS_LITTLE
        struct_type = '<';
        #else
        struct_type = '>';
        #endif
    }
    *ptr = p + size;

    long long val = mp_binary_get_int(size, is_signed(val_type), (struct_type == '>'), p);

    if (val_type == 'O') {
        return (mp_obj_t)(mp_uint_t)val;
    } else if (val_type == 'S') {
        const char *s_val = (const char*)(uintptr_t)(mp_uint_t)val;
        return mp_obj_new_str(s_val, strlen(s_val), false);
#if MICROPY_PY_BUILTINS_FLOAT
    } else if (val_type == 'f') {
        union { uint32_t i; float f; } fpu = {val};
        return mp_obj_new_float(fpu.f);
    } else if (val_type == 'd') {
        union { uint64_t i; double f; } fpu = {val};
        return mp_obj_new_float(fpu.f);
#endif
    } else if (is_signed(val_type)) {
        if ((long long)MP_SMALL_INT_MIN <= val && val <= (long long)MP_SMALL_INT_MAX) {
            return mp_obj_new_int((mp_int_t)val);
        } else {
            return mp_obj_new_int_from_ll(val);
        }
    } else {
        if ((unsigned long long)val <= (unsigned long long)MP_SMALL_INT_MAX) {
            return mp_obj_new_int_from_uint((mp_uint_t)val);
        } else {
            return mp_obj_new_int_from_ull(val);
        }
    }
}
Ejemplo n.º 3
0
/* Do modular exponentiation using integer multiply code. */
mp_err mp_exptmod_safe_i(const mp_int *   montBase, 
                    const mp_int *   exponent, 
		    const mp_int *   modulus, 
		    mp_int *         result, 
		    mp_mont_modulus *mmm, 
		    int              nLen, 
		    mp_size          bits_in_exponent, 
		    mp_size          window_bits,
		    mp_size          num_powers)
{
  mp_int *pa1, *pa2, *ptmp;
  mp_size i;
  mp_size first_window;
  mp_err  res;
  int     expOff;
  mp_int  accum1, accum2, accum[WEAVE_WORD_SIZE];
  mp_int  tmp;
  unsigned char *powersArray;
  unsigned char *powers;

  MP_DIGITS(&accum1) = 0;
  MP_DIGITS(&accum2) = 0;
  MP_DIGITS(&accum[0]) = 0;
  MP_DIGITS(&accum[1]) = 0;
  MP_DIGITS(&accum[2]) = 0;
  MP_DIGITS(&accum[3]) = 0;
  MP_DIGITS(&tmp) = 0;

  powersArray = (unsigned char *)malloc(num_powers*(nLen*sizeof(mp_digit)+1));
  if (powersArray == NULL) {
    res = MP_MEM;
    goto CLEANUP;
  }

  /* powers[i] = base ** (i); */
  powers = (unsigned char *)MP_ALIGN(powersArray,num_powers);

  /* grab the first window value. This allows us to preload accumulator1
   * and save a conversion, some squares and a multiple*/
  MP_CHECKOK( mpl_get_bits(exponent, 
				bits_in_exponent-window_bits, window_bits) );
  first_window = (mp_size)res;

  MP_CHECKOK( mp_init_size(&accum1, 3 * nLen + 2) );
  MP_CHECKOK( mp_init_size(&accum2, 3 * nLen + 2) );
  MP_CHECKOK( mp_init_size(&tmp, 3 * nLen + 2) );

  /* build the first WEAVE_WORD powers inline */
  /* if WEAVE_WORD_SIZE is not 4, this code will have to change */
  if (num_powers > 2) {
    MP_CHECKOK( mp_init_size(&accum[0], 3 * nLen + 2) );
    MP_CHECKOK( mp_init_size(&accum[1], 3 * nLen + 2) );
    MP_CHECKOK( mp_init_size(&accum[2], 3 * nLen + 2) );
    MP_CHECKOK( mp_init_size(&accum[3], 3 * nLen + 2) );
    mp_set(&accum[0], 1);
    MP_CHECKOK( s_mp_to_mont(&accum[0], mmm, &accum[0]) );
    MP_CHECKOK( mp_copy(montBase, &accum[1]) );
    SQR(montBase, &accum[2]);
    MUL_NOWEAVE(montBase, &accum[2], &accum[3]);
    MP_CHECKOK( mpi_to_weave(accum, powers, nLen, num_powers) );
    if (first_window < 4) {
      MP_CHECKOK( mp_copy(&accum[first_window], &accum1) );
      first_window = num_powers;
    }
  } else {
      if (first_window == 0) {
        mp_set(&accum1, 1);
        MP_CHECKOK( s_mp_to_mont(&accum1, mmm, &accum1) );
      } else {
        /* assert first_window == 1? */
        MP_CHECKOK( mp_copy(montBase, &accum1) );
      }
  }

  /*
   * calculate all the powers in the powers array.
   * this adds 2**(k-1)-2 square operations over just calculating the
   * odd powers where k is the window size in the two other mp_modexpt
   * implementations in this file. We will get some of that
   * back by not needing the first 'k' squares and one multiply for the 
   * first window */ 
  for (i = WEAVE_WORD_SIZE; i < num_powers; i++) {
    int acc_index = i & (WEAVE_WORD_SIZE-1); /* i % WEAVE_WORD_SIZE */
    if ( i & 1 ) {
      MUL_NOWEAVE(montBase, &accum[acc_index-1] , &accum[acc_index]);
      /* we've filled the array do our 'per array' processing */
      if (acc_index == (WEAVE_WORD_SIZE-1)) {
        MP_CHECKOK( mpi_to_weave(accum, powers + i - (WEAVE_WORD_SIZE-1),
							 nLen, num_powers) );

        if (first_window <= i) {
          MP_CHECKOK( mp_copy(&accum[first_window & (WEAVE_WORD_SIZE-1)], 
								&accum1) );
          first_window = num_powers;
        }
      }
    } else {
      /* up to 8 we can find 2^i-1 in the accum array, but at 8 we our source
       * and target are the same so we need to copy.. After that, the
       * value is overwritten, so we need to fetch it from the stored
       * weave array */
      if (i > 2* WEAVE_WORD_SIZE) {
        MP_CHECKOK(weave_to_mpi(&accum2, powers+i/2, nLen, num_powers));
        SQR(&accum2, &accum[acc_index]);
      } else {
	int half_power_index = (i/2) & (WEAVE_WORD_SIZE-1);
	if (half_power_index == acc_index) {
	   /* copy is cheaper than weave_to_mpi */
	   MP_CHECKOK(mp_copy(&accum[half_power_index], &accum2));
	   SQR(&accum2,&accum[acc_index]);
	} else {
	   SQR(&accum[half_power_index],&accum[acc_index]);
	}
      }
    }
  }
  /* if the accum1 isn't set, Then there is something wrong with our logic 
   * above and is an internal programming error. 
   */
#if MP_ARGCHK == 2
  assert(MP_USED(&accum1) != 0);
#endif

  /* set accumulator to montgomery residue of 1 */
  pa1 = &accum1;
  pa2 = &accum2;

  for (expOff = bits_in_exponent - window_bits*2; expOff >= 0; expOff -= window_bits) {
    mp_size smallExp;
    MP_CHECKOK( mpl_get_bits(exponent, expOff, window_bits) );
    smallExp = (mp_size)res;

    /* handle unroll the loops */
    switch (window_bits) {
    case 1:
	if (!smallExp) {
	    SQR(pa1,pa2); SWAPPA;
	} else if (smallExp & 1) {
	    SQR(pa1,pa2); MUL_NOWEAVE(montBase,pa2,pa1);
	} else {
	    abort();
	}
	break;
    case 6:
	SQR(pa1,pa2); SQR(pa2,pa1); 
	/* fall through */
    case 4:
	SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
	MUL(smallExp, pa1,pa2); SWAPPA;
	break;
    case 5:
	SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1); 
	SQR(pa1,pa2); MUL(smallExp,pa2,pa1);
	break;
    default:
	abort(); /* could do a loop? */
    }
  }

  res = s_mp_redc(pa1, mmm);
  mp_exch(pa1, result);

CLEANUP:
  mp_clear(&accum1);
  mp_clear(&accum2);
  mp_clear(&accum[0]);
  mp_clear(&accum[1]);
  mp_clear(&accum[2]);
  mp_clear(&accum[3]);
  mp_clear(&tmp);
  /* PORT_Memset(powers,0,num_powers*nLen*sizeof(mp_digit)); */
  free(powersArray);
  return res;
}