Ejemplo n.º 1
0
u32_t
sio_read( sio_fd_t fd, u8_t * buf, u32_t size )
{
    u32_t           ch_left = size;
    u32_t           ch_received = 0;
    volatile serdev_t *dev = fd;

    if( dev->ready )
    {
        dev->abort = 0;
        while( ch_left && !dev->abort )
        {
            vPortEnterCritical(  );
            while( ( dev->rx_buf_cnt > 0 ) && ( ch_left > 0 ) )
            {
                /* Fetch character from the ring buffer. */
                *buf++ = dev->rx_buf[dev->rx_buf_rdpos];
                dev->rx_buf_rdpos = ( dev->rx_buf_rdpos + 1 ) % DEFAULT_RX_BUFSIZE;
                dev->rx_buf_cnt--;
                /* Count character received and left for read. */
                ch_left--;
                ch_received++;
            }
            vPortExitCritical(  );
            /* If we want more data block on the semaphore and wait until
             * something happens.
             */
            if( ch_left )
            {
                if( xSemaphoreTake( dev->rx_sem, MS_TO_TICKS( DEFAULT_READTIMEOUT_MS ) ) ==
                    pdFALSE )
                {
                    /* A timeout. Abort the read and return the characters 
                     * received so far. 
                     */
                    dev->abort = 1;
                }
            }
        }
    }
    return ch_received;
}
Ejemplo n.º 2
0
/**
 * \brief Fixup function for the timer values
 * 
 * Fixup function for the timer values, (called by the
 * configuration framework)
 * \param handle not used
 * \param gname not used
 * \param name not used
 * \param val fixed timer value
 * \return 0 on success, -1 on error
 */
int timer_fixup(void *handle, str *gname, str *name, void **val)
{
	ticks_t t;

	t = MS_TO_TICKS((unsigned int)(long)(*val));
	/* fix 0 values to 1 tick (minimum possible wait time ) */
	if (t == 0) t = 1;

	/* size fix checks */
	IF_IS_TIMER_NAME(fr_timeout, "fr_timer")
	else IF_IS_TIMER_NAME(fr_inv_timeout, "fr_inv_timer")
	else IF_IS_TIMER_NAME(end_of_life, "max_inv_lifetime")
	else IF_IS_TIMER_NAME(end_of_life, "max_noninv_lifetime")

	*val = (void *)(long)t;
	return 0;

error:
	return -1;
}
Ejemplo n.º 3
0
/**
 * \brief fix timer values to ticks
 */
int tm_init_timers(void)
{
	default_tm_cfg.fr_timeout=MS_TO_TICKS(default_tm_cfg.fr_timeout); 
	default_tm_cfg.fr_inv_timeout=MS_TO_TICKS(default_tm_cfg.fr_inv_timeout);
	default_tm_cfg.wait_timeout=MS_TO_TICKS(default_tm_cfg.wait_timeout);
	default_tm_cfg.delete_timeout=MS_TO_TICKS(default_tm_cfg.delete_timeout);
	default_tm_cfg.tm_max_inv_lifetime=MS_TO_TICKS(default_tm_cfg.tm_max_inv_lifetime);
	default_tm_cfg.tm_max_noninv_lifetime=MS_TO_TICKS(default_tm_cfg.tm_max_noninv_lifetime);
	/* fix 0 values to 1 tick (minimum possible wait time ) */
	if (default_tm_cfg.fr_timeout==0) default_tm_cfg.fr_timeout=1;
	if (default_tm_cfg.fr_inv_timeout==0) default_tm_cfg.fr_inv_timeout=1;
	if (default_tm_cfg.wait_timeout==0) default_tm_cfg.wait_timeout=1;
	if (default_tm_cfg.delete_timeout==0) default_tm_cfg.delete_timeout=1;
	if (default_tm_cfg.rt_t2_timeout_ms==0) default_tm_cfg.rt_t2_timeout_ms=1;
	if (default_tm_cfg.rt_t1_timeout_ms==0) default_tm_cfg.rt_t1_timeout_ms=1;
	if (default_tm_cfg.tm_max_inv_lifetime==0) default_tm_cfg.tm_max_inv_lifetime=1;
	if (default_tm_cfg.tm_max_noninv_lifetime==0) default_tm_cfg.tm_max_noninv_lifetime=1;
	
	/* size fit checks */
	SIZE_FIT_CHECK(fr_timeout, default_tm_cfg.fr_timeout, "fr_timer");
	SIZE_FIT_CHECK(fr_inv_timeout, default_tm_cfg.fr_inv_timeout, "fr_inv_timer");
#ifdef TM_DIFF_RT_TIMEOUT
	SIZE_FIT_CHECK(rt_t1_timeout_ms, default_tm_cfg.rt_t1_timeout_ms,
					"retr_timer1");
	SIZE_FIT_CHECK(rt_t2_timeout_ms, default_tm_cfg.rt_t2_timeout_ms,
					"retr_timer2");
#endif
	SIZE_FIT_CHECK(end_of_life, default_tm_cfg.tm_max_inv_lifetime, "max_inv_lifetime");
	SIZE_FIT_CHECK(end_of_life, default_tm_cfg.tm_max_noninv_lifetime, "max_noninv_lifetime");
	
	memset(&user_fr_timeout, 0, sizeof(user_fr_timeout));
	memset(&user_fr_inv_timeout, 0, sizeof(user_fr_inv_timeout));
#ifdef TM_DIFF_RT_TIMEOUT
	memset(&user_rt_t1_timeout_ms, 0, sizeof(user_rt_t1_timeout_ms));
	memset(&user_rt_t2_timeout_ms, 0, sizeof(user_rt_t2_timeout_ms));
#endif
	memset(&user_inv_max_lifetime, 0, sizeof(user_inv_max_lifetime));
	memset(&user_noninv_max_lifetime, 0, sizeof(user_noninv_max_lifetime));
	
	DBG("tm: tm_init_timers: fr=%d fr_inv=%d wait=%d delete=%d t1=%d t2=%d"
			" max_inv_lifetime=%d max_noninv_lifetime=%d\n",
			default_tm_cfg.fr_timeout, default_tm_cfg.fr_inv_timeout,
			default_tm_cfg.wait_timeout, default_tm_cfg.delete_timeout,
			default_tm_cfg.rt_t1_timeout_ms, default_tm_cfg.rt_t2_timeout_ms,
			default_tm_cfg.tm_max_inv_lifetime, default_tm_cfg.tm_max_noninv_lifetime);
	return 0;
error:
	return -1;
}
Ejemplo n.º 4
0
/*
 * Create a new peer session in assigned state (connect will start automatically)
 */
static struct session *peer_session_create(struct peer *peer, struct peer_session *ps)
{
	struct listener *l = ((struct proxy *)peer->peers->peers_fe)->listen;
	struct proxy *p = (struct proxy *)l->frontend; /* attached frontend */
	struct session *s;
	struct http_txn *txn;
	struct task *t;

	if ((s = pool_alloc2(pool2_session)) == NULL) { /* disable this proxy for a while */
		Alert("out of memory in event_accept().\n");
		goto out_close;
	}

	LIST_ADDQ(&sessions, &s->list);
	LIST_INIT(&s->back_refs);

	s->flags = SN_ASSIGNED|SN_ADDR_SET;
	s->term_trace = 0;

	/* if this session comes from a known monitoring system, we want to ignore
	 * it as soon as possible, which means closing it immediately for TCP.
	 */
	if ((t = task_new()) == NULL) { /* disable this proxy for a while */
		Alert("out of memory in event_accept().\n");
		goto out_free_session;
	}

	ps->reconnect = tick_add(now_ms, MS_TO_TICKS(5000));
	ps->statuscode = PEER_SESSION_CONNECTCODE;

	t->process = l->handler;
	t->context = s;
	t->nice = l->nice;

	memcpy(&s->si[1].conn.addr.to, &peer->addr, sizeof(s->si[1].conn.addr.to));
	s->task = t;
	s->listener = l;

	/* Note: initially, the session's backend points to the frontend.
	 * This changes later when switching rules are executed or
	 * when the default backend is assigned.
	 */
	s->be = s->fe = p;

	s->req = s->rep = NULL; /* will be allocated later */

	s->si[0].conn.t.sock.fd = -1;
	s->si[0].conn.flags = CO_FL_NONE;
	s->si[0].owner = t;
	s->si[0].state = s->si[0].prev_state = SI_ST_EST;
	s->si[0].err_type = SI_ET_NONE;
	s->si[0].err_loc = NULL;
	s->si[0].release = NULL;
	s->si[0].send_proxy_ofs = 0;
	set_target_client(&s->si[0].conn.target, l);
	s->si[0].exp = TICK_ETERNITY;
	s->si[0].flags = SI_FL_NONE;
	if (s->fe->options2 & PR_O2_INDEPSTR)
		s->si[0].flags |= SI_FL_INDEP_STR;

	stream_int_register_handler(&s->si[0], &peer_applet);
	s->si[0].applet.st0 = PEER_SESSION_CONNECT;
	s->si[0].conn.data_ctx = (void *)ps;

	s->si[1].conn.t.sock.fd = -1; /* just to help with debugging */
	s->si[1].conn.flags = CO_FL_NONE;
	s->si[1].owner = t;
	s->si[1].state = s->si[1].prev_state = SI_ST_ASS;
	s->si[1].conn_retries = p->conn_retries;
	s->si[1].err_type = SI_ET_NONE;
	s->si[1].err_loc = NULL;
	s->si[1].release = NULL;
	s->si[1].send_proxy_ofs = 0;
	set_target_proxy(&s->si[1].conn.target, s->be);
	si_prepare_conn(&s->si[1], peer->proto, peer->data);
	s->si[1].exp = TICK_ETERNITY;
	s->si[1].flags = SI_FL_NONE;
	if (s->be->options2 & PR_O2_INDEPSTR)
		s->si[1].flags |= SI_FL_INDEP_STR;

	session_init_srv_conn(s);
	set_target_proxy(&s->target, s->be);
	s->pend_pos = NULL;

	/* init store persistence */
	s->store_count = 0;
	s->stkctr1_entry = NULL;
	s->stkctr2_entry = NULL;

	/* FIXME: the logs are horribly complicated now, because they are
	 * defined in <p>, <p>, and later <be> and <be>.
	 */

	s->logs.logwait = 0;
	s->do_log = NULL;

	/* default error reporting function, may be changed by analysers */
	s->srv_error = default_srv_error;

	s->uniq_id = 0;
	s->unique_id = NULL;

	txn = &s->txn;
	/* Those variables will be checked and freed if non-NULL in
	 * session.c:session_free(). It is important that they are
	 * properly initialized.
	 */
	txn->sessid = NULL;
	txn->srv_cookie = NULL;
	txn->cli_cookie = NULL;
	txn->uri = NULL;
	txn->req.cap = NULL;
	txn->rsp.cap = NULL;
	txn->hdr_idx.v = NULL;
	txn->hdr_idx.size = txn->hdr_idx.used = 0;

	if ((s->req = pool_alloc2(pool2_channel)) == NULL)
		goto out_fail_req; /* no memory */

	s->req->buf.size = global.tune.bufsize;
	channel_init(s->req);
	s->req->prod = &s->si[0];
	s->req->cons = &s->si[1];
	s->si[0].ib = s->si[1].ob = s->req;

	s->req->flags |= CF_READ_ATTACHED; /* the producer is already connected */

	/* activate default analysers enabled for this listener */
	s->req->analysers = l->analysers;

	/* note: this should not happen anymore since there's always at least the switching rules */
	if (!s->req->analysers) {
		channel_auto_connect(s->req);/* don't wait to establish connection */
		channel_auto_close(s->req);/* let the producer forward close requests */
	}

	s->req->rto = s->fe->timeout.client;
	s->req->wto = s->be->timeout.server;

	if ((s->rep = pool_alloc2(pool2_channel)) == NULL)
		goto out_fail_rep; /* no memory */

	s->rep->buf.size = global.tune.bufsize;
	channel_init(s->rep);
	s->rep->prod = &s->si[1];
	s->rep->cons = &s->si[0];
	s->si[0].ob = s->si[1].ib = s->rep;

	s->rep->rto = s->be->timeout.server;
	s->rep->wto = s->fe->timeout.client;

	s->req->rex = TICK_ETERNITY;
	s->req->wex = TICK_ETERNITY;
	s->req->analyse_exp = TICK_ETERNITY;
	s->rep->rex = TICK_ETERNITY;
	s->rep->wex = TICK_ETERNITY;
	s->rep->analyse_exp = TICK_ETERNITY;
	t->expire = TICK_ETERNITY;

	s->rep->flags |= CF_READ_DONTWAIT;
	/* it is important not to call the wakeup function directly but to
	 * pass through task_wakeup(), because this one knows how to apply
	 * priorities to tasks.
	 */
	task_wakeup(t, TASK_WOKEN_INIT);

	l->nbconn++; /* warning! right now, it's up to the handler to decrease this */
	p->feconn++;/* beconn will be increased later */
	jobs++;
	if (!(s->listener->options & LI_O_UNLIMITED))
		actconn++;
	totalconn++;

	return s;

	/* Error unrolling */
 out_fail_rep:
	pool_free2(pool2_channel, s->req);
 out_fail_req:
	task_free(t);
 out_free_session:
	LIST_DEL(&s->list);
	pool_free2(pool2_session, s);
 out_close:
	return s;
}
Ejemplo n.º 5
0
/* initialize ratelimit module */
static int mod_init(void)
{
	if(rpc_register_array(rpc_methods)!=0)
	{
		LM_ERR("failed to register RPC commands\n");
		return -1;
	}
	if(register_mi_mod(exports.name, mi_cmds)!=0)
	{
		LM_ERR("failed to register MI commands\n");
		return -1;
	}
	if(pl_hash_size<=0)
	{
		LM_ERR("invalid hash size parameter: %d\n", pl_hash_size);
		return -1;
	}
	if(pl_init_htable(1<<pl_hash_size)<0)
	{
		LM_ERR("could not allocate pipes htable\n");
		return -1;
	}
	if(pl_init_db()<0)
	{
		LM_ERR("could not load pipes description\n");
		return -1;
	}
	/* register timer to reset counters */
	if ((pl_timer = timer_alloc()) == NULL) {
		LM_ERR("could not allocate timer\n");
		return -1;
	}
	timer_init(pl_timer, pl_timer_handle, 0, F_TIMER_FAST);
	timer_add(pl_timer, MS_TO_TICKS(1000)); /* Start it after 1000ms */

	/* bind the SL API */
	if (sl_load_api(&slb)!=0) {
		LM_ERR("cannot bind to SL API\n");
		return -1;
	}

	network_load_value = shm_malloc(sizeof(int));
	if (network_load_value==NULL) {
		LM_ERR("oom for network_load_value\n");
		return -1;
	}

	load_value = shm_malloc(sizeof(double));
	if (load_value==NULL) {
		LM_ERR("oom for load_value\n");
		return -1;
	}
	load_source = shm_malloc(sizeof(int));
	if (load_source==NULL) {
		LM_ERR("oom for load_source\n");
		return -1;
	}
	pid_kp = shm_malloc(sizeof(double));
	if (pid_kp==NULL) {
		LM_ERR("oom for pid_kp\n");
		return -1;
	}
	pid_ki = shm_malloc(sizeof(double));
	if (pid_ki==NULL) {
		LM_ERR("oom for pid_ki\n");
		return -1;
	}
	pid_kd = shm_malloc(sizeof(double));
	if (pid_kd==NULL) {
		LM_ERR("oom for pid_kd\n");
		return -1;
	}
	_pl_pid_setpoint = shm_malloc(sizeof(double));
	if (_pl_pid_setpoint==NULL) {
		LM_ERR("oom for pid_setpoint\n");
		return -1;
	}
	drop_rate = shm_malloc(sizeof(int));
	if (drop_rate==NULL) {
		LM_ERR("oom for drop_rate\n");
		return -1;
	}

	*network_load_value = 0;
	*load_value = 0.0;
	*load_source = load_source_mp;
	*pid_kp = 0.0;
	*pid_ki = -25.0;
	*pid_kd = 0.0;
	*_pl_pid_setpoint = 0.01 * (double)_pl_cfg_setpoint;
	*drop_rate      = 0;

	return 0;
}
Ejemplo n.º 6
0
/* This function parses a "timeout" statement in a proxy section. It returns
 * -1 if there is any error, 1 for a warning, otherwise zero. If it does not
 * return zero, it will write an error or warning message into a preallocated
 * buffer returned at <err>. The trailing is not be written. The function must
 * be called with <args> pointing to the first command line word, with <proxy>
 * pointing to the proxy being parsed, and <defpx> to the default proxy or NULL.
 * As a special case for compatibility with older configs, it also accepts
 * "{cli|srv|con}timeout" in args[0].
 */
static int proxy_parse_timeout(char **args, int section, struct proxy *proxy,
                               struct proxy *defpx, const char *file, int line,
                               char **err)
{
	unsigned timeout;
	int retval, cap;
	const char *res, *name;
	int *tv = NULL;
	int *td = NULL;
	int warn = 0;

	retval = 0;

	/* simply skip "timeout" but remain compatible with old form */
	if (strcmp(args[0], "timeout") == 0)
		args++;

	name = args[0];
	if (!strcmp(args[0], "client") || (!strcmp(args[0], "clitimeout") && (warn = WARN_CLITO_DEPRECATED))) {
		name = "client";
		tv = &proxy->timeout.client;
		td = &defpx->timeout.client;
		cap = PR_CAP_FE;
	} else if (!strcmp(args[0], "tarpit")) {
		tv = &proxy->timeout.tarpit;
		td = &defpx->timeout.tarpit;
		cap = PR_CAP_FE | PR_CAP_BE;
	} else if (!strcmp(args[0], "http-keep-alive")) {
		tv = &proxy->timeout.httpka;
		td = &defpx->timeout.httpka;
		cap = PR_CAP_FE | PR_CAP_BE;
	} else if (!strcmp(args[0], "http-request")) {
		tv = &proxy->timeout.httpreq;
		td = &defpx->timeout.httpreq;
		cap = PR_CAP_FE | PR_CAP_BE;
	} else if (!strcmp(args[0], "server") || (!strcmp(args[0], "srvtimeout") && (warn = WARN_SRVTO_DEPRECATED))) {
		name = "server";
		tv = &proxy->timeout.server;
		td = &defpx->timeout.server;
		cap = PR_CAP_BE;
	} else if (!strcmp(args[0], "connect") || (!strcmp(args[0], "contimeout") && (warn = WARN_CONTO_DEPRECATED))) {
		name = "connect";
		tv = &proxy->timeout.connect;
		td = &defpx->timeout.connect;
		cap = PR_CAP_BE;
	} else if (!strcmp(args[0], "check")) {
		tv = &proxy->timeout.check;
		td = &defpx->timeout.check;
		cap = PR_CAP_BE;
	} else if (!strcmp(args[0], "queue")) {
		tv = &proxy->timeout.queue;
		td = &defpx->timeout.queue;
		cap = PR_CAP_BE;
	} else if (!strcmp(args[0], "tunnel")) {
		tv = &proxy->timeout.tunnel;
		td = &defpx->timeout.tunnel;
		cap = PR_CAP_BE;
	} else if (!strcmp(args[0], "client-fin")) {
		tv = &proxy->timeout.clientfin;
		td = &defpx->timeout.clientfin;
		cap = PR_CAP_FE;
	} else if (!strcmp(args[0], "server-fin")) {
		tv = &proxy->timeout.serverfin;
		td = &defpx->timeout.serverfin;
		cap = PR_CAP_BE;
	} else {
		memprintf(err,
		          "'timeout' supports 'client', 'server', 'connect', 'check', "
		          "'queue', 'http-keep-alive', 'http-request', 'tunnel', 'tarpit', "
			  "'client-fin' and 'server-fin' (got '%s')",
		          args[0]);
		return -1;
	}

	if (*args[1] == 0) {
		memprintf(err, "'timeout %s' expects an integer value (in milliseconds)", name);
		return -1;
	}

	res = parse_time_err(args[1], &timeout, TIME_UNIT_MS);
	if (res) {
		memprintf(err, "unexpected character '%c' in 'timeout %s'", *res, name);
		return -1;
	}

	if (!(proxy->cap & cap)) {
		memprintf(err, "'timeout %s' will be ignored because %s '%s' has no %s capability",
		          name, proxy_type_str(proxy), proxy->id,
		          (cap & PR_CAP_BE) ? "backend" : "frontend");
		retval = 1;
	}
	else if (defpx && *tv != *td) {
		memprintf(err, "overwriting 'timeout %s' which was already specified", name);
		retval = 1;
	}
	else if (warn) {
		if (!already_warned(warn)) {
			memprintf(err, "the '%s' directive is now deprecated in favor of 'timeout %s', and will not be supported in future versions.",
				  args[0], name);
			retval = 1;
		}
	}

	if (*args[2] != 0) {
		memprintf(err, "'timeout %s' : unexpected extra argument '%s' after value '%s'.", name, args[2], args[1]);
		retval = -1;
	}

	*tv = MS_TO_TICKS(timeout);
	return retval;
}
Ejemplo n.º 7
0
/* initialize ratelimit module */
static int mod_init(void)
{
	int i;

	if (rpc_register_array(rpc_methods)!=0) {
		LM_ERR("failed to register RPC commands\n");
		return -1;
	}

	rl_lock = lock_alloc();
	if (! rl_lock) {
		LM_ERR("oom in lock_alloc()\n");
		return -1;
	}

	if (lock_init(rl_lock)==0) {
		LM_ERR("failed to init lock\n");
		return -1;
	}

	/* register timer to reset counters */
	if ((rl_timer = timer_alloc()) == NULL) {
		LM_ERR("could not allocate timer\n");
		return -1;
	}
	timer_init(rl_timer, rl_timer_handle, 0, F_TIMER_FAST);
	timer_add(rl_timer, MS_TO_TICKS(1000*timer_interval));

	network_load_value = shm_malloc(sizeof(int));
	if (network_load_value==NULL) {
		LM_ERR("oom for network_load_value\n");
		return -1;
	}

	load_value = shm_malloc(sizeof(double));
	if (load_value==NULL) {
		LM_ERR("oom for load_value\n");
		return -1;
	}
	load_source = shm_malloc(sizeof(int));
	if (load_source==NULL) {
		LM_ERR("oom for load_source\n");
		return -1;
	}
	pid_kp = shm_malloc(sizeof(double));
	if (pid_kp==NULL) {
		LM_ERR("oom for pid_kp\n");
		return -1;
	}
	pid_ki = shm_malloc(sizeof(double));
	if (pid_ki==NULL) {
		LM_ERR("oom for pid_ki\n");
		return -1;
	}
	pid_kd = shm_malloc(sizeof(double));
	if (pid_kd==NULL) {
		LM_ERR("oom for pid_kd\n");
		return -1;
	}
	pid_setpoint = shm_malloc(sizeof(double));
	if (pid_setpoint==NULL) {
		LM_ERR("oom for pid_setpoint\n");
		return -1;
	}
	drop_rate = shm_malloc(sizeof(int));
	if (drop_rate==NULL) {
		LM_ERR("oom for drop_rate\n");
		return -1;
	}
	nqueues = shm_malloc(sizeof(int));
	if (nqueues==NULL) {
		LM_ERR("oom for nqueues\n");
		return -1;
	}
	rl_dbg_str = shm_malloc(sizeof(str));
	if (rl_dbg_str==NULL) {
		LM_ERR("oom for rl_dbg_str\n");
		return -1;
	}

	*network_load_value = 0;
	*load_value = 0.0;
	*load_source = load_source_mp;
	*pid_kp = 0.0;
	*pid_ki = -25.0;
	*pid_kd = 0.0;
	*pid_setpoint = 0.01 * (double)cfg_setpoint;
	*drop_rate      = 0;
	*nqueues = nqueues_mp;
	rl_dbg_str->s = NULL;
	rl_dbg_str->len = 0;

	for (i=0; i<MAX_PIPES; i++) {
		pipes[i].algo    = shm_malloc(sizeof(int));
		if (pipes[i].algo==NULL) {
			LM_ERR("oom for pipes[%d].algo\n", i);
			return -1;
		}
		pipes[i].limit   = shm_malloc(sizeof(int));
		if (pipes[i].limit==NULL) {
			LM_ERR("oom for pipes[%d].limit\n", i);
			return -1;
		}
		pipes[i].load    = shm_malloc(sizeof(int));
		if (pipes[i].load==NULL) {
			LM_ERR("oom for pipes[%d].load\n", i);
			return -1;
		}
		pipes[i].counter = shm_malloc(sizeof(int));
		if (pipes[i].counter==NULL) {
			LM_ERR("oom for pipes[%d].counter\n", i);
			return -1;
		}
		pipes[i].last_counter = shm_malloc(sizeof(int));
		if (pipes[i].last_counter==NULL) {
			LM_ERR("oom for pipes[%d].last_counter\n", i);
			return -1;
		}
		*pipes[i].algo    = pipes[i].algo_mp;
		*pipes[i].limit   = pipes[i].limit_mp;
		*pipes[i].load    = 0;
		*pipes[i].counter = 0;
		*pipes[i].last_counter = 0;
	}

	for (i=0; i<*nqueues; i++) {
		queues[i].pipe   = shm_malloc(sizeof(int));
		if (queues[i].pipe==NULL) {
			LM_ERR("oom for queues[%d].pipe\n", i);
			return -1;
		}
		queues[i].method = shm_malloc(sizeof(str));
		if (queues[i].method==NULL) {
			LM_ERR("oom for queues[%d].method\n", i);
			return -1;
		}

		*queues[i].pipe   = queues[i].pipe_mp;
		if (queues[i].method_mp.s == NULL) {
			LM_ERR("unexpected NULL method for queues[%d].method_mp\n", i);
			return -1;
		}
		if(str_cpy(queues[i].method, &queues[i].method_mp)) {
			LM_ERR("oom str_cpy(queues[%d].method\n", i);
			return -1;
		}
		pkg_free(queues[i].method_mp.s);
		queues[i].method_mp.s = NULL;
		queues[i].method_mp.len = 0;
	}

	return 0;
}
Ejemplo n.º 8
0
/* This function parses a "timeout" statement in a proxy section. It returns
 * -1 if there is any error, 1 for a warning, otherwise zero. If it does not
 * return zero, it may write an error message into the <err> buffer, for at
 * most <errlen> bytes, trailing zero included. The trailing '\n' must not
 * be written. The function must be called with <args> pointing to the first
 * command line word, with <proxy> pointing to the proxy being parsed, and
 * <defpx> to the default proxy or NULL. As a special case for compatibility
 * with older configs, it also accepts "{cli|srv|con}timeout" in args[0].
 */
static int proxy_parse_timeout(char **args, int section, struct proxy *proxy,
			       struct proxy *defpx, char *err, int errlen)
{
	unsigned timeout;
	int retval, cap;
	const char *res, *name;
	int *tv = NULL;
	int *td = NULL;

	retval = 0;

	/* simply skip "timeout" but remain compatible with old form */
	if (strcmp(args[0], "timeout") == 0)
		args++;

	name = args[0];
	if (!strcmp(args[0], "client") || !strcmp(args[0], "clitimeout")) {
		name = "client";
		tv = &proxy->timeout.client;
		td = &defpx->timeout.client;
		cap = PR_CAP_FE;
	} else if (!strcmp(args[0], "tarpit")) {
		tv = &proxy->timeout.tarpit;
		td = &defpx->timeout.tarpit;
		cap = PR_CAP_FE | PR_CAP_BE;
	} else if (!strcmp(args[0], "http-request")) {
		tv = &proxy->timeout.httpreq;
		td = &defpx->timeout.httpreq;
		cap = PR_CAP_FE;
	} else if (!strcmp(args[0], "server") || !strcmp(args[0], "srvtimeout")) {
		name = "server";
		tv = &proxy->timeout.server;
		td = &defpx->timeout.server;
		cap = PR_CAP_BE;
	} else if (!strcmp(args[0], "connect") || !strcmp(args[0], "contimeout")) {
		name = "connect";
		tv = &proxy->timeout.connect;
		td = &defpx->timeout.connect;
		cap = PR_CAP_BE;
	} else if (!strcmp(args[0], "check")) {
		tv = &proxy->timeout.check;
		td = &defpx->timeout.check;
		cap = PR_CAP_BE;
	} else if (!strcmp(args[0], "appsession")) {
		snprintf(err, errlen, "undocumented 'timeout appsession' may not do what you think and will be removed in next version");
		retval = 1;
		tv = &proxy->timeout.appsession;
		td = &defpx->timeout.appsession;
		cap = PR_CAP_BE;
	} else if (!strcmp(args[0], "queue")) {
		tv = &proxy->timeout.queue;
		td = &defpx->timeout.queue;
		cap = PR_CAP_BE;
	} else {
		snprintf(err, errlen,
			 "timeout '%s': must be 'client', 'server', 'connect', 'check', "
			 "'appsession', 'queue', 'http-request' or 'tarpit'",
			 args[0]);
		return -1;
	}

	if (*args[1] == 0) {
		snprintf(err, errlen, "%s timeout expects an integer value (in milliseconds)", name);
		return -1;
	}

	res = parse_time_err(args[1], &timeout, TIME_UNIT_MS);
	if (res) {
		snprintf(err, errlen, "unexpected character '%c' in %s timeout", *res, name);
		return -1;
	}

	if (!(proxy->cap & cap)) {
		snprintf(err, errlen, "%s timeout will be ignored because %s '%s' has no %s capability",
			 name, proxy_type_str(proxy), proxy->id,
			 (cap & PR_CAP_BE) ? "backend" : "frontend");
		retval = 1;
	}
	else if (defpx && *tv != *td) {
		snprintf(err, errlen, "overwriting %s timeout which was already specified", name);
		retval = 1;
	}

	*tv = MS_TO_TICKS(timeout);
	return retval;
}
Ejemplo n.º 9
0
/* the following assumption are made (to avoid deleting/re-adding the timer):
 *  retr_buf->retr_interval < ( 1<<((sizeof(ticks_t)*8-1) )
 *  if retr_buf->retr_interval==0 => timer disabled
 *                            ==(ticks_t) -1 => retr. disabled (fr working)
 *     retr_buf->retr_interval & (1 <<(sizeof(ticks_t)*8-1) => retr. & fr reset
 *     (we never reset only retr, it's either reset both of them or retr
 *      disabled & reset fr). In this case the fr_origin will contain the
 *      "time" of the reset and next retr should occur at
 *      fr->origin+retr_interval (we also assume that we'll never reset retr
 *      to a lower value then the current one)
 */
ticks_t retr_buf_handler(ticks_t ticks, struct timer_ln *tl, void *p)
{
	struct retr_buf *rbuf;
	ticks_t fr_remainder;
	ticks_t retr_remainder;
	ticks_t retr_interval;
	unsigned long new_retr_interval_ms;
	unsigned long crt_retr_interval_ms;
	struct cell *t;

	rbuf = (struct retr_buf *)((void *)tl
							   - (void *)(&((struct retr_buf *)0)->timer));
	membar_depends(); /* to be on the safe side */
	t = rbuf->my_T;

#ifdef TIMER_DEBUG
	LM_DBG("timer retr_buf_handler @%d (%p -> %p -> %p)\n", ticks, tl, rbuf, t);
#endif
	if(unlikely(rbuf->flags & F_RB_DEL_TIMER)) {
		/* timer marked for deletion */
		rbuf->t_active = 0; /* mark it as removed */
		/* a membar is not really needed, in the very unlikely case that
		 * another process will see old t_active's value and will try to
		 * delete the timer again, but since timer_del it's safe in this cases
		 * it will be a no-op */
		return 0;
	}
	/* overflow safe check (should work ok for fr_intervals < max ticks_t/2) */
	if((s_ticks_t)(rbuf->fr_expire - ticks) <= 0) {
		/* final response */
		rbuf->t_active = 0; /* mark the timer as removed
							 (both timers disabled)
							  a little race risk, but
							  nothing bad would happen */
		rbuf->flags |= F_RB_TIMEOUT;
		/* WARNING:  the next line depends on taking care not to start the
		 *           wait timer before finishing with t (if this is not
		 *           guaranteed then comment the timer_allow_del() line) */
		timer_allow_del(); /* [optional] allow timer_dels, since we're done
							  and there is no race risk */
		final_response_handler(rbuf, t);
		return 0;
	} else {
		/*  4 possible states running (t1), t2, paused, disabled */
		if((s_ticks_t)(rbuf->retr_expire - ticks) <= 0) {
			if(rbuf->flags & F_RB_RETR_DISABLED)
				goto disabled;
			crt_retr_interval_ms = (unsigned long)p;
			/* get the  current interval from timer param. */
			if(unlikely((rbuf->flags & F_RB_T2)
						|| (crt_retr_interval_ms > RT_T2_TIMEOUT_MS(rbuf)))) {
				retr_interval = MS_TO_TICKS(RT_T2_TIMEOUT_MS(rbuf));
				new_retr_interval_ms = RT_T2_TIMEOUT_MS(rbuf);
			} else {
				retr_interval = MS_TO_TICKS(crt_retr_interval_ms);
				new_retr_interval_ms = crt_retr_interval_ms << 1;
			}
#ifdef TIMER_DEBUG
			LM_DBG("new interval %ld ms / %d ticks"
				   " (max %d ms)\n",
					new_retr_interval_ms, retr_interval,
					RT_T2_TIMEOUT_MS(rbuf));
#endif
			/* we could race with the reply_received code, but the
				 * worst thing that can happen is to delay a reset_to_t2
				 * for crt_interval and send an extra retr.*/
			rbuf->retr_expire = ticks + retr_interval;
			/* set new interval to -1 on error, or retr_int. on success */
			retr_remainder = retransmission_handler(rbuf) | retr_interval;
			/* store the next retr. interval in ms inside the timer struct,
				 * in the data member */
			tl->data = (void *)(new_retr_interval_ms);
		} else {
			retr_remainder = rbuf->retr_expire - ticks;
			LM_DBG("retr - nothing to do, expire in %d\n", retr_remainder);
		}
	}
	/* skip: */
	/* return minimum of the next retransmission handler and the
	 * final response (side benefit: it properly cancels timer if ret==0 and
	 *  sleeps for fr_remainder if retr. is canceled [==(ticks_t)-1]) */
	fr_remainder = rbuf->fr_expire - ticks; /* to be more precise use
											get_ticks_raw() instead of ticks
											(but make sure that
											crt. ticks < fr_expire */
#ifdef TIMER_DEBUG
	LM_DBG("timer retr_buf_handler @%d (%p ->%p->%p) exiting min (%d, %d)\n",
			ticks, tl, rbuf, t, retr_remainder, fr_remainder);
#endif
#ifdef EXTRA_DEBUG
	if(retr_remainder == 0 || fr_remainder == 0) {
		LM_BUG("0 remainder => disabling timer!: "
			   "retr_remainder=%d, fr_remainder=%d\n",
				retr_remainder, fr_remainder);
	}
#endif
	if(retr_remainder < fr_remainder)
		return retr_remainder;
	else {
/* hack to switch to the slow timer */
#ifdef TM_FAST_RETR_TIMER
		tl->flags &= ~F_TIMER_FAST;
#endif
		return fr_remainder;
	}
disabled:
	return rbuf->fr_expire - ticks;
}
Ejemplo n.º 10
0
/*
 * Create a new peer session in assigned state (connect will start automatically)
 */
static struct stream *peer_session_create(struct peer *peer, struct peer_session *ps)
{
	struct listener *l = LIST_NEXT(&peer->peers->peers_fe->conf.listeners, struct listener *, by_fe);
	struct proxy *p = (struct proxy *)l->frontend; /* attached frontend */
	struct appctx *appctx;
	struct session *sess;
	struct stream *s;
	struct task *t;
	struct connection *conn;

	ps->reconnect = tick_add(now_ms, MS_TO_TICKS(5000));
	ps->statuscode = PEER_SESS_SC_CONNECTCODE;
	s = NULL;

	appctx = appctx_new(&peer_applet);
	if (!appctx)
		goto out_close;

	appctx->st0 = PEER_SESS_ST_CONNECT;
	appctx->ctx.peers.ptr = (void *)ps;

	sess = session_new(p, l, &appctx->obj_type);
	if (!sess) {
		Alert("out of memory in peer_session_create().\n");
		goto out_free_appctx;
	}

	if ((t = task_new()) == NULL) {
		Alert("out of memory in peer_session_create().\n");
		goto out_free_sess;
	}
	t->nice = l->nice;

	if ((s = stream_new(sess, t, &appctx->obj_type)) == NULL) {
		Alert("Failed to initialize stream in peer_session_create().\n");
		goto out_free_task;
	}

	/* The tasks below are normally what is supposed to be done by
	 * fe->accept().
	 */
	s->flags = SF_ASSIGNED|SF_ADDR_SET;

	/* applet is waiting for data */
	si_applet_cant_get(&s->si[0]);
	appctx_wakeup(appctx);

	/* initiate an outgoing connection */
	si_set_state(&s->si[1], SI_ST_ASS);

	/* automatically prepare the stream interface to connect to the
	 * pre-initialized connection in si->conn.
	 */
	if (unlikely((conn = conn_new()) == NULL))
		goto out_free_strm;

	conn_prepare(conn, peer->proto, peer->xprt);
	si_attach_conn(&s->si[1], conn);

	conn->target = s->target = &s->be->obj_type;
	memcpy(&conn->addr.to, &peer->addr, sizeof(conn->addr.to));
	s->do_log = NULL;
	s->uniq_id = 0;

	s->res.flags |= CF_READ_DONTWAIT;

	l->nbconn++; /* warning! right now, it's up to the handler to decrease this */
	p->feconn++;/* beconn will be increased later */
	jobs++;
	if (!(s->sess->listener->options & LI_O_UNLIMITED))
		actconn++;
	totalconn++;

	ps->appctx = appctx;
	ps->stream = s;
	return s;

	/* Error unrolling */
 out_free_strm:
	LIST_DEL(&s->list);
	pool_free2(pool2_stream, s);
 out_free_task:
	task_free(t);
 out_free_sess:
	session_free(sess);
 out_free_appctx:
	appctx_free(appctx);
 out_close:
	return s;
}
Ejemplo n.º 11
0
void lcd_splashscreen(void) {
  lcd_timeout = getticks() + MS_TO_TICKS(1000 * 5);
  lcd_timer = true;
}
Ejemplo n.º 12
0
/* adds a proto ip:port combination to the blacklist
 * returns 0 on success, -1 on error (blacklist full -- would use more then
 *  blst:_max_mem, or out of shm. mem.)
 */
inline static int dst_blacklist_add_ip(unsigned char err_flags,
									unsigned char proto,
									struct ip_addr* ip, unsigned short port,
									ticks_t timeout)
{
	int size;
	struct dst_blst_entry* e;
	unsigned short hash;
	ticks_t now;
	int ret;

	ret=0;
	if (ip->af==AF_INET){
		err_flags&=~BLST_IS_IPV6; /* make sure the ipv6 flag is reset */
		size=sizeof(struct dst_blst_entry);
	}else{
		err_flags|=BLST_IS_IPV6;
		size=sizeof(struct dst_blst_entry)+12 /* ipv6 addr - 4 */;
	}
	now=get_ticks_raw();
	hash=dst_blst_hash_no(proto, ip, port);
	/* check if the entry already exists */
	LOCK_BLST(hash);
		e=_dst_blacklist_lst_find(hash, ip, proto, port, now);
		if (e){
			e->flags|=err_flags;
			e->expire=now+timeout; /* update the timeout */
		}else{
			if (unlikely((*blst_mem_used+size) >=
					cfg_get(core, core_cfg, blst_max_mem))){
#ifdef USE_DST_BLACKLIST_STATS
				dst_blacklist_stats[process_no].bkl_lru_cnt++;
#endif
				UNLOCK_BLST(hash);
				/* first try to free some memory  (~ 12%), but don't
				 * spend more then 250 ms*/
				dst_blacklist_clean_expired(*blst_mem_used/16*14, 0,
															MS_TO_TICKS(250));
				if (unlikely(*blst_mem_used+size >=
						cfg_get(core, core_cfg, blst_max_mem))){
					ret=-1;
					goto error;
				}
				LOCK_BLST(hash);
			}
			e=shm_malloc(size);
			if (e==0){
				UNLOCK_BLST(hash);
				ret=E_OUT_OF_MEM;
				goto error;
			}
			*blst_mem_used+=size;
			e->flags=err_flags;
			e->proto=proto;
			e->port=port;
			memcpy(e->ip, ip->u.addr, ip->len);
			e->expire=now+timeout; /* update the timeout */
			e->next=0;
			dst_blacklist_lst_add(&dst_blst_hash[hash].first, e);
			BLST_HASH_STATS_INC(hash);
		}
	UNLOCK_BLST(hash);
error:
	return ret;
}
Ejemplo n.º 13
0
Archivo: task2.c Proyecto: xenris/nbavr
static void loop(void) {
    streamPush(task1Stream, count);
    count += 25;

    delay(&task2, MS_TO_TICKS(4100));
}
Ejemplo n.º 14
0
Archivo: task2.c Proyecto: xenris/nbavr
static void setup(void) {
    count = 0;
    delay(&task2, MS_TO_TICKS(4100));
}
Ejemplo n.º 15
0
void SleepHandler::doHibernate(uint32_t ms, bool interruptible) {
  // First, make sure we configure timer2 and get it running as
  // fast as possible. This makes the total sleep delay as
  // accurate as possible.

  // Backup timer2 settings
  uint8_t timsk2 = TIMSK2;
  uint8_t tccr2a = TCCR2A;
  uint8_t tccr2b = TCCR2B;

  // Disable timer2 interrupts, stop the timer and reset it
  // to normal mode. It seems that for some reason, switching to
  // asynchronous mode without these registers cleared can somehow
  // mess up the OCR2x register values...
  TIMSK2 = 0;
  TCCR2B = 0;
  TCCR2A = 0;

  // Backup the counter. There is a small race condition here
  // where a counter interrupt could be missed, but since we're
  // about to sleep for a while and timer2 probably isn't used by
  // anything else, that's ok.
  uint8_t tcnt2 = TCNT2;

  // Enable asynchronous mode for timer2 (uses external 32kHz
  // crystal. This might corrupt the settings registers, so we'll
  // have to (re-)set them all.
  // TCCR2B.
  uint8_t assr = ASSR;
  ASSR |= (1 << AS2);

  // Outputs disconnected, normal mode
  TCCR2A = 0;//(1 << WGM21) | (1 << WGM20);

  // Count all the way up to 0xff
  TCNT2 = 0;
  OCR2B = 0xff;

  // Clear any pending interrupt
  TIFR2 = (1 << OCF2B);

  // Start timer, prescaler 1024, meaning a single timer increment
  // is 1/32s
  TCCR2B = (1 << CS22) | (1 << CS21) | (1 << CS20);

  // Now that timer2 is running, perform any additional power
  // saving preparations

  // Disable Analag comparator
  uint8_t acsr = ACSR;
  ACSR = (1 << ACD);

  // Disable ADC
  uint8_t adcsra = ADCSRA;
  ADCSRA &= ~(1 << ADEN);
  // TODO: When re-enabling the ADC, wait for the AVDDOK bit

  // Disable the TX side of UART0. If the 16u2 it connects to is
  // powered off, it offers a path to ground, so keeping the pin
  // enabled and high (TTL idle) wastes around 1mA of current. To
  // detect if the 16u2 is powered on, see if it pulls the RX pin
  // high (not 100% reliable, but worst case we'll have extra
  // power usage).
  uint8_t ucsr0b = UCSR0B;
  if (UCSR0B & (1 << TXEN0) && !digitalRead(RX0))
    UCSR0B &= ~(1 << TXEN0);

  // Power save mode disables the main clock, but keeps the
  // external clock for timer2 enabled
  set_sleep_mode(SLEEP_MODE_PWR_SAVE);
  sleep_enable();

  cli();

  // Enable the COMPB interrupt to wake us from sleep
  TIMSK2 |= (1 << OCIE2B);

  while (ms >= TIMER_MAX_MS) {
    // Sleep for a complete timer cycle. If interrupt is
    // false, this will always wait for a full cycle and
    // return true. If interrupt is true, this can return
    // false when another interrupt occurs.
    if (sleepUntilMatch(interruptible)) {
      ms -= TIMER_MAX_MS;
      hibernateMillis += TIMER_MAX_MS;
    } else {
      // Another interrupt occurred, bail out
      ms = 0;
    }
  }

  OCR2B = MS_TO_TICKS(ms);
  while (ASSR & (1 << OCR2BUB)) /* nothing */;

  // If there's sleep time left, wait for the final interrupt
  if (TCNT2 < OCR2B)
    sleepUntilMatch(interruptible);

  // Stop the counter. Waiting for this write to be completed has
  // the side effect that the TCNT2 is also safe to read now
  // (which contains an invalid value shortly after waking up from
  // sleep).
  TCCR2B = 0;
  while (ASSR & (1 << TCR2BUB)) /* nothing */;

  hibernateMillis += TICKS_TO_MS(TCNT2);
  sleep_disable();

  // Clear any pending timer2 interrupts before enabling
  // interrupts globally, just in case
  TIFR2 = 0xff;
  sei();

  // Restore timer2 settings.
  ASSR = assr;
  TCNT2 = tcnt2;
  TCCR2B = tccr2b;
  TCCR2A = tccr2a;
  TIMSK2 = timsk2;

  // Restore other settings
  UCSR0B = ucsr0b;
  ACSR = acsr;
  ADCSRA = adcsra;
  while (ADCSRB & (1 << AVDDOK)) /* nothing */;

  // TODO: Verify precise timings. The datasheet says that the
  // compare match interrupt happens the timer tick after the
  // match, but the asynchronous section also suggests (another?)
  // tick delay. Since a timer tick is fairly long (31ms), this
  // should be measured.
}
Ejemplo n.º 16
0
/*
 * Task processing function to manage re-connect and peer session
 * tasks wakeup on local update.
 */
static struct task *process_peer_sync(struct task * task)
{
	struct shared_table *st = (struct shared_table *)task->context;
	struct peer_session *ps;

	task->expire = TICK_ETERNITY;

	if (!stopping) {
		/* Normal case (not soft stop)*/
		if (((st->flags & SHTABLE_RESYNC_STATEMASK) == SHTABLE_RESYNC_FROMLOCAL) &&
		     (!nb_oldpids || tick_is_expired(st->resync_timeout, now_ms)) &&
		     !(st->flags & SHTABLE_F_RESYNC_ASSIGN)) {
			/* Resync from local peer needed
			   no peer was assigned for the lesson
			   and no old local peer found
			       or resync timeout expire */

			/* flag no more resync from local, to try resync from remotes */
			st->flags |= SHTABLE_F_RESYNC_LOCAL;

			/* reschedule a resync */
			st->resync_timeout = tick_add(now_ms, MS_TO_TICKS(5000));
		}

		/* For each session */
		for (ps = st->sessions; ps; ps = ps->next) {
			/* For each remote peers */
			if (!ps->peer->local) {
				if (!ps->session) {
					/* no active session */
					if (ps->statuscode == 0 ||
					    ps->statuscode == PEER_SESSION_SUCCESSCODE ||
					    ((ps->statuscode == PEER_SESSION_CONNECTCODE ||
					      ps->statuscode == PEER_SESSION_CONNECTEDCODE) &&
					     tick_is_expired(ps->reconnect, now_ms))) {
						/* connection never tried
						 * or previous session established with success
						 * or previous session failed during connection
						 * and reconnection timer is expired */

						/* retry a connect */
						ps->session = peer_session_create(ps->peer, ps);
					}
					else if (ps->statuscode == PEER_SESSION_CONNECTCODE ||
						 ps->statuscode == PEER_SESSION_CONNECTEDCODE) {
						/* If previous session failed during connection
						 * but reconnection timer is not expired */

						/* reschedule task for reconnect */
						task->expire = tick_first(task->expire, ps->reconnect);
					}
					/* else do nothing */
				} /* !ps->session */
				else if (ps->statuscode == PEER_SESSION_SUCCESSCODE) {
					/* current session is active and established */
					if (((st->flags & SHTABLE_RESYNC_STATEMASK) == SHTABLE_RESYNC_FROMREMOTE) &&
					    !(st->flags & SHTABLE_F_RESYNC_ASSIGN) &&
					    !(ps->flags & PEER_F_LEARN_NOTUP2DATE)) {
						/* Resync from a remote is needed
						 * and no peer was assigned for lesson
						 * and current peer may be up2date */

						/* assign peer for the lesson */
						ps->flags |= PEER_F_LEARN_ASSIGN;
						st->flags |= SHTABLE_F_RESYNC_ASSIGN;

						/* awake peer session task to handle a request of resync */
						task_wakeup(ps->session->task, TASK_WOKEN_MSG);
					}
					else if ((int)(ps->pushed - ps->table->table->localupdate) < 0) {
						/* awake peer session task to push local updates */
						task_wakeup(ps->session->task, TASK_WOKEN_MSG);
					}
					/* else do nothing */
				} /* SUCCESSCODE */
			} /* !ps->peer->local */
		} /* for */

		/* Resync from remotes expired: consider resync is finished */
		if (((st->flags & SHTABLE_RESYNC_STATEMASK) == SHTABLE_RESYNC_FROMREMOTE) &&
		    !(st->flags & SHTABLE_F_RESYNC_ASSIGN) &&
		    tick_is_expired(st->resync_timeout, now_ms)) {
			/* Resync from remote peer needed
			 * no peer was assigned for the lesson
			 * and resync timeout expire */

			/* flag no more resync from remote, consider resync is finished */
			st->flags |= SHTABLE_F_RESYNC_REMOTE;
		}

		if ((st->flags & SHTABLE_RESYNC_STATEMASK) != SHTABLE_RESYNC_FINISHED) {
			/* Resync not finished*/
			/* reschedule task to resync timeout, to ended resync if needed */
			task->expire = tick_first(task->expire, st->resync_timeout);
		}
	} /* !stopping */
	else {
		/* soft stop case */
		if (task->state & TASK_WOKEN_SIGNAL) {
			/* We've just recieved the signal */
			if (!(st->flags & SHTABLE_F_DONOTSTOP)) {
				/* add DO NOT STOP flag if not present */
				jobs++;
				st->flags |= SHTABLE_F_DONOTSTOP;
			}

			/* disconnect all connected peers */
			for (ps = st->sessions; ps; ps = ps->next) {
				if (ps->session) {
					peer_session_forceshutdown(ps->session);
					ps->session = NULL;
				}
			}
		}
		ps = st->local_session;

		if (ps->flags & PEER_F_TEACH_COMPLETE) {
			if (st->flags & SHTABLE_F_DONOTSTOP) {
				/* resync of new process was complete, current process can die now */
				jobs--;
				st->flags &= ~SHTABLE_F_DONOTSTOP;
			}
		}
		else if (!ps->session) {
			/* If session is not active */
			if (ps->statuscode == 0 ||
			    ps->statuscode == PEER_SESSION_SUCCESSCODE ||
			    ps->statuscode == PEER_SESSION_CONNECTEDCODE ||
			    ps->statuscode == PEER_SESSION_TRYAGAIN) {
				/* connection never tried
				 * or previous session was successfully established
				 * or previous session tcp connect success but init state incomplete
				 * or during previous connect, peer replies a try again statuscode */

				/* connect to the peer */
				ps->session = peer_session_create(ps->peer, ps);
			}
			else {
				/* Other error cases */
				if (st->flags & SHTABLE_F_DONOTSTOP) {
					/* unable to resync new process, current process can die now */
					jobs--;
					st->flags &= ~SHTABLE_F_DONOTSTOP;
				}
			}
		}
		else if (ps->statuscode == PEER_SESSION_SUCCESSCODE &&
		         (int)(ps->pushed - ps->table->table->localupdate) < 0) {
			/* current session active and established
			   awake session to push remaining local updates */
			task_wakeup(ps->session->task, TASK_WOKEN_MSG);
		}
	} /* stopping */
	/* Wakeup for re-connect */
	return task;
}
Ejemplo n.º 17
0
/*
 * IO Handler to handle message exchance with a peer
 */
static void peer_io_handler(struct stream_interface *si)
{
	struct task *t= (struct task *)si->owner;
	struct session *s = (struct session *)t->context;
	struct peers *curpeers = (struct peers *)s->fe->parent;
	int reql = 0;
	int repl = 0;

	while (1) {
switchstate:
		switch(si->applet.st0) {
			case PEER_SESSION_ACCEPT:
				si->conn.data_ctx = NULL;
				si->applet.st0 = PEER_SESSION_GETVERSION;
				/* fall through */
			case PEER_SESSION_GETVERSION:
				reql = bo_getline(si->ob, trash, trashlen);
				if (reql <= 0) { /* closed or EOL not found */
					if (reql == 0)
						goto out;
					si->applet.st0 = PEER_SESSION_END;
					goto switchstate;
				}
				if (trash[reql-1] != '\n') {
					si->applet.st0 = PEER_SESSION_END;
					goto switchstate;
				}
				else if (reql > 1 && (trash[reql-2] == '\r'))
					trash[reql-2] = 0;
				else
					trash[reql-1] = 0;

				bo_skip(si->ob, reql);

				/* test version */
				if (strcmp(PEER_SESSION_PROTO_NAME " 1.0", trash) != 0) {
					si->applet.st0 = PEER_SESSION_EXIT;
					si->applet.st1 = PEER_SESSION_ERRVERSION;
					/* test protocol */
					if (strncmp(PEER_SESSION_PROTO_NAME " ", trash, strlen(PEER_SESSION_PROTO_NAME)+1) != 0)
						si->applet.st1 = PEER_SESSION_ERRPROTO;
					goto switchstate;
				}

				si->applet.st0 = PEER_SESSION_GETHOST;
				/* fall through */
			case PEER_SESSION_GETHOST:
				reql = bo_getline(si->ob, trash, trashlen);
				if (reql <= 0) { /* closed or EOL not found */
					if (reql == 0)
						goto out;
					si->applet.st0 = PEER_SESSION_END;
					goto switchstate;
				}
				if (trash[reql-1] != '\n') {
					si->applet.st0 = PEER_SESSION_END;
					goto switchstate;
				}
				else if (reql > 1 && (trash[reql-2] == '\r'))
					trash[reql-2] = 0;
				else
					trash[reql-1] = 0;

				bo_skip(si->ob, reql);

				/* test hostname match */
				if (strcmp(localpeer, trash) != 0) {
					si->applet.st0 = PEER_SESSION_EXIT;
					si->applet.st1 = PEER_SESSION_ERRHOST;
					goto switchstate;
				}

				si->applet.st0 = PEER_SESSION_GETPEER;
				/* fall through */
			case PEER_SESSION_GETPEER: {
				struct peer *curpeer;
				char *p;
				reql = bo_getline(si->ob, trash, trashlen);
				if (reql <= 0) { /* closed or EOL not found */
					if (reql == 0)
						goto out;
					si->applet.st0 = PEER_SESSION_END;
					goto switchstate;
				}
				if (trash[reql-1] != '\n') {
					/* Incomplete line, we quit */
					si->applet.st0 = PEER_SESSION_END;
					goto switchstate;
				}
				else if (reql > 1 && (trash[reql-2] == '\r'))
					trash[reql-2] = 0;
				else
					trash[reql-1] = 0;

				bo_skip(si->ob, reql);

				/* parse line "<peer name> <pid>" */
				p = strchr(trash, ' ');
				if (!p) {
					si->applet.st0 = PEER_SESSION_EXIT;
					si->applet.st1 = PEER_SESSION_ERRPROTO;
					goto switchstate;
				}
				*p = 0;

				/* lookup known peer */
				for (curpeer = curpeers->remote; curpeer; curpeer = curpeer->next) {
					if (strcmp(curpeer->id, trash) == 0)
						break;
				}

				/* if unknown peer */
				if (!curpeer) {
					si->applet.st0 = PEER_SESSION_EXIT;
					si->applet.st1 = PEER_SESSION_ERRPEER;
					goto switchstate;
				}

				si->conn.data_ctx = curpeer;
				si->applet.st0 = PEER_SESSION_GETTABLE;
				/* fall through */
			}
			case PEER_SESSION_GETTABLE: {
				struct peer *curpeer = (struct peer *)si->conn.data_ctx;
				struct shared_table *st;
				struct peer_session *ps = NULL;
				unsigned long key_type;
				size_t key_size;
				char *p;

				reql = bo_getline(si->ob, trash, trashlen);
				if (reql <= 0) { /* closed or EOL not found */
					if (reql == 0)
						goto out;
					si->conn.data_ctx = NULL;
					si->applet.st0 = PEER_SESSION_END;
					goto switchstate;
				}
				/* Re init si->conn.data_ctx to null, to handle correctly a release case */
				si->conn.data_ctx = NULL;

				if (trash[reql-1] != '\n') {
					/* Incomplete line, we quit */
					si->applet.st0 = PEER_SESSION_END;
					goto switchstate;
				}
				else if (reql > 1 && (trash[reql-2] == '\r'))
					trash[reql-2] = 0;
				else
					trash[reql-1] = 0;

				bo_skip(si->ob, reql);

				/* Parse line "<table name> <type> <size>" */
				p = strchr(trash, ' ');
				if (!p) {
					si->applet.st0 = PEER_SESSION_EXIT;
					si->applet.st1 = PEER_SESSION_ERRPROTO;
					goto switchstate;
				}
				*p = 0;
				key_type = (unsigned long)atol(p+1);

				p = strchr(p+1, ' ');
				if (!p) {
					si->conn.data_ctx = NULL;
					si->applet.st0 = PEER_SESSION_EXIT;
					si->applet.st1 = PEER_SESSION_ERRPROTO;
					goto switchstate;
				}

				key_size = (size_t)atoi(p);
				for (st = curpeers->tables; st; st = st->next) {
					/* If table name matches */
					if (strcmp(st->table->id, trash) == 0) {
						/* If key size mismatches */
						if (key_size != st->table->key_size) {
							si->applet.st0 = PEER_SESSION_EXIT;
							si->applet.st1 = PEER_SESSION_ERRSIZE;
							goto switchstate;
						}

						/* If key type mismatches */
						if (key_type != st->table->type) {
							si->applet.st0 = PEER_SESSION_EXIT;
							si->applet.st1 = PEER_SESSION_ERRTYPE;
							goto switchstate;
						}

						/* lookup peer session of current peer */
						for (ps = st->sessions; ps; ps = ps->next) {
							if (ps->peer == curpeer) {
								/* If session already active, replaced by new one */
								if (ps->session && ps->session != s) {
									if (ps->peer->local) {
										/* Local connection, reply a retry */
										si->applet.st0 = PEER_SESSION_EXIT;
										si->applet.st1 = PEER_SESSION_TRYAGAIN;
										goto switchstate;
									}
									peer_session_forceshutdown(ps->session);
								}
								ps->session = s;
								break;
							}
						}
						break;
					}
				}

				/* If table not found */
				if (!st){
					si->applet.st0 = PEER_SESSION_EXIT;
					si->applet.st1 = PEER_SESSION_ERRTABLE;
					goto switchstate;
				}

				/* If no peer session for current peer */
				if (!ps) {
					si->applet.st0 = PEER_SESSION_EXIT;
					si->applet.st1 = PEER_SESSION_ERRPEER;
					goto switchstate;
				}

				si->conn.data_ctx = ps;
				si->applet.st0 = PEER_SESSION_SENDSUCCESS;
				/* fall through */
			}
			case PEER_SESSION_SENDSUCCESS:{
				struct peer_session *ps = (struct peer_session *)si->conn.data_ctx;

				repl = snprintf(trash, trashlen, "%d\n", PEER_SESSION_SUCCESSCODE);
				repl = bi_putblk(si->ib, trash, repl);
				if (repl <= 0) {
					if (repl == -1)
						goto out;
					si->applet.st0 = PEER_SESSION_END;
					goto switchstate;
				}

				/* Register status code */
				ps->statuscode = PEER_SESSION_SUCCESSCODE;

				/* Awake main task */
				task_wakeup(ps->table->sync_task, TASK_WOKEN_MSG);

				/* Init cursors */
				ps->teaching_origin =ps->lastpush = ps->lastack = ps->pushack = 0;
				ps->pushed = ps->update;

				/* Init confirm counter */
				ps->confirm = 0;

				/* reset teaching and learning flags to 0 */
				ps->flags &= PEER_TEACH_RESET;
				ps->flags &= PEER_LEARN_RESET;

				/* if current peer is local */
				if (ps->peer->local) {
					/* if table need resyncfrom local and no process assined  */
					if ((ps->table->flags & SHTABLE_RESYNC_STATEMASK) == SHTABLE_RESYNC_FROMLOCAL &&
					    !(ps->table->flags & SHTABLE_F_RESYNC_ASSIGN)) {
						/* assign local peer for a lesson, consider lesson already requested */
						ps->flags |= PEER_F_LEARN_ASSIGN;
						ps->table->flags |= (SHTABLE_F_RESYNC_ASSIGN|SHTABLE_F_RESYNC_PROCESS);
					}

				}
				else if ((ps->table->flags & SHTABLE_RESYNC_STATEMASK) == SHTABLE_RESYNC_FROMREMOTE &&
					 !(ps->table->flags & SHTABLE_F_RESYNC_ASSIGN)) {
					/* assign peer for a lesson  */
					ps->flags |= PEER_F_LEARN_ASSIGN;
					ps->table->flags |= SHTABLE_F_RESYNC_ASSIGN;
				}
				/* switch to waiting message state */
				si->applet.st0 = PEER_SESSION_WAITMSG;
				goto switchstate;
			}
			case PEER_SESSION_CONNECT: {
				struct peer_session *ps = (struct peer_session *)si->conn.data_ctx;

				/* Send headers */
				repl = snprintf(trash, trashlen,
				                PEER_SESSION_PROTO_NAME " 1.0\n%s\n%s %d\n%s %lu %d\n",
				                ps->peer->id,
				                localpeer,
				                (int)getpid(),
				                ps->table->table->id,
				                ps->table->table->type,
				                (int)ps->table->table->key_size);

				if (repl >= trashlen) {
					si->applet.st0 = PEER_SESSION_END;
					goto switchstate;
				}

				repl = bi_putblk(si->ib, trash, repl);
				if (repl <= 0) {
					if (repl == -1)
						goto out;
					si->applet.st0 = PEER_SESSION_END;
					goto switchstate;
				}

				/* switch to the waiting statuscode state */
				si->applet.st0 = PEER_SESSION_GETSTATUS;
				/* fall through */
			}
			case PEER_SESSION_GETSTATUS: {
				struct peer_session *ps = (struct peer_session *)si->conn.data_ctx;

				if (si->ib->flags & CF_WRITE_PARTIAL)
					ps->statuscode = PEER_SESSION_CONNECTEDCODE;

				reql = bo_getline(si->ob, trash, trashlen);
				if (reql <= 0) { /* closed or EOL not found */
					if (reql == 0)
						goto out;
					si->applet.st0 = PEER_SESSION_END;
					goto switchstate;
				}
				if (trash[reql-1] != '\n') {
					/* Incomplete line, we quit */
					si->applet.st0 = PEER_SESSION_END;
					goto switchstate;
				}
				else if (reql > 1 && (trash[reql-2] == '\r'))
					trash[reql-2] = 0;
				else
					trash[reql-1] = 0;

				bo_skip(si->ob, reql);

				/* Register status code */
				ps->statuscode = atoi(trash);

				/* Awake main task */
				task_wakeup(ps->table->sync_task, TASK_WOKEN_MSG);

				/* If status code is success */
				if (ps->statuscode == PEER_SESSION_SUCCESSCODE) {
					/* Init cursors */
					ps->teaching_origin = ps->lastpush = ps->lastack = ps->pushack = 0;
					ps->pushed = ps->update;

					/* Init confirm counter */
					ps->confirm = 0;

					/* reset teaching and learning flags to 0 */
					ps->flags &= PEER_TEACH_RESET;
					ps->flags &= PEER_LEARN_RESET;

					/* If current peer is local */
					if (ps->peer->local) {
						/* Init cursors to push a resync */
						ps->teaching_origin = ps->pushed = ps->table->table->update;
						/* flag to start to teach lesson */
						ps->flags |= PEER_F_TEACH_PROCESS;

					}
					else if ((ps->table->flags & SHTABLE_RESYNC_STATEMASK) == SHTABLE_RESYNC_FROMREMOTE &&
					            !(ps->table->flags & SHTABLE_F_RESYNC_ASSIGN)) {
						/* If peer is remote and resync from remote is needed,
						   and no peer currently assigned */

						/* assign peer for a lesson */
						ps->flags |= PEER_F_LEARN_ASSIGN;
						ps->table->flags |= SHTABLE_F_RESYNC_ASSIGN;
					}

				}
				else {
					/* Status code is not success, abort */
					si->applet.st0 = PEER_SESSION_END;
					goto switchstate;
				}
				si->applet.st0 = PEER_SESSION_WAITMSG;
				/* fall through */
			}
			case PEER_SESSION_WAITMSG: {
				struct peer_session *ps = (struct peer_session *)si->conn.data_ctx;
				char c;
				int totl = 0;

				reql = bo_getblk(si->ob, (char *)&c, sizeof(c), totl);
				if (reql <= 0) { /* closed or EOL not found */
					if (reql == 0) {
						/* nothing to read */
						goto incomplete;
					}
					si->applet.st0 = PEER_SESSION_END;
					goto switchstate;
				}
				totl += reql;

				if ((c & 0x80) || (c == 'D')) {
					/* Here we have data message */
					unsigned int pushack;
					struct stksess *ts;
					struct stksess *newts;
					struct stktable_key stkey;
					int srvid;
					uint32_t netinteger;

					/* Compute update remote version */
					if (c & 0x80) {
						pushack = ps->pushack + (unsigned int)(c & 0x7F);
					}
					else {
						reql = bo_getblk(si->ob, (char *)&netinteger, sizeof(netinteger), totl);
						if (reql <= 0) { /* closed or EOL not found */
							if (reql == 0) {
								goto incomplete;
							}
							si->applet.st0 = PEER_SESSION_END;
							goto switchstate;
						}
						totl += reql;
						pushack = ntohl(netinteger);
					}

					/* read key */
					if (ps->table->table->type == STKTABLE_TYPE_STRING) {
						/* type string */
						stkey.key = stkey.data.buf;

						reql = bo_getblk(si->ob, (char *)&netinteger, sizeof(netinteger), totl);
						if (reql <= 0) { /* closed or EOL not found */
							if (reql == 0) {
								goto incomplete;
							}
							si->applet.st0 = PEER_SESSION_END;
							goto switchstate;
						}
						totl += reql;
						stkey.key_len = ntohl(netinteger);

						reql = bo_getblk(si->ob, stkey.key, stkey.key_len, totl);
						if (reql <= 0) { /* closed or EOL not found */
							if (reql == 0) {
								goto incomplete;
							}
							si->applet.st0 = PEER_SESSION_END;
							goto switchstate;
						}
						totl += reql;
					}
					else if (ps->table->table->type == STKTABLE_TYPE_INTEGER) {
						/* type integer */
						stkey.key_len = (size_t)-1;
						stkey.key = &stkey.data.integer;

						reql = bo_getblk(si->ob, (char *)&netinteger, sizeof(netinteger), totl);
						if (reql <= 0) { /* closed or EOL not found */
							if (reql == 0) {
								goto incomplete;
							}
							si->applet.st0 = PEER_SESSION_END;
							goto switchstate;
						}
						totl += reql;
						stkey.data.integer = ntohl(netinteger);
					}
					else {
						/* type ip */
						stkey.key_len = (size_t)-1;
						stkey.key = stkey.data.buf;

						reql = bo_getblk(si->ob, (char *)&stkey.data.buf, ps->table->table->key_size, totl);
						if (reql <= 0) { /* closed or EOL not found */
							if (reql == 0) {
								goto incomplete;
							}
							si->applet.st0 = PEER_SESSION_END;
							goto switchstate;
						}
						totl += reql;

					}

					/* read server id */
					reql = bo_getblk(si->ob, (char *)&netinteger, sizeof(netinteger), totl);
					if (reql <= 0) { /* closed or EOL not found */
						if (reql == 0) {
							goto incomplete;
						}
						si->applet.st0 = PEER_SESSION_END;
						goto switchstate;
					}
					totl += reql;
					srvid = ntohl(netinteger);

					/* update entry */
					newts = stksess_new(ps->table->table, &stkey);
					if (newts) {
						/* lookup for existing entry */
						ts = stktable_lookup(ps->table->table, newts);
						if (ts) {
							 /* the entry already exist, we can free ours */
							stktable_touch(ps->table->table, ts, 0);
							stksess_free(ps->table->table, newts);
						}
						else {
							struct eb32_node *eb;

							/* create new entry */
							ts = stktable_store(ps->table->table, newts, 0);
							ts->upd.key= (++ps->table->table->update)+(2^31);
							eb = eb32_insert(&ps->table->table->updates, &ts->upd);
							if (eb != &ts->upd) {
								eb32_delete(eb);
								eb32_insert(&ps->table->table->updates, &ts->upd);
							}
						}

						/* update entry */
						if (srvid && stktable_data_ptr(ps->table->table, ts, STKTABLE_DT_SERVER_ID))
							stktable_data_cast(stktable_data_ptr(ps->table->table, ts, STKTABLE_DT_SERVER_ID), server_id) = srvid;
						ps->pushack = pushack;
					}

				}
				else if (c == 'R') {
					/* Reset message: remote need resync */

					/* reinit counters for a resync */
					ps->lastpush = 0;
					ps->teaching_origin = ps->pushed = ps->table->table->update;

					/* reset teaching flags to 0 */
					ps->flags &= PEER_TEACH_RESET;

					/* flag to start to teach lesson */
					ps->flags |= PEER_F_TEACH_PROCESS;
				}
				else if (c == 'F') {
					/* Finish message, all known updates have been pushed by remote */
					/* and remote is up to date */

					/* If resync is in progress with remote peer */
					if (ps->flags & PEER_F_LEARN_ASSIGN) {

						/* unassign current peer for learning  */
						ps->flags &= ~PEER_F_LEARN_ASSIGN;
						ps->table->flags &= ~(SHTABLE_F_RESYNC_ASSIGN|SHTABLE_F_RESYNC_PROCESS);

						/* Consider table is now up2date, resync resync no more needed from local neither remote */
						ps->table->flags |= (SHTABLE_F_RESYNC_LOCAL|SHTABLE_F_RESYNC_REMOTE);
					}
					/* Increase confirm counter to launch a confirm message */
					ps->confirm++;
				}
				else if (c == 'c') {
					/* confirm message, remote peer is now up to date with us */

					/* If stopping state */
					if (stopping) {
						/* Close session, push resync no more needed */
						ps->flags |= PEER_F_TEACH_COMPLETE;
						si->applet.st0 = PEER_SESSION_END;
						goto switchstate;
					}

					/* reset teaching flags to 0 */
					ps->flags &= PEER_TEACH_RESET;
				}
				else if (c == 'C') {
					/* Continue message, all known updates have been pushed by remote */
					/* but remote is not up to date */

					/* If resync is in progress with current peer */
					if (ps->flags & PEER_F_LEARN_ASSIGN) {

						/* unassign current peer   */
						ps->flags &= ~PEER_F_LEARN_ASSIGN;
						ps->table->flags &= ~(SHTABLE_F_RESYNC_ASSIGN|SHTABLE_F_RESYNC_PROCESS);

						/* flag current peer is not up 2 date to try from an other */
						ps->flags |= PEER_F_LEARN_NOTUP2DATE;

						/* reschedule a resync */
						ps->table->resync_timeout = tick_add(now_ms, MS_TO_TICKS(5000));
						task_wakeup(ps->table->sync_task, TASK_WOKEN_MSG);
					}
					ps->confirm++;
				}
				else if (c == 'A') {
					/* ack message */
					uint32_t netinteger;

					reql = bo_getblk(si->ob, (char *)&netinteger, sizeof(netinteger), totl);
					if (reql <= 0) { /* closed or EOL not found */
						if (reql == 0) {
							goto incomplete;
						}
						si->applet.st0 = PEER_SESSION_END;
						goto switchstate;
					}
					totl += reql;

					/* Consider remote is up to date with "acked" version */
					ps->update = ntohl(netinteger);
				}
				else {
					/* Unknown message */
					si->applet.st0 = PEER_SESSION_END;
					goto switchstate;
				}

				/* skip consumed message */
				bo_skip(si->ob, totl);

				/* loop on that state to peek next message */
				continue;
incomplete:
				/* Nothing to read, now we start to write */

				/* Confirm finished or partial messages */
				while (ps->confirm) {
					/* There is a confirm messages to send */
					repl = bi_putchr(si->ib, 'c');
					if (repl <= 0) {
						/* no more write possible */
						if (repl == -1)
							goto out;
						si->applet.st0 = PEER_SESSION_END;
						goto switchstate;
					}
					ps->confirm--;
				}

				/* Need to request a resync */
				if ((ps->flags & PEER_F_LEARN_ASSIGN) &&
					(ps->table->flags & SHTABLE_F_RESYNC_ASSIGN) &&
					!(ps->table->flags & SHTABLE_F_RESYNC_PROCESS)) {
					/* Current peer was elected to request a resync */

					repl = bi_putchr(si->ib, 'R');
					if (repl <= 0) {
						/* no more write possible */
						if (repl == -1)
							goto out;
						si->applet.st0 = PEER_SESSION_END;
						goto switchstate;
					}
					ps->table->flags |= SHTABLE_F_RESYNC_PROCESS;
				}

				/* It remains some updates to ack */
				if (ps->pushack != ps->lastack) {
					uint32_t netinteger;

					trash[0] = 'A';
					netinteger = htonl(ps->pushack);
					memcpy(&trash[1], &netinteger, sizeof(netinteger));

					repl = bi_putblk(si->ib, trash, 1+sizeof(netinteger));
					if (repl <= 0) {
						/* no more write possible */
						if (repl == -1)
							goto out;
						si->applet.st0 = PEER_SESSION_END;
						goto switchstate;
					}
					ps->lastack = ps->pushack;
				}

				if (ps->flags & PEER_F_TEACH_PROCESS) {
					/* current peer was requested for a lesson */

					if (!(ps->flags & PEER_F_TEACH_STAGE1)) {
						/* lesson stage 1 not complete */
						struct eb32_node *eb;

						eb = eb32_lookup_ge(&ps->table->table->updates, ps->pushed+1);
						while (1) {
							int msglen;
							struct stksess *ts;

							if (!eb) {
								/* flag lesson stage1 complete */
								ps->flags |= PEER_F_TEACH_STAGE1;
								eb = eb32_first(&ps->table->table->updates);
								if (eb)
									ps->pushed = eb->key - 1;
								break;
							}

							ts = eb32_entry(eb, struct stksess, upd);
							msglen = peer_prepare_datamsg(ts, ps, trash, trashlen);
							if (msglen) {
								/* message to buffer */
								repl = bi_putblk(si->ib, trash, msglen);
								if (repl <= 0) {
									/* no more write possible */
									if (repl == -1)
										goto out;
									si->applet.st0 = PEER_SESSION_END;
									goto switchstate;
								}
								ps->lastpush = ps->pushed = ts->upd.key;
							}
							eb = eb32_next(eb);
						}
					} /* !TEACH_STAGE1 */

					if (!(ps->flags & PEER_F_TEACH_STAGE2)) {
						/* lesson stage 2 not complete */
						struct eb32_node *eb;

						eb = eb32_lookup_ge(&ps->table->table->updates, ps->pushed+1);
						while (1) {
							int msglen;
							struct stksess *ts;

							if (!eb || eb->key > ps->teaching_origin) {
								/* flag lesson stage1 complete */
								ps->flags |= PEER_F_TEACH_STAGE2;
								ps->pushed = ps->teaching_origin;
								break;
							}

							ts = eb32_entry(eb, struct stksess, upd);
							msglen = peer_prepare_datamsg(ts, ps, trash, trashlen);
							if (msglen) {
								/* message to buffer */
								repl = bi_putblk(si->ib, trash, msglen);
								if (repl <= 0) {
									/* no more write possible */
									if (repl == -1)
										goto out;
									si->applet.st0 = PEER_SESSION_END;
									goto switchstate;
								}
								ps->lastpush = ps->pushed = ts->upd.key;
							}
							eb = eb32_next(eb);
						}
					} /* !TEACH_STAGE2 */

					if (!(ps->flags & PEER_F_TEACH_FINISHED)) {
						/* process final lesson message */
						repl = bi_putchr(si->ib, ((ps->table->flags & SHTABLE_RESYNC_STATEMASK) == SHTABLE_RESYNC_FINISHED) ? 'F' : 'C');
						if (repl <= 0) {
							/* no more write possible */
							if (repl == -1)
								goto out;
							si->applet.st0 = PEER_SESSION_END;
							goto switchstate;
						}

						/* flag finished message sent */
						ps->flags |= PEER_F_TEACH_FINISHED;
					} /* !TEACH_FINISHED */
				} /* TEACH_PROCESS */

				if (!(ps->flags & PEER_F_LEARN_ASSIGN) &&
				     (int)(ps->pushed - ps->table->table->localupdate) < 0) {
					/* Push local updates, only if no learning in progress (to avoid ping-pong effects) */
					struct eb32_node *eb;

					eb = eb32_lookup_ge(&ps->table->table->updates, ps->pushed+1);
					while (1) {
						int msglen;
						struct stksess *ts;

						/* push local updates */
						if (!eb) {
							eb = eb32_first(&ps->table->table->updates);
							if (!eb || ((int)(eb->key - ps->pushed) <= 0)) {
								ps->pushed = ps->table->table->localupdate;
								break;
							}
						}

						if ((int)(eb->key - ps->table->table->localupdate) > 0) {
							ps->pushed = ps->table->table->localupdate;
							break;
						}

						ts = eb32_entry(eb, struct stksess, upd);
						msglen = peer_prepare_datamsg(ts, ps, trash, trashlen);
						if (msglen) {
							/* message to buffer */
							repl = bi_putblk(si->ib, trash, msglen);
							if (repl <= 0) {
								/* no more write possible */
								if (repl == -1)
									goto out;
								si->applet.st0 = PEER_SESSION_END;
								goto switchstate;
							}
							ps->lastpush = ps->pushed = ts->upd.key;
						}
						eb = eb32_next(eb);
					}
				} /* ! LEARN_ASSIGN */
				/* noting more to do */
				goto out;
			}
			case PEER_SESSION_EXIT:
				repl = snprintf(trash, trashlen, "%d\n", si->applet.st1);

				if (bi_putblk(si->ib, trash, repl) == -1)
					goto out;
				si->applet.st0 = PEER_SESSION_END;
				/* fall through */
			case PEER_SESSION_END: {
				si_shutw(si);
				si_shutr(si);
				si->ib->flags |= CF_READ_NULL;
				goto quit;
			}
		}
	}
out:
	si_update(si);
	si->ob->flags |= CF_READ_DONTWAIT;
	/* we don't want to expire timeouts while we're processing requests */
	si->ib->rex = TICK_ETERNITY;
	si->ob->wex = TICK_ETERNITY;
quit:
	return;
}
Ejemplo n.º 18
0
/*
 * IO Handler to handle message exchance with a peer
 */
static void peer_io_handler(struct appctx *appctx)
{
	struct stream_interface *si = appctx->owner;
	struct stream *s = si_strm(si);
	struct peers *curpeers = (struct peers *)strm_fe(s)->parent;
	int reql = 0;
	int repl = 0;

	while (1) {
switchstate:
		switch(appctx->st0) {
			case PEER_SESS_ST_ACCEPT:
				appctx->ctx.peers.ptr = NULL;
				appctx->st0 = PEER_SESS_ST_GETVERSION;
				/* fall through */
			case PEER_SESS_ST_GETVERSION:
				reql = bo_getline(si_oc(si), trash.str, trash.size);
				if (reql <= 0) { /* closed or EOL not found */
					if (reql == 0)
						goto out;
					appctx->st0 = PEER_SESS_ST_END;
					goto switchstate;
				}
				if (trash.str[reql-1] != '\n') {
					appctx->st0 = PEER_SESS_ST_END;
					goto switchstate;
				}
				else if (reql > 1 && (trash.str[reql-2] == '\r'))
					trash.str[reql-2] = 0;
				else
					trash.str[reql-1] = 0;

				bo_skip(si_oc(si), reql);

				/* test version */
				if (strcmp(PEER_SESSION_PROTO_NAME " 1.0", trash.str) != 0) {
					appctx->st0 = PEER_SESS_ST_EXIT;
					appctx->st1 = PEER_SESS_SC_ERRVERSION;
					/* test protocol */
					if (strncmp(PEER_SESSION_PROTO_NAME " ", trash.str, strlen(PEER_SESSION_PROTO_NAME)+1) != 0)
						appctx->st1 = PEER_SESS_SC_ERRPROTO;
					goto switchstate;
				}

				appctx->st0 = PEER_SESS_ST_GETHOST;
				/* fall through */
			case PEER_SESS_ST_GETHOST:
				reql = bo_getline(si_oc(si), trash.str, trash.size);
				if (reql <= 0) { /* closed or EOL not found */
					if (reql == 0)
						goto out;
					appctx->st0 = PEER_SESS_ST_END;
					goto switchstate;
				}
				if (trash.str[reql-1] != '\n') {
					appctx->st0 = PEER_SESS_ST_END;
					goto switchstate;
				}
				else if (reql > 1 && (trash.str[reql-2] == '\r'))
					trash.str[reql-2] = 0;
				else
					trash.str[reql-1] = 0;

				bo_skip(si_oc(si), reql);

				/* test hostname match */
				if (strcmp(localpeer, trash.str) != 0) {
					appctx->st0 = PEER_SESS_ST_EXIT;
					appctx->st1 = PEER_SESS_SC_ERRHOST;
					goto switchstate;
				}

				appctx->st0 = PEER_SESS_ST_GETPEER;
				/* fall through */
			case PEER_SESS_ST_GETPEER: {
				struct peer *curpeer;
				char *p;
				reql = bo_getline(si_oc(si), trash.str, trash.size);
				if (reql <= 0) { /* closed or EOL not found */
					if (reql == 0)
						goto out;
					appctx->st0 = PEER_SESS_ST_END;
					goto switchstate;
				}
				if (trash.str[reql-1] != '\n') {
					/* Incomplete line, we quit */
					appctx->st0 = PEER_SESS_ST_END;
					goto switchstate;
				}
				else if (reql > 1 && (trash.str[reql-2] == '\r'))
					trash.str[reql-2] = 0;
				else
					trash.str[reql-1] = 0;

				bo_skip(si_oc(si), reql);

				/* parse line "<peer name> <pid>" */
				p = strchr(trash.str, ' ');
				if (!p) {
					appctx->st0 = PEER_SESS_ST_EXIT;
					appctx->st1 = PEER_SESS_SC_ERRPROTO;
					goto switchstate;
				}
				*p = 0;

				/* lookup known peer */
				for (curpeer = curpeers->remote; curpeer; curpeer = curpeer->next) {
					if (strcmp(curpeer->id, trash.str) == 0)
						break;
				}

				/* if unknown peer */
				if (!curpeer) {
					appctx->st0 = PEER_SESS_ST_EXIT;
					appctx->st1 = PEER_SESS_SC_ERRPEER;
					goto switchstate;
				}

				appctx->ctx.peers.ptr = curpeer;
				appctx->st0 = PEER_SESS_ST_GETTABLE;
				/* fall through */
			}
			case PEER_SESS_ST_GETTABLE: {
				struct peer *curpeer = (struct peer *)appctx->ctx.peers.ptr;
				struct shared_table *st;
				struct peer_session *ps = NULL;
				unsigned long key_type;
				size_t key_size;
				char *p;

				reql = bo_getline(si_oc(si), trash.str, trash.size);
				if (reql <= 0) { /* closed or EOL not found */
					if (reql == 0)
						goto out;
					appctx->ctx.peers.ptr = NULL;
					appctx->st0 = PEER_SESS_ST_END;
					goto switchstate;
				}
				/* Re init appctx->ctx.peers.ptr to null, to handle correctly a release case */
				appctx->ctx.peers.ptr = NULL;

				if (trash.str[reql-1] != '\n') {
					/* Incomplete line, we quit */
					appctx->st0 = PEER_SESS_ST_END;
					goto switchstate;
				}
				else if (reql > 1 && (trash.str[reql-2] == '\r'))
					trash.str[reql-2] = 0;
				else
					trash.str[reql-1] = 0;

				bo_skip(si_oc(si), reql);

				/* Parse line "<table name> <type> <size>" */
				p = strchr(trash.str, ' ');
				if (!p) {
					appctx->st0 = PEER_SESS_ST_EXIT;
					appctx->st1 = PEER_SESS_SC_ERRPROTO;
					goto switchstate;
				}
				*p = 0;
				key_type = (unsigned long)atol(p+1);

				p = strchr(p+1, ' ');
				if (!p) {
					appctx->ctx.peers.ptr = NULL;
					appctx->st0 = PEER_SESS_ST_EXIT;
					appctx->st1 = PEER_SESS_SC_ERRPROTO;
					goto switchstate;
				}

				key_size = (size_t)atoi(p);
				for (st = curpeers->tables; st; st = st->next) {
					/* If table name matches */
					if (strcmp(st->table->id, trash.str) == 0) {
						/* Check key size mismatches, except for strings
						 * which may be truncated as long as they fit in
						 * a buffer.
						 */
						if (key_size != st->table->key_size &&
						    (key_type != STKTABLE_TYPE_STRING ||
						     1 + 4 + 4 + key_size - 1 >= trash.size)) {
							appctx->st0 = PEER_SESS_ST_EXIT;
							appctx->st1 = PEER_SESS_SC_ERRSIZE;
							goto switchstate;
						}

						/* If key type mismatches */
						if (key_type != st->table->type) {
							appctx->st0 = PEER_SESS_ST_EXIT;
							appctx->st1 = PEER_SESS_SC_ERRTYPE;
							goto switchstate;
						}

						/* lookup peer stream of current peer */
						for (ps = st->sessions; ps; ps = ps->next) {
							if (ps->peer == curpeer) {
								/* If stream already active, replaced by new one */
								if (ps->stream && ps->stream != s) {
									if (ps->peer->local) {
										/* Local connection, reply a retry */
										appctx->st0 = PEER_SESS_ST_EXIT;
										appctx->st1 = PEER_SESS_SC_TRYAGAIN;
										goto switchstate;
									}
									peer_session_forceshutdown(ps->stream);
								}
								ps->stream = s;
								ps->appctx = appctx;
								break;
							}
						}
						break;
					}
				}

				/* If table not found */
				if (!st){
					appctx->st0 = PEER_SESS_ST_EXIT;
					appctx->st1 = PEER_SESS_SC_ERRTABLE;
					goto switchstate;
				}

				/* If no peer session for current peer */
				if (!ps) {
					appctx->st0 = PEER_SESS_ST_EXIT;
					appctx->st1 = PEER_SESS_SC_ERRPEER;
					goto switchstate;
				}

				appctx->ctx.peers.ptr = ps;
				appctx->st0 = PEER_SESS_ST_SENDSUCCESS;
				/* fall through */
			}
			case PEER_SESS_ST_SENDSUCCESS: {
				struct peer_session *ps = (struct peer_session *)appctx->ctx.peers.ptr;

				repl = snprintf(trash.str, trash.size, "%d\n", PEER_SESS_SC_SUCCESSCODE);
				repl = bi_putblk(si_ic(si), trash.str, repl);
				if (repl <= 0) {
					if (repl == -1)
						goto full;
					appctx->st0 = PEER_SESS_ST_END;
					goto switchstate;
				}

				/* Register status code */
				ps->statuscode = PEER_SESS_SC_SUCCESSCODE;

				/* Awake main task */
				task_wakeup(ps->table->sync_task, TASK_WOKEN_MSG);

				/* Init cursors */
				ps->teaching_origin =ps->lastpush = ps->lastack = ps->pushack = 0;
				ps->pushed = ps->update;

				/* Init confirm counter */
				ps->confirm = 0;

				/* reset teaching and learning flags to 0 */
				ps->flags &= PEER_TEACH_RESET;
				ps->flags &= PEER_LEARN_RESET;

				/* if current peer is local */
				if (ps->peer->local) {
					/* if table need resyncfrom local and no process assined  */
					if ((ps->table->flags & SHTABLE_RESYNC_STATEMASK) == SHTABLE_RESYNC_FROMLOCAL &&
					    !(ps->table->flags & SHTABLE_F_RESYNC_ASSIGN)) {
						/* assign local peer for a lesson, consider lesson already requested */
						ps->flags |= PEER_F_LEARN_ASSIGN;
						ps->table->flags |= (SHTABLE_F_RESYNC_ASSIGN|SHTABLE_F_RESYNC_PROCESS);
					}

				}
				else if ((ps->table->flags & SHTABLE_RESYNC_STATEMASK) == SHTABLE_RESYNC_FROMREMOTE &&
					 !(ps->table->flags & SHTABLE_F_RESYNC_ASSIGN)) {
					/* assign peer for a lesson  */
					ps->flags |= PEER_F_LEARN_ASSIGN;
					ps->table->flags |= SHTABLE_F_RESYNC_ASSIGN;
				}
				/* switch to waiting message state */
				appctx->st0 = PEER_SESS_ST_WAITMSG;
				goto switchstate;
			}
			case PEER_SESS_ST_CONNECT: {
				struct peer_session *ps = (struct peer_session *)appctx->ctx.peers.ptr;

				/* Send headers */
				repl = snprintf(trash.str, trash.size,
				                PEER_SESSION_PROTO_NAME " 1.0\n%s\n%s %d\n%s %lu %d\n",
				                ps->peer->id,
				                localpeer,
				                (int)getpid(),
				                ps->table->table->id,
				                ps->table->table->type,
				                (int)ps->table->table->key_size);

				if (repl >= trash.size) {
					appctx->st0 = PEER_SESS_ST_END;
					goto switchstate;
				}

				repl = bi_putblk(si_ic(si), trash.str, repl);
				if (repl <= 0) {
					if (repl == -1)
						goto full;
					appctx->st0 = PEER_SESS_ST_END;
					goto switchstate;
				}

				/* switch to the waiting statuscode state */
				appctx->st0 = PEER_SESS_ST_GETSTATUS;
				/* fall through */
			}
			case PEER_SESS_ST_GETSTATUS: {
				struct peer_session *ps = (struct peer_session *)appctx->ctx.peers.ptr;

				if (si_ic(si)->flags & CF_WRITE_PARTIAL)
					ps->statuscode = PEER_SESS_SC_CONNECTEDCODE;

				reql = bo_getline(si_oc(si), trash.str, trash.size);
				if (reql <= 0) { /* closed or EOL not found */
					if (reql == 0)
						goto out;
					appctx->st0 = PEER_SESS_ST_END;
					goto switchstate;
				}
				if (trash.str[reql-1] != '\n') {
					/* Incomplete line, we quit */
					appctx->st0 = PEER_SESS_ST_END;
					goto switchstate;
				}
				else if (reql > 1 && (trash.str[reql-2] == '\r'))
					trash.str[reql-2] = 0;
				else
					trash.str[reql-1] = 0;

				bo_skip(si_oc(si), reql);

				/* Register status code */
				ps->statuscode = atoi(trash.str);

				/* Awake main task */
				task_wakeup(ps->table->sync_task, TASK_WOKEN_MSG);

				/* If status code is success */
				if (ps->statuscode == PEER_SESS_SC_SUCCESSCODE) {
					/* Init cursors */
					ps->teaching_origin = ps->lastpush = ps->lastack = ps->pushack = 0;
					ps->pushed = ps->update;

					/* Init confirm counter */
					ps->confirm = 0;

					/* reset teaching and learning flags to 0 */
					ps->flags &= PEER_TEACH_RESET;
					ps->flags &= PEER_LEARN_RESET;

					/* If current peer is local */
					if (ps->peer->local) {
						/* Init cursors to push a resync */
						ps->teaching_origin = ps->pushed = ps->table->table->update;
						/* flag to start to teach lesson */
						ps->flags |= PEER_F_TEACH_PROCESS;

					}
					else if ((ps->table->flags & SHTABLE_RESYNC_STATEMASK) == SHTABLE_RESYNC_FROMREMOTE &&
					            !(ps->table->flags & SHTABLE_F_RESYNC_ASSIGN)) {
						/* If peer is remote and resync from remote is needed,
						   and no peer currently assigned */

						/* assign peer for a lesson */
						ps->flags |= PEER_F_LEARN_ASSIGN;
						ps->table->flags |= SHTABLE_F_RESYNC_ASSIGN;
					}

				}
				else {
					/* Status code is not success, abort */
					appctx->st0 = PEER_SESS_ST_END;
					goto switchstate;
				}
				appctx->st0 = PEER_SESS_ST_WAITMSG;
				/* fall through */
			}
			case PEER_SESS_ST_WAITMSG: {
				struct peer_session *ps = (struct peer_session *)appctx->ctx.peers.ptr;
				struct stksess *ts, *newts = NULL;
				char c;
				int totl = 0;

				reql = bo_getblk(si_oc(si), (char *)&c, sizeof(c), totl);
				if (reql <= 0) /* closed or EOL not found */
					goto incomplete;

				totl += reql;

				if ((c & 0x80) || (c == 'D')) {
					/* Here we have data message */
					unsigned int pushack;
					int srvid;
					uint32_t netinteger;

					/* Compute update remote version */
					if (c & 0x80) {
						pushack = ps->pushack + (unsigned int)(c & 0x7F);
					}
					else {
						reql = bo_getblk(si_oc(si), (char *)&netinteger, sizeof(netinteger), totl);
						if (reql <= 0) /* closed or EOL not found */
							goto incomplete;

						totl += reql;
						pushack = ntohl(netinteger);
					}

					/* Read key. The string keys are read in two steps, the first step
					 * consists in reading whatever fits into the table directly into
					 * the pre-allocated key. The second step consists in simply
					 * draining all exceeding data. This can happen for example after a
					 * config reload with a smaller key size for the stick table than
					 * what was previously set, or when facing the impossibility to
					 * allocate a new stksess (for example when the table is full with
					 * "nopurge").
					 */
					if (ps->table->table->type == STKTABLE_TYPE_STRING) {
						unsigned int to_read, to_store;

						/* read size first */
						reql = bo_getblk(si_oc(si), (char *)&netinteger, sizeof(netinteger), totl);
						if (reql <= 0) /* closed or EOL not found */
							goto incomplete;

						totl += reql;

						to_store = 0;
						to_read = ntohl(netinteger);

						if (to_read + totl > si_ob(si)->size) {
							/* impossible to read a key this large, abort */
							reql = -1;
							goto incomplete;
						}

						newts = stksess_new(ps->table->table, NULL);
						if (newts)
							to_store = MIN(to_read, ps->table->table->key_size - 1);

						/* we read up to two blocks, the first one goes into the key,
						 * the rest is drained into the trash.
						 */
						if (to_store) {
							reql = bo_getblk(si_oc(si), (char *)newts->key.key, to_store, totl);
							if (reql <= 0) /* closed or incomplete */
								goto incomplete;
							newts->key.key[reql] = 0;
							totl += reql;
							to_read -= reql;
						}
						if (to_read) {
							reql = bo_getblk(si_oc(si), trash.str, to_read, totl);
							if (reql <= 0) /* closed or incomplete */
								goto incomplete;
							totl += reql;
						}
					}
					else if (ps->table->table->type == STKTABLE_TYPE_INTEGER) {
						reql = bo_getblk(si_oc(si), (char *)&netinteger, sizeof(netinteger), totl);
						if (reql <= 0) /* closed or EOL not found */
							goto incomplete;
						newts = stksess_new(ps->table->table, NULL);
						if (newts) {
							netinteger = ntohl(netinteger);
							memcpy(newts->key.key, &netinteger, sizeof(netinteger));
						}
						totl += reql;
					}
					else {
						/* type ip or binary */
						newts = stksess_new(ps->table->table, NULL);
						reql = bo_getblk(si_oc(si), newts ? (char *)newts->key.key : trash.str, ps->table->table->key_size, totl);
						if (reql <= 0) /* closed or EOL not found */
							goto incomplete;
						totl += reql;
					}

					/* read server id */
					reql = bo_getblk(si_oc(si), (char *)&netinteger, sizeof(netinteger), totl);
					if (reql <= 0) /* closed or EOL not found */
						goto incomplete;

					totl += reql;
					srvid = ntohl(netinteger);

					/* update entry */
					if (newts) {
						/* lookup for existing entry */
						ts = stktable_lookup(ps->table->table, newts);
						if (ts) {
							 /* the entry already exist, we can free ours */
							stktable_touch(ps->table->table, ts, 0);
							stksess_free(ps->table->table, newts);
							newts = NULL;
						}
						else {
							struct eb32_node *eb;

							/* create new entry */
							ts = stktable_store(ps->table->table, newts, 0);
							newts = NULL; /* don't reuse it */

							ts->upd.key= (++ps->table->table->update)+(2^31);
							eb = eb32_insert(&ps->table->table->updates, &ts->upd);
							if (eb != &ts->upd) {
								eb32_delete(eb);
								eb32_insert(&ps->table->table->updates, &ts->upd);
							}
						}

						/* update entry */
						if (srvid && stktable_data_ptr(ps->table->table, ts, STKTABLE_DT_SERVER_ID))
							stktable_data_cast(stktable_data_ptr(ps->table->table, ts, STKTABLE_DT_SERVER_ID), server_id) = srvid;
						ps->pushack = pushack;
					}

				}
				else if (c == 'R') {
					/* Reset message: remote need resync */

					/* reinit counters for a resync */
					ps->lastpush = 0;
					ps->teaching_origin = ps->pushed = ps->table->table->update;

					/* reset teaching flags to 0 */
					ps->flags &= PEER_TEACH_RESET;

					/* flag to start to teach lesson */
					ps->flags |= PEER_F_TEACH_PROCESS;
				}
				else if (c == 'F') {
					/* Finish message, all known updates have been pushed by remote */
					/* and remote is up to date */

					/* If resync is in progress with remote peer */
					if (ps->flags & PEER_F_LEARN_ASSIGN) {

						/* unassign current peer for learning  */
						ps->flags &= ~PEER_F_LEARN_ASSIGN;
						ps->table->flags &= ~(SHTABLE_F_RESYNC_ASSIGN|SHTABLE_F_RESYNC_PROCESS);

						/* Consider table is now up2date, resync resync no more needed from local neither remote */
						ps->table->flags |= (SHTABLE_F_RESYNC_LOCAL|SHTABLE_F_RESYNC_REMOTE);
					}
					/* Increase confirm counter to launch a confirm message */
					ps->confirm++;
				}
				else if (c == 'c') {
					/* confirm message, remote peer is now up to date with us */

					/* If stopping state */
					if (stopping) {
						/* Close session, push resync no more needed */
						ps->flags |= PEER_F_TEACH_COMPLETE;
						appctx->st0 = PEER_SESS_ST_END;
						goto switchstate;
					}

					/* reset teaching flags to 0 */
					ps->flags &= PEER_TEACH_RESET;
				}
				else if (c == 'C') {
					/* Continue message, all known updates have been pushed by remote */
					/* but remote is not up to date */

					/* If resync is in progress with current peer */
					if (ps->flags & PEER_F_LEARN_ASSIGN) {

						/* unassign current peer   */
						ps->flags &= ~PEER_F_LEARN_ASSIGN;
						ps->table->flags &= ~(SHTABLE_F_RESYNC_ASSIGN|SHTABLE_F_RESYNC_PROCESS);

						/* flag current peer is not up 2 date to try from an other */
						ps->flags |= PEER_F_LEARN_NOTUP2DATE;

						/* reschedule a resync */
						ps->table->resync_timeout = tick_add(now_ms, MS_TO_TICKS(5000));
						task_wakeup(ps->table->sync_task, TASK_WOKEN_MSG);
					}
					ps->confirm++;
				}
				else if (c == 'A') {
					/* ack message */
					uint32_t netinteger;

					reql = bo_getblk(si_oc(si), (char *)&netinteger, sizeof(netinteger), totl);
					if (reql <= 0) /* closed or EOL not found */
						goto incomplete;

					totl += reql;

					/* Consider remote is up to date with "acked" version */
					ps->update = ntohl(netinteger);
				}
				else {
					/* Unknown message */
					appctx->st0 = PEER_SESS_ST_END;
					goto switchstate;
				}

				/* skip consumed message */
				bo_skip(si_oc(si), totl);

				/* loop on that state to peek next message */
				goto switchstate;

incomplete:
				/* we get here when a bo_getblk() returns <= 0 in reql */

				/* first, we may have to release newts */
				if (newts) {
					stksess_free(ps->table->table, newts);
					newts = NULL;
				}

				if (reql < 0) {
					/* there was an error */
					appctx->st0 = PEER_SESS_ST_END;
					goto switchstate;
				}

				/* Nothing to read, now we start to write */

				/* Confirm finished or partial messages */
				while (ps->confirm) {
					/* There is a confirm messages to send */
					repl = bi_putchr(si_ic(si), 'c');
					if (repl <= 0) {
						/* no more write possible */
						if (repl == -1)
							goto full;
						appctx->st0 = PEER_SESS_ST_END;
						goto switchstate;
					}
					ps->confirm--;
				}

				/* Need to request a resync */
				if ((ps->flags & PEER_F_LEARN_ASSIGN) &&
					(ps->table->flags & SHTABLE_F_RESYNC_ASSIGN) &&
					!(ps->table->flags & SHTABLE_F_RESYNC_PROCESS)) {
					/* Current peer was elected to request a resync */

					repl = bi_putchr(si_ic(si), 'R');
					if (repl <= 0) {
						/* no more write possible */
						if (repl == -1)
							goto full;
						appctx->st0 = PEER_SESS_ST_END;
						goto switchstate;
					}
					ps->table->flags |= SHTABLE_F_RESYNC_PROCESS;
				}

				/* It remains some updates to ack */
				if (ps->pushack != ps->lastack) {
					uint32_t netinteger;

					trash.str[0] = 'A';
					netinteger = htonl(ps->pushack);
					memcpy(&trash.str[1], &netinteger, sizeof(netinteger));

					repl = bi_putblk(si_ic(si), trash.str, 1+sizeof(netinteger));
					if (repl <= 0) {
						/* no more write possible */
						if (repl == -1)
							goto full;
						appctx->st0 = PEER_SESS_ST_END;
						goto switchstate;
					}
					ps->lastack = ps->pushack;
				}

				if (ps->flags & PEER_F_TEACH_PROCESS) {
					/* current peer was requested for a lesson */

					if (!(ps->flags & PEER_F_TEACH_STAGE1)) {
						/* lesson stage 1 not complete */
						struct eb32_node *eb;

						eb = eb32_lookup_ge(&ps->table->table->updates, ps->pushed+1);
						while (1) {
							int msglen;
							struct stksess *ts;

							if (!eb) {
								/* flag lesson stage1 complete */
								ps->flags |= PEER_F_TEACH_STAGE1;
								eb = eb32_first(&ps->table->table->updates);
								if (eb)
									ps->pushed = eb->key - 1;
								break;
							}

							ts = eb32_entry(eb, struct stksess, upd);
							msglen = peer_prepare_datamsg(ts, ps, trash.str, trash.size);
							if (msglen) {
								/* message to buffer */
								repl = bi_putblk(si_ic(si), trash.str, msglen);
								if (repl <= 0) {
									/* no more write possible */
									if (repl == -1)
										goto full;
									appctx->st0 = PEER_SESS_ST_END;
									goto switchstate;
								}
								ps->lastpush = ps->pushed = ts->upd.key;
							}
							eb = eb32_next(eb);
						}
					} /* !TEACH_STAGE1 */

					if (!(ps->flags & PEER_F_TEACH_STAGE2)) {
						/* lesson stage 2 not complete */
						struct eb32_node *eb;

						eb = eb32_lookup_ge(&ps->table->table->updates, ps->pushed+1);
						while (1) {
							int msglen;
							struct stksess *ts;

							if (!eb || eb->key > ps->teaching_origin) {
								/* flag lesson stage1 complete */
								ps->flags |= PEER_F_TEACH_STAGE2;
								ps->pushed = ps->teaching_origin;
								break;
							}

							ts = eb32_entry(eb, struct stksess, upd);
							msglen = peer_prepare_datamsg(ts, ps, trash.str, trash.size);
							if (msglen) {
								/* message to buffer */
								repl = bi_putblk(si_ic(si), trash.str, msglen);
								if (repl <= 0) {
									/* no more write possible */
									if (repl == -1)
										goto full;
									appctx->st0 = PEER_SESS_ST_END;
									goto switchstate;
								}
								ps->lastpush = ps->pushed = ts->upd.key;
							}
							eb = eb32_next(eb);
						}
					} /* !TEACH_STAGE2 */

					if (!(ps->flags & PEER_F_TEACH_FINISHED)) {
						/* process final lesson message */
						repl = bi_putchr(si_ic(si), ((ps->table->flags & SHTABLE_RESYNC_STATEMASK) == SHTABLE_RESYNC_FINISHED) ? 'F' : 'C');
						if (repl <= 0) {
							/* no more write possible */
							if (repl == -1)
								goto full;
							appctx->st0 = PEER_SESS_ST_END;
							goto switchstate;
						}

						/* flag finished message sent */
						ps->flags |= PEER_F_TEACH_FINISHED;
					} /* !TEACH_FINISHED */
				} /* TEACH_PROCESS */

				if (!(ps->flags & PEER_F_LEARN_ASSIGN) &&
				     (int)(ps->pushed - ps->table->table->localupdate) < 0) {
					/* Push local updates, only if no learning in progress (to avoid ping-pong effects) */
					struct eb32_node *eb;

					eb = eb32_lookup_ge(&ps->table->table->updates, ps->pushed+1);
					while (1) {
						int msglen;
						struct stksess *ts;

						/* push local updates */
						if (!eb) {
							eb = eb32_first(&ps->table->table->updates);
							if (!eb || ((int)(eb->key - ps->pushed) <= 0)) {
								ps->pushed = ps->table->table->localupdate;
								break;
							}
						}

						if ((int)(eb->key - ps->table->table->localupdate) > 0) {
							ps->pushed = ps->table->table->localupdate;
							break;
						}

						ts = eb32_entry(eb, struct stksess, upd);
						msglen = peer_prepare_datamsg(ts, ps, trash.str, trash.size);
						if (msglen) {
							/* message to buffer */
							repl = bi_putblk(si_ic(si), trash.str, msglen);
							if (repl <= 0) {
								/* no more write possible */
								if (repl == -1)
									goto full;
								appctx->st0 = PEER_SESS_ST_END;
								goto switchstate;
							}
							ps->lastpush = ps->pushed = ts->upd.key;
						}
						eb = eb32_next(eb);
					}
				} /* ! LEARN_ASSIGN */
				/* noting more to do */
				goto out;
			}
			case PEER_SESS_ST_EXIT:
				repl = snprintf(trash.str, trash.size, "%d\n", appctx->st1);

				if (bi_putblk(si_ic(si), trash.str, repl) == -1)
					goto full;
				appctx->st0 = PEER_SESS_ST_END;
				/* fall through */
			case PEER_SESS_ST_END: {
				si_shutw(si);
				si_shutr(si);
				si_ic(si)->flags |= CF_READ_NULL;
				goto out;
			}
		}
	}
out:
	si_oc(si)->flags |= CF_READ_DONTWAIT;
	return;
full:
	si_applet_cant_put(si);
	goto out;
}