Ejemplo n.º 1
0
static void UpdateStabilizationDesired(bool doingIdent) {
	StabilizationDesiredData stabDesired;
	StabilizationDesiredGet(&stabDesired);

	uint8_t rollMax, pitchMax;

	float manualRate[STABILIZATIONSETTINGS_MANUALRATE_NUMELEM];

	StabilizationSettingsRollMaxGet(&rollMax);
	StabilizationSettingsPitchMaxGet(&pitchMax);
	StabilizationSettingsManualRateGet(manualRate);

	ManualControlCommandRollGet(&stabDesired.Roll);
	stabDesired.Roll *= rollMax;
	ManualControlCommandPitchGet(&stabDesired.Pitch);
	stabDesired.Pitch *= pitchMax;

	ManualControlCommandYawGet(&stabDesired.Yaw);
	stabDesired.Yaw *= manualRate[STABILIZATIONSETTINGS_MANUALRATE_YAW];

	if (doingIdent) {
		stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_ROLL]  = STABILIZATIONDESIRED_STABILIZATIONMODE_SYSTEMIDENT;
		stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_PITCH] = STABILIZATIONDESIRED_STABILIZATIONMODE_SYSTEMIDENT;
		stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_YAW] = STABILIZATIONDESIRED_STABILIZATIONMODE_SYSTEMIDENT;
	} else {
		stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_ROLL]  = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
		stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_PITCH] = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
		stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_YAW] = STABILIZATIONDESIRED_STABILIZATIONMODE_RATE;
	}

	ManualControlCommandThrottleGet(&stabDesired.Throttle);

	StabilizationDesiredSet(&stabDesired);
}
Ejemplo n.º 2
0
static float get_pid_scale_source_value()
{
    float value;

    switch (stabSettings.stabBank.ThrustPIDScaleSource) {
    case STABILIZATIONBANK_THRUSTPIDSCALESOURCE_MANUALCONTROLTHROTTLE:
        ManualControlCommandThrottleGet(&value);
        break;
    case STABILIZATIONBANK_THRUSTPIDSCALESOURCE_STABILIZATIONDESIREDTHRUST:
        StabilizationDesiredThrustGet(&value);
        break;
    case STABILIZATIONBANK_THRUSTPIDSCALESOURCE_ACTUATORDESIREDTHRUST:
        ActuatorDesiredThrustGet(&value);
        break;
    default:
        ActuatorDesiredThrustGet(&value);
        break;
    }

    if (value < 0) {
        value = 0.0f;
    }

    return value;
}
Ejemplo n.º 3
0
/**
 * @brief If requested accumulate accel values to calculate level
 * @param[in] accelsData the scaled and normalized accels
 */
static void update_trimming(AccelsData * accelsData)
{
    if (trim_requested) {
        if (trim_samples >= MAX_TRIM_FLIGHT_SAMPLES) {
            trim_requested = false;
        } else {
            uint8_t armed;
            float throttle;
            FlightStatusArmedGet(&armed);
            ManualControlCommandThrottleGet(&throttle);  // Until flight status indicates airborne
            if ((armed == FLIGHTSTATUS_ARMED_ARMED) && (throttle > 0)) {
                trim_samples++;
                // Store the digitally scaled version since that is what we use for bias
                trim_accels[0] += accelsData->x;
                trim_accels[1] += accelsData->y;
                trim_accels[2] += accelsData->z;
            }
        }
    }
}
Ejemplo n.º 4
0
/**
 * Initialise the module, called on startup
 * \returns 0 on success or -1 if initialisation failed
 */
int32_t TxPIDInitialize(void)
{
    bool txPIDEnabled;
    HwSettingsOptionalModulesData optionalModules;

#ifdef REVOLUTION
    AltitudeHoldSettingsInitialize();
#endif

    HwSettingsInitialize();
    HwSettingsOptionalModulesGet(&optionalModules);

    if (optionalModules.TxPID == HWSETTINGS_OPTIONALMODULES_ENABLED) {
        txPIDEnabled = true;
    } else {
        txPIDEnabled = false;
    }

    if (txPIDEnabled) {
        TxPIDSettingsInitialize();
        TxPIDStatusInitialize();
        AccessoryDesiredInitialize();

        UAVObjEvent ev = {
            .obj    = AccessoryDesiredHandle(),
            .instId = 0,
            .event  = 0,
            .lowPriority = false,
        };
        EventPeriodicCallbackCreate(&ev, updatePIDs, SAMPLE_PERIOD_MS / portTICK_RATE_MS);

#if (TELEMETRY_UPDATE_PERIOD_MS != 0)
        // Change StabilizationSettings update rate from OnChange to periodic
        // to prevent telemetry link flooding with frequent updates in case of
        // control channel jitter.
        // Warning: saving to flash with this code active will change the
        // StabilizationSettings update rate permanently. Use Metadata via
        // browser to reset to defaults (telemetryAcked=true, OnChange).
        UAVObjMetadata metadata;
        StabilizationSettingsInitialize();
        StabilizationSettingsGetMetadata(&metadata);
        metadata.telemetryAcked = 0;
        metadata.telemetryUpdateMode   = UPDATEMODE_PERIODIC;
        metadata.telemetryUpdatePeriod = TELEMETRY_UPDATE_PERIOD_MS;
        StabilizationSettingsSetMetadata(&metadata);

        AttitudeSettingsInitialize();
        AttitudeSettingsGetMetadata(&metadata);
        metadata.telemetryAcked = 0;
        metadata.telemetryUpdateMode   = UPDATEMODE_PERIODIC;
        metadata.telemetryUpdatePeriod = TELEMETRY_UPDATE_PERIOD_MS;
        AttitudeSettingsSetMetadata(&metadata);
#endif /* if (TELEMETRY_UPDATE_PERIOD_MS != 0) */

        return 0;
    }

    return -1;
}

/* stub: module has no module thread */
int32_t TxPIDStart(void)
{
    return 0;
}

MODULE_INITCALL(TxPIDInitialize, TxPIDStart);

/**
 * Update PIDs callback function
 */
static void updatePIDs(UAVObjEvent *ev)
{
    if (ev->obj != AccessoryDesiredHandle()) {
        return;
    }

    TxPIDSettingsData inst;
    TxPIDSettingsGet(&inst);

    if (inst.UpdateMode == TXPIDSETTINGS_UPDATEMODE_NEVER) {
        return;
    }

    uint8_t armed;
    FlightStatusArmedGet(&armed);
    if ((inst.UpdateMode == TXPIDSETTINGS_UPDATEMODE_WHENARMED) &&
        (armed == FLIGHTSTATUS_ARMED_DISARMED)) {
        return;
    }

    StabilizationBankData bank;
    switch (inst.BankNumber) {
    case 0:
        StabilizationSettingsBank1Get((StabilizationSettingsBank1Data *)&bank);
        break;

    case 1:
        StabilizationSettingsBank2Get((StabilizationSettingsBank2Data *)&bank);
        break;

    case 2:
        StabilizationSettingsBank3Get((StabilizationSettingsBank3Data *)&bank);
        break;

    default:
        return;
    }
    StabilizationSettingsData stab;
    StabilizationSettingsGet(&stab);

    AttitudeSettingsData att;
    AttitudeSettingsGet(&att);

#ifdef REVOLUTION
    AltitudeHoldSettingsData altitude;
    AltitudeHoldSettingsGet(&altitude);
#endif
    AccessoryDesiredData accessory;

    TxPIDStatusData txpid_status;
    TxPIDStatusGet(&txpid_status);

    bool easyTuneEnabled        = false;

    uint8_t needsUpdateBank     = 0;
    uint8_t needsUpdateStab     = 0;
    uint8_t needsUpdateAtt      = 0;
#ifdef REVOLUTION
    uint8_t needsUpdateAltitude = 0;
#endif

    // Loop through every enabled instance
    for (uint8_t i = 0; i < TXPIDSETTINGS_PIDS_NUMELEM; i++) {
        if (TxPIDSettingsPIDsToArray(inst.PIDs)[i] != TXPIDSETTINGS_PIDS_DISABLED) {
            float value;
            if (TxPIDSettingsInputsToArray(inst.Inputs)[i] == TXPIDSETTINGS_INPUTS_THROTTLE) {
                ManualControlCommandThrottleGet(&value);
                value = scale(value,
                              inst.ThrottleRange.Min,
                              inst.ThrottleRange.Max,
                              TxPIDSettingsMinPIDToArray(inst.MinPID)[i],
                              TxPIDSettingsMaxPIDToArray(inst.MaxPID)[i]);
            } else if (AccessoryDesiredInstGet(
                           TxPIDSettingsInputsToArray(inst.Inputs)[i] - TXPIDSETTINGS_INPUTS_ACCESSORY0,
                           &accessory) == 0) {
                value = scale(accessory.AccessoryVal, -1.0f, 1.0f,
                              TxPIDSettingsMinPIDToArray(inst.MinPID)[i],
                              TxPIDSettingsMaxPIDToArray(inst.MaxPID)[i]);
            } else {
                continue;
            }

            TxPIDStatusCurPIDToArray(txpid_status.CurPID)[i] = value;

            switch (TxPIDSettingsPIDsToArray(inst.PIDs)[i]) {
            case TXPIDSETTINGS_PIDS_ROLLRATEKP:
                needsUpdateBank |= update(&bank.RollRatePID.Kp, value);
                break;
            case TXPIDSETTINGS_PIDS_EASYTUNERATEROLL:
                easyTuneEnabled  = true;
                needsUpdateBank |= update(&bank.RollRatePID.Kp, value);
                needsUpdateBank |= update(&bank.RollRatePID.Ki, value * inst.EasyTunePitchRollRateFactors.I);
                needsUpdateBank |= update(&bank.RollRatePID.Kd, value * inst.EasyTunePitchRollRateFactors.D);
                break;
            case TXPIDSETTINGS_PIDS_EASYTUNERATEPITCH:
                easyTuneEnabled  = true;
                needsUpdateBank |= update(&bank.PitchRatePID.Kp, value);
                needsUpdateBank |= update(&bank.PitchRatePID.Ki, value * inst.EasyTunePitchRollRateFactors.I);
                needsUpdateBank |= update(&bank.PitchRatePID.Kd, value * inst.EasyTunePitchRollRateFactors.D);
                break;
            case TXPIDSETTINGS_PIDS_ROLLRATEKI:
                needsUpdateBank |= update(&bank.RollRatePID.Ki, value);
                break;
            case TXPIDSETTINGS_PIDS_ROLLRATEKD:
                needsUpdateBank |= update(&bank.RollRatePID.Kd, value);
                break;
            case TXPIDSETTINGS_PIDS_ROLLRATEILIMIT:
                needsUpdateBank |= update(&bank.RollRatePID.ILimit, value);
                break;
            case TXPIDSETTINGS_PIDS_ROLLRATERESP:
                needsUpdateBank |= updateUint16(&bank.ManualRate.Roll, value);
                break;
            case TXPIDSETTINGS_PIDS_ROLLATTITUDEKP:
                needsUpdateBank |= update(&bank.RollPI.Kp, value);
                break;
            case TXPIDSETTINGS_PIDS_ROLLATTITUDEKI:
                needsUpdateBank |= update(&bank.RollPI.Ki, value);
                break;
            case TXPIDSETTINGS_PIDS_ROLLATTITUDEILIMIT:
                needsUpdateBank |= update(&bank.RollPI.ILimit, value);
                break;
            case TXPIDSETTINGS_PIDS_ROLLATTITUDERESP:
                needsUpdateBank |= updateUint8(&bank.RollMax, value);
                break;
            case TXPIDSETTINGS_PIDS_PITCHRATEKP:
                needsUpdateBank |= update(&bank.PitchRatePID.Kp, value);
                break;
            case TXPIDSETTINGS_PIDS_PITCHRATEKI:
                needsUpdateBank |= update(&bank.PitchRatePID.Ki, value);
                break;
            case TXPIDSETTINGS_PIDS_PITCHRATEKD:
                needsUpdateBank |= update(&bank.PitchRatePID.Kd, value);
                break;
            case TXPIDSETTINGS_PIDS_PITCHRATEILIMIT:
                needsUpdateBank |= update(&bank.PitchRatePID.ILimit, value);
                break;
            case TXPIDSETTINGS_PIDS_PITCHRATERESP:
                needsUpdateBank |= updateUint16(&bank.ManualRate.Pitch, value);
                break;
            case TXPIDSETTINGS_PIDS_PITCHATTITUDEKP:
                needsUpdateBank |= update(&bank.PitchPI.Kp, value);
                break;
            case TXPIDSETTINGS_PIDS_PITCHATTITUDEKI:
                needsUpdateBank |= update(&bank.PitchPI.Ki, value);
                break;
            case TXPIDSETTINGS_PIDS_PITCHATTITUDEILIMIT:
                needsUpdateBank |= update(&bank.PitchPI.ILimit, value);
                break;
            case TXPIDSETTINGS_PIDS_PITCHATTITUDERESP:
                needsUpdateBank |= updateUint8(&bank.PitchMax, value);
                break;
            case TXPIDSETTINGS_PIDS_ROLLPITCHRATEKP:
                needsUpdateBank |= update(&bank.RollRatePID.Kp, value);
                needsUpdateBank |= update(&bank.PitchRatePID.Kp, value);
                break;
            case TXPIDSETTINGS_PIDS_ROLLPITCHRATEKI:
                needsUpdateBank |= update(&bank.RollRatePID.Ki, value);
                needsUpdateBank |= update(&bank.PitchRatePID.Ki, value);
                break;
            case TXPIDSETTINGS_PIDS_ROLLPITCHRATEKD:
                needsUpdateBank |= update(&bank.RollRatePID.Kd, value);
                needsUpdateBank |= update(&bank.PitchRatePID.Kd, value);
                break;
            case TXPIDSETTINGS_PIDS_ROLLPITCHRATEILIMIT:
                needsUpdateBank |= update(&bank.RollRatePID.ILimit, value);
                needsUpdateBank |= update(&bank.PitchRatePID.ILimit, value);
                break;
            case TXPIDSETTINGS_PIDS_ROLLPITCHRATERESP:
                needsUpdateBank |= updateUint16(&bank.ManualRate.Roll, value);
                needsUpdateBank |= updateUint16(&bank.ManualRate.Pitch, value);
                break;
            case TXPIDSETTINGS_PIDS_ROLLPITCHATTITUDEKP:
                needsUpdateBank |= update(&bank.RollPI.Kp, value);
                needsUpdateBank |= update(&bank.PitchPI.Kp, value);
                break;
            case TXPIDSETTINGS_PIDS_ROLLPITCHATTITUDEKI:
                needsUpdateBank |= update(&bank.RollPI.Ki, value);
                needsUpdateBank |= update(&bank.PitchPI.Ki, value);
                break;
            case TXPIDSETTINGS_PIDS_ROLLPITCHATTITUDEILIMIT:
                needsUpdateBank |= update(&bank.RollPI.ILimit, value);
                needsUpdateBank |= update(&bank.PitchPI.ILimit, value);
                break;
            case TXPIDSETTINGS_PIDS_ROLLPITCHATTITUDERESP:
                needsUpdateBank |= updateUint8(&bank.RollMax, value);
                needsUpdateBank |= updateUint8(&bank.PitchMax, value);
                break;
            case TXPIDSETTINGS_PIDS_YAWRATEKP:
                needsUpdateBank |= update(&bank.YawRatePID.Kp, value);
                break;
            case TXPIDSETTINGS_PIDS_YAWRATEKI:
                needsUpdateBank |= update(&bank.YawRatePID.Ki, value);
                break;
            case TXPIDSETTINGS_PIDS_YAWRATEKD:
                needsUpdateBank |= update(&bank.YawRatePID.Kd, value);
                break;
            case TXPIDSETTINGS_PIDS_YAWRATEILIMIT:
                needsUpdateBank |= update(&bank.YawRatePID.ILimit, value);
                break;
            case TXPIDSETTINGS_PIDS_YAWRATERESP:
                needsUpdateBank |= updateUint16(&bank.ManualRate.Yaw, value);
                break;
            case TXPIDSETTINGS_PIDS_YAWATTITUDEKP:
                needsUpdateBank |= update(&bank.YawPI.Kp, value);
                break;
            case TXPIDSETTINGS_PIDS_YAWATTITUDEKI:
                needsUpdateBank |= update(&bank.YawPI.Ki, value);
                break;
            case TXPIDSETTINGS_PIDS_YAWATTITUDEILIMIT:
                needsUpdateBank |= update(&bank.YawPI.ILimit, value);
                break;
            case TXPIDSETTINGS_PIDS_YAWATTITUDERESP:
                needsUpdateBank |= updateUint8(&bank.YawMax, value);
                break;
            case TXPIDSETTINGS_PIDS_ROLLEXPO:
                needsUpdateBank |= updateInt8(&bank.StickExpo.Roll, value);
                break;
            case TXPIDSETTINGS_PIDS_PITCHEXPO:
                needsUpdateBank |= updateInt8(&bank.StickExpo.Pitch, value);
                break;
            case TXPIDSETTINGS_PIDS_ROLLPITCHEXPO:
                needsUpdateBank |= updateInt8(&bank.StickExpo.Roll, value);
                needsUpdateBank |= updateInt8(&bank.StickExpo.Pitch, value);
                break;
            case TXPIDSETTINGS_PIDS_YAWEXPO:
                needsUpdateBank |= updateInt8(&bank.StickExpo.Yaw, value);
                break;
            case TXPIDSETTINGS_PIDS_GYROTAU:
                needsUpdateStab |= update(&stab.GyroTau, value);
                break;
            case TXPIDSETTINGS_PIDS_ACROROLLFACTOR:
                needsUpdateBank |= updateUint8(&bank.AcroInsanityFactor.Roll, value);
                break;
            case TXPIDSETTINGS_PIDS_ACROPITCHFACTOR:
                needsUpdateBank |= updateUint8(&bank.AcroInsanityFactor.Pitch, value);
                break;
            case TXPIDSETTINGS_PIDS_ACROROLLPITCHFACTOR:
                needsUpdateBank |= updateUint8(&bank.AcroInsanityFactor.Roll, value);
                needsUpdateBank |= updateUint8(&bank.AcroInsanityFactor.Pitch, value);
                break;
            case TXPIDSETTINGS_PIDS_ACCELTAU:
                needsUpdateAtt  |= update(&att.AccelTau, value);
                break;
            case TXPIDSETTINGS_PIDS_ACCELKP:
                needsUpdateAtt  |= update(&att.AccelKp, value);
                break;
            case TXPIDSETTINGS_PIDS_ACCELKI:
                needsUpdateAtt  |= update(&att.AccelKi, value);
                break;

#ifdef REVOLUTION
            case TXPIDSETTINGS_PIDS_ALTITUDEPOSKP:
                needsUpdateAltitude |= update(&altitude.VerticalPosP, value);
                break;
            case TXPIDSETTINGS_PIDS_ALTITUDEVELOCITYKP:
                needsUpdateAltitude |= update(&altitude.VerticalVelPID.Kp, value);
                break;
            case TXPIDSETTINGS_PIDS_ALTITUDEVELOCITYKI:
                needsUpdateAltitude |= update(&altitude.VerticalVelPID.Ki, value);
                break;
            case TXPIDSETTINGS_PIDS_ALTITUDEVELOCITYKD:
                needsUpdateAltitude |= update(&altitude.VerticalVelPID.Kd, value);
                break;
            case TXPIDSETTINGS_PIDS_ALTITUDEVELOCITYBETA:
                needsUpdateAltitude |= update(&altitude.VerticalVelPID.Beta, value);
                break;
#endif
            default:
                PIOS_Assert(0);
            }
        }
    }
    if (needsUpdateStab) {
        StabilizationSettingsSet(&stab);
    }
    if (needsUpdateAtt) {
        AttitudeSettingsSet(&att);
    }
#ifdef REVOLUTION
    if (needsUpdateAltitude) {
        AltitudeHoldSettingsSet(&altitude);
    }
#endif
    if (easyTuneEnabled && (inst.EasyTuneRatePIDRecalculateYaw != TXPIDSETTINGS_EASYTUNERATEPIDRECALCULATEYAW_FALSE)) {
        float newKp = (bank.RollRatePID.Kp + bank.PitchRatePID.Kp) * .5f * inst.EasyTuneYawRateFactors.P;
        needsUpdateBank |= update(&bank.YawRatePID.Kp, newKp);
        needsUpdateBank |= update(&bank.YawRatePID.Ki, newKp * inst.EasyTuneYawRateFactors.I);
        needsUpdateBank |= update(&bank.YawRatePID.Kd, newKp * inst.EasyTuneYawRateFactors.D);
    }
    if (needsUpdateBank) {
        switch (inst.BankNumber) {
        case 0:
            StabilizationSettingsBank1Set((StabilizationSettingsBank1Data *)&bank);
            break;

        case 1:
            StabilizationSettingsBank2Set((StabilizationSettingsBank2Data *)&bank);
            break;

        case 2:
            StabilizationSettingsBank3Set((StabilizationSettingsBank3Data *)&bank);
            break;

        default:
            return;
        }
    }

    if (needsUpdateStab ||
        needsUpdateAtt ||
#ifdef REVOLUTION
        needsUpdateAltitude ||
#endif /* REVOLUTION */
        needsUpdateBank) {
        TxPIDStatusSet(&txpid_status);;
    }
}

/**
 * Scales input val from [inMin..inMax] range to [outMin..outMax].
 * If val is out of input range (inMin <= inMax), it will be bound.
 * (outMin > outMax) is ok, in that case output will be decreasing.
 *
 * \returns scaled value
 */
static float scale(float val, float inMin, float inMax, float outMin, float outMax)
{
    // bound input value
    if (val > inMax) {
        val = inMax;
    }
    if (val < inMin) {
        val = inMin;
    }

    // normalize input value to [0..1]
    if (inMax <= inMin) {
        val = 0.0f;
    } else {
        val = (val - inMin) / (inMax - inMin);
    }

    // update output bounds
    if (outMin > outMax) {
        float t = outMin;
        outMin = outMax;
        outMax = t;
        val    = 1.0f - val;
    }

    return (outMax - outMin) * val + outMin;
}

/**
 * Updates var using val if needed.
 * \returns 1 if updated, 0 otherwise
 */
static uint8_t update(float *var, float val)
{
    /* FIXME: this is not an entirely correct way
     * to check if the two floating point
     * numbers are 'not equal'.
     * Epsilon of 1e-9 is probably okay for the range
     * of numbers we see here*/
    if (fabsf(*var - val) > 1e-9f) {
        *var = val;
        return 1;
    }
    return 0;
}

/**
 * Updates var using val if needed.
 * \returns 1 if updated, 0 otherwise
 */
static uint8_t updateUint16(uint16_t *var, float val)
{
    uint16_t roundedVal = (uint16_t)roundf(val);

    if (*var != roundedVal) {
        *var = roundedVal;
        return 1;
    }
    return 0;
}
Ejemplo n.º 5
0
/**
 * Compute desired attitude from the desired velocity
 * @param[in] dT the time since last evaluation
 *
 * Takes in @ref NedActual which has the acceleration in the
 * NED frame as the feedback term and then compares the
 * @ref VelocityActual against the @ref VelocityDesired
 */
int32_t vtol_follower_control_attitude(float dT)
{
	vtol_follower_control_accel(dT);

	AccelDesiredData accelDesired;
	AccelDesiredGet(&accelDesired);

	StabilizationDesiredData stabDesired;

	float northCommand = accelDesired.North;
	float eastCommand = accelDesired.East;

	// Project the north and east acceleration signals into body frame
	float yaw;
	AttitudeActualYawGet(&yaw);
	float forward_accel_desired = -northCommand * cosf(yaw * DEG2RAD) + -eastCommand * sinf(yaw * DEG2RAD);
	float right_accel_desired = -northCommand * sinf(yaw * DEG2RAD) + eastCommand * cosf(yaw * DEG2RAD);

	// Set the angle that would achieve the desired acceleration given the thrust is enough for a hover
	stabDesired.Pitch = bound_min_max(RAD2DEG * atanf(forward_accel_desired / GRAVITY),
	                   -guidanceSettings.MaxRollPitch, guidanceSettings.MaxRollPitch);
	stabDesired.Roll = bound_min_max(RAD2DEG * atanf(right_accel_desired / GRAVITY),
	                   -guidanceSettings.MaxRollPitch, guidanceSettings.MaxRollPitch);
	
	stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_ROLL] = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
	stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_PITCH] = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;


	// Calculate the throttle setting or use pass through from transmitter
	if (guidanceSettings.ThrottleControl == VTOLPATHFOLLOWERSETTINGS_THROTTLECONTROL_FALSE) {
		ManualControlCommandThrottleGet(&stabDesired.Throttle);
	} else {
		float downCommand = accelDesired.Down;

		AltitudeHoldStateData altitudeHoldState;
		altitudeHoldState.VelocityDesired = downCommand;
		altitudeHoldState.Integral = vtol_pids[DOWN_VELOCITY].iAccumulator / 1000.0f;
		altitudeHoldState.AngleGain = 1.0f;

		if (altitudeHoldSettings.AttitudeComp > 0) {
			// Throttle desired is at this point the mount desired in the up direction, we can
			// account for the attitude if desired
			AttitudeActualData attitudeActual;
			AttitudeActualGet(&attitudeActual);

			// Project a unit vector pointing up into the body frame and
			// get the z component
			float fraction = attitudeActual.q1 * attitudeActual.q1 -
			                 attitudeActual.q2 * attitudeActual.q2 -
			                 attitudeActual.q3 * attitudeActual.q3 +
			                 attitudeActual.q4 * attitudeActual.q4;

			// Add ability to scale up the amount of compensation to achieve
			// level forward flight
			fraction = powf(fraction, (float) altitudeHoldSettings.AttitudeComp / 100.0f);

			// Dividing by the fraction remaining in the vertical projection will
			// attempt to compensate for tilt. This acts like the thrust is linear
			// with the output which isn't really true. If the fraction is starting
			// to go negative we are inverted and should shut off throttle
			downCommand = (fraction > 0.1f) ? (downCommand / fraction) : 0.0f;

			altitudeHoldState.AngleGain = 1.0f / fraction;
		}

		altitudeHoldState.Throttle = downCommand;
		AltitudeHoldStateSet(&altitudeHoldState);

		stabDesired.Throttle = bound_min_max(downCommand, 0, 1);
	}
	
	// Various ways to control the yaw that are essentially manual passthrough. However, because we do not have a fine
	// grained mechanism of manual setting the yaw as it normally would we need to duplicate that code here
	float manual_rate[STABILIZATIONSETTINGS_MANUALRATE_NUMELEM];
	switch(guidanceSettings.YawMode) {
	case VTOLPATHFOLLOWERSETTINGS_YAWMODE_RATE:
		/* This is awkward.  This allows the transmitter to control the yaw while flying navigation */
		ManualControlCommandYawGet(&yaw);
		StabilizationSettingsManualRateGet(manual_rate);
		stabDesired.Yaw = manual_rate[STABILIZATIONSETTINGS_MANUALRATE_YAW] * yaw;
		stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_YAW] = STABILIZATIONDESIRED_STABILIZATIONMODE_RATE;
		break;
	case VTOLPATHFOLLOWERSETTINGS_YAWMODE_AXISLOCK:
		ManualControlCommandYawGet(&yaw);
		StabilizationSettingsManualRateGet(manual_rate);
		stabDesired.Yaw = manual_rate[STABILIZATIONSETTINGS_MANUALRATE_YAW] * yaw;
		stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_YAW] = STABILIZATIONDESIRED_STABILIZATIONMODE_AXISLOCK;
		break;
	case VTOLPATHFOLLOWERSETTINGS_YAWMODE_ATTITUDE:
	{
		uint8_t yaw_max;
		StabilizationSettingsYawMaxGet(&yaw_max);
		ManualControlCommandYawGet(&yaw);
		stabDesired.Yaw = yaw_max * yaw;
		stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_YAW] = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
	}
		break;
	case VTOLPATHFOLLOWERSETTINGS_YAWMODE_PATH:
	{
		// Face forward on the path
		VelocityDesiredData velocityDesired;
		VelocityDesiredGet(&velocityDesired);
		float total_vel2 = velocityDesired.East*velocityDesired.East + velocityDesired.North*velocityDesired.North;
		float path_direction = atan2f(velocityDesired.East, velocityDesired.North) * RAD2DEG;
		if (total_vel2 > 1) {
			stabDesired.Yaw = path_direction;
			stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_YAW] = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
		} else {
			stabDesired.Yaw = 0;
			stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_YAW] = STABILIZATIONDESIRED_STABILIZATIONMODE_RATE;
		}
	}
		break;
	case VTOLPATHFOLLOWERSETTINGS_YAWMODE_POI:
		stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_YAW] = STABILIZATIONDESIRED_STABILIZATIONMODE_POI;
		break;
	}
	
	StabilizationDesiredSet(&stabDesired);

	return 0;
}
Ejemplo n.º 6
0
/**
 * Initialise the module, called on startup
 * \returns 0 on success or -1 if initialisation failed
 */
int32_t TxPIDInitialize(void)
{
	bool module_enabled;

#ifdef MODULE_TxPID_BUILTIN
	module_enabled = true;
#else
	uint8_t module_state[MODULESETTINGS_ADMINSTATE_NUMELEM];
	ModuleSettingsAdminStateGet(module_state);
	if (module_state[MODULESETTINGS_ADMINSTATE_TXPID] == MODULESETTINGS_ADMINSTATE_ENABLED) {
		module_enabled = true;
	} else {
		module_enabled = false;
	}
#endif

	if (module_enabled) {

		TxPIDSettingsInitialize();
		AccessoryDesiredInitialize();

		UAVObjEvent ev = {
			.obj = AccessoryDesiredHandle(),
			.instId = 0,
			.event = 0,
		};
		EventPeriodicCallbackCreate(&ev, updatePIDs, SAMPLE_PERIOD_MS);

#if (TELEMETRY_UPDATE_PERIOD_MS != 0)
		// Change StabilizationSettings update rate from OnChange to periodic
		// to prevent telemetry link flooding with frequent updates in case of
		// control channel jitter.
		// Warning: saving to flash with this code active will change the
		// StabilizationSettings update rate permanently. Use Metadata via
		// browser to reset to defaults (telemetryAcked=true, OnChange).
		UAVObjMetadata metadata;
		StabilizationSettingsInitialize();
		StabilizationSettingsGetMetadata(&metadata);
		metadata.telemetryAcked = 0;
		metadata.telemetryUpdateMode = UPDATEMODE_PERIODIC;
		metadata.telemetryUpdatePeriod = TELEMETRY_UPDATE_PERIOD_MS;
		StabilizationSettingsSetMetadata(&metadata);
#endif

		return 0;
	}

	return -1;
}

MODULE_INITCALL(TxPIDInitialize, NULL);

/**
 * Update PIDs callback function
 */
static void updatePIDs(UAVObjEvent* ev)
{
	if (ev->obj != AccessoryDesiredHandle())
		return;

	TxPIDSettingsData inst;
	TxPIDSettingsGet(&inst);

	if (inst.UpdateMode == TXPIDSETTINGS_UPDATEMODE_NEVER)
		return;

	uint8_t armed;
	FlightStatusArmedGet(&armed);
	if ((inst.UpdateMode == TXPIDSETTINGS_UPDATEMODE_WHENARMED) &&
			(armed == FLIGHTSTATUS_ARMED_DISARMED))
		return;

	StabilizationSettingsData stab;
	StabilizationSettingsGet(&stab);

#ifdef UAVOBJ_INIT_vtolpathfollowersettings
	VtolPathFollowerSettingsData vtolPathFollowerSettingsData;
	// Check to make sure the settings UAVObject has been instantiated
	if (VtolPathFollowerSettingsHandle()) {
		VtolPathFollowerSettingsGet(&vtolPathFollowerSettingsData);
	}

	bool vtolPathFollowerSettingsNeedsUpdate = false;
#endif

	AccessoryDesiredData accessory;

	bool stabilizationSettingsNeedsUpdate = false;

	// Loop through every enabled instance
	for (uint8_t i = 0; i < TXPIDSETTINGS_PIDS_NUMELEM; i++) {
		if (inst.PIDs[i] != TXPIDSETTINGS_PIDS_DISABLED) {

			float value;
			if (inst.Inputs[i] == TXPIDSETTINGS_INPUTS_THROTTLE) {
				ManualControlCommandThrottleGet(&value);
				value = scale(value,
						inst.ThrottleRange[TXPIDSETTINGS_THROTTLERANGE_MIN],
						inst.ThrottleRange[TXPIDSETTINGS_THROTTLERANGE_MAX],
						inst.MinPID[i], inst.MaxPID[i]);
			} else if (AccessoryDesiredInstGet(inst.Inputs[i] - TXPIDSETTINGS_INPUTS_ACCESSORY0, &accessory) == 0) {
				value = scale(accessory.AccessoryVal, -1.0, 1.0, inst.MinPID[i], inst.MaxPID[i]);
			} else {
				continue;
			}

			switch (inst.PIDs[i]) {
			case TXPIDSETTINGS_PIDS_ROLLRATEKP:
				stabilizationSettingsNeedsUpdate |= update(&stab.RollRatePID[STABILIZATIONSETTINGS_ROLLRATEPID_KP], value);
				break;
			case TXPIDSETTINGS_PIDS_ROLLRATEKI:
				stabilizationSettingsNeedsUpdate |= update(&stab.RollRatePID[STABILIZATIONSETTINGS_ROLLRATEPID_KI], value);
				break;
			case TXPIDSETTINGS_PIDS_ROLLRATEKD:
				stabilizationSettingsNeedsUpdate |= update(&stab.RollRatePID[STABILIZATIONSETTINGS_ROLLRATEPID_KD], value);
				break;
			case TXPIDSETTINGS_PIDS_ROLLRATEILIMIT:
				stabilizationSettingsNeedsUpdate |= update(&stab.RollRatePID[STABILIZATIONSETTINGS_ROLLRATEPID_ILIMIT], value);
				break;
			case TXPIDSETTINGS_PIDS_ROLLATTITUDEKP:
				stabilizationSettingsNeedsUpdate |= update(&stab.RollPI[STABILIZATIONSETTINGS_ROLLPI_KP], value);
				break;
			case TXPIDSETTINGS_PIDS_ROLLATTITUDEKI:
				stabilizationSettingsNeedsUpdate |= update(&stab.RollPI[STABILIZATIONSETTINGS_ROLLPI_KI], value);
				break;
			case TXPIDSETTINGS_PIDS_ROLLATTITUDEILIMIT:
				stabilizationSettingsNeedsUpdate |= update(&stab.RollPI[STABILIZATIONSETTINGS_ROLLPI_ILIMIT], value);
				break;
			case TXPIDSETTINGS_PIDS_PITCHRATEKP:
				stabilizationSettingsNeedsUpdate |= update(&stab.PitchRatePID[STABILIZATIONSETTINGS_PITCHRATEPID_KP], value);
				break;
			case TXPIDSETTINGS_PIDS_PITCHRATEKI:
				stabilizationSettingsNeedsUpdate |= update(&stab.PitchRatePID[STABILIZATIONSETTINGS_PITCHRATEPID_KI], value);
				break;
			case TXPIDSETTINGS_PIDS_PITCHRATEKD:
				stabilizationSettingsNeedsUpdate |= update(&stab.PitchRatePID[STABILIZATIONSETTINGS_PITCHRATEPID_KD], value);
				break;
			case TXPIDSETTINGS_PIDS_PITCHRATEILIMIT:
				stabilizationSettingsNeedsUpdate |= update(&stab.PitchRatePID[STABILIZATIONSETTINGS_PITCHRATEPID_ILIMIT], value);
				break;
			case TXPIDSETTINGS_PIDS_PITCHATTITUDEKP:
				stabilizationSettingsNeedsUpdate |= update(&stab.PitchPI[STABILIZATIONSETTINGS_PITCHPI_KP], value);
				break;
			case TXPIDSETTINGS_PIDS_PITCHATTITUDEKI:
				stabilizationSettingsNeedsUpdate |= update(&stab.PitchPI[STABILIZATIONSETTINGS_PITCHPI_KI], value);
				break;
			case TXPIDSETTINGS_PIDS_PITCHATTITUDEILIMIT:
				stabilizationSettingsNeedsUpdate |= update(&stab.PitchPI[STABILIZATIONSETTINGS_PITCHPI_ILIMIT], value);
				break;
			case TXPIDSETTINGS_PIDS_ROLLPITCHRATEKP:
				stabilizationSettingsNeedsUpdate |= update(&stab.RollRatePID[STABILIZATIONSETTINGS_ROLLRATEPID_KP], value);
				stabilizationSettingsNeedsUpdate |= update(&stab.PitchRatePID[STABILIZATIONSETTINGS_PITCHRATEPID_KP], value);
				break;
			case TXPIDSETTINGS_PIDS_ROLLPITCHRATEKI:
				stabilizationSettingsNeedsUpdate |= update(&stab.RollRatePID[STABILIZATIONSETTINGS_ROLLRATEPID_KI], value);
				stabilizationSettingsNeedsUpdate |= update(&stab.PitchRatePID[STABILIZATIONSETTINGS_PITCHRATEPID_KI], value);
				break;
			case TXPIDSETTINGS_PIDS_ROLLPITCHRATEKD:
				stabilizationSettingsNeedsUpdate |= update(&stab.RollRatePID[STABILIZATIONSETTINGS_ROLLRATEPID_KD], value);
				stabilizationSettingsNeedsUpdate |= update(&stab.PitchRatePID[STABILIZATIONSETTINGS_PITCHRATEPID_KD], value);
				break;
			case TXPIDSETTINGS_PIDS_ROLLPITCHRATEILIMIT:
				stabilizationSettingsNeedsUpdate |= update(&stab.RollRatePID[STABILIZATIONSETTINGS_ROLLRATEPID_ILIMIT], value);
				stabilizationSettingsNeedsUpdate |= update(&stab.PitchRatePID[STABILIZATIONSETTINGS_PITCHRATEPID_ILIMIT], value);
				break;
			case TXPIDSETTINGS_PIDS_ROLLPITCHATTITUDEKP:
				stabilizationSettingsNeedsUpdate |= update(&stab.RollPI[STABILIZATIONSETTINGS_ROLLPI_KP], value);
				stabilizationSettingsNeedsUpdate |= update(&stab.PitchPI[STABILIZATIONSETTINGS_PITCHPI_KP], value);
				break;
			case TXPIDSETTINGS_PIDS_ROLLPITCHATTITUDEKI:
				stabilizationSettingsNeedsUpdate |= update(&stab.RollPI[STABILIZATIONSETTINGS_ROLLPI_KI], value);
				stabilizationSettingsNeedsUpdate |= update(&stab.PitchPI[STABILIZATIONSETTINGS_PITCHPI_KI], value);
				break;
			case TXPIDSETTINGS_PIDS_ROLLPITCHATTITUDEILIMIT:
				stabilizationSettingsNeedsUpdate |= update(&stab.RollPI[STABILIZATIONSETTINGS_ROLLPI_ILIMIT], value);
				stabilizationSettingsNeedsUpdate |= update(&stab.PitchPI[STABILIZATIONSETTINGS_PITCHPI_ILIMIT], value);
				break;
			case TXPIDSETTINGS_PIDS_YAWRATEKP:
				stabilizationSettingsNeedsUpdate |= update(&stab.YawRatePID[STABILIZATIONSETTINGS_YAWRATEPID_KP], value);
				break;
			case TXPIDSETTINGS_PIDS_YAWRATEKI:
				stabilizationSettingsNeedsUpdate |= update(&stab.YawRatePID[STABILIZATIONSETTINGS_YAWRATEPID_KI], value);
				break;
			case TXPIDSETTINGS_PIDS_YAWRATEKD:
				stabilizationSettingsNeedsUpdate |= update(&stab.YawRatePID[STABILIZATIONSETTINGS_YAWRATEPID_KD], value);
				break;
			case TXPIDSETTINGS_PIDS_YAWRATEILIMIT:
				stabilizationSettingsNeedsUpdate |= update(&stab.YawRatePID[STABILIZATIONSETTINGS_YAWRATEPID_ILIMIT], value);
				break;
			case TXPIDSETTINGS_PIDS_YAWATTITUDEKP:
				stabilizationSettingsNeedsUpdate |= update(&stab.YawPI[STABILIZATIONSETTINGS_YAWPI_KP], value);
				break;
			case TXPIDSETTINGS_PIDS_YAWATTITUDEKI:
				stabilizationSettingsNeedsUpdate |= update(&stab.YawPI[STABILIZATIONSETTINGS_YAWPI_KI], value);
				break;
			case TXPIDSETTINGS_PIDS_YAWATTITUDEILIMIT:
				stabilizationSettingsNeedsUpdate |= update(&stab.YawPI[STABILIZATIONSETTINGS_YAWPI_ILIMIT], value);
				break;
			case TXPIDSETTINGS_PIDS_GYROCUTOFF:
				stabilizationSettingsNeedsUpdate |= update(&stab.GyroCutoff, value);
				break;
			case TXPIDSETTINGS_PIDS_ROLLVBARSENSITIVITY:
				stabilizationSettingsNeedsUpdate |= update(&stab.VbarSensitivity[STABILIZATIONSETTINGS_VBARSENSITIVITY_ROLL], value);
				break;
			case TXPIDSETTINGS_PIDS_PITCHVBARSENSITIVITY:
				stabilizationSettingsNeedsUpdate |= update(&stab.VbarSensitivity[STABILIZATIONSETTINGS_VBARSENSITIVITY_PITCH], value);
				break;
			case TXPIDSETTINGS_PIDS_ROLLPITCHVBARSENSITIVITY:
				stabilizationSettingsNeedsUpdate |= update(&stab.VbarSensitivity[STABILIZATIONSETTINGS_VBARSENSITIVITY_ROLL], value);
				stabilizationSettingsNeedsUpdate |= update(&stab.VbarSensitivity[STABILIZATIONSETTINGS_VBARSENSITIVITY_PITCH], value);
				break;
			
			case TXPIDSETTINGS_PIDS_YAWVBARSENSITIVITY:
				stabilizationSettingsNeedsUpdate |= update(&stab.VbarSensitivity[STABILIZATIONSETTINGS_VBARSENSITIVITY_YAW], value);
				break;
			case TXPIDSETTINGS_PIDS_ROLLVBARKP:
				stabilizationSettingsNeedsUpdate |= update(&stab.VbarRollPID[STABILIZATIONSETTINGS_VBARROLLPID_KP], value);
				break;
			case TXPIDSETTINGS_PIDS_ROLLVBARKI:
				stabilizationSettingsNeedsUpdate |= update(&stab.VbarRollPID[STABILIZATIONSETTINGS_VBARROLLPID_KI], value);
				break;	
			case TXPIDSETTINGS_PIDS_ROLLVBARKD:
				stabilizationSettingsNeedsUpdate |= update(&stab.VbarRollPID[STABILIZATIONSETTINGS_VBARROLLPID_KD], value);
				break;
			case TXPIDSETTINGS_PIDS_PITCHVBARKP:
				stabilizationSettingsNeedsUpdate |= update(&stab.VbarPitchPID[STABILIZATIONSETTINGS_VBARPITCHPID_KP], value);
				break;
			case TXPIDSETTINGS_PIDS_PITCHVBARKI:
				stabilizationSettingsNeedsUpdate |= update(&stab.VbarPitchPID[STABILIZATIONSETTINGS_VBARPITCHPID_KI], value);
				break;
			case TXPIDSETTINGS_PIDS_PITCHVBARKD:
				stabilizationSettingsNeedsUpdate |= update(&stab.VbarPitchPID[STABILIZATIONSETTINGS_VBARPITCHPID_KD], value);
				break;
			case TXPIDSETTINGS_PIDS_ROLLPITCHVBARKP:
				stabilizationSettingsNeedsUpdate |= update(&stab.VbarRollPID[STABILIZATIONSETTINGS_VBARROLLPID_KP], value);
				stabilizationSettingsNeedsUpdate |= update(&stab.VbarPitchPID[STABILIZATIONSETTINGS_VBARPITCHPID_KP], value);
				break;
			case TXPIDSETTINGS_PIDS_ROLLPITCHVBARKI:
				stabilizationSettingsNeedsUpdate |= update(&stab.VbarRollPID[STABILIZATIONSETTINGS_VBARROLLPID_KI], value);
				stabilizationSettingsNeedsUpdate |= update(&stab.VbarPitchPID[STABILIZATIONSETTINGS_VBARPITCHPID_KI], value);
				break;
			case TXPIDSETTINGS_PIDS_ROLLPITCHVBARKD:
				stabilizationSettingsNeedsUpdate |= update(&stab.VbarRollPID[STABILIZATIONSETTINGS_VBARROLLPID_KD], value);
				stabilizationSettingsNeedsUpdate |= update(&stab.VbarPitchPID[STABILIZATIONSETTINGS_VBARPITCHPID_KD], value);
				break;
			case TXPIDSETTINGS_PIDS_YAWVBARKP:
				stabilizationSettingsNeedsUpdate |= update(&stab.VbarYawPID[STABILIZATIONSETTINGS_VBARYAWPID_KP], value);
				break;
			case TXPIDSETTINGS_PIDS_YAWVBARKI:
				stabilizationSettingsNeedsUpdate |= update(&stab.VbarYawPID[STABILIZATIONSETTINGS_VBARYAWPID_KI], value);
				break;
			case TXPIDSETTINGS_PIDS_YAWVBARKD:
				stabilizationSettingsNeedsUpdate |= update(&stab.VbarYawPID[STABILIZATIONSETTINGS_VBARYAWPID_KD], value);
				break;
#ifdef UAVOBJ_INIT_vtolpathfollowersettings
			case TXPIDSETTINGS_PIDS_HORIZONTALPOSKP:
				vtolPathFollowerSettingsNeedsUpdate |= update(&vtolPathFollowerSettingsData.HorizontalPosPI[VTOLPATHFOLLOWERSETTINGS_HORIZONTALPOSPI_KP], value);
				break;
			case TXPIDSETTINGS_PIDS_HORIZONTALPOSKI:
				vtolPathFollowerSettingsNeedsUpdate |= update(&vtolPathFollowerSettingsData.HorizontalPosPI[VTOLPATHFOLLOWERSETTINGS_HORIZONTALPOSPI_KI], value);
				break;
			case TXPIDSETTINGS_PIDS_HORIZONTALPOSILIMIT:
				vtolPathFollowerSettingsNeedsUpdate |= update(&vtolPathFollowerSettingsData.HorizontalPosPI[VTOLPATHFOLLOWERSETTINGS_HORIZONTALPOSPI_ILIMIT], value);
				break;
			case TXPIDSETTINGS_PIDS_HORIZONTALVELKP:
				vtolPathFollowerSettingsNeedsUpdate |= update(&vtolPathFollowerSettingsData.HorizontalVelPID[VTOLPATHFOLLOWERSETTINGS_HORIZONTALVELPID_KP], value);
				break;
			case TXPIDSETTINGS_PIDS_HORIZONTALVELKI:
				vtolPathFollowerSettingsNeedsUpdate |= update(&vtolPathFollowerSettingsData.HorizontalVelPID[VTOLPATHFOLLOWERSETTINGS_HORIZONTALVELPID_KI], value);
				break;
			case TXPIDSETTINGS_PIDS_HORIZONTALVELKD:
				vtolPathFollowerSettingsNeedsUpdate |= update(&vtolPathFollowerSettingsData.HorizontalVelPID[VTOLPATHFOLLOWERSETTINGS_HORIZONTALVELPID_KD], value);
				break;
#endif /* UAVOBJ_INIT_vtolpathfollowersettings */
			default:
				// Previously this would assert.  But now the
				// object may be missing and it's not worth a
				// crash.
				break;
			}
		}
	}

	// Update UAVOs, if necessary
	if (stabilizationSettingsNeedsUpdate) {
		StabilizationSettingsSet(&stab);
	}

#ifdef UAVOBJ_INIT_vtolpathfollowersettings
	if (vtolPathFollowerSettingsNeedsUpdate) {
		// Check to make sure the settings UAVObject has been instantiated
		if (VtolPathFollowerSettingsHandle()) {
			VtolPathFollowerSettingsSet(&vtolPathFollowerSettingsData);
		}
	}
#endif
}

/**
 * Scales input val from [inMin..inMax] range to [outMin..outMax].
 * If val is out of input range (inMin <= inMax), it will be bound.
 * (outMin > outMax) is ok, in that case output will be decreasing.
 *
 * \returns scaled value
 */
static float scale(float val, float inMin, float inMax, float outMin, float outMax)
{
	// bound input value
	if (val > inMax) val = inMax;
	if (val < inMin) val = inMin;

	// normalize input value to [0..1]
	if (inMax <= inMin)
		val = 0.0;
	else
		val = (val - inMin) / (inMax - inMin);

	// update output bounds
	if (outMin > outMax) {
		float t = outMin;
		outMin = outMax;
		outMax = t;
		val = 1.0f - val;
	}

	return (outMax - outMin) * val + outMin;
}

/**
 * Updates var using val if needed.
 * \returns 1 if updated, 0 otherwise
 */
static bool update(float *var, float val)
{
	if (*var != val) {
		*var = val;
		return true;
	}
	return false;
}
Ejemplo n.º 7
0
/**
 * Initialise the module, called on startup
 * \returns 0 on success or -1 if initialisation failed
 */
int32_t TxPIDInitialize(void)
{
    bool txPIDEnabled;
    HwSettingsOptionalModulesData optionalModules;

    HwSettingsInitialize();
    HwSettingsOptionalModulesGet(&optionalModules);

    if (optionalModules.TxPID == HWSETTINGS_OPTIONALMODULES_ENABLED) {
        txPIDEnabled = true;
    } else {
        txPIDEnabled = false;
    }

    if (txPIDEnabled) {
        TxPIDSettingsInitialize();
        AccessoryDesiredInitialize();

        UAVObjEvent ev = {
            .obj    = AccessoryDesiredHandle(),
            .instId = 0,
            .event  = 0,
            .lowPriority = false,
        };
        EventPeriodicCallbackCreate(&ev, updatePIDs, SAMPLE_PERIOD_MS / portTICK_RATE_MS);

#if (TELEMETRY_UPDATE_PERIOD_MS != 0)
        // Change StabilizationSettings update rate from OnChange to periodic
        // to prevent telemetry link flooding with frequent updates in case of
        // control channel jitter.
        // Warning: saving to flash with this code active will change the
        // StabilizationSettings update rate permanently. Use Metadata via
        // browser to reset to defaults (telemetryAcked=true, OnChange).
        UAVObjMetadata metadata;
        StabilizationSettingsInitialize();
        StabilizationSettingsGetMetadata(&metadata);
        metadata.telemetryAcked = 0;
        metadata.telemetryUpdateMode   = UPDATEMODE_PERIODIC;
        metadata.telemetryUpdatePeriod = TELEMETRY_UPDATE_PERIOD_MS;
        StabilizationSettingsSetMetadata(&metadata);
#endif

        return 0;
    }

    return -1;
}

/* stub: module has no module thread */
int32_t TxPIDStart(void)
{
    return 0;
}

MODULE_INITCALL(TxPIDInitialize, TxPIDStart);

/**
 * Update PIDs callback function
 */
static void updatePIDs(UAVObjEvent *ev)
{
    if (ev->obj != AccessoryDesiredHandle()) {
        return;
    }

    TxPIDSettingsData inst;
    TxPIDSettingsGet(&inst);

    if (inst.UpdateMode == TXPIDSETTINGS_UPDATEMODE_NEVER) {
        return;
    }

    uint8_t armed;
    FlightStatusArmedGet(&armed);
    if ((inst.UpdateMode == TXPIDSETTINGS_UPDATEMODE_WHENARMED) &&
        (armed == FLIGHTSTATUS_ARMED_DISARMED)) {
        return;
    }

    StabilizationBankData bank;
    switch (inst.BankNumber) {
    case 0:
        StabilizationSettingsBank1Get((StabilizationSettingsBank1Data *)&bank);
        break;

    case 1:
        StabilizationSettingsBank2Get((StabilizationSettingsBank2Data *)&bank);
        break;

    case 2:
        StabilizationSettingsBank2Get((StabilizationSettingsBank2Data *)&bank);
        break;

    default:
        return;
    }
    StabilizationSettingsData stab;
    StabilizationSettingsGet(&stab);
    AccessoryDesiredData accessory;

    uint8_t needsUpdateBank = 0;
    uint8_t needsUpdateStab = 0;

    // Loop through every enabled instance
    for (uint8_t i = 0; i < TXPIDSETTINGS_PIDS_NUMELEM; i++) {
        if (cast_struct_to_array(inst.PIDs, inst.PIDs.Instance1)[i] != TXPIDSETTINGS_PIDS_DISABLED) {
            float value;
            if (cast_struct_to_array(inst.Inputs, inst.Inputs.Instance1)[i] == TXPIDSETTINGS_INPUTS_THROTTLE) {
                ManualControlCommandThrottleGet(&value);
                value = scale(value,
                              inst.ThrottleRange.Min,
                              inst.ThrottleRange.Max,
                              cast_struct_to_array(inst.MinPID, inst.MinPID.Instance1)[i],
                              cast_struct_to_array(inst.MaxPID, inst.MaxPID.Instance1)[i]);
            } else if (AccessoryDesiredInstGet(
                           cast_struct_to_array(inst.Inputs, inst.Inputs.Instance1)[i] - TXPIDSETTINGS_INPUTS_ACCESSORY0,
                           &accessory) == 0) {
                value = scale(accessory.AccessoryVal, -1.0f, 1.0f,
                              cast_struct_to_array(inst.MinPID, inst.MinPID.Instance1)[i],
                              cast_struct_to_array(inst.MaxPID, inst.MaxPID.Instance1)[i]);
            } else {
                continue;
            }

            switch (cast_struct_to_array(inst.PIDs, inst.PIDs.Instance1)[i]) {
            case TXPIDSETTINGS_PIDS_ROLLRATEKP:
                needsUpdateBank |= update(&bank.RollRatePID.Kp, value);
                break;
            case TXPIDSETTINGS_PIDS_ROLLRATEKI:
                needsUpdateBank |= update(&bank.RollRatePID.Ki, value);
                break;
            case TXPIDSETTINGS_PIDS_ROLLRATEKD:
                needsUpdateBank |= update(&bank.RollRatePID.Kd, value);
                break;
            case TXPIDSETTINGS_PIDS_ROLLRATEILIMIT:
                needsUpdateBank |= update(&bank.RollRatePID.ILimit, value);
                break;
            case TXPIDSETTINGS_PIDS_ROLLATTITUDEKP:
                needsUpdateBank |= update(&bank.RollPI.Kp, value);
                break;
            case TXPIDSETTINGS_PIDS_ROLLATTITUDEKI:
                needsUpdateBank |= update(&bank.RollPI.Ki, value);
                break;
            case TXPIDSETTINGS_PIDS_ROLLATTITUDEILIMIT:
                needsUpdateBank |= update(&bank.RollPI.ILimit, value);
                break;
            case TXPIDSETTINGS_PIDS_PITCHRATEKP:
                needsUpdateBank |= update(&bank.PitchRatePID.Kp, value);
                break;
            case TXPIDSETTINGS_PIDS_PITCHRATEKI:
                needsUpdateBank |= update(&bank.PitchRatePID.Ki, value);
                break;
            case TXPIDSETTINGS_PIDS_PITCHRATEKD:
                needsUpdateBank |= update(&bank.PitchRatePID.Kd, value);
                break;
            case TXPIDSETTINGS_PIDS_PITCHRATEILIMIT:
                needsUpdateBank |= update(&bank.PitchRatePID.ILimit, value);
                break;
            case TXPIDSETTINGS_PIDS_PITCHATTITUDEKP:
                needsUpdateBank |= update(&bank.PitchPI.Kp, value);
                break;
            case TXPIDSETTINGS_PIDS_PITCHATTITUDEKI:
                needsUpdateBank |= update(&bank.PitchPI.Ki, value);
                break;
            case TXPIDSETTINGS_PIDS_PITCHATTITUDEILIMIT:
                needsUpdateBank |= update(&bank.PitchPI.ILimit, value);
                break;
            case TXPIDSETTINGS_PIDS_ROLLPITCHRATEKP:
                needsUpdateBank |= update(&bank.RollRatePID.Kp, value);
                needsUpdateBank |= update(&bank.PitchRatePID.Kp, value);
                break;
            case TXPIDSETTINGS_PIDS_ROLLPITCHRATEKI:
                needsUpdateBank |= update(&bank.RollRatePID.Ki, value);
                needsUpdateBank |= update(&bank.PitchRatePID.Ki, value);
                break;
            case TXPIDSETTINGS_PIDS_ROLLPITCHRATEKD:
                needsUpdateBank |= update(&bank.RollRatePID.Kd, value);
                needsUpdateBank |= update(&bank.PitchRatePID.Kd, value);
                break;
            case TXPIDSETTINGS_PIDS_ROLLPITCHRATEILIMIT:
                needsUpdateBank |= update(&bank.RollRatePID.ILimit, value);
                needsUpdateBank |= update(&bank.PitchRatePID.ILimit, value);
                break;
            case TXPIDSETTINGS_PIDS_ROLLPITCHATTITUDEKP:
                needsUpdateBank |= update(&bank.RollPI.Kp, value);
                needsUpdateBank |= update(&bank.PitchPI.Kp, value);
                break;
            case TXPIDSETTINGS_PIDS_ROLLPITCHATTITUDEKI:
                needsUpdateBank |= update(&bank.RollPI.Ki, value);
                needsUpdateBank |= update(&bank.PitchPI.Ki, value);
                break;
            case TXPIDSETTINGS_PIDS_ROLLPITCHATTITUDEILIMIT:
                needsUpdateBank |= update(&bank.RollPI.ILimit, value);
                needsUpdateBank |= update(&bank.PitchPI.ILimit, value);
                break;
            case TXPIDSETTINGS_PIDS_YAWRATEKP:
                needsUpdateBank |= update(&bank.YawRatePID.Kp, value);
                break;
            case TXPIDSETTINGS_PIDS_YAWRATEKI:
                needsUpdateBank |= update(&bank.YawRatePID.Ki, value);
                break;
            case TXPIDSETTINGS_PIDS_YAWRATEKD:
                needsUpdateBank |= update(&bank.YawRatePID.Kd, value);
                break;
            case TXPIDSETTINGS_PIDS_YAWRATEILIMIT:
                needsUpdateBank |= update(&bank.YawRatePID.ILimit, value);
                break;
            case TXPIDSETTINGS_PIDS_YAWATTITUDEKP:
                needsUpdateBank |= update(&bank.YawPI.Kp, value);
                break;
            case TXPIDSETTINGS_PIDS_YAWATTITUDEKI:
                needsUpdateBank |= update(&bank.YawPI.Ki, value);
                break;
            case TXPIDSETTINGS_PIDS_YAWATTITUDEILIMIT:
                needsUpdateBank |= update(&bank.YawPI.ILimit, value);
                break;
            case TXPIDSETTINGS_PIDS_GYROTAU:
                needsUpdateStab |= update(&stab.GyroTau, value);
                break;
            default:
                PIOS_Assert(0);
            }
        }
    }
    if (needsUpdateStab) {
        StabilizationSettingsSet(&stab);
    }
    if (needsUpdateBank) {
        switch (inst.BankNumber) {
        case 0:
            StabilizationSettingsBank1Set((StabilizationSettingsBank1Data *)&bank);
            break;

        case 1:
            StabilizationSettingsBank2Set((StabilizationSettingsBank2Data *)&bank);
            break;

        case 2:
            StabilizationSettingsBank3Set((StabilizationSettingsBank3Data *)&bank);
            break;

        default:
            return;
        }
    }
}

/**
 * Scales input val from [inMin..inMax] range to [outMin..outMax].
 * If val is out of input range (inMin <= inMax), it will be bound.
 * (outMin > outMax) is ok, in that case output will be decreasing.
 *
 * \returns scaled value
 */
static float scale(float val, float inMin, float inMax, float outMin, float outMax)
{
    // bound input value
    if (val > inMax) {
        val = inMax;
    }
    if (val < inMin) {
        val = inMin;
    }

    // normalize input value to [0..1]
    if (inMax <= inMin) {
        val = 0.0f;
    } else {
        val = (val - inMin) / (inMax - inMin);
    }

    // update output bounds
    if (outMin > outMax) {
        float t = outMin;
        outMin = outMax;
        outMax = t;
        val    = 1.0f - val;
    }

    return (outMax - outMin) * val + outMin;
}

/**
 * Updates var using val if needed.
 * \returns 1 if updated, 0 otherwise
 */
static uint8_t update(float *var, float val)
{
    /* FIXME: this is not an entirely correct way
     * to check if the two floating point
     * numbers are 'not equal'.
     * Epsilon of 1e-9 is probably okay for the range
     * of numbers we see here*/
    if (fabsf(*var - val) > 1e-9f) {
        *var = val;
        return 1;
    }
    return 0;
}
Ejemplo n.º 8
0
/**
 * WARNING! This callback executes with critical flight control priority every
 * time a gyroscope update happens do NOT put any time consuming calculations
 * in this loop unless they really have to execute with every gyro update
 */
static void stabilizationInnerloopTask()
{
    // watchdog and error handling
    {
#ifdef PIOS_INCLUDE_WDG
        PIOS_WDG_UpdateFlag(PIOS_WDG_STABILIZATION);
#endif
        bool warn  = false;
        bool error = false;
        bool crit  = false;
        // check if outer loop keeps executing
        if (stabSettings.monitor.rateupdates > -64) {
            stabSettings.monitor.rateupdates--;
        }
        if (stabSettings.monitor.rateupdates < -(2 * OUTERLOOP_SKIPCOUNT)) {
            // warning if rate loop skipped more than 2 execution
            warn = true;
        }
        if (stabSettings.monitor.rateupdates < -(4 * OUTERLOOP_SKIPCOUNT)) {
            // critical if rate loop skipped more than 4 executions
            crit = true;
        }
        // check if gyro keeps updating
        if (stabSettings.monitor.gyroupdates < 1) {
            // error if gyro didn't update at all!
            error = true;
        }
        if (stabSettings.monitor.gyroupdates > 1) {
            // warning if we missed a gyro update
            warn = true;
        }
        if (stabSettings.monitor.gyroupdates > 3) {
            // critical if we missed 3 gyro updates
            crit = true;
        }
        stabSettings.monitor.gyroupdates = 0;

        if (crit) {
            AlarmsSet(SYSTEMALARMS_ALARM_STABILIZATION, SYSTEMALARMS_ALARM_CRITICAL);
        } else if (error) {
            AlarmsSet(SYSTEMALARMS_ALARM_STABILIZATION, SYSTEMALARMS_ALARM_ERROR);
        } else if (warn) {
            AlarmsSet(SYSTEMALARMS_ALARM_STABILIZATION, SYSTEMALARMS_ALARM_WARNING);
        } else {
            AlarmsClear(SYSTEMALARMS_ALARM_STABILIZATION);
        }
    }


    RateDesiredData rateDesired;
    ActuatorDesiredData actuator;
    StabilizationStatusInnerLoopData enabled;
    FlightStatusControlChainData cchain;

    RateDesiredGet(&rateDesired);
    ActuatorDesiredGet(&actuator);
    StabilizationStatusInnerLoopGet(&enabled);
    FlightStatusControlChainGet(&cchain);
    float *rate = &rateDesired.Roll;
    float *actuatorDesiredAxis = &actuator.Roll;
    int t;
    float dT;
    dT = PIOS_DELTATIME_GetAverageSeconds(&timeval);

    for (t = 0; t < AXES; t++) {
        bool reinit = (cast_struct_to_array(enabled, enabled.Roll)[t] != previous_mode[t]);
        previous_mode[t] = cast_struct_to_array(enabled, enabled.Roll)[t];

        if (t < STABILIZATIONSTATUS_INNERLOOP_THRUST) {
            if (reinit) {
                stabSettings.innerPids[t].iAccumulator = 0;
            }
            switch (cast_struct_to_array(enabled, enabled.Roll)[t]) {
            case STABILIZATIONSTATUS_INNERLOOP_VIRTUALFLYBAR:
                stabilization_virtual_flybar(gyro_filtered[t], rate[t], &actuatorDesiredAxis[t], dT, reinit, t, &stabSettings.settings);
                break;
            case STABILIZATIONSTATUS_INNERLOOP_RELAYTUNING:
                rate[t] = boundf(rate[t],
                                 -cast_struct_to_array(stabSettings.stabBank.MaximumRate, stabSettings.stabBank.MaximumRate.Roll)[t],
                                 cast_struct_to_array(stabSettings.stabBank.MaximumRate, stabSettings.stabBank.MaximumRate.Roll)[t]
                                 );
                stabilization_relay_rate(rate[t] - gyro_filtered[t], &actuatorDesiredAxis[t], t, reinit);
                break;
            case STABILIZATIONSTATUS_INNERLOOP_AXISLOCK:
                if (fabsf(rate[t]) > stabSettings.settings.MaxAxisLockRate) {
                    // While getting strong commands act like rate mode
                    axis_lock_accum[t] = 0;
                } else {
                    // For weaker commands or no command simply attitude lock (almost) on no gyro change
                    axis_lock_accum[t] += (rate[t] - gyro_filtered[t]) * dT;
                    axis_lock_accum[t]  = boundf(axis_lock_accum[t], -stabSettings.settings.MaxAxisLock, stabSettings.settings.MaxAxisLock);
                    rate[t] = axis_lock_accum[t] * stabSettings.settings.AxisLockKp;
                }
            // IMPORTANT: deliberately no "break;" here, execution continues with regular RATE control loop to avoid code duplication!
            // keep order as it is, RATE must follow!
            case STABILIZATIONSTATUS_INNERLOOP_RATE:
                // limit rate to maximum configured limits (once here instead of 5 times in outer loop)
                rate[t] = boundf(rate[t],
                                 -cast_struct_to_array(stabSettings.stabBank.MaximumRate, stabSettings.stabBank.MaximumRate.Roll)[t],
                                 cast_struct_to_array(stabSettings.stabBank.MaximumRate, stabSettings.stabBank.MaximumRate.Roll)[t]
                                 );
                actuatorDesiredAxis[t] = pid_apply_setpoint(&stabSettings.innerPids[t], speedScaleFactor, rate[t], gyro_filtered[t], dT);
                break;
            case STABILIZATIONSTATUS_INNERLOOP_DIRECT:
            default:
                actuatorDesiredAxis[t] = rate[t];
                break;
            }
        } else {
            switch (cast_struct_to_array(enabled, enabled.Roll)[t]) {
            case STABILIZATIONSTATUS_INNERLOOP_CRUISECONTROL:
                actuatorDesiredAxis[t] = cruisecontrol_apply_factor(rate[t]);
                break;
            case STABILIZATIONSTATUS_INNERLOOP_DIRECT:
            default:
                actuatorDesiredAxis[t] = rate[t];
                break;
            }
        }

        actuatorDesiredAxis[t] = boundf(actuatorDesiredAxis[t], -1.0f, 1.0f);
    }

    actuator.UpdateTime = dT * 1000;

    if (cchain.Stabilization == FLIGHTSTATUS_CONTROLCHAIN_TRUE) {
        ActuatorDesiredSet(&actuator);
    } else {
        // Force all axes to reinitialize when engaged
        for (t = 0; t < AXES; t++) {
            previous_mode[t] = 255;
        }
    }
    {
        uint8_t armed;
        FlightStatusArmedGet(&armed);
        float throttleDesired;
        ManualControlCommandThrottleGet(&throttleDesired);
        if (armed != FLIGHTSTATUS_ARMED_ARMED ||
            ((stabSettings.settings.LowThrottleZeroIntegral == STABILIZATIONSETTINGS_LOWTHROTTLEZEROINTEGRAL_TRUE) && throttleDesired < 0)) {
            // Force all axes to reinitialize when engaged
            for (t = 0; t < AXES; t++) {
                previous_mode[t] = 255;
            }
        }
    }
    PIOS_CALLBACKSCHEDULER_Schedule(callbackHandle, FAILSAFE_TIMEOUT_MS, CALLBACK_UPDATEMODE_LATER);
}
Ejemplo n.º 9
0
/**
 * Processes queue events
 */
static void processObjEvent(UAVObjEvent * ev)
{
	UAVObjMetadata metadata;
	//	FlightTelemetryStatsData flightStats;
	//	GCSTelemetryStatsData gcsTelemetryStatsData;
	//	int32_t retries;
	//	int32_t success;

	if (ev->obj == 0) {
		updateTelemetryStats();
	} else if (ev->obj == GCSTelemetryStatsHandle()) {
		gcsTelemetryStatsUpdated();
	} else if (ev->obj == TelemetrySettingsHandle()) {
		updateSettings();
	} else {

		// Get object metadata
		UAVObjGetMetadata(ev->obj, &metadata);

		// If this is a metaobject then make necessary telemetry updates
		if (UAVObjIsMetaobject(ev->obj)) {
			updateObject(UAVObjGetLinkedObj(ev->obj));	// linked object will be the actual object the metadata are for
		}

		mavlink_message_t msg;

		mavlink_system.sysid = 20;
		mavlink_system.compid = MAV_COMP_ID_IMU;
		mavlink_system.type = MAV_TYPE_FIXED_WING;
		uint8_t mavClass = MAV_AUTOPILOT_OPENPILOT;

		AlarmsClear(SYSTEMALARMS_ALARM_TELEMETRY);

		// Setup type and object id fields
		uint32_t objId = UAVObjGetID(ev->obj);

		//		uint64_t timeStamp = 0;
		switch(objId) {
		case BAROALTITUDE_OBJID:
		{
			BaroAltitudeGet(&baroAltitude);
			pressure.press_abs = baroAltitude.Pressure*10.0f;
			pressure.temperature = baroAltitude.Temperature*100.0f;
			mavlink_msg_scaled_pressure_encode(mavlink_system.sysid, mavlink_system.compid, &msg, &pressure);
			// Copy the message to the send buffer
			uint16_t len = mavlink_msg_to_send_buffer(mavlinkTxBuf, &msg);
			// Send buffer
			PIOS_COM_SendBufferNonBlocking(telemetryPort, mavlinkTxBuf, len);
			break;
		}
		case FLIGHTTELEMETRYSTATS_OBJID:
		{
			//				FlightTelemetryStatsData flightTelemetryStats;
			FlightTelemetryStatsGet(&flightStats);

			// XXX this is a hack to make it think it got a confirmed
			// connection
			flightStats.Status = FLIGHTTELEMETRYSTATS_STATUS_CONNECTED;
			GCSTelemetryStatsGet(&gcsTelemetryStatsData);
			gcsTelemetryStatsData.Status = GCSTELEMETRYSTATS_STATUS_CONNECTED;
			//
			//
			//				//mavlink_msg_heartbeat_send(MAVLINK_COMM_0,mavlink_system.type,mavClass);
			//				mavlink_msg_heartbeat_pack(mavlink_system.sysid, mavlink_system.compid, &msg, mavlink_system.type, mavClass);
			//				// Copy the message to the send buffer
			//				uint16_t len = mavlink_msg_to_send_buffer(mavlinkTxBuf, &msg);
			//				// Send buffer
			//				PIOS_COM_SendBufferNonBlocking(telemetryPort, mavlinkTxBuf, len);
			break;
		}
		case SYSTEMSTATS_OBJID:
		{
			FlightStatusData flightStatus;
			FlightStatusGet(&flightStatus);

			uint8_t system_state = MAV_STATE_UNINIT;
			uint8_t base_mode = 0;
			uint8_t custom_mode = 0;

			// Set flight mode
			switch (flightStatus.FlightMode)
			{
			case FLIGHTSTATUS_FLIGHTMODE_MANUAL:
				base_mode |= MAV_MODE_FLAG_MANUAL_INPUT_ENABLED;
				break;
			case FLIGHTSTATUS_FLIGHTMODE_POSITIONHOLD:
				base_mode |= MAV_MODE_FLAG_GUIDED_ENABLED;
				break;
			case FLIGHTSTATUS_FLIGHTMODE_STABILIZED1:
				base_mode |= MAV_MODE_FLAG_STABILIZE_ENABLED;
				break;
			case FLIGHTSTATUS_FLIGHTMODE_STABILIZED2:
				base_mode |= MAV_MODE_FLAG_GUIDED_ENABLED;
				break;
			case FLIGHTSTATUS_FLIGHTMODE_STABILIZED3:
				base_mode |= MAV_MODE_FLAG_AUTO_ENABLED;
				break;
			case FLIGHTSTATUS_FLIGHTMODE_VELOCITYCONTROL:
				base_mode |= MAV_MODE_FLAG_GUIDED_ENABLED;
				break;
			default:
				base_mode |= MAV_MODE_FLAG_MANUAL_INPUT_ENABLED;
				break;
			}

			// Set arming state
			switch (flightStatus.Armed)
			{
			case FLIGHTSTATUS_ARMED_ARMING:
			case FLIGHTSTATUS_ARMED_ARMED:
				system_state = MAV_STATE_ACTIVE;
				base_mode |= MAV_MODE_FLAG_SAFETY_ARMED;
				break;
			case FLIGHTSTATUS_ARMED_DISARMED:
				system_state = MAV_STATE_STANDBY;
				base_mode &= !MAV_MODE_FLAG_SAFETY_ARMED;
				break;
			}

			// Set HIL
			if (hilEnabled) base_mode |= MAV_MODE_FLAG_HIL_ENABLED;

			mavlink_msg_heartbeat_send(MAVLINK_COMM_0, mavlink_system.type, mavClass, base_mode, custom_mode, system_state);

			SystemStatsData stats;
			SystemStatsGet(&stats);
			FlightBatteryStateData flightBatteryData;
			FlightBatteryStateGet(&flightBatteryData);
			FlightBatterySettingsData flightBatterySettings;
			FlightBatterySettingsGet(&flightBatterySettings);

			uint16_t batteryVoltage = (uint16_t)(flightBatteryData.Voltage*1000.0f);
			int16_t batteryCurrent = -1; // -1: Not present / not estimated
			int8_t batteryPercent = -1; // -1: Not present / not estimated
			//			if (flightBatterySettings.SensorCalibrations[FLIGHTBATTERYSETTINGS_SENSORCALIBRATIONS_CURRENTFACTOR] == 0)
			//			{
			// Factor is zero, sensor is not present
			// Estimate remaining capacity based on lipo curve
			batteryPercent = 100.0f*((flightBatteryData.Voltage - 9.6f)/(12.6f - 9.6f));
			//			}
			//			else
			//			{
			//				// Use capacity and current
			//				batteryPercent = 100.0f*((flightBatterySettings.Capacity - flightBatteryData.ConsumedEnergy) / flightBatterySettings.Capacity);
			//				batteryCurrent = flightBatteryData.Current*100;
			//			}

				mavlink_msg_sys_status_send(MAVLINK_COMM_0, 0xFF, 0xFF, 0xFF, ((uint16_t)stats.CPULoad*10), batteryVoltage, batteryCurrent, batteryPercent, 0, 0, 0, 0, 0, 0);
//				// Copy the message to the send buffer
//				uint16_t len = mavlink_msg_to_send_buffer(mavlinkTxBuf, &msg);
//				// Send buffer
//				PIOS_COM_SendBufferNonBlocking(telemetryPort, mavlinkTxBuf, len);
			break;
		}
		case ATTITUDERAW_OBJID:
		{
			AttitudeRawGet(&attitudeRaw);

			// Copy data
			attitude_raw.xacc = attitudeRaw.accels[ATTITUDERAW_ACCELS_X];
			attitude_raw.yacc = attitudeRaw.accels[ATTITUDERAW_ACCELS_Y];
			attitude_raw.zacc = attitudeRaw.accels[ATTITUDERAW_ACCELS_Z];
			attitude_raw.xgyro = attitudeRaw.gyros[ATTITUDERAW_GYROS_X];
			attitude_raw.ygyro = attitudeRaw.gyros[ATTITUDERAW_GYROS_Y];
			attitude_raw.zgyro = attitudeRaw.gyros[ATTITUDERAW_GYROS_Z];
			attitude_raw.xmag = attitudeRaw.magnetometers[ATTITUDERAW_MAGNETOMETERS_X];
			attitude_raw.ymag = attitudeRaw.magnetometers[ATTITUDERAW_MAGNETOMETERS_Y];
			attitude_raw.zmag = attitudeRaw.magnetometers[ATTITUDERAW_MAGNETOMETERS_Z];

			mavlink_msg_raw_imu_encode(mavlink_system.sysid, mavlink_system.compid, &msg, &attitude_raw);
			// Copy the message to the send buffer
			uint16_t len = mavlink_msg_to_send_buffer(mavlinkTxBuf, &msg);
			// Send buffer
			PIOS_COM_SendBufferNonBlocking(telemetryPort, mavlinkTxBuf, len);

			if (hilEnabled)
			{
				mavlink_hil_controls_t controls;

				// Copy data
				controls.roll_ailerons = 0.1;
				controls.pitch_elevator = 0.1;
				controls.yaw_rudder = 0.0;
				controls.throttle = 0.8;

				mavlink_msg_hil_controls_encode(mavlink_system.sysid, mavlink_system.compid, &msg, &controls);
				// Copy the message to the send buffer
				len = mavlink_msg_to_send_buffer(mavlinkTxBuf, &msg);
				// Send buffer
				PIOS_COM_SendBufferNonBlocking(telemetryPort, mavlinkTxBuf, len);
			}
			break;
		}
		case ATTITUDEMATRIX_OBJID:
		{
			AttitudeMatrixGet(&attitudeMatrix);

			// Copy data
			attitude.roll = attitudeMatrix.Roll;
			attitude.pitch = attitudeMatrix.Pitch;
			attitude.yaw = attitudeMatrix.Yaw;

			attitude.rollspeed = attitudeMatrix.AngularRates[0];
			attitude.pitchspeed = attitudeMatrix.AngularRates[1];
			attitude.yawspeed = attitudeMatrix.AngularRates[2];

			mavlink_msg_attitude_encode(mavlink_system.sysid,
					mavlink_system.compid, &msg, &attitude);
			// Copy the message to the send buffer
			uint16_t len = mavlink_msg_to_send_buffer(mavlinkTxBuf, &msg);
			// Send buffer
			PIOS_COM_SendBufferNonBlocking(telemetryPort, mavlinkTxBuf, len);
			break;
		}
		case GPSPOSITION_OBJID:
		{
			GPSPositionGet(&gpsPosition);
			gps_raw.time_usec = 0;
			gps_raw.lat = gpsPosition.Latitude*10;
			gps_raw.lon = gpsPosition.Longitude*10;
			gps_raw.alt = gpsPosition.Altitude*10;
			gps_raw.eph = gpsPosition.HDOP*100;
			gps_raw.epv = gpsPosition.VDOP*100;
			gps_raw.cog = gpsPosition.Heading*100;
			gps_raw.satellites_visible = gpsPosition.Satellites;
			gps_raw.fix_type = gpsPosition.Status;
			mavlink_msg_gps_raw_int_encode(mavlink_system.sysid, mavlink_system.compid, &msg, &gps_raw);
			// Copy the message to the send buffer
			uint16_t len = mavlink_msg_to_send_buffer(mavlinkTxBuf, &msg);
			// Send buffer
			PIOS_COM_SendBufferNonBlocking(telemetryPort, mavlinkTxBuf, len);

			//			mavlink_msg_gps_raw_int_send(MAVLINK_COMM_0, gps_raw.usec, gps_raw.lat, gps_raw.lon, gps_raw.alt, gps_raw.eph, gps_raw.epv, gps_raw.hdg, gps_raw.satellites_visible, gps_raw.fix_type, 0);

			break;
		}
		case POSITIONACTUAL_OBJID:
		{
			PositionActualData pos;
			PositionActualGet(&pos);
			mavlink_local_position_ned_t m_pos;
			m_pos.time_boot_ms = 0;
			m_pos.x = pos.North;
			m_pos.y = pos.East;
			m_pos.z = pos.Down;
			m_pos.vx = 0.0f;
			m_pos.vy = 0.0f;
			m_pos.vz = 0.0f;

			mavlink_msg_local_position_ned_encode(mavlink_system.sysid, mavlink_system.compid, &msg, &m_pos);

			// Copy the message to the send buffer
			uint16_t len = mavlink_msg_to_send_buffer(mavlinkTxBuf, &msg);
			// Send buffer
			PIOS_COM_SendBufferNonBlocking(telemetryPort, mavlinkTxBuf, len);
		}
		break;
		case ACTUATORCOMMAND_OBJID:
		{
			mavlink_rc_channels_scaled_t rc;
			float val;
			ManualControlCommandRollGet(&val);
			rc.chan1_scaled = val*1000;
			ManualControlCommandPitchGet(&val);
			rc.chan2_scaled = val*1000;
			ManualControlCommandYawGet(&val);
			rc.chan3_scaled = val*1000;
			ManualControlCommandThrottleGet(&val);
			rc.chan4_scaled = val*1000;

			ActuatorCommandData act;
			ActuatorCommandGet(&act);

			rc.chan5_scaled = act.Channel[0];
			rc.chan6_scaled = act.Channel[1];
			rc.chan7_scaled = act.Channel[2];
			rc.chan8_scaled = act.Channel[3];

			ManualControlCommandData cmd;
			ManualControlCommandGet(&cmd);

			rc.rssi = ((uint8_t)(cmd.Connected == MANUALCONTROLCOMMAND_CONNECTED_TRUE))*255;
			rc.port = 0;

			mavlink_msg_rc_channels_scaled_encode(mavlink_system.sysid, mavlink_system.compid, &msg, &rc);


			// Copy the message to the send buffer
			uint16_t len = mavlink_msg_to_send_buffer(mavlinkTxBuf, &msg);
			// Send buffer
			PIOS_COM_SendBufferNonBlocking(PIOS_COM_TELEM_RF, mavlinkTxBuf, len);
			break;
		}
		case MANUALCONTROLCOMMAND_OBJID:
		{
			mavlink_rc_channels_scaled_t rc;
			float val;
			ManualControlCommandRollGet(&val);
			rc.chan1_scaled = val*1000;
			ManualControlCommandPitchGet(&val);
			rc.chan2_scaled = val*1000;
			ManualControlCommandYawGet(&val);
			rc.chan3_scaled = val*1000;
			ManualControlCommandThrottleGet(&val);
			rc.chan4_scaled = val*1000;

			rc.chan5_scaled = 0;
			rc.chan6_scaled = 0;
			rc.chan7_scaled = 0;
			rc.chan8_scaled = 0;

			ManualControlCommandData cmd;
			ManualControlCommandGet(&cmd);

			rc.rssi = ((uint8_t)(cmd.Connected == MANUALCONTROLCOMMAND_CONNECTED_TRUE))*255;
			rc.port = 0;

			mavlink_msg_rc_channels_scaled_encode(mavlink_system.sysid, mavlink_system.compid, &msg, &rc);


			// Copy the message to the send buffer
			uint16_t len = mavlink_msg_to_send_buffer(mavlinkTxBuf, &msg);
			// Send buffer
			PIOS_COM_SendBufferNonBlocking(PIOS_COM_TELEM_RF, mavlinkTxBuf, len);
			break;
		}
		default:
		{
			//printf("unknown object: %x\n",(unsigned int)objId);
			break;
		}
		}
	}
}
Ejemplo n.º 10
0
/**
 * Compute desired attitude from the desired velocity
 * @param[in] dT the time since last evaluation
 * @param[in] att_adj an adjustment to the attitude for loiter mode
 *
 * Takes in @ref NedActual which has the acceleration in the
 * NED frame as the feedback term and then compares the
 * @ref VelocityActual against the @ref VelocityDesired
 */
int32_t vtol_follower_control_attitude(float dT, const float *att_adj)
{
	vtol_follower_control_accel(dT);

	float default_adj[2] = {0,0};

	if (!att_adj) {
		att_adj = default_adj;
	}

	AccelDesiredData accelDesired;
	AccelDesiredGet(&accelDesired);

	StabilizationSettingsData stabSet;
	StabilizationSettingsGet(&stabSet);

	float northCommand = accelDesired.North;
	float eastCommand = accelDesired.East;

	// Project the north and east acceleration signals into body frame
	float yaw;
	AttitudeActualYawGet(&yaw);
	float forward_accel_desired = -northCommand * cosf(yaw * DEG2RAD) + -eastCommand * sinf(yaw * DEG2RAD);
	float right_accel_desired = -northCommand * sinf(yaw * DEG2RAD) + eastCommand * cosf(yaw * DEG2RAD);

	StabilizationDesiredData stabDesired;

	// Set the angle that would achieve the desired acceleration given the thrust is enough for a hover
	stabDesired.Pitch = bound_sym(RAD2DEG * atanf(forward_accel_desired / GRAVITY), guidanceSettings.MaxRollPitch) + att_adj[1];
	stabDesired.Roll = bound_sym(RAD2DEG * atanf(right_accel_desired / GRAVITY), guidanceSettings.MaxRollPitch) + att_adj[0];

	// Re-bound based on maximum attitude settings
	stabDesired.Pitch = bound_sym(stabDesired.Pitch, stabSet.PitchMax);
	stabDesired.Roll = bound_sym(stabDesired.Roll, stabSet.RollMax);
	
	stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_ROLL] = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
	stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_PITCH] = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;

	// Calculate the throttle setting or use pass through from transmitter
	if (guidanceSettings.ThrottleControl == VTOLPATHFOLLOWERSETTINGS_THROTTLECONTROL_FALSE) {
		ManualControlCommandThrottleGet(&stabDesired.Throttle);
	} else {
		float downCommand = vtol_follower_control_altitude(accelDesired.Down);

		stabDesired.Throttle = bound_min_max(downCommand, 0, 1);
	}
	
	// Various ways to control the yaw that are essentially manual passthrough. However, because we do not have a fine
	// grained mechanism of manual setting the yaw as it normally would we need to duplicate that code here
	switch(guidanceSettings.YawMode) {
	case VTOLPATHFOLLOWERSETTINGS_YAWMODE_RATE:
		/* This is awkward.  This allows the transmitter to control the yaw while flying navigation */
		ManualControlCommandYawGet(&yaw);
		stabDesired.Yaw = stabSet.ManualRate[STABILIZATIONSETTINGS_MANUALRATE_YAW] * yaw;
		stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_YAW] = STABILIZATIONDESIRED_STABILIZATIONMODE_RATE;
		break;
	case VTOLPATHFOLLOWERSETTINGS_YAWMODE_AXISLOCK:
		ManualControlCommandYawGet(&yaw);
		stabDesired.Yaw = stabSet.ManualRate[STABILIZATIONSETTINGS_MANUALRATE_YAW] * yaw;
		stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_YAW] = STABILIZATIONDESIRED_STABILIZATIONMODE_AXISLOCK;
		break;
	case VTOLPATHFOLLOWERSETTINGS_YAWMODE_ATTITUDE:
	{
		ManualControlCommandYawGet(&yaw);
		stabDesired.Yaw = stabSet.YawMax * yaw;
		stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_YAW] = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
	}
		break;
	case VTOLPATHFOLLOWERSETTINGS_YAWMODE_PATH:
	{
		// Face forward on the path
		VelocityDesiredData velocityDesired;
		VelocityDesiredGet(&velocityDesired);
		float total_vel2 = velocityDesired.East*velocityDesired.East + velocityDesired.North*velocityDesired.North;
		float path_direction = atan2f(velocityDesired.East, velocityDesired.North) * RAD2DEG;
		if (total_vel2 > 1) {
			stabDesired.Yaw = path_direction;
			stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_YAW] = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
		} else {
			stabDesired.Yaw = 0;
			stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_YAW] = STABILIZATIONDESIRED_STABILIZATIONMODE_RATE;
		}
	}
		break;
	case VTOLPATHFOLLOWERSETTINGS_YAWMODE_POI:
		stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_YAW] = STABILIZATIONDESIRED_STABILIZATIONMODE_POI;
		break;
	}
	
	StabilizationDesiredSet(&stabDesired);

	return 0;
}