Ejemplo n.º 1
0
static void RenderStrip( GLUtesselator *tess, GLUhalfEdge *e, long size )
{
  /* Render as many CCW triangles as possible in a strip starting from
   * edge "e".  The strip *should* contain exactly "size" triangles
   * (otherwise we've goofed up somewhere).
   */
  CALL_BEGIN_OR_BEGIN_DATA( GL_TRIANGLE_STRIP );
  CALL_VERTEX_OR_VERTEX_DATA( e->Org->data );
  CALL_VERTEX_OR_VERTEX_DATA( e->Dst->data );

  while( ! Marked( e->Lface )) {
    e->Lface->marked = TRUE;
    --size;
    e = e->Dprev;
    CALL_VERTEX_OR_VERTEX_DATA( e->Org->data );
    if( Marked( e->Lface )) break;

    e->Lface->marked = TRUE;
    --size;
    e = e->Onext;
    CALL_VERTEX_OR_VERTEX_DATA( e->Dst->data );
  }

  assert( size == 0 );
  CALL_END_OR_END_DATA();
}
Ejemplo n.º 2
0
static struct FaceCount MaximumFan(GLUhalfEdge* eOrig)
{
   /* eOrig->Lface is the face we want to render.  We want to find the size
    * of a maximal fan around eOrig->Org.  To do this we just walk around
    * the origin vertex as far as possible in both directions.
    */
   struct FaceCount newFace={0, NULL, &RenderFan};
   GLUface* trail=NULL;
   GLUhalfEdge* e;

   for (e=eOrig; !Marked(e->Lface); e=e->Onext)
   {
      AddToTrail(e->Lface, trail);
      ++newFace.size;
   }
   for (e=eOrig; !Marked(e->Rface); e=e->Oprev)
   {
      AddToTrail( e->Rface, trail);
      ++newFace.size;
   }

   newFace.eStart=e;

   /*LINTED*/
   FreeTrail(trail);
   return newFace;
}
Ejemplo n.º 3
0
void scContUnit::scAssertValid( Bool recurse ) const
{
	scTBObj::scAssertValid();

	scAssert( !Marked( scRETABULATE ) ); 
	scAssert( !Marked( scREBREAK ) ); 

	if ( fFirstline ) {
		fFirstline->scAssertValid( false );
		scAssert( fFirstline->GetStartOffset() == 0 );
		scAssert( fFirstline->GetEndOffset() <= fCharArray.GetContentSize() );
	}
}
Ejemplo n.º 4
0
static struct FaceCount MaximumStrip( GLUhalfEdge *eOrig )
{
  /* Here we are looking for a maximal strip that contains the vertices
   * eOrig->Org, eOrig->Dst, eOrig->Lnext->Dst (in that order or the
   * reverse, such that all triangles are oriented CCW).
   *
   * Again we walk forward and backward as far as possible.  However for
   * strips there is a twist: to get CCW orientations, there must be
   * an *even* number of triangles in the strip on one side of eOrig.
   * We walk the strip starting on a side with an even number of triangles;
   * if both side have an odd number, we are forced to shorten one side.
   */
  struct FaceCount newFace = { 0, NULL, &RenderStrip };
  long headSize = 0, tailSize = 0;
  GLUface *trail = NULL;
  GLUhalfEdge *e, *eTail, *eHead;

  for( e = eOrig; ! Marked( e->Lface ); ++tailSize, e = e->Onext ) {
    AddToTrail( e->Lface, trail );
    ++tailSize;
    e = e->Dprev;
    if( Marked( e->Lface )) break;
    AddToTrail( e->Lface, trail );
  }
  eTail = e;

  for( e = eOrig; ! Marked( e->Rface ); ++headSize, e = e->Dnext ) {
    AddToTrail( e->Rface, trail );
    ++headSize;
    e = e->Oprev;
    if( Marked( e->Rface )) break;
    AddToTrail( e->Rface, trail );
  }
  eHead = e;

  newFace.size = tailSize + headSize;
  if( IsEven( tailSize )) {
    newFace.eStart = eTail->Sym;
  } else if( IsEven( headSize )) {
    newFace.eStart = eHead;
  } else {
    /* Both sides have odd length, we must shorten one of them.  In fact,
     * we must start from eHead to guarantee inclusion of eOrig->Lface.
     */
    --newFace.size;
    newFace.eStart = eHead->Onext;
  }
  /*LINTED*/
  FreeTrail( trail );
  return newFace;
}
Ejemplo n.º 5
0
void scContUnit::RestorePointers( scSet* enumTable )
{
	if ( !Marked( scPTRRESTORED ) ) {
		scTBObj::RestorePointers( enumTable );
		fSpecRun.RestorePointers( );
	}
}
Ejemplo n.º 6
0
/* ==================================================================== */
BOOL scTextline::IsLastLinePara ( ) const
{
	BOOL			tf;

	if ( Marked( scINVALID | scREPAINT ) )
		return true;

	scAssertValid( false );

	tf = Marked( scLASTLINE );
	if ( tf ) {
		if ( !fPara->Marked( scREBREAK ) )
			scAssert( GetEndOffset() == PARAChSize( fPara ) );
	}
	return tf;
}
Ejemplo n.º 7
0
void scTBObj::RestorePointers( scSet* enumTable )
{
    if ( !Marked( scPTRRESTORED ) ) {
        fNext = (scTBObj*)enumTable->Get( (long)fNext );
        fPrev = (scTBObj*)enumTable->Get( (long)fPrev );
        Mark( scPTRRESTORED );
    }
}
Ejemplo n.º 8
0
/* draw the line */
void scTextline::Draw( APPDrwCtx		appMat,
					   const scFlowDir& flowDir,
					   const scMuPoint& transpt )
{
	if ( !fPara->Marked( scREBREAK | scRETABULATE ) ) {
		if ( GetCharCount() || Marked( scLASTLINE ) ) {
			scDrawLine ld( *this, flowDir, appMat, transpt );
			ld.Draw();
		}
		Unmark( scREPAINT );  
	}
}
Ejemplo n.º 9
0
/* ==================================================================== */
void scTextline::scAssertValid( BOOL recurse ) const
{ 
	scTBObj::scAssertValid(); 
	scAssert( !Marked( scINVALID ) );
	scAssert( fMaxLeadSpec != 0 );
	 
	if ( recurse ) { 
		fColumn->scAssertValid( false );
		fPara->scAssertValid( false );
	}
	else {
		scAssert( fColumn != 0 );
		scAssert( fPara != 0 );
	}
	scAssert( fStartOffset >= 0 && fEndOffset <= fPara->GetContentSize() );
}
Ejemplo n.º 10
0
static count SamplesLookup(Samples *samples, int key,
  ccount nwant, ccount nmax, count nmin)
{
  count n;

  if( key == 13 && ndim_ == 2 ) {
    if( rule13_.first == NULL ) Rule13Alloc(&rule13_);
    samples->rule = &rule13_;
    samples->n = n = nmin = rule13_.n;
    samples->sampler = SampleRule;
  }
  else if( key == 11 && ndim_ == 3 ) {
    if( rule11_.first == NULL ) Rule11Alloc(&rule11_);
    samples->rule = &rule11_;
    samples->n = n = nmin = rule11_.n;
    samples->sampler = SampleRule;
  }
  else if( key == 9 ) {
    if( rule9_.first == NULL ) Rule9Alloc(&rule9_);
    samples->rule = &rule9_;
    samples->n = n = nmin = rule9_.n;
    samples->sampler = SampleRule;
  }
  else if( key == 7 ) {
    if( rule7_.first == NULL ) Rule7Alloc(&rule7_);
    samples->rule = &rule7_;
    samples->n = n = nmin = rule7_.n;
    samples->sampler = SampleRule;
  }
  else {
    n = Abs1(key);
    if( n < 40 ) n *= nwant;
    samples->sampler = (key < 0) ? SampleSobol :
      (n = n/2 + 1, SampleKorobov);
    samples->n = IMin(n, nmax);
  }

  samples->neff = samples->n;

  return IDim(n - nmax) | Marked(nmax - nmin);
}
Ejemplo n.º 11
0
static count SamplesLookup(This *t, Samples *samples, cint key,
  cnumber nwant, cnumber nmax, number nmin)
{
  number n;

  if( key == 13 && t->ndim == 2 ) {
    samples->rule = &t->rule13;
    samples->n = n = nmin = t->rule13.n;
    samples->sampler = SampleRule;
  }
  else if( key == 11 && t->ndim == 3 ) {
    samples->rule = &t->rule11;
    samples->n = n = nmin = t->rule11.n;
    samples->sampler = SampleRule;
  }
  else if( key == 9 ) {
    samples->rule = &t->rule9;
    samples->n = n = nmin = t->rule9.n;
    samples->sampler = SampleRule;
  }
  else if( key == 7 ) {
    samples->rule = &t->rule7;
    samples->n = n = nmin = t->rule7.n;
    samples->sampler = SampleRule;
  }
  else {
    n = Abs1(key);
    if( n < 40 ) n *= nwant;
    samples->sampler = (key < 0) ? SampleSobol :
      (n = n/2 + 1, SampleKorobov);
    samples->n = IMin(n, nmax);
  }

  samples->neff = samples->n;

  return IDim(n - nmax) | Marked(nmax - nmin);
}
Ejemplo n.º 12
0
static int Integrate(This *t, real *integral, real *error, real *prob)
{
  TYPEDEFREGION;

  Totals totals[NCOMP];
  real nneed, weight;
  count dim, comp, iter, pass = 0, err, iregion;
  number nwant, nmin = INT_MAX;
  int fail;

  if( VERBOSE > 1 ) {
    char s[512];
    sprintf(s, "Divonne input parameters:\n"
      "  ndim " COUNT "\n  ncomp " COUNT "\n"
      "  epsrel " REAL "\n  epsabs " REAL "\n"
      "  flags %d\n  seed %d\n"
      "  mineval " NUMBER "\n  maxeval " NUMBER "\n"
      "  key1 %d\n  key2 %d\n  key3 %d\n  maxpass " COUNT "\n"
      "  border " REAL "\n  maxchisq " REAL "\n  mindeviation " REAL "\n"
      "  ngiven " NUMBER "\n  nextra " NUMBER,
      t->ndim, t->ncomp,
      t->epsrel, t->epsabs,
      t->flags, t->seed,
      t->mineval, t->maxeval,
      t->key1, t->key2, t->key3, t->maxpass,
      t->border.lower, t->maxchisq, t->mindeviation,
      t->ngiven, t->nextra);
    Print(s);
  }

  if( BadComponent(t) ) return -2;
  if( BadDimension(t, t->key1) ||
      BadDimension(t, t->key2) ||   
      ((t->key3 & -2) && BadDimension(t, t->key3)) ) return -1;

  t->neval_opt = t->neval_cut = 0;

  t->size = CHUNKSIZE;
  MemAlloc(t->voidregion, t->size*sizeof(Region));
  for( dim = 0; dim < t->ndim; ++dim ) {
    Bounds *b = &RegionPtr(0)->bounds[dim];
    b->lower = 0;
    b->upper = 1;
  }

  RuleIni(&t->rule7);
  RuleIni(&t->rule9);
  RuleIni(&t->rule11);
  RuleIni(&t->rule13);
  SamplesIni(&t->samples[0]);
  SamplesIni(&t->samples[1]);
  SamplesIni(&t->samples[2]);

  if( (fail = setjmp(t->abort)) ) goto abort;

  t->epsabs = Max(t->epsabs, NOTZERO);

  /* Step 1: partition the integration region */

  if( VERBOSE ) Print("Partitioning phase:");

  if( IsSobol(t->key1) || IsSobol(t->key2) || IsSobol(t->key3) )
    IniRandom(t);

  SamplesLookup(t, &t->samples[0], t->key1,
    (number)47, (number)INT_MAX, (number)0);
  SamplesAlloc(t, &t->samples[0]);

  t->totals = totals;
  Zap(totals);
  t->phase = 1;

  Explore(t, 0, &t->samples[0], INIDEPTH, 1);

  for( iter = 1; ; ++iter ) {
    Totals *maxtot;
    count valid;

    for( comp = 0; comp < t->ncomp; ++comp ) {
      Totals *tot = &totals[comp];
      tot->avg = tot->spreadsq = 0;
      tot->spread = tot->secondspread = -INFTY;
    }

    for( iregion = 0; iregion < t->nregions; ++iregion ) {
      Region *region = RegionPtr(iregion);
      for( comp = 0; comp < t->ncomp; ++comp ) {
        cResult *r = &region->result[comp];
        Totals *tot = &totals[comp];
        tot->avg += r->avg;
        tot->spreadsq += Sq(r->spread);
        if( r->spread > tot->spread ) {
          tot->secondspread = tot->spread;
          tot->spread = r->spread;
          tot->iregion = iregion;
        }
        else if( r->spread > tot->secondspread )
          tot->secondspread = r->spread;
      }
    }

    maxtot = totals;
    valid = 0;
    for( comp = 0; comp < t->ncomp; ++comp ) {
      Totals *tot = &totals[comp];
      integral[comp] = tot->avg;
      valid += tot->avg == tot->avg;
      if( tot->spreadsq > maxtot->spreadsq ) maxtot = tot;
      tot->spread = sqrt(tot->spreadsq);
      error[comp] = tot->spread*t->samples[0].weight;
    }

    if( VERBOSE ) {
      char s[128 + 64*NCOMP], *p = s;

      p += sprintf(p, "\n"
        "Iteration " COUNT " (pass " COUNT "):  " COUNT " regions\n"
        NUMBER7 " integrand evaluations so far,\n"
        NUMBER7 " in optimizing regions,\n"
        NUMBER7 " in finding cuts",
        iter, pass, t->nregions, t->neval, t->neval_opt, t->neval_cut);

      for( comp = 0; comp < t->ncomp; ++comp )
        p += sprintf(p, "\n[" COUNT "] "
          REAL " +- " REAL,
          comp + 1, integral[comp], error[comp]);

      Print(s);
    }

    if( valid == 0 ) goto abort;	/* all NaNs */

    if( t->neval > t->maxeval ) break;

    nneed = maxtot->spread/MaxErr(maxtot->avg);
    if( nneed < MAXPRIME ) {
      cnumber n = t->neval + t->nregions*(number)ceil(nneed);
      if( n < nmin ) {
        nmin = n;
        pass = 0;
      }
      else if( ++pass > t->maxpass && n >= t->mineval ) break;
    }

    Split(t, maxtot->iregion, DEPTH);
  }

  /* Step 2: do a "full" integration on each region */

/* nneed = t->samples[0].neff + 1; */
  nneed = 2*t->samples[0].neff;
  for( comp = 0; comp < t->ncomp; ++comp ) {
    Totals *tot = &totals[comp];
    creal maxerr = MaxErr(tot->avg);
    tot->nneed = tot->spread/maxerr;
    nneed = Max(nneed, tot->nneed);
    tot->maxerrsq = Sq(maxerr);
    tot->mindevsq = tot->maxerrsq*Sq(t->mindeviation);
  }
  nwant = (number)Min(ceil(nneed), MARKMASK/40.);

  err = SamplesLookup(t, &t->samples[1], t->key2, nwant,
    (t->maxeval - t->neval)/t->nregions + 1, t->samples[0].n + 1);

  /* the number of points needed to reach the desired accuracy */
  fail = Unmark(err)*t->nregions;

  if( Marked(err) ) {
    if( VERBOSE ) Print("\nNot enough samples left for main integration.");
    for( comp = 0; comp < t->ncomp; ++comp )
      prob[comp] = -999;
    weight = t->samples[0].weight;
  }
  else {
    bool can_adjust = (t->key3 == 1 && t->samples[1].sampler != SampleRule &&
      (t->key2 < 0 || t->samples[1].neff < MAXPRIME));
    count df, nlimit;

    SamplesAlloc(t, &t->samples[1]);

    if( VERBOSE ) {
      char s[128];
      sprintf(s, "\nMain integration on " COUNT
        " regions with " NUMBER " samples per region.",
        t->nregions, t->samples[1].neff);
      Print(s);
    }

    ResClear(integral);
    ResClear(error);
    ResClear(prob);

    nlimit = t->maxeval - t->nregions*t->samples[1].n;
    df = 0;

    for( iregion = 0; iregion < t->nregions; ++iregion ) {
      Region *region = RegionPtr(iregion);
      char s[64*NDIM + 256*NCOMP], *p = s;
      int todo;

refine:
      t->phase = 2;
      t->samples[1].sampler(t, &t->samples[1], region->bounds, region->vol);

      if( can_adjust )
        for( comp = 0; comp < t->ncomp; ++comp )
          totals[comp].spreadsq -= Sq(region->result[comp].spread);

      nlimit += t->samples[1].n;
      todo = 0;

      for( comp = 0; comp < t->ncomp; ++comp ) {
        cResult *r = &region->result[comp];
        Totals *tot = &totals[comp];

        t->samples[0].avg[comp] = r->avg;
        t->samples[0].err[comp] = r->err;

        if( t->neval < nlimit ) {
          creal avg2 = t->samples[1].avg[comp];
          creal err2 = t->samples[1].err[comp];
          creal diffsq = Sq(avg2 - r->avg);

#define Var(s) Sq((s.err[comp] == 0) ? r->spread*s.weight : s.err[comp])

          if( err2*tot->nneed > r->spread ||
              diffsq > Max(t->maxchisq*(Var(t->samples[0]) + Var(t->samples[1])),
                           EPS*Sq(avg2)) ) {
            if( t->key3 && diffsq > tot->mindevsq ) {
              if( t->key3 == 1 ) {
                ccount xregion = t->nregions;

                if( VERBOSE > 2 ) Print("\nSplit");

                t->phase = 1;
                Explore(t, iregion, &t->samples[1], POSTDEPTH, 2);

                if( can_adjust ) {
                  number nnew;
                  count ireg, xreg;

                  for( ireg = iregion, xreg = xregion;
                       ireg < t->nregions; ireg = xreg++ ) {
                    cResult *result = RegionPtr(ireg)->result;
                    count c;
                    for( c = 0; c < t->ncomp; ++c )
                      totals[c].spreadsq += Sq(result[c].spread);
                  }

                  nnew = (tot->spreadsq/Sq(MARKMASK) > tot->maxerrsq) ?
                    MARKMASK :
                    (number)ceil(sqrt(tot->spreadsq/tot->maxerrsq));
                  if( nnew > nwant + nwant/64 ) {
                    ccount err = SamplesLookup(t, &t->samples[1], t->key2, nnew,
                      (t->maxeval - t->neval)/t->nregions + 1, t->samples[1].n);
                    fail += Unmark(err)*t->nregions;
                    nwant = nnew;
                    SamplesFree(&t->samples[1]);
                    SamplesAlloc(t, &t->samples[1]);

                    if( t->key2 > 0 && t->samples[1].neff >= MAXPRIME )
                      can_adjust = false;

                    if( VERBOSE > 2 ) {
                      char s[128];
                      sprintf(s, "Sampling remaining " COUNT
                        " regions with " NUMBER " points per region.",
                        t->nregions, t->samples[1].neff);
                      Print(s);
                    }
                  }
                }

                goto refine;
              }
              todo |= 3;
            }
            todo |= 1;
          }
        }
      }

      if( can_adjust ) {
        for( comp = 0; comp < t->ncomp; ++comp )
          totals[comp].maxerrsq -=
            Sq(region->result[comp].spread*t->samples[1].weight);
      }

      switch( todo ) {
      case 1:	/* get spread right */
        Explore(t, iregion, &t->samples[1], 0, 2);
        break;

      case 3:	/* sample region again with more points */
        if( SamplesIniQ(&t->samples[2]) ) {
          SamplesLookup(t, &t->samples[2], t->key3,
            nwant, (number)INT_MAX, (number)0);
          SamplesAlloc(t, &t->samples[2]);
        }
        t->phase = 3;
        t->samples[2].sampler(t, &t->samples[2], region->bounds, region->vol);
        Explore(t, iregion, &t->samples[2], 0, 2);
        ++region->depth;	/* misused for df here */
        ++df;
      }

      ++region->depth;	/* misused for df here */

      if( VERBOSE > 2 ) {
        for( dim = 0; dim < t->ndim; ++dim ) {
          cBounds *b = &region->bounds[dim];
          p += sprintf(p,
            (dim == 0) ? "\nRegion (" REALF ") - (" REALF ")" :
                         "\n       (" REALF ") - (" REALF ")",
            b->lower, b->upper);
        }
      }

      for( comp = 0; comp < t->ncomp; ++comp ) {
        Result *r = &region->result[comp];

        creal x1 = t->samples[0].avg[comp];
        creal s1 = Var(t->samples[0]);
        creal x2 = t->samples[1].avg[comp];
        creal s2 = Var(t->samples[1]);
        creal r2 = (s1 == 0) ? Sq(t->samples[1].neff*t->samples[0].weight) : s2/s1;

        real norm = 1 + r2;
        real avg = x2 + r2*x1;
        real sigsq = s2;
        real chisq = Sq(x2 - x1);
        real chiden = s1 + s2;

        if( todo == 3 ) {
          creal x3 = t->samples[2].avg[comp];
          creal s3 = Var(t->samples[2]);
          creal r3 = (s2 == 0) ? Sq(t->samples[2].neff*t->samples[1].weight) : s3/s2;

          norm = 1 + r3*norm;
          avg = x3 + r3*avg;
          sigsq = s3;
          chisq = s1*Sq(x3 - x2) + s2*Sq(x3 - x1) + s3*chisq;
          chiden = s1*s2 + s3*chiden;
        }

        avg = LAST ? r->avg : (sigsq *= norm = 1/norm, avg*norm);
        if( chisq > EPS ) chisq /= Max(chiden, NOTZERO);

#define Out(s) s.avg[comp], r->spread*s.weight, s.err[comp]

        if( VERBOSE > 2 ) {
          p += sprintf(p, "\n[" COUNT "] "
            REAL " +- " REAL "(" REAL ")\n    "
            REAL " +- " REAL "(" REAL ")",
            comp + 1, Out(t->samples[0]), Out(t->samples[1]));
          if( todo == 3 ) p += sprintf(p, "\n    "
            REAL " +- " REAL "(" REAL ")",
            Out(t->samples[2]));
          p += sprintf(p, "  \tchisq " REAL, chisq);
        }

        integral[comp] += avg;
        error[comp] += sigsq;
        prob[comp] += chisq;

        r->avg = avg;
        r->spread = sqrt(sigsq);
        r->chisq = chisq;
      }

      if( VERBOSE > 2 ) Print(s);
    }

    for( comp = 0; comp < t->ncomp; ++comp )
      error[comp] = sqrt(error[comp]);

    df += t->nregions;

    if( VERBOSE > 2 ) {
      char s[16 + 128*NCOMP], *p = s;

      p += sprintf(p, "\nTotals:");

      for( comp = 0; comp < t->ncomp; ++comp )
        p += sprintf(p, "\n[" COUNT "] "
          REAL " +- " REAL "  \tchisq " REAL " (" COUNT " df)",
          comp + 1, integral[comp], error[comp], prob[comp], df);

      Print(s);
    }

    for( comp = 0; comp < t->ncomp; ++comp )
      prob[comp] = ChiSquare(prob[comp], df);

    weight = 1;
  }

#ifdef MLVERSION
  if( REGIONS ) {
    MLPutFunction(stdlink, "List", 2);
    MLPutFunction(stdlink, "List", t->nregions);
    for( iregion = 0; iregion < t->nregions; ++iregion ) {
      Region *region = RegionPtr(iregion);
      cBounds *b = region->bounds;
      real lower[NDIM], upper[NDIM];

      for( dim = 0; dim < t->ndim; ++dim ) {
        lower[dim] = b[dim].lower;
        upper[dim] = b[dim].upper;
      }

      MLPutFunction(stdlink, "Cuba`Divonne`region", 4);

      MLPutRealList(stdlink, lower, t->ndim);
      MLPutRealList(stdlink, upper, t->ndim);

      MLPutFunction(stdlink, "List", t->ncomp);
      for( comp = 0; comp < t->ncomp; ++comp ) {
        cResult *r = &region->result[comp];
        real res[] = {r->avg, r->spread*weight, r->chisq};
        MLPutRealList(stdlink, res, Elements(res));
      }

      MLPutInteger(stdlink, region->depth);  /* misused for df */
    }
  }
#endif

abort:
  SamplesFree(&t->samples[2]);
  SamplesFree(&t->samples[1]);
  SamplesFree(&t->samples[0]);
  RuleFree(&t->rule13);
  RuleFree(&t->rule11);
  RuleFree(&t->rule9);
  RuleFree(&t->rule7);

  free(t->voidregion);

  return fail;
}
Ejemplo n.º 13
0
/* reposition the line, this line is part of a flex column and it may
 * need repositioning depending on the line rag
 * returns the next line - thus optimizing loop in column a little
 */
void scTextline::Reposition( MicroPoint measure )
{
	MicroPoint	displacement;
	CharRecordP chP;
	scFlowDir	flowDir;
	scMuPoint	transPt( fOrigin );

	flowDir = fColumn->GetFlowdir( );
	
	if ( flowDir.IsHorizontal() ) {
		transPt.x = -transPt.x;
		transPt.y = 0;
	}
	else {
		transPt.x = 0;
		transPt.y = -transPt.y;
	}

	switch ( GetFlexLineAdjustment() &	eRagFlag ) {
		case eRagLeft:
			fOrigin.Translate( transPt );
			fInkExtents.Translate( transPt );
				
			displacement	= measure - fLength;
			if ( flowDir.IsHorizontal() ) {
				fOrigin.Translate( displacement, 0 );
				fInkExtents.Translate( displacement, 0 );
			}
			else {
				fOrigin.Translate( 0, displacement );
				fInkExtents.Translate( 0, displacement );
			}
			break;
			
		case eRagCentered:
			fOrigin.Translate( transPt );
			fInkExtents.Translate( transPt );
		
			displacement	= ( measure - fLength ) / 2;
			if ( flowDir.IsHorizontal() ) {
				fOrigin.Translate( displacement, 0 );
				fInkExtents.Translate( displacement, 0 );
			}
			else {
				fOrigin.Translate( 0, displacement );
				fInkExtents.Translate( 0, displacement );
			}
			break;

		case eRagJustified:
			if ( !Marked( scLASTLINE ) || GetFlexLineAdjustment() & eLastLineJust ) {
				chP = (CharRecordP)GetPara()->GetCharArray().Lock();
				if ( BRKJustify( chP, GetStartOffset(), GetEndOffset(), measure ) )
					Mark( scREPAINT );

				if ( flowDir.IsHorizontal() )
					fInkExtents.x2	= fInkExtents.x1 + measure + fInkExtents.Depth() / 2;
				else 
					fInkExtents.y2	= fInkExtents.y1 + measure + fInkExtents.Width() / 2;
				fLength 	= measure;
				GetPara()->GetCharArray().Unlock();
			}
			break;
		
		case eRagRight:
			break;
	}
}
Ejemplo n.º 14
0
// update the lines instance variables, determining if there have
// been any changes in the line
void scTextline::Set( short 			lineCount,
					  eBreakType		breakType,
					  scLINERefData&	lineData )
{
	BOOL	changed;
	scXRect exrect = lineData.fInkExtents;
	
	scAssert( lineData.fInkExtents.Valid() );
	
	TypeSpec ts = lineData.GetMaxLeadSpec();
	scCachedStyle& cs = scCachedStyle::GetCachedStyle( ts );

	if ( fOrigin == lineData.fOrg
			&& fLength					== lineData.fComputedLen
			&& GetCharCount()			== lineData.GetCharCount()
			&& fLineCount				== lineCount
			&& fLspAdjustment			== lineData.fLetterSpace
			&& fInkExtents				== lineData.fInkExtents
			&& Marked( scLASTLINE ) 	&& ( breakType == eEndStreamBreak ) 
			&& fMaxLead 				== lineData.fEndLead.GetLead()
			&& fMaxLeadSpec 			== lineData.GetMaxLeadSpec() ) {
				changed = false;
	}
	else
		changed = true;


	if ( !changed ) {
		if ( fColumn->GetFlowdir().IsVertical() ) {
			changed = ( fCursorY1 == lineData.fOrg.x + cs.GetCursorX1() )		&& 
						( fCursorY2 == lineData.fOrg.x + cs.GetCursorX2() );
		}
		else {
			changed = ( fCursorY1 == lineData.fOrg.y + cs.GetCursorY1() )		&& 
						( fCursorY2 == lineData.fOrg.y + cs.GetCursorY2() );
		}
	}

	SetOffsets( lineData.GetStartCharOffset(), lineData.GetEndCharOffset() );
	if ( changed ) {
		fOrigin 			= lineData.fOrg;
		fVJOffset			= 0;
		fLength 			= lineData.fComputedLen;
		fLineCount			= lineCount;
		if ( breakType == eEndStreamBreak )
			Mark( scLASTLINE );
		else
			Unmark( scLASTLINE );
		fLspAdjustment		= lineData.fLetterSpace;
		fInkExtents 		= lineData.fInkExtents;
		fMaxLead			= lineData.fEndLead.GetLead();
		fMaxLeadSpec		= lineData.GetMaxLeadSpec();		// fMaxLeadSpec
		
		
		if ( fColumn->GetFlowdir().IsVertical() ) {
			fCursorY1			= lineData.fOrg.x + cs.GetCursorX1();
			fCursorY2			= lineData.fOrg.x + cs.GetCursorX2();
			lineData.fInkExtents.x1 = fCursorY1;
			lineData.fInkExtents.x2 = fCursorY2;
			if ( !lineData.GetStartCharOffset() && scCachedStyle::GetParaStyle().GetNumbered() )
				lineData.fInkExtents.y1 -= scCachedStyle::GetParaStyle().GetBulletIndent();
		}
		else {
			fCursorY1			= lineData.fOrg.y + cs.GetCursorY1();
			fCursorY2			= lineData.fOrg.y + cs.GetCursorY2();
			lineData.fInkExtents.y1 = fCursorY1;
			lineData.fInkExtents.y2 = fCursorY2;
			if ( !lineData.GetStartCharOffset() && scCachedStyle::GetParaStyle().GetNumbered() )
				lineData.fInkExtents.x1 -= scCachedStyle::GetParaStyle().GetBulletIndent();

		}
		fInkExtents.Union( lineData.fInkExtents );
	}

	if ( fColumn->GetFlowdir().IsVertical() && lineData.fColShapeType & eVertFlex )
		SetFlexLineAdjustment( lineData.fRagSetting );		
	else if ( lineData.fColShapeType & eHorzFlex )
		SetFlexLineAdjustment( lineData.fRagSetting );
	else
		SetFlexLineAdjustment( eNoRag );

	lineData.fLastLineLen = lineData.fComputedLen;

	if ( changed )
		fColumn->Mark( scREPAINT );

	scAssertValid( false );
}
Ejemplo n.º 15
0
/* ==================================================================== */
BOOL scTextline::Compare( scTextline*				orgTxl,
						  const scStreamChangeInfo& streamChange )
{
#if 1
	if ( fPara != orgTxl->GetPara() )
		return false;
		 
	if ( fOrigin != orgTxl->fOrigin )
		return false;
	

	if ( !TestOffsets( orgTxl, streamChange ) )
		return false;

	if ( fVJOffset != orgTxl->fVJOffset )
		return false;

	if ( fMaxLeadSpec != orgTxl->fMaxLeadSpec )
		return false;

	if ( fLength != orgTxl->fLength )
		return false;

	if ( fLineCount != orgTxl->fLineCount )
		return false;

	if ( fInkExtents != orgTxl->fInkExtents )
		return false;

	if ( Marked( scLASTLINE ) != orgTxl->Marked( scLASTLINE ) )
		return false;
				 
	if ( fCursorY1 != orgTxl->fCursorY1 )
		 return false;

	if ( fCursorY2 != orgTxl->fCursorY2 )
		return false;

	if ( fColumn != orgTxl->fColumn )
		return false;

	if ( fLspAdjustment != orgTxl->fLspAdjustment )
		return false;

	return true;
	


#else
	BOOL	notChanged;

	if ( GetPara()					== orgTxl->GetPara()			&&
		 fOrigin					== orgTxl->fOrigin				&&
		 TestOffsets( orgTxl, p, offset, len )						&&		 
		 fVJOffset					== orgTxl->fVJOffset			&&
		 fMaxLeadSpec				== orgTxl->fMaxLeadSpec 		&&
		 fLength					== orgTxl->fLength				&&
		 fLineCount 				== orgTxl->fLineCount			&&
		 fInkExtents				== orgTxl->fInkExtents			&&
		 Marked( scLASTLINE )		== orgTxl->Marked( scLASTLINE ) &&
		 fCursorY1					== orgTxl->fCursorY1			&&
		 fCursorY2					== orgTxl->fCursorY2			&&
		 fColumn					== orgTxl->fColumn				&&
		 fLspAdjustment 			== orgTxl->fLspAdjustment )
				notChanged = true;
	else
		notChanged = false;

	return notChanged;
#endif	
}
Ejemplo n.º 16
0
static int Integrate(creal epsrel, creal epsabs,
  cint flags, cnumber mineval, cnumber maxeval,
  int key1, int key2, int key3, ccount maxpass, 
  creal maxchisq, creal mindeviation,
  real *integral, real *error, real *prob)
{
  TYPEDEFREGION;

  Region anchor, *region;
  Totals totals[NCOMP];
  real nneed, weight;
  count dim, comp, iter, nregions, pass = 0, err;
  number nwant, nmin = INT_MAX;
  int fail = -1;

  if( VERBOSE > 1 ) {
    char s[512];
    sprintf(s, "Divonne input parameters:\n"
      "  ndim " COUNT "\n  ncomp " COUNT "\n"
      "  epsrel " REAL "\n  epsabs " REAL "\n"
      "  flags %d\n  mineval " NUMBER "\n  maxeval " NUMBER "\n"
      "  key1 %d\n  key2 %d\n  key3 %d\n  maxpass " COUNT "\n"
      "  border " REAL "\n  maxchisq " REAL "\n  mindeviation " REAL "\n"
      "  ngiven " NUMBER "\n  nextra " NUMBER "\n",
      ndim_, ncomp_,
      epsrel, epsabs,
      flags, mineval, maxeval,
      key1, key2, key3, maxpass,
      border_.lower, maxchisq, mindeviation,
      ngiven_, nextra_);
    Print(s);
  }

  anchor.next = NULL;
  for( dim = 0; dim < ndim_; ++dim ) {
    Bounds *b = &anchor.bounds[dim];
    b->lower = 0;
    b->upper = 1;
  }

  RuleIni(&rule7_);
  RuleIni(&rule9_);
  RuleIni(&rule11_);
  RuleIni(&rule13_);
  SamplesIni(&samples_[0]);
  SamplesIni(&samples_[1]);
  SamplesIni(&samples_[2]);

#ifdef MLVERSION
  if( setjmp(abort_) ) goto abort;
#endif

  /* Step 1: partition the integration region */

  if( VERBOSE ) Print("Partitioning phase:");

  if( IsSobol(key1) || IsSobol(key2) || IsSobol(key3) )
    IniRandom(2*maxeval, flags);

  SamplesLookup(&samples_[0], key1,
    (number)47, (number)INT_MAX, (number)0);
  SamplesAlloc(&samples_[0]);

  totals_ = totals;
  Zap(totals);
  phase_ = 1;

  Explore(&anchor, &samples_[0], INIDEPTH, 1);

  for( iter = 1; ; ++iter ) {
    Totals *maxtot;

    for( comp = 0; comp < ncomp_; ++comp ) {
      Totals *tot = &totals[comp];
      tot->avg = tot->spreadsq = 0;
      tot->spread = tot->secondspread = -INFTY;
    }

    nregions = 0;
    for( region = anchor.next; region; region = region->next ) {
      ++nregions;
      for( comp = 0; comp < ncomp_; ++comp ) {
        cResult *r = &region->result[comp];
        Totals *tot = &totals[comp];
        tot->avg += r->avg;
        tot->spreadsq += Sq(r->spread);
        if( r->spread > tot->spread ) {
          tot->secondspread = tot->spread;
          tot->spread = r->spread;
          tot->region = region;
        }
        else if( r->spread > tot->secondspread )
          tot->secondspread = r->spread;
      }
    }

    maxtot = totals;
    for( comp = 0; comp < ncomp_; ++comp ) {
      Totals *tot = &totals[comp];
      integral[comp] = tot->avg;
      if( tot->spreadsq > maxtot->spreadsq ) maxtot = tot;
      tot->spread = sqrt(tot->spreadsq);
      error[comp] = tot->spread*samples_[0].weight;
    }

    if( VERBOSE ) {
      char s[128 + 64*NCOMP], *p = s;

      p += sprintf(p, "\n"
        "Iteration " COUNT " (pass " COUNT "):  " COUNT " regions\n"
        NUMBER7 " integrand evaluations so far,\n"
        NUMBER7 " in optimizing regions,\n"
        NUMBER7 " in finding cuts",
        iter, pass, nregions, neval_, neval_opt_, neval_cut_);

      for( comp = 0; comp < ncomp_; ++comp )
        p += sprintf(p, "\n[" COUNT "] "
          REAL " +- " REAL,
          comp + 1, integral[comp], error[comp]);

      Print(s);
    }

    if( neval_ > maxeval ) break;

    nneed = maxtot->spread/MaxErr(maxtot->avg);
    if( nneed < MAXPRIME ) {
      cnumber n = neval_ + nregions*(number)ceil(nneed);
      if( n < nmin ) {
        nmin = n;
        pass = 0;
      }
      else if( ++pass > maxpass && n >= mineval ) break;
    }

    Split(maxtot->region, DEPTH);
  }

  /* Step 2: do a "full" integration on each region */

/* nneed = samples_[0].neff + 1; */
  nneed = 2*samples_[0].neff;
  for( comp = 0; comp < ncomp_; ++comp ) {
    Totals *tot = &totals[comp];
    creal maxerr = MaxErr(tot->avg);
    tot->nneed = tot->spread/maxerr;
    nneed = Max(nneed, tot->nneed);
    tot->maxerrsq = Sq(maxerr);
    tot->mindevsq = tot->maxerrsq*Sq(mindeviation);
  }
  nwant = (number)Min(ceil(nneed), MARKMASK/40.);

  err = SamplesLookup(&samples_[1], key2, nwant,
    (maxeval - neval_)/nregions + 1, samples_[0].n + 1);

  /* the number of points needed to reach the desired accuracy */
  fail = Unmark(err)*nregions;

  if( Marked(err) ) {
    if( VERBOSE ) Print("\nNot enough samples left for main integration.");
    for( comp = 0; comp < ncomp_; ++comp )
      prob[comp] = -999;
    weight = samples_[0].weight;
    nregions_ = nregions;
  }
  else {
    bool can_adjust = (key3 == 1 && samples_[1].sampler != SampleRule &&
      (key2 < 0 || samples_[1].neff < MAXPRIME));
    count df, nlimit;

    SamplesAlloc(&samples_[1]);

    if( VERBOSE ) {
      char s[128];
      sprintf(s, "\nMain integration on " COUNT
        " regions with " NUMBER " samples per region.",
        nregions, samples_[1].neff);
      Print(s);
    }

    ResClear(integral);
    ResClear(error);
    ResClear(prob);

    nlimit = maxeval - nregions*samples_[1].n;
    df = nregions_ = 0;

    for( region = anchor.next; region; region = region->next ) {
      char s[64*NDIM + 256*NCOMP], *p = s;
      int todo;

refine:
      phase_ = 2;
      samples_[1].sampler(&samples_[1], region->bounds, region->vol);

      if( can_adjust ) {
        --nregions;
        for( comp = 0; comp < ncomp_; ++comp )
          totals[comp].spreadsq -= Sq(region->result[comp].spread);
      }

      nlimit += samples_[1].n;
      todo = 0;

      for( comp = 0; comp < ncomp_; ++comp ) {
        cResult *r = &region->result[comp];
        Totals *tot = &totals[comp];

        samples_[0].avg[comp] = r->avg;
        samples_[0].err[comp] = r->err;

        if( neval_ < nlimit ) {
          creal avg2 = samples_[1].avg[comp];
          creal err2 = samples_[1].err[comp];
          creal diffsq = Sq(avg2 - r->avg);

#define Var(s) Sq((s.err[comp] == 0) ? r->spread*s.weight : s.err[comp])

          if( err2*tot->nneed > r->spread ||
              diffsq > Max(maxchisq*(Var(samples_[0]) + Var(samples_[1])),
                           EPS*Sq(avg2)) ) {
            if( key3 && diffsq > tot->mindevsq ) {
              if( key3 == 1 ) {
                const Region *next = region->next;

                if( VERBOSE > 2 ) Print("\nSplit");

                phase_ = 1;
                Explore(region, &samples_[1], POSTDEPTH, 2);

                if( can_adjust ) {
                  number nnew;
                  Region *child;

                  for( child = region; child != next; child = child->next ) {
                    count c;
                    for( c = 0; c < ncomp_; ++c )
                      totals[c].spreadsq += Sq(child->result[c].spread);
                    ++nregions;
                  }

                  nnew = (tot->spreadsq/Sq(MARKMASK) > tot->maxerrsq) ?
                    MARKMASK :
                    (number)ceil(sqrt(tot->spreadsq/tot->maxerrsq));
                  if( nnew > nwant + nwant/64 ) {
                    ccount err = SamplesLookup(&samples_[1], key2, nnew,
                      (maxeval - neval_)/nregions + 1, samples_[1].n);
                    fail += Unmark(err)*nregions;
                    nwant = nnew;
                    SamplesFree(&samples_[1]);
                    SamplesAlloc(&samples_[1]);

                    if( key2 > 0 && samples_[1].neff >= MAXPRIME )
                      can_adjust = false;

                    if( VERBOSE > 2 ) {
                      char s[128];
                      sprintf(s, "Sampling remaining " COUNT
                        " regions with " NUMBER " points per region.",
                        nregions, samples_[1].neff);
                      Print(s);
                    }
                  }
                }

                goto refine;
              }
              todo |= 3;
            }
            todo |= 1;
          }
        }
      }

      if( can_adjust ) {
        for( comp = 0; comp < ncomp_; ++comp )
          totals[comp].maxerrsq -=
            Sq(region->result[comp].spread*samples_[1].weight);
      }

      switch( todo ) {
      case 1:	/* get spread right */
        Explore(region, &samples_[1], 0, 2);
        break;

      case 3:	/* sample region again with more points */
        if( MEM(&samples_[2]) == NULL ) {
          SamplesLookup(&samples_[2], key3,
            nwant, (number)INT_MAX, (number)0);
          SamplesAlloc(&samples_[2]);
        }
        phase_ = 3;
        samples_[2].sampler(&samples_[2], region->bounds, region->vol);
        Explore(region, &samples_[2], 0, 2);
        ++region->depth;	/* misused for df here */
        ++df;
      }

      ++region->depth;	/* misused for df here */
      ++nregions_;

      if( VERBOSE > 2 ) {
        for( dim = 0; dim < ndim_; ++dim ) {
          cBounds *b = &region->bounds[dim];
          p += sprintf(p,
            (dim == 0) ? "\nRegion (" REALF ") - (" REALF ")" :
                         "\n       (" REALF ") - (" REALF ")",
            b->lower, b->upper);
        }
      }

      for( comp = 0; comp < ncomp_; ++comp ) {
        Result *r = &region->result[comp];

        creal x1 = samples_[0].avg[comp];
        creal s1 = Var(samples_[0]);
        creal x2 = samples_[1].avg[comp];
        creal s2 = Var(samples_[1]);
        creal r2 = (s1 == 0) ? Sq(samples_[1].neff*samples_[0].weight) : s2/s1;

        real norm = 1 + r2;
        real avg = x2 + r2*x1;
        real sigsq = s2;
        real chisq = Sq(x2 - x1);
        real chiden = s1 + s2;

        if( todo == 3 ) {
          creal x3 = samples_[2].avg[comp];
          creal s3 = Var(samples_[2]);
          creal r3 = (s2 == 0) ? Sq(samples_[2].neff*samples_[1].weight) : s3/s2;

          norm = 1 + r3*norm;
          avg = x3 + r3*avg;
          sigsq = s3;
          chisq = s1*Sq(x3 - x2) + s2*Sq(x3 - x1) + s3*chisq;
          chiden = s1*s2 + s3*chiden;
        }

        avg = LAST ? r->avg : (sigsq *= norm = 1/norm, avg*norm);
        if( chisq > EPS ) chisq /= Max(chiden, NOTZERO);

#define Out(s) s.avg[comp], r->spread*s.weight, s.err[comp]

        if( VERBOSE > 2 ) {
          p += sprintf(p, "\n[" COUNT "] "
            REAL " +- " REAL "(" REAL ")\n    "
            REAL " +- " REAL "(" REAL ")",
            comp + 1, Out(samples_[0]), Out(samples_[1]));
          if( todo == 3 ) p += sprintf(p, "\n    "
            REAL " +- " REAL "(" REAL ")",
            Out(samples_[2]));
          p += sprintf(p, "  \tchisq " REAL, chisq);
        }

        integral[comp] += avg;
        error[comp] += sigsq;
        prob[comp] += chisq;

        r->avg = avg;
        r->spread = sqrt(sigsq);
        r->chisq = chisq;
      }

      if( VERBOSE > 2 ) Print(s);
    }

    for( comp = 0; comp < ncomp_; ++comp )
      error[comp] = sqrt(error[comp]);

    df += nregions_;

    if( VERBOSE > 2 ) {
      char s[16 + 128*NCOMP], *p = s;

      p += sprintf(p, "\nTotals:");

      for( comp = 0; comp < ncomp_; ++comp )
        p += sprintf(p, "\n[" COUNT "] "
          REAL " +- " REAL "  \tchisq " REAL " (" COUNT " df)",
          comp + 1, integral[comp], error[comp], prob[comp], df);

      Print(s);
    }

    for( comp = 0; comp < ncomp_; ++comp )
      prob[comp] = ChiSquare(prob[comp], df);

    weight = 1;
  }

#ifdef MLVERSION
  if( REGIONS ) {
    MLPutFunction(stdlink, "List", 2);
    MLPutFunction(stdlink, "List", nregions_);
    for( region = anchor.next; region; region = region->next ) {
      cBounds *b = region->bounds;
      real lower[NDIM], upper[NDIM];

      for( dim = 0; dim < ndim_; ++dim ) {
        lower[dim] = b[dim].lower;
        upper[dim] = b[dim].upper;
      }

      MLPutFunction(stdlink, "Cuba`Divonne`region", 4);

      MLPutRealList(stdlink, lower, ndim_);
      MLPutRealList(stdlink, upper, ndim_);

      MLPutFunction(stdlink, "List", ncomp_);
      for( comp = 0; comp < ncomp_; ++comp ) {
        cResult *r = &region->result[comp];
        real res[] = {r->avg, r->spread*weight, r->chisq};
        MLPutRealList(stdlink, res, Elements(res));
      }

      MLPutInteger(stdlink, region->depth);  /* misused for df */
    }
  }
#endif

#ifdef MLVERSION
abort:
#endif

  SamplesFree(&samples_[2]);
  SamplesFree(&samples_[1]);
  SamplesFree(&samples_[0]);
  RuleFree(&rule13_);
  RuleFree(&rule11_);
  RuleFree(&rule9_);
  RuleFree(&rule7_);

  for( region = anchor.next; region; ) {
    Region *next = region->next;
    free(region);
    region = next;
  }

  return fail;
}