Ejemplo n.º 1
0
/*
void SpinAdapted::operatorfunctions::TensorMultiply(const SpinBlock *ablock, const Baseoperator<Matrix>& a, const Baseoperator<Matrix>& b, const SpinBlock *cblock, Wavefunction& c, Wavefunction& v, const SpinQuantum opQ, double scale)
{
  // can be used for situation with different bra and ket
  const int leftBraOpSz = cblock->get_leftBlock()->get_braStateInfo().quanta.size ();
  const int leftKetOpSz = cblock->get_leftBlock()->get_ketStateInfo().quanta.size ();
  const int rightBraOpSz = cblock->get_rightBlock()->get_braStateInfo().quanta.size ();
  const int rightKetOpSz = cblock->get_rightBlock()->get_ketStateInfo().quanta.size ();

  const StateInfo* lbraS = cblock->get_braStateInfo().leftStateInfo, *rbraS = cblock->get_braStateInfo().rightStateInfo;
  const StateInfo* lketS = cblock->get_ketStateInfo().leftStateInfo, *rketS = cblock->get_ketStateInfo().rightStateInfo;

  const char conjC = (cblock->get_leftBlock() == ablock) ? 'n' : 't';

  const Baseoperator<Matrix>& leftOp = (conjC == 'n') ? a : b; // an ugly hack to support the release memory optimisation
  const Baseoperator<Matrix>& rightOp = (conjC == 'n') ? b : a;
  const char leftConj = (conjC == 'n') ? a.conjugacy() : b.conjugacy();
  const char rightConj = (conjC == 'n') ? b.conjugacy() : a.conjugacy();

  Wavefunction u;
  u.resize(leftBraOpSz*leftKetOpSz, rightKetOpSz);

  int totalmem =0;

  {
    for (int lQrQPrime = 0; lQrQPrime<leftBraOpSz*rightKetOpSz; ++lQrQPrime)
    {
      int rQPrime = lQrQPrime%rightKetOpSz, lQ = lQrQPrime/rightKetOpSz;
	for (int lQPrime = 0; lQPrime < leftKetOpSz; lQPrime++)
	  if (leftOp.allowed(lQ, lQPrime) && c.allowed(lQPrime, rQPrime))
	  {
	    int lindex = lQ*leftKetOpSz+lQPrime;
	    u.allowed(lindex, rQPrime) = true;
            
	    u(lindex,rQPrime).ReSize(lbraS->getquantastates(lQ), rketS->getquantastates(rQPrime));
	    double factor = leftOp.get_scaling(lbraS->quanta[lQ], lketS->quanta[lQPrime]);
	    MatrixMultiply (leftOp.operator_element(lQ, lQPrime), leftConj, c.operator_element(lQPrime, rQPrime), 'n',
			    u.operator_element(lindex, rQPrime), factor, 0.);	      

	  }
    }
  }

  pout << "after first step in tensormultiply"<<endl;
      mcheck("before davidson but after all blocks are built");

  {
    for (int lQrQ = 0; lQrQ<leftBraOpSz*rightBraOpSz; ++lQrQ)
    {
      int rQ = lQrQ%rightBraOpSz, lQ=lQrQ/rightBraOpSz;
	if (v.allowed(lQ, rQ))
	  for (int rQPrime = 0; rQPrime < rightKetOpSz; rQPrime++)
	    if (rightOp.allowed(rQ, rQPrime))
	      for (int lQPrime = 0; lQPrime < leftKetOpSz; lQPrime++)
		if (leftOp.allowed(lQ, lQPrime) && u.allowed(lQ*leftKetOpSz+lQPrime, rQPrime))
		{
		  int lindex = lQ*leftKetOpSz+lQPrime;
		  double factor = scale;

		  factor *= dmrginp.get_ninej()(lketS->quanta[lQPrime].get_s().getirrep(), rketS->quanta[rQPrime].get_s().getirrep() , c.get_deltaQuantum(0).get_s().getirrep(), 
						leftOp.get_spin().getirrep(), rightOp.get_spin().getirrep(), opQ.get_s().getirrep(),
						lbraS->quanta[lQ].get_s().getirrep(), rbraS->quanta[rQ].get_s().getirrep() , v.get_deltaQuantum(0).get_s().getirrep());
		  factor *= Symmetry::spatial_ninej(lketS->quanta[lQPrime].get_symm().getirrep() , rketS->quanta[rQPrime].get_symm().getirrep(), c.get_symm().getirrep(), 
				       leftOp.get_symm().getirrep(), rightOp.get_symm().getirrep(), opQ.get_symm().getirrep(),
				       lbraS->quanta[lQ].get_symm().getirrep() , rbraS->quanta[rQ].get_symm().getirrep(), v.get_symm().getirrep());
		  int parity = rightOp.get_fermion() && IsFermion(lketS->quanta[lQPrime]) ? -1 : 1;
		  factor *=  rightOp.get_scaling(rbraS->quanta[rQ], rketS->quanta[rQPrime]);
		  MatrixMultiply (u.operator_element(lindex, rQPrime), 'n',
				  rightOp(rQ, rQPrime), TransposeOf(rightOp.conjugacy()), v.operator_element(lQ, rQ), factor*parity);
		}
    }
  }
	      
}
*/
void SpinAdapted::operatorfunctions::OperatorScaleAdd(double scaleV, const SpinBlock& b, const Baseoperator<Matrix>& op1, Baseoperator<Matrix>& op2)
{
  const StateInfo& s = b.get_stateInfo();
  for (int lQ = 0; lQ< op2.nrows(); lQ++)
    for (int rQ = 0; rQ<op2.ncols(); rQ++)
      if (op2.allowed(lQ, rQ) && op1.allowed(lQ,rQ))
      {
	double factor = op1.get_scaling(s.quanta[lQ], s.quanta[rQ]);
	if (op1.conjugacy() == 't')
	  MatrixScaleAdd(scaleV*factor, op1.operator_element(lQ,rQ).t(), op2.operator_element(lQ,rQ));
	else
	  MatrixScaleAdd(scaleV*factor, op1.operator_element(lQ,rQ), op2.operator_element(lQ,rQ));
      }

}
Ejemplo n.º 2
0
SparseMatrix& SparseMatrix::operator+=(const SparseMatrix& other)
{
  for (int i = 0; i < nrows(); ++i)
    for (int j = 0; j < ncols(); ++j)
      if (allowed(i, j))
	{
	  assert(other.allowed(i, j));
	  MatrixScaleAdd(1., other.operator_element(i, j), operator_element(i, j));
	}
  return *this;
}
Ejemplo n.º 3
0
void ScaleAdd(double d, const SparseMatrix& a, SparseMatrix& b)
{
  for (int lQ = 0; lQ < a.nrows(); ++lQ)
    for (int rQ = 0; rQ < a.ncols(); ++rQ)
      if (a.allowed(lQ, rQ))
        {
	  if (!b.allowed(lQ, rQ))
	    cout <<"Not a valid addition"<<endl;
          assert(b.allowed(lQ, rQ));
          MatrixScaleAdd(d, a.operator_element(lQ, rQ), b.operator_element(lQ, rQ));
        }
}