Ejemplo n.º 1
0
void GenericContactProcess (const NewtonJoint* contactJoint, dFloat timestep, int threadIndex)
{
	int isHightField;
	NewtonBody* body;
	NewtonCollision* collision;
	NewtonCollisionInfoRecord info;

	isHightField = 1;
	body = NewtonJointGetBody0 (contactJoint);
	collision = NewtonBodyGetCollision(body);
	NewtonCollisionGetInfo(collision, &info);
	if (info.m_collisionType != SERIALIZE_ID_HEIGHTFIELD) {
		body = NewtonJointGetBody1 (contactJoint);
		collision = NewtonBodyGetCollision(body);
		NewtonCollisionGetInfo(collision, &info);
		isHightField  = (info.m_collisionType == SERIALIZE_ID_HEIGHTFIELD); 
	}

	#define HOLE_IN_TERRAIN 10
	if (isHightField) {
		void* nextContact;
		for (void* contact = NewtonContactJointGetFirstContact (contactJoint); contact; contact = nextContact) {
			int faceID;
			NewtonMaterial* material;

			nextContact = NewtonContactJointGetNextContact (contactJoint, contact);

			material = NewtonContactGetMaterial (contact);
			faceID = NewtonMaterialGetContactFaceAttribute (material);
			if (faceID == HOLE_INTERRAIN) {
				NewtonContactJointRemoveContact (contactJoint, contact); 
			}
		}
	}
}
static void GetCollisionSubShape(const NewtonJoint* const contactJoint, NewtonBody* const body)
{
	NewtonCollisionInfoRecord collisionInfo;

	NewtonCollision* const collision = NewtonBodyGetCollision(body);
	NewtonCollisionGetInfo (collision, &collisionInfo);


	int count = 0;
	NewtonCollision* collidingSubShapeArrar[32];

	// see if this is a compound collision or any other collision with sub collision shapes  
	if (collisionInfo.m_collisionType == SERIALIZE_ID_COMPOUND) {

		// to get the torque we need the center of gravity in global space
		dVector origin;
		dMatrix bodyMatrix;
		NewtonBodyGetMatrix(body, &bodyMatrix[0][0]);
		NewtonBodyGetCentreOfMass(body, &origin[0]);
		origin = bodyMatrix.TransformVector(origin);

		for (void* contact = NewtonContactJointGetFirstContact (contactJoint); contact; contact = NewtonContactJointGetNextContact (contactJoint, contact)) {
			// get the material of this contact, 
			// this part contain all contact information, the sub colliding shape, 
			NewtonMaterial* const material = NewtonContactGetMaterial (contact);
			NewtonCollision* const subShape = NewtonMaterialGetBodyCollidingShape (material, body);
			int i = count - 1;
			for (; i >= 0; i --) {
				if (collidingSubShapeArrar[i] == subShape) {
					break;
				}
			}
			if (i < 0) {
				collidingSubShapeArrar[count] = subShape;
				count ++;
				dAssert (count < int (sizeof (collidingSubShapeArrar) / sizeof (collidingSubShapeArrar[0])));

				// you can also get the forces here, however when tho function is call form a contact material
				// we can only get resting forces, impulsive forces can not be read here since they has no being calculated yet.
				// whoever if this function function is call after the NetwonUpdate they the application can read the contact force, that was applied to each contact point
				dVector force;
				dVector posit;
				dVector normal;
				NewtonMaterialGetContactForce (material, body, &force[0]);
				NewtonMaterialGetContactPositionAndNormal (material, body, &posit[0], &normal[0]);
				// the torque on this contact is
				dVector torque ((origin - posit) * force);

				// do what ever you want wit this  


			}
		}
	}

	// here we should have an array of all colling sub shapes
	if (count) {
		// do what you need with this sub shape list
	}
}
Ejemplo n.º 3
0
void SetShowMeshCollision (SceneManager& me, int mode)
{
	NewtonTreeCollisionCallback showFaceCallback;

	showFaceCallback = NULL;
	if (mode) {
		showFaceCallback = ShowMeshCollidingFaces;
	}

	// iterate the world
	for (const NewtonBody* body = NewtonWorldGetFirstBody (me.m_world); body; body = NewtonWorldGetNextBody (me.m_world, body)) {
		NewtonCollision* collision;
		NewtonCollisionInfoRecord info;

		collision = NewtonBodyGetCollision (body);
		NewtonCollisionGetInfo (collision, &info);

		switch (info.m_collisionType) 
		{
			case SERIALIZE_ID_TREE:
			case SERIALIZE_ID_SCENE:
			case SERIALIZE_ID_USERMESH:
			case SERIALIZE_ID_HEIGHTFIELD:
			{
				NewtonStaticCollisionSetDebugCallback (collision, showFaceCallback);
				break;
			}

			default: 
				break;
		}
	}
}
Ejemplo n.º 4
0
dCollisionBoxNodeInfo::dCollisionBoxNodeInfo(NewtonCollision* box)
	:dCollisionNodeInfo () 
{
	NewtonCollisionInfoRecord record;
	NewtonCollisionGetInfo(box, &record);
	_ASSERTE (record.m_collisionType == SERIALIZE_ID_BOX);

	dMatrix& offsetMatrix = *((dMatrix*) record.m_offsetMatrix);
	SetName ("box collision");
	m_size = dVector (record.m_box.m_x, record.m_box.m_z, record.m_box.m_y); 
	SetTransform (offsetMatrix);
	SetShapeId (record.m_collisionUserID);

	CalculateGeometryProperies (box, m_geometricInertia, m_geometricCenterAndVolume); 
}
dCollisionCompoundNodeInfo::dCollisionCompoundNodeInfo(NewtonCollision* const compound)
	:dCollisionNodeInfo () 
{
	NewtonCollisionInfoRecord record;
	NewtonCollisionGetInfo(compound, &record);
	dAssert (record.m_collisionType == SERIALIZE_ID_COMPOUND);


	dMatrix& offsetMatrix = *((dMatrix*) record.m_offsetMatrix);
	SetName ("compound collision");

	SetTransform (offsetMatrix);
	SetShapeId (record.m_collisionUserID);

	CalculateGeometryProperies (compound, m_geometricInertia, m_geometricCenterAndVolume); 
}
Ejemplo n.º 6
0
NewtonBody* CreateLevelMeshBody (NewtonWorld* const world, DemoEntity* const ent, bool optimize)
{
	NewtonCollision* const collision = CreateCollisionTree (world, ent, 0, optimize);

	// Get the root Matrix
	dMatrix matrix (ent->CalculateGlobalMatrix(NULL));

	// create the level rigid body
	NewtonBody* const level = NewtonCreateDynamicBody(world, collision, &matrix[0][0]);

//NewtonCollision* const collision1 = NewtonCreateNull(world);
//NewtonBody* const level = NewtonCreateDynamicBody(world, collision1, &matrix[0][0]);
//NewtonBodySetCollision(level, collision);
//NewtonDestroyCollision (collision1);

	// save the pointer to the graphic object with the body.
	NewtonBodySetUserData (level, ent);

#if 0
	NewtonCollisionInfoRecord collisionInfo;
	NewtonCollisionGetInfo (collision, &collisionInfo);
	if (collisionInfo.m_collisionType == SERIALIZE_ID_TREE) {
		int count;
		dVector p0(-100, -100, -100);
		dVector p1(100, 100, 100);
		const dFloat* vertexArray;
		int vertexStrideInBytes;
		int vertexCount;
		int indexList[256];
		int attributeList[256/3];
		count = NewtonTreeCollisionGetVertexListTriangleListInAABB (collision, &p0[0], &p1[0], 
			&vertexArray, &vertexCount, &vertexStrideInBytes, 
			indexList, sizeof (indexList)/sizeof (indexList[0]), 
			attributeList); 
	}
#endif

	// set a destructor for this rigid body
	//NewtonBodySetDestructorCallback (m_level, Destructor);

	// release the collision tree (this way the application does not have to do book keeping of Newton objects
	NewtonDestroyCollision (collision);

	// now we will make a lookup table for quick material index lookup for face to index
	//CollsionTreeFaceMap faceMap (NewtonBodyGetCollision(level));
	return level;
}
dCollisionConeNodeInfo::dCollisionConeNodeInfo(NewtonCollision* const cylinder)
	:dCollisionNodeInfo () 
{
	NewtonCollisionInfoRecord record;
	NewtonCollisionGetInfo(cylinder, &record);
	dAssert (record.m_collisionType == SERIALIZE_ID_CONE);

	dMatrix& offsetMatrix = *((dMatrix*) record.m_offsetMatrix);
	SetName ("cone collision");

	m_radius = record.m_cone.m_radio;
	m_height = record.m_cone.m_height;

	SetTransform (offsetMatrix);
	SetShapeId (record.m_collisionUserID);

	CalculateGeometryProperies (cylinder, m_geometricInertia, m_geometricCenterAndVolume); 
}
void RigidBodyUIPane::SetSelectionMass (dFloat mass)
{
	RigidBodyWorldDesc* const plugin = (RigidBodyWorldDesc*) RigidBodyWorldDesc::GetDescriptor();
	Interface* const ip = GetCOREInterface();
	int selectionCount = ip->GetSelNodeCount();
	for (int i = 0; i < selectionCount; i ++) {
		INode* const node = ip->GetSelNode(i);
		RigidBodyController* const bodyInfo = (RigidBodyController*)plugin->GetRigidBodyControl(node);
		if (bodyInfo) {
			bodyInfo->m_mass = mass;
			_ASSERTE (bodyInfo->m_body);

//			dVector inertia (bodyInfo->m_inertia.Scale (mass));
//			NewtonBodySetMassMatrix(bodyInfo->m_body, mass, inertia.m_x, inertia.m_y, inertia.m_z);

			NewtonCollisionInfoRecord info;
			NewtonCollision* const collision = NewtonBodyGetCollision(bodyInfo->m_body);
			NewtonCollisionGetInfo (collision, &info);

			switch (info.m_collisionType)
			{
				case SERIALIZE_ID_BOX:
				case SERIALIZE_ID_CONE:
				case SERIALIZE_ID_SPHERE:
				case SERIALIZE_ID_CAPSULE:
				case SERIALIZE_ID_CYLINDER:
				case SERIALIZE_ID_COMPOUND:
				case SERIALIZE_ID_CONVEXHULL:
				case SERIALIZE_ID_CONVEXMODIFIER:
				case SERIALIZE_ID_CHAMFERCYLINDER:
				{
					NewtonConvexCollisionCalculateInertialMatrix (collision, &bodyInfo->m_inertia[0], &bodyInfo->m_origin[0]);	

					NewtonBodySetCentreOfMass(bodyInfo->m_body, &bodyInfo->m_origin[0]);
					NewtonBodySetMassMatrix(bodyInfo->m_body, bodyInfo->m_mass, bodyInfo->m_mass * bodyInfo->m_inertia.m_x, bodyInfo->m_mass * bodyInfo->m_inertia.m_y, bodyInfo->m_mass * bodyInfo->m_inertia.m_z);
				}
			}
		}
	}
}
void CreateHeightFieldMesh (NewtonCollision* collision, Entity* ent)
{
	int width;
	int height;
	dFloat hScale;
	dFloat vScale;
	unsigned short* elevations;
	NewtonCollisionInfoRecord collisionInfo;

	// keep the compiler happy
	memset (&collisionInfo, 0, sizeof (NewtonCollisionInfoRecord));
	NewtonCollisionGetInfo (collision, &collisionInfo);

	// get the info from the collision mesh and create a visual mesh
	width = collisionInfo.m_heightField.m_width;
	height = collisionInfo.m_heightField.m_height;
	elevations = collisionInfo.m_heightField.m_elevation;
	vScale = collisionInfo.m_heightField.m_verticalScale;
	hScale = collisionInfo.m_heightField.m_horizonalScale;

	// allocate space to store vertex data
	ent->m_vertexCount = width * height;
	ent->m_vertex = (dFloat*) malloc (3 * width * height * sizeof (dFloat));
	ent->m_normal = (dFloat*) malloc (3 * width * height * sizeof (dFloat));
	ent->m_uv = (dFloat*) malloc (2 * width * height * sizeof (dFloat));



	// scan the height field and convert every cell into two triangles
	for (int z = 0; z < height; z ++) {
		int z0;
		int z1;
		z0 = ((z - 1) < 0) ? 0 : z - 1;
		z1 = ((z + 1) > (height - 1)) ? height - 1 : z + 1 ;
		for (int x = 0; x < width; x ++) {
			int x0;
			int x1;

			x0 = ((x - 1) < 0) ? 0 : x - 1;
			x1 = ((x + 1) > (width - 1)) ? width - 1 : x + 1 ;

			dVector p0 (hScale * x0, elevations[z * width + x1] * vScale, hScale * z);
			dVector p1 (hScale * x1, elevations[z * width + x0] * vScale, hScale * z);
			dVector x10 (p1 - p0);

			dVector q0 (hScale * x, elevations[z0 * width + x] * vScale, hScale * z0);
			dVector q1 (hScale * x, elevations[z1 * width + x] * vScale, hScale * z1);
			dVector z10 (q1 - q0);

			dVector normal (z10 * x10);
			normal = normal.Scale (dSqrt (1.0f / (normal % normal)));
			dVector point (hScale * x, elevations[z * width + x] * vScale, hScale * z);

			ent->m_vertex[(z * width + x) * 3 + 0] = point.m_x;
			ent->m_vertex[(z * width + x) * 3 + 1] = point.m_y;
			ent->m_vertex[(z * width + x) * 3 + 2] = point.m_z;

			ent->m_normal[(z * width + x) * 3 + 0] = normal.m_x;
			ent->m_normal[(z * width + x) * 3 + 1] = normal.m_y;
			ent->m_normal[(z * width + x) * 3 + 2] = normal.m_z;

			ent->m_uv[(z * width + x) * 2 + 0] = x * TEXTURE_SCALE;
			ent->m_uv[(z * width + x) * 2 + 1] = z * TEXTURE_SCALE;
		}
	}

	
	// since the bitmap sample is 256 x 256, i fix into a single 16 bit index vertex array with
	ent->m_subMeshCount = 1;
	ent->m_subMeshes = (Entity::SubMesh*) malloc (sizeof (Entity::SubMesh));

	// allocate space to the index list
	ent->m_subMeshes[0].m_textureHandle = LoadTexture ("grassAndDirt.tga");
	ent->m_subMeshes[0].m_indexCount = (width - 1) * (height - 1) * 6;
	ent->m_subMeshes[0].m_indexArray = (unsigned short*) malloc (ent->m_subMeshes[0].m_indexCount * sizeof (unsigned short));

	// now following the grid pattern and create and index list
	int index;
	int vertexIndex;

	index = 0;
	vertexIndex = 0;
	for (int z = 0; z < height - 1; z ++) {
		vertexIndex = z * width;
		for (int x = 0; x < width - 1; x ++) {

			ent->m_subMeshes[0].m_indexArray[index + 0] = GLushort (vertexIndex);
			ent->m_subMeshes[0].m_indexArray[index + 1] = GLushort (vertexIndex + width);
			ent->m_subMeshes[0].m_indexArray[index + 2] = GLushort (vertexIndex + 1);
			index += 3;

			ent->m_subMeshes[0].m_indexArray[index + 0] = GLushort (vertexIndex + 1);
			ent->m_subMeshes[0].m_indexArray[index + 1] = GLushort (vertexIndex + width);
			ent->m_subMeshes[0].m_indexArray[index + 2] = GLushort (vertexIndex + width + 1);
			index += 3;
			vertexIndex ++;
		}
	}

	// Optimize the mesh for hardware rendering if possible
	ent->OptimizeMesh();

/*
	dVector boxP0; 
	dVector boxP1; 
	// get the position of the aabb of this geometry
	dMatrix matrix (ent->m_curRotation, ent->m_curPosition);
	NewtonCollisionCalculateAABB (collision, &matrix[0][0], &boxP0.m_x, &boxP1.m_x); 

	// place the origin of the visual mesh at the center of the height field
	matrix.m_posit = (boxP0 + boxP1).Scale (-0.5f);
	matrix.m_posit.m_w = 1.0f;
	ent->m_curPosition = matrix.m_posit;
	ent->m_prevPosition = matrix.m_posit;


	// create the level rigid body
	body = NewtonCreateBody(world, collision);

	// release the collision tree (this way the application does not have to do book keeping of Newton objects
	NewtonReleaseCollision (world, collision);


	// save the pointer to the graphic object with the body.
	NewtonBodySetUserData (body, ent);

	// set the global position of this body
	NewtonBodySetMatrix (body, &matrix[0][0]); 


	// set the destructor for this object
//	NewtonBodySetDestructorCallback (body, Destructor);

	// get the position of the aabb of this geometry
	NewtonCollisionCalculateAABB (collision, &matrix[0][0], &boxP0.m_x, &boxP1.m_x); 

	// add some extra padding the world size
	boxP0.m_x -=  10.0f;
	boxP0.m_y -=  10.0f;
	boxP0.m_z -=  10.0f;
	boxP1.m_x +=  10.0f;
	boxP1.m_y += 400.0f;
	boxP1.m_z +=  10.0f;

	// set the world size
	NewtonSetWorldSize (world, &boxP0.m_x, &boxP1.m_x); 
	return body;
*/
}
	static NewtonBody* CreateHeightFieldTerrain (DemoEntityManager* const scene, int sizeInPowerOfTwos, dFloat cellSize, dFloat elevationScale, dFloat roughness, dFloat maxElevation, dFloat minElevation)
	{
		int size = (1 << sizeInPowerOfTwos) + 1 ;
		dFloat* const elevation = new dFloat [size * size];
		//MakeFractalTerrain (elevation, sizeInPowerOfTwos, elevationScale, roughness, maxElevation, minElevation);
		MakeFractalTerrain (elevation, sizeInPowerOfTwos, elevationScale, roughness, maxElevation, minElevation);

		for (int i = 0; i < 4; i ++) {
			ApplySmoothFilter (elevation, size);
		}
//memset (elevation, 0, size * size * sizeof (dFloat));

		//SetBaseHeight (elevation, size);
		// apply simple calderas
		//		MakeCalderas (elevation, size, maxElevation * 0.7f, maxElevation * 0.1f);

		//	// create the visual mesh
		DemoMesh* const mesh = new DemoMesh ("terrain", elevation, size, cellSize, 1.0f/4.0f, TILE_SIZE);

		DemoEntity* const entity = new DemoEntity(dGetIdentityMatrix(), NULL);
		scene->Append (entity);
		entity->SetMesh(mesh, dGetIdentityMatrix());
		mesh->Release();

		// create the height field collision and rigid body

		// create the attribute map
		int width = size;
		int height = size;
		char* const attibutes = new char [size * size];
		memset (attibutes, 0, width * height * sizeof (char));
		NewtonCollision* collision = NewtonCreateHeightFieldCollision (scene->GetNewton(), width, height, 1, 0, elevation, attibutes, 1.0f, cellSize, 0);


#ifdef USE_STATIC_MESHES_DEBUG_COLLISION
		NewtonStaticCollisionSetDebugCallback (collision, ShowMeshCollidingFaces);
#endif

		NewtonCollisionInfoRecord collisionInfo;
		// keep the compiler happy
		memset (&collisionInfo, 0, sizeof (NewtonCollisionInfoRecord));
		NewtonCollisionGetInfo (collision, &collisionInfo);

		width = collisionInfo.m_heightField.m_width;
		height = collisionInfo.m_heightField.m_height;
		//elevations = collisionInfo.m_heightField.m_elevation;

		dVector boxP0; 
		dVector boxP1; 
		// get the position of the aabb of this geometry
		dMatrix matrix (entity->GetCurrentMatrix());
		NewtonCollisionCalculateAABB (collision, &matrix[0][0], &boxP0.m_x, &boxP1.m_x); 
		matrix.m_posit = (boxP0 + boxP1).Scale (-0.5f);
		matrix.m_posit.m_w = 1.0f;
		//SetMatrix (matrix);
		entity->ResetMatrix (*scene, matrix);

		// create the terrainBody rigid body
		NewtonBody* const terrainBody = NewtonCreateDynamicBody(scene->GetNewton(), collision, &matrix[0][0]);

		// release the collision tree (this way the application does not have to do book keeping of Newton objects
		NewtonDestroyCollision (collision);

		// in newton 300 collision are instance, you need to ready it after you create a body, if you want to male call on the instance
		collision = NewtonBodyGetCollision(terrainBody);


#if 0
		// uncomment this to test horizontal displacement
		unsigned short* const horizontalDisplacemnet = new unsigned short[size * size];
		for (int i = 0; i < size * size; i++) {
			horizontalDisplacemnet[i] = dRand();
		}
		NewtonHeightFieldSetHorizontalDisplacement(collision, horizontalDisplacemnet, 0.02f);
		delete horizontalDisplacemnet;
#endif

		// save the pointer to the graphic object with the body.
		NewtonBodySetUserData (terrainBody, entity);

		// set the global position of this body
		//	NewtonBodySetMatrix (m_terrainBody, &matrix[0][0]); 

		// set the destructor for this object
		//NewtonBodySetDestructorCallback (terrainBody, Destructor);

		// get the position of the aabb of this geometry
		//NewtonCollisionCalculateAABB (collision, &matrix[0][0], &boxP0.m_x, &boxP1.m_x); 

#ifdef USE_TEST_ALL_FACE_USER_RAYCAST_CALLBACK
		// set a ray cast callback for all face ray cast 
		NewtonTreeCollisionSetUserRayCastCallback (collision, AllRayHitCallback);
		
		dVector p0 (0,  100, 0, 0);
		dVector p1 (0, -100, 0, 0);
		dVector normal;
		dLong id;
		dFloat parameter;
		parameter = NewtonCollisionRayCast (collision, &p0[0], &p1[0], &normal[0], &id);
#endif

		delete[] attibutes;
		delete[] elevation;
		return terrainBody;
	}
Ejemplo n.º 11
0
DemoMesh::DemoMesh(const char* const name, const NewtonCollision* const collision, const char* const texture0, const char* const texture1, const char* const texture2, dFloat opacity, const dMatrix& uvMatrix)
	:DemoMeshInterface()
	,dList<DemoSubMesh>()
	,m_uv(NULL)
	,m_vertex(NULL)
	,m_normal(NULL)
	,m_optimizedOpaqueDiplayList(0)		
	,m_optimizedTransparentDiplayList(0)
{
	// create a helper mesh from the collision collision
	NewtonMesh* const mesh = NewtonMeshCreateFromCollision(collision);

	// apply the vertex normals
	NewtonMeshCalculateVertexNormals(mesh, 30.0f * dDegreeToRad);

	dMatrix aligmentUV(uvMatrix);
//	NewtonCollisionGetMatrix(collision, &aligmentUV[0][0]);
	aligmentUV = aligmentUV.Inverse();

	// apply uv projections
	NewtonCollisionInfoRecord info;
	NewtonCollisionGetInfo (collision, &info);
	switch (info.m_collisionType) 
	{
		case SERIALIZE_ID_SPHERE:
		{
			NewtonMeshApplySphericalMapping(mesh, LoadTexture (texture0), &aligmentUV[0][0]);
			break;
		}

		case SERIALIZE_ID_CONE:
		case SERIALIZE_ID_CAPSULE:
		case SERIALIZE_ID_CYLINDER:
		case SERIALIZE_ID_CHAMFERCYLINDER:
		{
			//NewtonMeshApplySphericalMapping(mesh, LoadTexture(texture0));
			NewtonMeshApplyCylindricalMapping(mesh, LoadTexture(texture0), LoadTexture(texture1), &aligmentUV[0][0]);
			break;
		}

		default:
		{
			int tex0 = LoadTexture(texture0);
			int tex1 = LoadTexture(texture1);
			int tex2 = LoadTexture(texture2);
			NewtonMeshApplyBoxMapping(mesh, tex0, tex1, tex2, &aligmentUV[0][0]);
			break;
		}
	}

	// extract vertex data  from the newton mesh		
	int vertexCount = NewtonMeshGetPointCount (mesh); 
	AllocVertexData(vertexCount);
	NewtonMeshGetVertexChannel(mesh, 3 * sizeof (dFloat), (dFloat*)m_vertex);
	NewtonMeshGetNormalChannel(mesh, 3 * sizeof (dFloat), (dFloat*)m_normal);
	NewtonMeshGetUV0Channel(mesh, 2 * sizeof (dFloat), (dFloat*)m_uv);

	// extract the materials index array for mesh
	void* const geometryHandle = NewtonMeshBeginHandle (mesh); 
	for (int handle = NewtonMeshFirstMaterial (mesh, geometryHandle); handle != -1; handle = NewtonMeshNextMaterial (mesh, geometryHandle, handle)) {
		int material = NewtonMeshMaterialGetMaterial (mesh, geometryHandle, handle); 
		int indexCount = NewtonMeshMaterialGetIndexCount (mesh, geometryHandle, handle); 

		DemoSubMesh* const segment = AddSubMesh();

		segment->m_textureHandle = (GLuint)material;
		segment->SetOpacity(opacity);

		segment->AllocIndexData (indexCount);
		NewtonMeshMaterialGetIndexStream (mesh, geometryHandle, handle, (int*)segment->m_indexes); 
	}
	NewtonMeshEndHandle (mesh, geometryHandle); 

	// destroy helper mesh
	NewtonMeshDestroy(mesh);

	// optimize this mesh for hardware buffers if possible
	OptimizeForRender ();
}