Ejemplo n.º 1
0
void
ar9300_disable_weak_signal(struct ath_hal *ah)
{
    /* set firpwr to max (signed) */
    OS_REG_RMW_FIELD(ah, AR_PHY_FIND_SIG, AR_PHY_FIND_SIG_FIRPWR, 0x7f);
    OS_REG_CLR_BIT(ah, AR_PHY_FIND_SIG, AR_PHY_FIND_SIG_FIRPWR_SIGN_BIT);

    /* set firstep to max */
    OS_REG_RMW_FIELD(ah, AR_PHY_FIND_SIG, AR_PHY_FIND_SIG_FIRSTEP, 0x3f);

    /* set relpwr to max (signed) */
    OS_REG_RMW_FIELD(ah, AR_PHY_FIND_SIG, AR_PHY_FIND_SIG_RELPWR, 0x1f);
    OS_REG_CLR_BIT(ah, AR_PHY_FIND_SIG, AR_PHY_FIND_SIG_RELPWR_SIGN_BIT);

    /* set relstep to max (signed) */
    OS_REG_RMW_FIELD(ah, AR_PHY_FIND_SIG, AR_PHY_FIND_SIG_RELSTEP, 0x1f);
    OS_REG_CLR_BIT(ah, AR_PHY_FIND_SIG, AR_PHY_FIND_SIG_RELSTEP_SIGN_BIT);
 
    /* set firpwr_low to max (signed) */
    OS_REG_RMW_FIELD(ah, AR_PHY_FIND_SIG_LOW, AR_PHY_FIND_SIG_LOW_FIRPWR, 0x7f);
    OS_REG_CLR_BIT(
        ah, AR_PHY_FIND_SIG_LOW, AR_PHY_FIND_SIG_LOW_FIRPWR_SIGN_BIT);

    /* set firstep_low to max */
    OS_REG_RMW_FIELD(
        ah, AR_PHY_FIND_SIG_LOW, AR_PHY_FIND_SIG_LOW_FIRSTEP_LOW, 0x3f);

    /* set relstep_low to max (signed) */
    OS_REG_RMW_FIELD(
        ah, AR_PHY_FIND_SIG_LOW, AR_PHY_FIND_SIG_LOW_RELSTEP, 0x1f);
    OS_REG_CLR_BIT(
        ah, AR_PHY_FIND_SIG_LOW, AR_PHY_FIND_SIG_LOW_RELSTEP_SIGN_BIT);
}
Ejemplo n.º 2
0
void
ar5416DisableWeakSignal(struct ath_hal *ah)
{
    // set firpwr to max (signed)
    OS_REG_RMW_FIELD(ah, AR_PHY_FIND_SIG, AR_PHY_FIND_SIG_FIRPWR, 0x7f);
    OS_REG_CLR_BIT(ah, AR_PHY_FIND_SIG, AR_PHY_FIND_SIG_FIRPWR_SIGN_BIT);

    // set firstep to max
    OS_REG_RMW_FIELD(ah, AR_PHY_FIND_SIG, AR_PHY_FIND_SIG_FIRSTEP, 0x3f);

    // set relpwr to max (signed)
    OS_REG_RMW_FIELD(ah, AR_PHY_FIND_SIG, AR_PHY_FIND_SIG_RELPWR, 0x1f);
    OS_REG_CLR_BIT(ah, AR_PHY_FIND_SIG, AR_PHY_FIND_SIG_RELPWR_SIGN_BIT);

    // set relstep to max (signed)
    OS_REG_RMW_FIELD(ah, AR_PHY_FIND_SIG, AR_PHY_FIND_SIG_RELSTEP, 0x1f);
    OS_REG_CLR_BIT(ah, AR_PHY_FIND_SIG, AR_PHY_FIND_SIG_RELSTEP_SIGN_BIT);

    // set firpwr_low to max (signed)
    OS_REG_RMW_FIELD(ah, AR_PHY_FIND_SIG_LOW, AR_PHY_FIND_SIG_LOW_FIRPWR, 0x7f);
    OS_REG_CLR_BIT(ah, AR_PHY_FIND_SIG_LOW, AR_PHY_FIND_SIG_LOW_FIRPWR_SIGN_BIT);

    // set firstep_low to max
    OS_REG_RMW_FIELD(ah, AR_PHY_FIND_SIG_LOW, AR_PHY_FIND_SIG_LOW_FIRSTEP, 0x3f);
 
    // set relstep_low to max (signed)
    OS_REG_RMW_FIELD(ah, AR_PHY_FIND_SIG_LOW, AR_PHY_FIND_SIG_LOW_RELSTEP, 0x1f);
    OS_REG_CLR_BIT(ah, AR_PHY_FIND_SIG_LOW, AR_PHY_FIND_SIG_LOW_RELSTEP_SIGN_BIT);
}
Ejemplo n.º 3
0
/*
 * Notify Power Mgt is disabled in self-generated frames.
 * If requested, force chip to sleep.
 */
static void
ar5416SetPowerModeSleep(struct ath_hal *ah, int setChip)
{
	OS_REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
	if (setChip) {
		/* Clear the RTC force wake bit to allow the mac to sleep */
		OS_REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
		OS_REG_WRITE(ah, AR_RC, AR_RC_AHB|AR_RC_HOSTIF);
		/* Shutdown chip. Active low */
		OS_REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
	}
}
Ejemplo n.º 4
0
/*
 * Notify Power Mgt is enabled in self-generated frames.
 * If requested, force chip awake.
 *
 * Returns A_OK if chip is awake or successfully forced awake.
 *
 * WARNING WARNING WARNING
 * There is a problem with the chip where sometimes it will not wake up.
 */
static HAL_BOOL
ar5211SetPowerModeAwake(struct ath_hal *ah, int setChip)
{
#define	POWER_UP_TIME	2000
	uint32_t val;
	int i;

	if (setChip) {
		OS_REG_RMW_FIELD(ah, AR_SCR, AR_SCR_SLE, AR_SCR_SLE_WAKE);
		OS_DELAY(10);	/* Give chip the chance to awake */

		for (i = POWER_UP_TIME / 200; i != 0; i--) {
			val = OS_REG_READ(ah, AR_PCICFG);
			if ((val & AR_PCICFG_SPWR_DN) == 0)
				break;
			OS_DELAY(200);
			OS_REG_RMW_FIELD(ah, AR_SCR, AR_SCR_SLE,
				AR_SCR_SLE_WAKE);
		}
		if (i == 0) {
#ifdef AH_DEBUG
			ath_hal_printf(ah, "%s: Failed to wakeup in %ums\n",
				__func__, POWER_UP_TIME/20);
#endif
			return AH_FALSE;
		}
	} 

	OS_REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
	return AH_TRUE;
#undef POWER_UP_TIME
}
Ejemplo n.º 5
0
/*
 * Configure GPIO Output lines
 */
HAL_BOOL
ar5416GpioCfgOutput(struct ath_hal *ah, uint32_t gpio)
{
    HALASSERT(gpio < AR_NUM_GPIO);
    OS_REG_CLR_BIT(ah, AR_GPIO_INTR_OUT, AR_GPIO_BIT(gpio));
    return AH_TRUE;
}
Ejemplo n.º 6
0
/*
 * Notify Power Management is enabled in self-generating
 * fames.  If request, set power mode of chip to
 * auto/normal.  Duration in units of 128us (1/8 TU).
 */
static void
ar5416SetPowerModeNetworkSleep(struct ath_hal *ah, int setChip)
{
	OS_REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
	
	if (setChip)
		OS_REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
}
Ejemplo n.º 7
0
/*
 * Notify Power Mgt is disabled in self-generated frames.
 * If requested, force chip to sleep.
 */
static void
ar5416SetPowerModeSleep(struct ath_hal *ah, int set_chip)
{
    OS_REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
    if (set_chip) {
        /* Clear the RTC force wake bit to allow the mac to go to sleep */
        OS_REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);


        if(!AR_SREV_HOWL(ah)) /*HOWL hangs in this case --AJP*/
            OS_REG_WRITE(ah, AR_RC, AR_RC_AHB|AR_RC_HOSTIF);
        /* Shutdown chip. Active low */

        if(!AR_SREV_K2(ah) && !AR_SREV_OWL(ah))
            OS_REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
    }
}
Ejemplo n.º 8
0
HAL_BOOL ar5416AbortTxDma(struct ath_hal *ah)
{
    	a_int32_t i, q;

	/*
	 * set txd on all queues
	 */
	OS_REG_WRITE(ah, AR_Q_TXD, AR_Q_TXD_M);

	/*
	 * set tx abort bits
	 */
	OS_REG_SET_BIT(ah, AR_PCU_MISC, (AR_PCU_FORCE_QUIET_COLL | AR_PCU_CLEAR_VMF));
	OS_REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
	OS_REG_SET_BIT(ah, AR_D_GBL_IFS_MISC, AR_D_GBL_IFS_MISC_IGNORE_BACKOFF);

	/*
	 * wait on all tx queues
	 */
	for (q = 0; q < AR_NUM_QCU; q++) {
		for (i = 0; i < AR5416_ABORT_LOOPS; i++) {
			if (!ar5416NumTxPending(ah, q))
				break;

			OS_DELAY(AR5416_ABORT_WAIT);
		}
		if (i == AR5416_ABORT_LOOPS) {
			return AH_FALSE;
		}
	}

	/*
	 * clear tx abort bits
	 */
	OS_REG_CLR_BIT(ah, AR_PCU_MISC, (AR_PCU_FORCE_QUIET_COLL | AR_PCU_CLEAR_VMF));
	OS_REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
	OS_REG_CLR_BIT(ah, AR_D_GBL_IFS_MISC, AR_D_GBL_IFS_MISC_IGNORE_BACKOFF);

	/*
	 * clear txd
	 */
	OS_REG_WRITE(ah, AR_Q_TXD, 0);

	return AH_TRUE;
}
Ejemplo n.º 9
0
/*
 * Start Transmit at the PCU engine (unpause receive)
 */
void
ar9300StartPcuReceive(struct ath_hal *ah, HAL_BOOL is_scanning)
{

    ar9300EnableMIBCounters(ah);

    ar9300AniReset(ah, is_scanning);

    /* Clear RX_DIS and RX_ABORT after enabling phy errors in aniReset */
    OS_REG_CLR_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));

}
Ejemplo n.º 10
0
/*
 * Notify Power Mgt is enabled in self-generated frames.
 * If requested, force chip awake.
 *
 * Returns A_OK if chip is awake or successfully forced awake.
 *
 * WARNING WARNING WARNING
 * There is a problem with the chip where sometimes it will not wake up.
 */
static HAL_BOOL
ar5212SetPowerModeAwake(struct ath_hal *ah, int setChip)
{
#define	AR_SCR_MASK \
    (AR_SCR_SLDUR|AR_SCR_SLE|AR_SCR_SLDTP|AR_SCR_SLDWP|\
     AR_SCR_SLEPOL|AR_SCR_MIBIE|AR_SCR_UNKNOWN)
#define	POWER_UP_TIME	2000
	uint32_t scr, val;
	int i;

	if (setChip) {
		/*
		 * Be careful setting the AWAKE mode.  When we are called
		 * with the chip powered down the read returns 0xffffffff
		 * which when blindly written back with OS_REG_RMW_FIELD 
		 * enables the MIB interrupt for the sleep performance
		 * counters.  This can result in an interrupt storm when
		 * ANI is in operation as noone knows to turn off the MIB
		 * interrupt cause.
		 */
		scr = OS_REG_READ(ah, AR_SCR);
		if (scr & ~AR_SCR_MASK) {
			HALDEBUG(ah, HAL_DEBUG_ANY,
			    "%s: bogus SCR 0x%x, PCICFG 0x%x\n",
			    __func__, scr, OS_REG_READ(ah, AR_PCICFG));
			scr = 0;
		}
		scr = (scr &~ AR_SCR_SLE) | AR_SCR_SLE_WAKE;
		OS_REG_WRITE(ah, AR_SCR, scr);
		OS_DELAY(10);	/* Give chip the chance to awake */

		for (i = POWER_UP_TIME / 50; i != 0; i--) {
			val = OS_REG_READ(ah, AR_PCICFG);
			if ((val & AR_PCICFG_SPWR_DN) == 0)
				break;
			OS_DELAY(50);
			OS_REG_WRITE(ah, AR_SCR, scr);
		}
		if (i == 0) {
#ifdef AH_DEBUG
			ath_hal_printf(ah, "%s: Failed to wakeup in %ums\n",
				__func__, POWER_UP_TIME/50);
#endif
			return AH_FALSE;
		}
	} 

	OS_REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
	return AH_TRUE;
#undef POWER_UP_TIME
#undef AR_SCR_MASK
}
Ejemplo n.º 11
0
/*
 * Set the RX abort bit.
 */
HAL_BOOL
ar9300SetRxAbort(struct ath_hal *ah, HAL_BOOL set)
{ 
    if (set) {
        /* Set the ForceRXAbort bit */
        OS_REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));

        if ( AH_PRIVATE(ah)->ah_reset_reason == HAL_RESET_BBPANIC ){
            /* depending upon the BB panic status, rx state may not return to 0,
             * so skipping the wait for BB panic reset */
            OS_REG_CLR_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
            return AH_FALSE;    
        } else {
            HAL_BOOL okay;
            okay = ath_hal_wait(
                ah, AR_OBS_BUS_1, AR_OBS_BUS_1_RX_STATE, 0, AH_WAIT_TIMEOUT);
            /* Wait for Rx state to return to 0 */
            if (!okay) {
                u_int32_t    reg;

                /* abort: chip rx failed to go idle in 10 ms */
                OS_REG_CLR_BIT(ah, AR_DIAG_SW,
                    (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));

                reg = OS_REG_READ(ah, AR_OBS_BUS_1);
                HDPRINTF(ah, HAL_DBG_RX,
                    "%s: rx failed to go idle in 10 ms RXSM=0x%x\n",
                    __func__, reg);

                return AH_FALSE;    // Indicate failure
            }
        }
    }
    else {
        OS_REG_CLR_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
    }

    return AH_TRUE;    // Function completed successfully
}
Ejemplo n.º 12
0
HAL_STATUS
ar5416RetrieveCaptureData(struct ath_hal *ah, u_int16_t chain_mask, int disable_dc_filter, void *sample_buf, u_int32_t* num_samples)
{
    u_int32_t val, i, ch;
    int descr_address, num_chains;
    ADC_SAMPLE* sample;
    int32_t i_sum[AR5416_MAX_CHAINS] = {0};
    int32_t q_sum[AR5416_MAX_CHAINS] = {0};

    num_chains = mask2chains[chain_mask];
    if (*num_samples < (MAX_ADC_SAMPLES * num_chains)) {
        /* supplied buffer is too small - update to inform caller of required size */
        *num_samples = MAX_ADC_SAMPLES * num_chains;
        return HAL_ENOMEM;
    }

    /* Make sure we are reading TXBUF */
    OS_REG_CLR_BIT(ah, AR_RXFIFO_CFG, AR_RXFIFO_CFG_REG_RD_ENA);

    sample = (ADC_SAMPLE*)sample_buf;
    descr_address = RXTX_DESC_BUFFER_ADDRESS;
    for (i=0; i < MAX_ADC_SAMPLES; i++, descr_address+=4, sample+=num_chains) {
        val = OS_REG_READ(ah, descr_address);
        /* Get bits [27:18] from TXBUF - chain#0 I */
        i_sum[0] += sample[0].i = convert_to_signed((val >> 18) & 0x1ff);
        /* Get bits [17:9] from TXBUF - chain#0 Q */
        q_sum[0] += sample[0].q = convert_to_signed((val >> 9) & 0x1ff);
        if (num_chains >= 2) {
            /* Get bits [8:0] from TXBUF - chain#1 I */
            i_sum[1] += sample[1].i = convert_to_signed(val & 0x1ff);
        }
    }

    if (num_chains >= 2) {
        /* Make sure we are reading RXBUF */
        OS_REG_SET_BIT(ah, AR_RXFIFO_CFG, AR_RXFIFO_CFG_REG_RD_ENA);
    
        sample = (ADC_SAMPLE*)sample_buf;
        descr_address = RXTX_DESC_BUFFER_ADDRESS;
        for (i=0; i < MAX_ADC_SAMPLES; i++, descr_address+=4, sample+=num_chains) {
            val = OS_REG_READ(ah, descr_address);
            /* Get bits [27:18] from RXBUF - chain #1 Q */
            q_sum[1] += sample[1].q = convert_to_signed((val >> 18) & 0x1ff);
            if (num_chains >= 3) {
                /* Get bits [17:9] from RXBUF - chain #2 I */
                i_sum[2] += sample[2].i = convert_to_signed((val >> 9) & 0x1ff);
                /* Get bits [8:0] from RXBUF - chain#2 Q */
                q_sum[2] += sample[2].q = convert_to_signed(val & 0x1ff);
            }
        }
Ejemplo n.º 13
0
/*
 * Notify Power Mgt is enabled in self-generated frames.
 * If requested, force chip awake.
 *
 * Returns A_OK if chip is awake or successfully forced awake.
 *
 * WARNING WARNING WARNING
 * There is a problem with the chip where sometimes it will not wake up.
 */
static HAL_BOOL
ar5416SetPowerModeAwake(struct ath_hal *ah, int setChip)
{
#define	POWER_UP_TIME	200000
	uint32_t val;
	int i = 0;

	if (setChip) {
		/*
		 * Do a Power-On-Reset if OWL is shutdown
		 * the NetBSD driver  power-cycles the Cardbus slot
		 * as part of the reset procedure.
		 */
		if ((OS_REG_READ(ah, AR_RTC_STATUS) 
			& AR_RTC_PM_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
			if (!ar5416SetResetReg(ah, HAL_RESET_POWER_ON))
				goto bad;			
			AH5416(ah)->ah_initPLL(ah, AH_NULL);
		}

		if (AR_SREV_HOWL(ah))
			OS_REG_SET_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);

		OS_REG_SET_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
		if (AR_SREV_HOWL(ah))
			OS_DELAY(10000);
		else
			OS_DELAY(50);   /* Give chip the chance to awake */

		for (i = POWER_UP_TIME / 50; i != 0; i--) {
			val = OS_REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
			if (val == AR_RTC_STATUS_ON)
				break;
			OS_DELAY(50);
			OS_REG_SET_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
		}		
	bad:
		if (i == 0) {
#ifdef AH_DEBUG
			ath_hal_printf(ah, "%s: Failed to wakeup in %ums\n",
				__func__, POWER_UP_TIME/1000);
#endif
			return AH_FALSE;
		}
	} 

	OS_REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
	return AH_TRUE;
#undef POWER_UP_TIME
}
Ejemplo n.º 14
0
/*
 * AGC calibration for the AR5416, AR9130, AR9160, AR9280.
 */
HAL_BOOL
ar5416InitCalHardware(struct ath_hal *ah, const struct ieee80211_channel *chan)
{

	if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
		/* Disable ADC */
		OS_REG_CLR_BIT(ah, AR_PHY_ADC_CTL,
		    AR_PHY_ADC_CTL_OFF_PWDADC);

		/* Enable Rx Filter Cal */
		OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL,
		    AR_PHY_AGC_CONTROL_FLTR_CAL);
	} 	

	/* Calibrate the AGC */
	OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL);

	/* Poll for offset calibration complete */
	if (!ath_hal_wait(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL, 0)) {
		HALDEBUG(ah, HAL_DEBUG_ANY,
		    "%s: offset calibration did not complete in 1ms; "
		    "noisy environment?\n", __func__);
		return AH_FALSE;
	}

	if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
		/* Enable ADC */
		OS_REG_SET_BIT(ah, AR_PHY_ADC_CTL,
		    AR_PHY_ADC_CTL_OFF_PWDADC);

		/* Disable Rx Filter Cal */
		OS_REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL,
		    AR_PHY_AGC_CONTROL_FLTR_CAL);
	}

	return AH_TRUE;
}
Ejemplo n.º 15
0
/*
 * Notify Power Mgt is enabled in self-generated frames.
 * If requested, force chip awake.
 *
 * Returns A_OK if chip is awake or successfully forced awake.
 *
 * WARNING WARNING WARNING
 * There is a problem with the chip where sometimes it will not wake up.
 */
HAL_BOOL
ar5416SetPowerModeAwake(struct ath_hal *ah, int set_chip)
{
#define POWER_UP_TIME   10000
    u_int32_t val;
    int i;


    if (set_chip) {
        /* Do a Power-On-Reset if OWL is shutdown */
        if ((OS_REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M) ==
                AR_RTC_STATUS_SHUTDOWN) {
            if (ar5416SetResetReg(ah, HAL_RESET_POWER_ON) != AH_TRUE) {
                HALASSERT(0);
                return AH_FALSE;
            }
            ar5416InitPLL(ah, AH_NULL);
        }

        if(AR_SREV_HOWL(ah)) /* HOWL needs this bit to set to wake up -was cleared in ar5416SetPowerModeSleep() */
            OS_REG_SET_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
        
        OS_REG_SET_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);

        if (AR_SREV_HOWL(ah)) {
           OS_DELAY(10000);   /* Give chip the chance to awake */
        } else {
           OS_DELAY(50);
        }

        for (i = POWER_UP_TIME / 50; i > 0; i--) {
            val = OS_REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
            if (val == AR_RTC_STATUS_ON)
                break;
            OS_DELAY(50);
            OS_REG_SET_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
        }
        if (i == 0) {
            HDPRINTF(ah, HAL_DBG_POWER_MGMT, "%s: Failed to wakeup in %uus\n",
                     __func__, POWER_UP_TIME/20);
            return AH_FALSE;
        }

    }

    OS_REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
    return AH_TRUE;
#undef POWER_UP_TIME
}
Ejemplo n.º 16
0
/*
 * Start receive at the PCU engine
 */
void
ar5416StartPcuReceive(struct ath_hal *ah)
{
	struct ath_hal_private *ahp = AH_PRIVATE(ah);

	HALDEBUG(ah, HAL_DEBUG_RX, "%s: Start PCU Receive \n", __func__);
	ar5212EnableMibCounters(ah);
	/* NB: restore current settings */
	ar5416AniReset(ah, ahp->ah_curchan, ahp->ah_opmode, AH_TRUE);
	/*
	 * NB: must do after enabling phy errors to avoid rx
	 *     frames w/ corrupted descriptor status.
	 */
	OS_REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
}
Ejemplo n.º 17
0
/*
 * Notify Power Management is enabled in self-generating
 * frames. If request, set power mode of chip to
 * auto/normal.  Duration in units of 128us (1/8 TU).
 */
static void
ar5416SetPowerModeNetworkSleep(struct ath_hal *ah, int set_chip)
{
    OS_REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
    if (set_chip) {
        HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;

        if (! pCap->hal_auto_sleep_support) {
            /* Set WakeOnInterrupt bit; clear ForceWake bit */
            OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_ON_INT);
        }
        else {
            /* Clear the RTC force wake bit to allow the mac to go to sleep */
            OS_REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
        }
    }
}
Ejemplo n.º 18
0
static void
ar9300_setup_test_addac_mode(struct ath_hal *ah)
{
#if AH_BYTE_ORDER == AH_BIG_ENDIAN
    /* byteswap Rx/Tx buffer to ensure correct layout */
    HDPRINTF(ah, HAL_DBG_RF_PARAM,
        "%s: big endian - set AR_CFG_SWTB/AR_CFG_SWRB\n", 
             __func__);
    OS_REG_RMW(ah, AR_CFG, AR_CFG_SWTB | AR_CFG_SWRB, 0);
#else
    /* Rx/Tx buffer should not be byteswaped */
    if (OS_REG_READ(ah, AR_CFG) & (AR_CFG_SWTB | AR_CFG_SWRB)) {
        HDPRINTF(ah, HAL_DBG_UNMASKABLE, 
            "%s: **WARNING: little endian but AR_CFG_SWTB/AR_CFG_SWRB set!\n", 
            __func__);
    }
#endif

    OS_REG_WRITE(ah, AR_PHY_TEST, 0);
    OS_REG_WRITE(ah, AR_PHY_TEST_CTL_STATUS, 0);

    /* cf_bbb_obs_sel=4'b0001 */
    OS_REG_RMW_FIELD(ah, AR_PHY_TEST, AR_PHY_TEST_BBB_OBS_SEL, 0x1);

    /* cf_rx_obs_sel=5'b00000, this is the 5th bit */
    OS_REG_CLR_BIT(ah, AR_PHY_TEST, AR_PHY_TEST_RX_OBS_SEL_BIT5);

    /* cf_tx_obs_sel=3'b111 */
    OS_REG_RMW_FIELD(
        ah, AR_PHY_TEST_CTL_STATUS, AR_PHY_TEST_CTL_TX_OBS_SEL, 0x7);

    /* cf_tx_obs_mux_sel=2'b11 */
    OS_REG_RMW_FIELD(
        ah, AR_PHY_TEST_CTL_STATUS, AR_PHY_TEST_CTL_TX_OBS_MUX_SEL, 0x3);

    /* enable TSTADC */
    OS_REG_SET_BIT(ah, AR_PHY_TEST_CTL_STATUS, AR_PHY_TEST_CTL_TSTDAC_EN);

    /* cf_rx_obs_sel=5'b00000, these are the first 4 bits */
    OS_REG_RMW_FIELD(
        ah, AR_PHY_TEST_CTL_STATUS, AR_PHY_TEST_CTL_RX_OBS_SEL, 0x0);

    /* tstdac_out_sel=2'b01 */
    OS_REG_RMW_FIELD(ah, AR_PHY_TEST, AR_PHY_TEST_CHAIN_SEL, 0x1);
}
Ejemplo n.º 19
0
/*
 * Select to pass PLCP headr or EVM data.
 */
HAL_BOOL
ar9300SetRxSelEvm(struct ath_hal *ah, HAL_BOOL selEvm, HAL_BOOL justQuery)
{
    struct ath_hal_9300 *ahp = AH9300(ah);
    HAL_BOOL old_value = ahp->ah_getPlcpHdr == 0;

    if (justQuery) {
        return old_value;
    }
    if (selEvm) {
        OS_REG_SET_BIT(ah, AR_PCU_MISC, AR_PCU_SEL_EVM);
    } else {
        OS_REG_CLR_BIT(ah, AR_PCU_MISC, AR_PCU_SEL_EVM);
    }

    ahp->ah_getPlcpHdr = !selEvm;

    return old_value;
}
Ejemplo n.º 20
0
/* Carrier leakage Calibration fix */
static HAL_BOOL
ar9285_hw_cl_cal(struct ath_hal *ah, const struct ieee80211_channel *chan)
{
	OS_REG_SET_BIT(ah, AR_PHY_CL_CAL_CTL, AR_PHY_CL_CAL_ENABLE);
	if (IEEE80211_IS_CHAN_HT20(chan)) {
		OS_REG_SET_BIT(ah, AR_PHY_CL_CAL_CTL, AR_PHY_PARALLEL_CAL_ENABLE);
		OS_REG_SET_BIT(ah, AR_PHY_TURBO, AR_PHY_FC_DYN2040_EN);
		OS_REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL,
			    AR_PHY_AGC_CONTROL_FLTR_CAL);
		OS_REG_CLR_BIT(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_CAL_ENABLE);
		OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL);
		if (!ath_hal_wait(ah, AR_PHY_AGC_CONTROL,
				  AR_PHY_AGC_CONTROL_CAL, 0)) {
			HALDEBUG(ah, HAL_DEBUG_PERCAL,
				"offset calibration failed to complete in 1ms; noisy environment?\n");
			return AH_FALSE;
		}
		OS_REG_CLR_BIT(ah, AR_PHY_TURBO, AR_PHY_FC_DYN2040_EN);
		OS_REG_CLR_BIT(ah, AR_PHY_CL_CAL_CTL, AR_PHY_PARALLEL_CAL_ENABLE);
		OS_REG_CLR_BIT(ah, AR_PHY_CL_CAL_CTL, AR_PHY_CL_CAL_ENABLE);
	}
	OS_REG_CLR_BIT(ah, AR_PHY_ADC_CTL, AR_PHY_ADC_CTL_OFF_PWDADC);
	OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_FLTR_CAL);
	OS_REG_SET_BIT(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_CAL_ENABLE);
	OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL);
	if (!ath_hal_wait(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL,
			  0)) {
		HALDEBUG(ah, HAL_DEBUG_PERCAL,
			"offset calibration failed to complete in 1ms; noisy environment?\n");
		return AH_FALSE;
	}

	OS_REG_SET_BIT(ah, AR_PHY_ADC_CTL, AR_PHY_ADC_CTL_OFF_PWDADC);
	OS_REG_CLR_BIT(ah, AR_PHY_CL_CAL_CTL, AR_PHY_CL_CAL_ENABLE);
	OS_REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_FLTR_CAL);

	return AH_TRUE;
}
Ejemplo n.º 21
0
/*
 * This is like Merlin but without ADC disable
 */
HAL_BOOL
ar9287InitCalHardware(struct ath_hal *ah, const struct ieee80211_channel *chan)
{
	OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_FLTR_CAL);
	
	/* Calibrate the AGC */
	OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL,
	    OS_REG_READ(ah, AR_PHY_AGC_CONTROL) | AR_PHY_AGC_CONTROL_CAL);

	/* Poll for offset calibration complete */
	if (!ath_hal_wait(ah, AR_PHY_AGC_CONTROL,
	    AR_PHY_AGC_CONTROL_CAL, 0)) {
		HALDEBUG(ah, HAL_DEBUG_RESET,
		    "%s: offset calibration failed to complete in 1ms; "
		    "noisy environment?\n", __func__);
		return AH_FALSE;
	}

	OS_REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_FLTR_CAL);

	return AH_TRUE;
}
Ejemplo n.º 22
0
/*
 * Places the device in and out of reset and then places sane
 * values in the registers based on EEPROM config, initialization
 * vectors (as determined by the mode), and station configuration
 *
 * bChannelChange is used to preserve DMA/PCU registers across
 * a HW Reset during channel change.
 */
HAL_BOOL
ar5312Reset(struct ath_hal *ah, HAL_OPMODE opmode,
	struct ieee80211_channel *chan,
	HAL_BOOL bChannelChange,
	HAL_RESET_TYPE resetType,
	HAL_STATUS *status)
{
#define	N(a)	(sizeof (a) / sizeof (a[0]))
#define	FAIL(_code)	do { ecode = _code; goto bad; } while (0)
	struct ath_hal_5212 *ahp = AH5212(ah);
	HAL_CHANNEL_INTERNAL *ichan;
	const HAL_EEPROM *ee;
	uint32_t saveFrameSeqCount, saveDefAntenna;
	uint32_t macStaId1, synthDelay, txFrm2TxDStart;
	uint16_t rfXpdGain[MAX_NUM_PDGAINS_PER_CHANNEL];
	int16_t cckOfdmPwrDelta = 0;
	u_int modesIndex, freqIndex;
	HAL_STATUS ecode;
	int i, regWrites = 0;
	uint32_t testReg;
	uint32_t saveLedState = 0;

	HALASSERT(ah->ah_magic == AR5212_MAGIC);
	ee = AH_PRIVATE(ah)->ah_eeprom;

	OS_MARK(ah, AH_MARK_RESET, bChannelChange);
	/*
	 * Map public channel to private.
	 */
	ichan = ath_hal_checkchannel(ah, chan);
	if (ichan == AH_NULL) {
		HALDEBUG(ah, HAL_DEBUG_ANY,
		    "%s: invalid channel %u/0x%x; no mapping\n",
		    __func__, chan->ic_freq, chan->ic_flags);
		FAIL(HAL_EINVAL);
	}
	switch (opmode) {
	case HAL_M_STA:
	case HAL_M_IBSS:
	case HAL_M_HOSTAP:
	case HAL_M_MONITOR:
		break;
	default:
		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid operating mode %u\n",
		    __func__, opmode);
		FAIL(HAL_EINVAL);
		break;
	}
	HALASSERT(ahp->ah_eeversion >= AR_EEPROM_VER3);

	/* Preserve certain DMA hardware registers on a channel change */
	if (bChannelChange) {
		/*
		 * On Venice, the TSF is almost preserved across a reset;
		 * it requires the doubling writes to the RESET_TSF
		 * bit in the AR_BEACON register; it also has the quirk
		 * of the TSF going back in time on the station (station
		 * latches onto the last beacon's tsf during a reset 50%
		 * of the times); the latter is not a problem for adhoc
		 * stations since as long as the TSF is behind, it will
		 * get resynchronized on receiving the next beacon; the
		 * TSF going backwards in time could be a problem for the
		 * sleep operation (supported on infrastructure stations
		 * only) - the best and most general fix for this situation
		 * is to resynchronize the various sleep/beacon timers on
		 * the receipt of the next beacon i.e. when the TSF itself
		 * gets resynchronized to the AP's TSF - power save is
		 * needed to be temporarily disabled until that time
		 *
		 * Need to save the sequence number to restore it after
		 * the reset!
		 */
		saveFrameSeqCount = OS_REG_READ(ah, AR_D_SEQNUM);
	} else
		saveFrameSeqCount = 0;		/* NB: silence compiler */

	/* If the channel change is across the same mode - perform a fast channel change */
	if ((IS_2413(ah) || IS_5413(ah))) {
		/*
		 * Channel change can only be used when:
		 *  -channel change requested - so it's not the initial reset.
		 *  -it's not a change to the current channel - often called when switching modes
		 *   on a channel
		 *  -the modes of the previous and requested channel are the same - some ugly code for XR
		 */
		if (bChannelChange &&
		    AH_PRIVATE(ah)->ah_curchan != AH_NULL &&
		    (chan->ic_freq != AH_PRIVATE(ah)->ah_curchan->ic_freq) &&
		    ((chan->ic_flags & IEEE80211_CHAN_ALLTURBO) ==
		     (AH_PRIVATE(ah)->ah_curchan->ic_flags & IEEE80211_CHAN_ALLTURBO))) {
			if (ar5212ChannelChange(ah, chan))
				/* If ChannelChange completed - skip the rest of reset */
				return AH_TRUE;
		}
	}

	/*
	 * Preserve the antenna on a channel change
	 */
	saveDefAntenna = OS_REG_READ(ah, AR_DEF_ANTENNA);
	if (saveDefAntenna == 0)		/* XXX magic constants */
		saveDefAntenna = 1;

	/* Save hardware flag before chip reset clears the register */
	macStaId1 = OS_REG_READ(ah, AR_STA_ID1) & 
		(AR_STA_ID1_BASE_RATE_11B | AR_STA_ID1_USE_DEFANT);

	/* Save led state from pci config register */
	if (!IS_5315(ah))
		saveLedState = OS_REG_READ(ah, AR5312_PCICFG) &
			(AR_PCICFG_LEDCTL | AR_PCICFG_LEDMODE | AR_PCICFG_LEDBLINK |
			 AR_PCICFG_LEDSLOW);

	ar5312RestoreClock(ah, opmode);		/* move to refclk operation */

	/*
	 * Adjust gain parameters before reset if
	 * there's an outstanding gain updated.
	 */
	(void) ar5212GetRfgain(ah);

	if (!ar5312ChipReset(ah, chan)) {
		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n", __func__);
		FAIL(HAL_EIO);
	}

	/* Setup the indices for the next set of register array writes */
	if (IEEE80211_IS_CHAN_2GHZ(chan)) {
		freqIndex  = 2;
		modesIndex = IEEE80211_IS_CHAN_108G(chan) ? 5 :
			     IEEE80211_IS_CHAN_G(chan) ? 4 : 3;
	} else {
		freqIndex  = 1;
		modesIndex = IEEE80211_IS_CHAN_ST(chan) ? 2 : 1;
	}

	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);

	/* Set correct Baseband to analog shift setting to access analog chips. */
	OS_REG_WRITE(ah, AR_PHY(0), 0x00000007);

	regWrites = ath_hal_ini_write(ah, &ahp->ah_ini_modes, modesIndex, 0);
	regWrites = write_common(ah, &ahp->ah_ini_common, bChannelChange,
		regWrites);
	ahp->ah_rfHal->writeRegs(ah, modesIndex, freqIndex, regWrites);

	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);

	if (IEEE80211_IS_CHAN_HALF(chan) || IEEE80211_IS_CHAN_QUARTER(chan))
		ar5212SetIFSTiming(ah, chan);

	/* Overwrite INI values for revised chipsets */
	if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_2) {
		/* ADC_CTL */
		OS_REG_WRITE(ah, AR_PHY_ADC_CTL,
			     SM(2, AR_PHY_ADC_CTL_OFF_INBUFGAIN) |
			     SM(2, AR_PHY_ADC_CTL_ON_INBUFGAIN) |
			     AR_PHY_ADC_CTL_OFF_PWDDAC |
			     AR_PHY_ADC_CTL_OFF_PWDADC);
		
		/* TX_PWR_ADJ */
		if (chan->channel == 2484) {
			cckOfdmPwrDelta = SCALE_OC_DELTA(ee->ee_cckOfdmPwrDelta - ee->ee_scaledCh14FilterCckDelta);
		} else {
			cckOfdmPwrDelta = SCALE_OC_DELTA(ee->ee_cckOfdmPwrDelta);
		}
		
		if (IEEE80211_IS_CHAN_G(chan)) {
			OS_REG_WRITE(ah, AR_PHY_TXPWRADJ,
				     SM((ee->ee_cckOfdmPwrDelta*-1), AR_PHY_TXPWRADJ_CCK_GAIN_DELTA) |
				     SM((cckOfdmPwrDelta*-1), AR_PHY_TXPWRADJ_CCK_PCDAC_INDEX));
		} else {
			OS_REG_WRITE(ah, AR_PHY_TXPWRADJ, 0);
		}
		
		/* Add barker RSSI thresh enable as disabled */
		OS_REG_CLR_BIT(ah, AR_PHY_DAG_CTRLCCK,
			       AR_PHY_DAG_CTRLCCK_EN_RSSI_THR);
		OS_REG_RMW_FIELD(ah, AR_PHY_DAG_CTRLCCK,
				 AR_PHY_DAG_CTRLCCK_RSSI_THR, 2);
		
		/* Set the mute mask to the correct default */
		OS_REG_WRITE(ah, AR_SEQ_MASK, 0x0000000F);
	}
	
	if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_3) {
		/* Clear reg to alllow RX_CLEAR line debug */
		OS_REG_WRITE(ah, AR_PHY_BLUETOOTH,  0);
	}
	if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_4) {
#ifdef notyet
		/* Enable burst prefetch for the data queues */
		OS_REG_RMW_FIELD(ah, AR_D_FPCTL, ... );
		/* Enable double-buffering */
		OS_REG_CLR_BIT(ah, AR_TXCFG, AR_TXCFG_DBL_BUF_DIS);
#endif
	}

	if (IS_5312_2_X(ah)) {
		/* ADC_CTRL */
		OS_REG_WRITE(ah, AR_PHY_SIGMA_DELTA,
			     SM(2, AR_PHY_SIGMA_DELTA_ADC_SEL) |
			     SM(4, AR_PHY_SIGMA_DELTA_FILT2) |
			     SM(0x16, AR_PHY_SIGMA_DELTA_FILT1) |
			     SM(0, AR_PHY_SIGMA_DELTA_ADC_CLIP));

		if (IEEE80211_IS_CHAN_2GHZ(chan))
			OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN, AR_PHY_RXGAIN_TXRX_RF_MAX, 0x0F);

		/* CCK Short parameter adjustment in 11B mode */
		if (IEEE80211_IS_CHAN_B(chan))
			OS_REG_RMW_FIELD(ah, AR_PHY_CCK_RXCTRL4, AR_PHY_CCK_RXCTRL4_FREQ_EST_SHORT, 12);

		/* Set ADC/DAC select values */
		OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x04);

		/* Increase 11A AGC Settling */
		if (IEEE80211_IS_CHAN_A(chan))
			OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_AGC, 32);
	} else {
		/* Set ADC/DAC select values */
		OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x0e);
	}

	/* Setup the transmit power values. */
	if (!ar5212SetTransmitPower(ah, chan, rfXpdGain)) {
		HALDEBUG(ah, HAL_DEBUG_ANY,
		    "%s: error init'ing transmit power\n", __func__);
		FAIL(HAL_EIO);
	}

	/* Write the analog registers */
	if (!ahp->ah_rfHal->setRfRegs(ah, chan, modesIndex, rfXpdGain)) {
		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: ar5212SetRfRegs failed\n",
		    __func__);
		FAIL(HAL_EIO);
	}

	/* Write delta slope for OFDM enabled modes (A, G, Turbo) */
	if (IEEE80211_IS_CHAN_OFDM(chan)) {
		if (IS_5413(ah) ||
		   AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER5_3)
			ar5212SetSpurMitigation(ah, chan);
		ar5212SetDeltaSlope(ah, chan);
	}

	/* Setup board specific options for EEPROM version 3 */
	if (!ar5212SetBoardValues(ah, chan)) {
		HALDEBUG(ah, HAL_DEBUG_ANY,
		    "%s: error setting board options\n", __func__);
		FAIL(HAL_EIO);
	}

	/* Restore certain DMA hardware registers on a channel change */
	if (bChannelChange)
		OS_REG_WRITE(ah, AR_D_SEQNUM, saveFrameSeqCount);

	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);

	OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr));
	OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4)
		| macStaId1
		| AR_STA_ID1_RTS_USE_DEF
		| ahp->ah_staId1Defaults
	);
	ar5212SetOperatingMode(ah, opmode);

	/* Set Venice BSSID mask according to current state */
	OS_REG_WRITE(ah, AR_BSSMSKL, LE_READ_4(ahp->ah_bssidmask));
	OS_REG_WRITE(ah, AR_BSSMSKU, LE_READ_2(ahp->ah_bssidmask + 4));

	/* Restore previous led state */
	if (!IS_5315(ah))
		OS_REG_WRITE(ah, AR5312_PCICFG, OS_REG_READ(ah, AR_PCICFG) | saveLedState);

	/* Restore previous antenna */
	OS_REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);

	/* then our BSSID */
	OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
	OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4));

	/* Restore bmiss rssi & count thresholds */
	OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr);

	OS_REG_WRITE(ah, AR_ISR, ~0);		/* cleared on write */

	if (!ar5212SetChannel(ah, chan))
		FAIL(HAL_EIO);

	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);

	ar5212SetCoverageClass(ah, AH_PRIVATE(ah)->ah_coverageClass, 1);

	ar5212SetRateDurationTable(ah, chan);

	/* Set Tx frame start to tx data start delay */
	if (IS_RAD5112_ANY(ah) &&
	    (IEEE80211_IS_CHAN_HALF(chan) || IEEE80211_IS_CHAN_QUARTER(chan))) {
		txFrm2TxDStart = 
			IEEE80211_IS_CHAN_HALF(chan) ?
					TX_FRAME_D_START_HALF_RATE:
					TX_FRAME_D_START_QUARTER_RATE;
		OS_REG_RMW_FIELD(ah, AR_PHY_TX_CTL, 
			AR_PHY_TX_FRAME_TO_TX_DATA_START, txFrm2TxDStart);
	}

	/*
	 * Setup fast diversity.
	 * Fast diversity can be enabled or disabled via regadd.txt.
	 * Default is enabled.
	 * For reference,
	 *    Disable: reg        val
	 *             0x00009860 0x00009d18 (if 11a / 11g, else no change)
	 *             0x00009970 0x192bb514
	 *             0x0000a208 0xd03e4648
	 *
	 *    Enable:  0x00009860 0x00009d10 (if 11a / 11g, else no change)
	 *             0x00009970 0x192fb514
	 *             0x0000a208 0xd03e6788
	 */

	/* XXX Setup pre PHY ENABLE EAR additions */

	/* flush SCAL reg */
	if (IS_5312_2_X(ah)) {
		(void) OS_REG_READ(ah, AR_PHY_SLEEP_SCAL);
	}

	/*
	 * Wait for the frequency synth to settle (synth goes on
	 * via AR_PHY_ACTIVE_EN).  Read the phy active delay register.
	 * Value is in 100ns increments.
	 */
	synthDelay = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
	if (IEEE80211_IS_CHAN_B(chan)) {
		synthDelay = (4 * synthDelay) / 22;
	} else {
		synthDelay /= 10;
	}

	/* Activate the PHY (includes baseband activate and synthesizer on) */
	OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);

	/* 
	 * There is an issue if the AP starts the calibration before
	 * the base band timeout completes.  This could result in the
	 * rx_clear false triggering.  As a workaround we add delay an
	 * extra BASE_ACTIVATE_DELAY usecs to ensure this condition
	 * does not happen.
	 */
	if (IEEE80211_IS_CHAN_HALF(chan)) {
		OS_DELAY((synthDelay << 1) + BASE_ACTIVATE_DELAY);
	} else if (IEEE80211_IS_CHAN_QUARTER(chan)) {
		OS_DELAY((synthDelay << 2) + BASE_ACTIVATE_DELAY);
	} else {
		OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY);
	}

	/*
	 * The udelay method is not reliable with notebooks.
	 * Need to check to see if the baseband is ready
	 */
	testReg = OS_REG_READ(ah, AR_PHY_TESTCTRL);
	/* Selects the Tx hold */
	OS_REG_WRITE(ah, AR_PHY_TESTCTRL, AR_PHY_TESTCTRL_TXHOLD);
	i = 0;
	while ((i++ < 20) &&
	       (OS_REG_READ(ah, 0x9c24) & 0x10)) /* test if baseband not ready */		OS_DELAY(200);
	OS_REG_WRITE(ah, AR_PHY_TESTCTRL, testReg);

	/* Calibrate the AGC and start a NF calculation */
	OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL,
		  OS_REG_READ(ah, AR_PHY_AGC_CONTROL)
		| AR_PHY_AGC_CONTROL_CAL
		| AR_PHY_AGC_CONTROL_NF);

	if (!IEEE80211_IS_CHAN_B(chan) && ahp->ah_bIQCalibration != IQ_CAL_DONE) {
		/* Start IQ calibration w/ 2^(INIT_IQCAL_LOG_COUNT_MAX+1) samples */
		OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4, 
			AR_PHY_TIMING_CTRL4_IQCAL_LOG_COUNT_MAX,
			INIT_IQCAL_LOG_COUNT_MAX);
		OS_REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4,
			AR_PHY_TIMING_CTRL4_DO_IQCAL);
		ahp->ah_bIQCalibration = IQ_CAL_RUNNING;
	} else
		ahp->ah_bIQCalibration = IQ_CAL_INACTIVE;

	/* Setup compression registers */
	ar5212SetCompRegs(ah);

	/* Set 1:1 QCU to DCU mapping for all queues */
	for (i = 0; i < AR_NUM_DCU; i++)
		OS_REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);

	ahp->ah_intrTxqs = 0;
	for (i = 0; i < AH_PRIVATE(ah)->ah_caps.halTotalQueues; i++)
		ar5212ResetTxQueue(ah, i);

	/*
	 * Setup interrupt handling.  Note that ar5212ResetTxQueue
	 * manipulates the secondary IMR's as queues are enabled
	 * and disabled.  This is done with RMW ops to insure the
	 * settings we make here are preserved.
	 */
	ahp->ah_maskReg = AR_IMR_TXOK | AR_IMR_TXERR | AR_IMR_TXURN
			| AR_IMR_RXOK | AR_IMR_RXERR | AR_IMR_RXORN
			| AR_IMR_HIUERR
			;
	if (opmode == HAL_M_HOSTAP)
		ahp->ah_maskReg |= AR_IMR_MIB;
	OS_REG_WRITE(ah, AR_IMR, ahp->ah_maskReg);
	/* Enable bus errors that are OR'd to set the HIUERR bit */
	OS_REG_WRITE(ah, AR_IMR_S2,
		OS_REG_READ(ah, AR_IMR_S2)
		| AR_IMR_S2_MCABT | AR_IMR_S2_SSERR | AR_IMR_S2_DPERR);

	if (AH_PRIVATE(ah)->ah_rfkillEnabled)
		ar5212EnableRfKill(ah);

	if (!ath_hal_wait(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL, 0)) {
		HALDEBUG(ah, HAL_DEBUG_ANY,
		    "%s: offset calibration failed to complete in 1ms;"
		    " noisy environment?\n", __func__);
	}

	/*
	 * Set clocks back to 32kHz if they had been using refClk, then
	 * use an external 32kHz crystal when sleeping, if one exists.
	 */
	ar5312SetupClock(ah, opmode);

	/*
	 * Writing to AR_BEACON will start timers. Hence it should
	 * be the last register to be written. Do not reset tsf, do
	 * not enable beacons at this point, but preserve other values
	 * like beaconInterval.
	 */
	OS_REG_WRITE(ah, AR_BEACON,
		(OS_REG_READ(ah, AR_BEACON) &~ (AR_BEACON_EN | AR_BEACON_RESET_TSF)));

	/* XXX Setup post reset EAR additions */

	/*  QoS support */
	if (AH_PRIVATE(ah)->ah_macVersion > AR_SREV_VERSION_VENICE ||
	    (AH_PRIVATE(ah)->ah_macVersion == AR_SREV_VERSION_VENICE &&
	     AH_PRIVATE(ah)->ah_macRev >= AR_SREV_GRIFFIN_LITE)) {
		OS_REG_WRITE(ah, AR_QOS_CONTROL, 0x100aa);	/* XXX magic */
		OS_REG_WRITE(ah, AR_QOS_SELECT, 0x3210);	/* XXX magic */
	}

	/* Turn on NOACK Support for QoS packets */
	OS_REG_WRITE(ah, AR_NOACK,
		     SM(2, AR_NOACK_2BIT_VALUE) |
		     SM(5, AR_NOACK_BIT_OFFSET) |
		     SM(0, AR_NOACK_BYTE_OFFSET));

	/* Restore user-specified settings */
	if (ahp->ah_miscMode != 0)
		OS_REG_WRITE(ah, AR_MISC_MODE, ahp->ah_miscMode);
	if (ahp->ah_slottime != (u_int) -1)
		ar5212SetSlotTime(ah, ahp->ah_slottime);
	if (ahp->ah_acktimeout != (u_int) -1)
		ar5212SetAckTimeout(ah, ahp->ah_acktimeout);
	if (ahp->ah_ctstimeout != (u_int) -1)
		ar5212SetCTSTimeout(ah, ahp->ah_ctstimeout);
	if (ahp->ah_sifstime != (u_int) -1)
		ar5212SetSifsTime(ah, ahp->ah_sifstime);
	if (AH_PRIVATE(ah)->ah_diagreg != 0)
		OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);

	AH_PRIVATE(ah)->ah_opmode = opmode;	/* record operating mode */

	if (bChannelChange && !IEEE80211_IS_CHAN_DFS(chan)) 
		chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT;

	HALDEBUG(ah, HAL_DEBUG_RESET, "%s: done\n", __func__);

	OS_MARK(ah, AH_MARK_RESET_DONE, 0);

	return AH_TRUE;
bad:
	OS_MARK(ah, AH_MARK_RESET_DONE, ecode);
	if (status != AH_NULL)
		*status = ecode;
	return AH_FALSE;
#undef FAIL
#undef N
}
Ejemplo n.º 23
0
/*
 * Control Adaptive Noise Immunity Parameters
 */
HAL_BOOL
ar5416AniControl(struct ath_hal *ah, HAL_ANI_CMD cmd, int param, HAL_BOOL inISR)
{
#define N(a) (sizeof(a)/sizeof(a[0]))
	typedef int TABLE[];
	struct ath_hal_5416 *ahp = AH5416(ah);
	struct ar5416AniState *aniState = ahp->ah_curani;

	switch (cmd & ahp->ah_ani_function) {
	case HAL_ANI_NOISE_IMMUNITY_LEVEL: {
		u_int level = param;

		if (level >= N(ahp->ah_totalSizeDesired)) {
			HDPRINTF(ah, HAL_DBG_ANI, "%s: level out of range (%u > %u)\n",
				__func__, level, (unsigned) N(ahp->ah_totalSizeDesired));
			return AH_FALSE;
		}

		OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
			AR_PHY_DESIRED_SZ_TOT_DES, ahp->ah_totalSizeDesired[level]);
		OS_REG_RMW_FIELD(ah, AR_PHY_AGC_CTL1,
			  AR_PHY_AGC_CTL1_COARSE_LOW, ahp->ah_coarseLow[level]);
		OS_REG_RMW_FIELD(ah, AR_PHY_AGC_CTL1,
			  AR_PHY_AGC_CTL1_COARSE_HIGH, ahp->ah_coarseHigh[level]);
		OS_REG_RMW_FIELD(ah, AR_PHY_FIND_SIG,
			AR_PHY_FIND_SIG_FIRPWR, ahp->ah_firpwr[level]);

		if (level > aniState->noiseImmunityLevel)
			ahp->ah_stats.ast_ani_niup++;
		else if (level < aniState->noiseImmunityLevel)
			ahp->ah_stats.ast_ani_nidown++;
		aniState->noiseImmunityLevel = level;
		break;
	}
	case HAL_ANI_OFDM_WEAK_SIGNAL_DETECTION: {
		const TABLE m1ThreshLow   = { 127,   50 };
		const TABLE m2ThreshLow   = { 127,   40 };
		const TABLE m1Thresh      = { 127, 0x4d };
		const TABLE m2Thresh      = { 127, 0x40 };
		const TABLE m2CountThr    = {  31,   16 };
		const TABLE m2CountThrLow = {  63,   48 };
		u_int on = param ? 1 : 0;

		OS_REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
			AR_PHY_SFCORR_LOW_M1_THRESH_LOW, m1ThreshLow[on]);
		OS_REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
			AR_PHY_SFCORR_LOW_M2_THRESH_LOW, m2ThreshLow[on]);
		OS_REG_RMW_FIELD(ah, AR_PHY_SFCORR,
			AR_PHY_SFCORR_M1_THRESH, m1Thresh[on]);
		OS_REG_RMW_FIELD(ah, AR_PHY_SFCORR,
			AR_PHY_SFCORR_M2_THRESH, m2Thresh[on]);
		OS_REG_RMW_FIELD(ah, AR_PHY_SFCORR,
			AR_PHY_SFCORR_M2COUNT_THR, m2CountThr[on]);
		OS_REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
			AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW, m2CountThrLow[on]);
                                               
        OS_REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT, AR_PHY_SFCORR_EXT_M1_THRESH_LOW, m1ThreshLow[on]);
        OS_REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT, AR_PHY_SFCORR_EXT_M2_THRESH_LOW, m2ThreshLow[on]);
        OS_REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT, AR_PHY_SFCORR_EXT_M1_THRESH, m1Thresh[on]);
        OS_REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT, AR_PHY_SFCORR_EXT_M2_THRESH, m2Thresh[on]);
        
		if (on) {
			OS_REG_SET_BIT(ah, AR_PHY_SFCORR_LOW,
				AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
		} else {
			OS_REG_CLR_BIT(ah, AR_PHY_SFCORR_LOW,
				AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
		}
		if (!on != aniState->ofdmWeakSigDetectOff) {
			if (on)
				ahp->ah_stats.ast_ani_ofdmon++;
			else
				ahp->ah_stats.ast_ani_ofdmoff++;
			aniState->ofdmWeakSigDetectOff = !on;
		}
		break;
	}
	case HAL_ANI_CCK_WEAK_SIGNAL_THR: {
		const TABLE weakSigThrCck = { 8, 6 };
		u_int high = param ? 1 : 0;

		OS_REG_RMW_FIELD(ah, AR_PHY_CCK_DETECT,
			AR_PHY_CCK_DETECT_WEAK_SIG_THR_CCK,
			weakSigThrCck[high]);
		if (high != aniState->cckWeakSigThreshold) {
			if (high)
				ahp->ah_stats.ast_ani_cckhigh++;
			else
				ahp->ah_stats.ast_ani_ccklow++;
			aniState->cckWeakSigThreshold = high;
		}
		break;
	}
	case HAL_ANI_FIRSTEP_LEVEL: {
		const TABLE firstep = { 0, 4, 8 };
		u_int level = param;

		if (level >= N(firstep)) {
			HDPRINTF(ah, HAL_DBG_ANI, "%s: level out of range (%u > %u)\n",
				__func__, level, (unsigned) N(firstep));
			return AH_FALSE;
		}
		OS_REG_RMW_FIELD(ah, AR_PHY_FIND_SIG,
			AR_PHY_FIND_SIG_FIRSTEP, firstep[level]);
		if (level > aniState->firstepLevel)
			ahp->ah_stats.ast_ani_stepup++;
		else if (level < aniState->firstepLevel)
			ahp->ah_stats.ast_ani_stepdown++;
		aniState->firstepLevel = level;
		break;
	}
	case HAL_ANI_SPUR_IMMUNITY_LEVEL: {
		const TABLE cycpwrThr1 = { 2, 4, 6, 8, 10, 12, 14, 16 };
		u_int level = param;

		if (level >= N(cycpwrThr1)) {
			HDPRINTF(ah, HAL_DBG_ANI, "%s: level out of range (%u > %u)\n",
				__func__, level, (unsigned) N(cycpwrThr1));
			return AH_FALSE;
		}
		OS_REG_RMW_FIELD(ah, AR_PHY_TIMING5,
			AR_PHY_TIMING5_CYCPWR_THR1, cycpwrThr1[level]);
		if (level > aniState->spurImmunityLevel)
			ahp->ah_stats.ast_ani_spurup++;
		else if (level < aniState->spurImmunityLevel)
			ahp->ah_stats.ast_ani_spurdown++;
		aniState->spurImmunityLevel = level;
		break;
	}
	case HAL_ANI_PRESENT:
		break;
#ifdef AH_PRIVATE_DIAG
	case HAL_ANI_MODE:
		if (param == 0) {
			ahp->ah_procPhyErr &= ~HAL_PROCESS_ANI;
			/* Turn off HW counters if we have them */
			ar5416AniDetach(ah);
			ar5416SetRxFilter(ah,
				ar5416GetRxFilter(ah) &~ HAL_RX_FILTER_PHYERR);
		} else {			/* normal/auto mode */
			ahp->ah_procPhyErr |= HAL_PROCESS_ANI;
			if (ahp->ah_hasHwPhyCounters) {
				ar5416SetRxFilter(ah,
					ar5416GetRxFilter(ah) &~ HAL_RX_FILTER_PHYERR);
			} else {
				ar5416SetRxFilter(ah,
					ar5416GetRxFilter(ah) | HAL_RX_FILTER_PHYERR);
			}
		}
		break;
	case HAL_ANI_PHYERR_RESET:
		ahp->ah_stats.ast_ani_ofdmerrs = 0;
		ahp->ah_stats.ast_ani_cckerrs = 0;
		break;
#endif /* AH_PRIVATE_DIAG */
	default:
		HDPRINTF(ah, HAL_DBG_ANI, "%s: invalid cmd %u\n", __func__, cmd);
		return AH_FALSE;
	}

    HDPRINTF(ah, HAL_DBG_ANI, "%s: ANI parameters:\n", __func__);
    HDPRINTF(ah, HAL_DBG_ANI,
             "noiseImmunityLevel=%d, spurImmunityLevel=%d, ofdmWeakSigDetectOff=%d\n",
             aniState->noiseImmunityLevel, aniState->spurImmunityLevel,
             !aniState->ofdmWeakSigDetectOff);
    HDPRINTF(ah, HAL_DBG_ANI,
             "cckWeakSigThreshold=%d, firstepLevel=%d, listenTime=%d\n",
             aniState->cckWeakSigThreshold, aniState->firstepLevel,
             aniState->listenTime);
    HDPRINTF(ah, HAL_DBG_ANI,
             "cycleCount=%d, ofdmPhyErrCount=%d, cckPhyErrCount=%d\n\n",
             aniState->cycleCount, aniState->ofdmPhyErrCount,
             aniState->cckPhyErrCount);

#ifndef REMOVE_PKT_LOG
    /* do pktlog */
    {
        struct log_ani log_data;

        /* Populate the ani log record */
        log_data.phyStatsDisable = DO_ANI(ah);
        log_data.noiseImmunLvl = aniState->noiseImmunityLevel;
        log_data.spurImmunLvl = aniState->spurImmunityLevel;
        log_data.ofdmWeakDet = aniState->ofdmWeakSigDetectOff;
        log_data.ofdmWeakDet = aniState->ofdmWeakSigDetectOff;
        log_data.cckWeakThr = aniState->cckWeakSigThreshold;
        log_data.firLvl = aniState->firstepLevel;
        log_data.listenTime = aniState->listenTime;
        log_data.cycleCount = aniState->cycleCount;
        log_data.ofdmPhyErrCount = aniState->ofdmPhyErrCount;
        log_data.cckPhyErrCount = aniState->cckPhyErrCount;
        log_data.rssi = 0; /* Was for legacy single antenna rssi */

        /* For HT chips, 2x2 */
        /* Log 6 u_int16_t RSSIs as first in the int32_t 'misc' array */
        /* ToDo: Update pktRssi for valid packets? */
        /* ToDo: Update PhyErr RSSIs in aniState variable - 
                 need Rx Descriptor / PhyErr*/
        /* ToDo: Add parsing support in owldump, if needed */
        
        log_data.misc[0] = aniState->pktRssi[0];
        log_data.misc[1] = aniState->pktRssi[1];
        log_data.misc[2] = aniState->ofdmErrRssi[0];
        log_data.misc[3] = aniState->ofdmErrRssi[1];
        log_data.misc[4] = aniState->cckErrRssi[0];
        log_data.misc[5] = aniState->cckErrRssi[1];
        if (inISR)
            ath_hal_log_ani(ah->ah_sc, &log_data, 1);   // set interrupt context flag
        else
            ath_hal_log_ani(ah->ah_sc, &log_data, 0);   // clear interrupt context flag
    }
    
#endif

    return AH_TRUE;
#undef	N
}
Ejemplo n.º 24
0
/*
 * Control Adaptive Noise Immunity Parameters
 */
HAL_BOOL
ar5416AniControl(struct ath_hal *ah, HAL_ANI_CMD cmd, int param)
{
	typedef int TABLE[];
	struct ath_hal_5212 *ahp = AH5212(ah);
	struct ar5212AniState *aniState = ahp->ah_curani;
	const struct ar5212AniParams *params = aniState->params;

	OS_MARK(ah, AH_MARK_ANI_CONTROL, cmd);

	switch (cmd) {
	case HAL_ANI_NOISE_IMMUNITY_LEVEL: {
		u_int level = param;

		if (level >= params->maxNoiseImmunityLevel) {
			HALDEBUG(ah, HAL_DEBUG_ANY,
			    "%s: immunity level out of range (%u > %u)\n",
			    __func__, level, params->maxNoiseImmunityLevel);
			return AH_FALSE;
		}

		OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
		    AR_PHY_DESIRED_SZ_TOT_DES, params->totalSizeDesired[level]);
		OS_REG_RMW_FIELD(ah, AR_PHY_AGC_CTL1,
		    AR_PHY_AGC_CTL1_COARSE_LOW, params->coarseLow[level]);
		OS_REG_RMW_FIELD(ah, AR_PHY_AGC_CTL1,
		    AR_PHY_AGC_CTL1_COARSE_HIGH, params->coarseHigh[level]);
		OS_REG_RMW_FIELD(ah, AR_PHY_FIND_SIG,
		    AR_PHY_FIND_SIG_FIRPWR, params->firpwr[level]);

		if (level > aniState->noiseImmunityLevel)
			ahp->ah_stats.ast_ani_niup++;
		else if (level < aniState->noiseImmunityLevel)
			ahp->ah_stats.ast_ani_nidown++;
		aniState->noiseImmunityLevel = level;
		break;
	}
	case HAL_ANI_OFDM_WEAK_SIGNAL_DETECTION: {
		static const TABLE m1ThreshLow   = { 127,   50 };
		static const TABLE m2ThreshLow   = { 127,   40 };
		static const TABLE m1Thresh      = { 127, 0x4d };
		static const TABLE m2Thresh      = { 127, 0x40 };
		static const TABLE m2CountThr    = {  31,   16 };
		static const TABLE m2CountThrLow = {  63,   48 };
		u_int on = param ? 1 : 0;

		OS_REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
			AR_PHY_SFCORR_LOW_M1_THRESH_LOW, m1ThreshLow[on]);
		OS_REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
			AR_PHY_SFCORR_LOW_M2_THRESH_LOW, m2ThreshLow[on]);
		OS_REG_RMW_FIELD(ah, AR_PHY_SFCORR,
			AR_PHY_SFCORR_M1_THRESH, m1Thresh[on]);
		OS_REG_RMW_FIELD(ah, AR_PHY_SFCORR,
			AR_PHY_SFCORR_M2_THRESH, m2Thresh[on]);
		OS_REG_RMW_FIELD(ah, AR_PHY_SFCORR,
			AR_PHY_SFCORR_M2COUNT_THR, m2CountThr[on]);
		OS_REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
			AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW, m2CountThrLow[on]);

		OS_REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
			AR_PHY_SFCORR_EXT_M1_THRESH_LOW, m1ThreshLow[on]);
		OS_REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
			AR_PHY_SFCORR_EXT_M2_THRESH_LOW, m2ThreshLow[on]);
		OS_REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
			AR_PHY_SFCORR_EXT_M1_THRESH, m1Thresh[on]);
		OS_REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
			AR_PHY_SFCORR_EXT_M2_THRESH, m2Thresh[on]);

		if (on) {
			OS_REG_SET_BIT(ah, AR_PHY_SFCORR_LOW,
				AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
		} else {
			OS_REG_CLR_BIT(ah, AR_PHY_SFCORR_LOW,
				AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
		}
		if (on)
			ahp->ah_stats.ast_ani_ofdmon++;
		else
			ahp->ah_stats.ast_ani_ofdmoff++;
		aniState->ofdmWeakSigDetectOff = !on;
		break;
	}
	case HAL_ANI_CCK_WEAK_SIGNAL_THR: {
		static const TABLE weakSigThrCck = { 8, 6 };
		u_int high = param ? 1 : 0;

		OS_REG_RMW_FIELD(ah, AR_PHY_CCK_DETECT,
		    AR_PHY_CCK_DETECT_WEAK_SIG_THR_CCK, weakSigThrCck[high]);
		if (high)
			ahp->ah_stats.ast_ani_cckhigh++;
		else
			ahp->ah_stats.ast_ani_ccklow++;
		aniState->cckWeakSigThreshold = high;
		break;
	}
	case HAL_ANI_FIRSTEP_LEVEL: {
		u_int level = param;

		if (level >= params->maxFirstepLevel) {
			HALDEBUG(ah, HAL_DEBUG_ANY,
			    "%s: firstep level out of range (%u > %u)\n",
			    __func__, level, params->maxFirstepLevel);
			return AH_FALSE;
		}
		OS_REG_RMW_FIELD(ah, AR_PHY_FIND_SIG,
		    AR_PHY_FIND_SIG_FIRSTEP, params->firstep[level]);
		if (level > aniState->firstepLevel)
			ahp->ah_stats.ast_ani_stepup++;
		else if (level < aniState->firstepLevel)
			ahp->ah_stats.ast_ani_stepdown++;
		aniState->firstepLevel = level;
		break;
	}
	case HAL_ANI_SPUR_IMMUNITY_LEVEL: {
		u_int level = param;

		if (level >= params->maxSpurImmunityLevel) {
			HALDEBUG(ah, HAL_DEBUG_ANY,
			    "%s: spur immunity level out of range (%u > %u)\n",
			    __func__, level, params->maxSpurImmunityLevel);
			return AH_FALSE;
		}
		OS_REG_RMW_FIELD(ah, AR_PHY_TIMING5,
		    AR_PHY_TIMING5_CYCPWR_THR1, params->cycPwrThr1[level]);
		if (level > aniState->spurImmunityLevel)
			ahp->ah_stats.ast_ani_spurup++;
		else if (level < aniState->spurImmunityLevel)
			ahp->ah_stats.ast_ani_spurdown++;
		aniState->spurImmunityLevel = level;
		break;
	}
	case HAL_ANI_PRESENT:
		break;
	case HAL_ANI_MODE:
		if (param == 0) {
			ahp->ah_procPhyErr &= ~HAL_ANI_ENA;
			/* Turn off HW counters if we have them */
			ar5416AniDetach(ah);
			ar5212SetRxFilter(ah,
				ar5212GetRxFilter(ah) &~ HAL_RX_FILTER_PHYERR);
		} else {			/* normal/auto mode */
			/* don't mess with state if already enabled */
			if (ahp->ah_procPhyErr & HAL_ANI_ENA)
				break;
			ar5212SetRxFilter(ah,
				ar5212GetRxFilter(ah) &~ HAL_RX_FILTER_PHYERR);
			/* Enable MIB Counters */
			enableAniMIBCounters(ah, ahp->ah_curani != AH_NULL ?
			    ahp->ah_curani->params: &ahp->ah_aniParams24 /*XXX*/);
			ahp->ah_procPhyErr |= HAL_ANI_ENA;
		}
		break;
#ifdef AH_PRIVATE_DIAG
	case HAL_ANI_PHYERR_RESET:
		ahp->ah_stats.ast_ani_ofdmerrs = 0;
		ahp->ah_stats.ast_ani_cckerrs = 0;
		break;
#endif /* AH_PRIVATE_DIAG */
	default:
		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid cmd %u\n",
		    __func__, cmd);
		return AH_FALSE;
	}
	return AH_TRUE;
}
Ejemplo n.º 25
0
HAL_BOOL
ar5416WowEnable(struct ath_hal *ah, u_int32_t pattern_enable, u_int32_t timeoutInSeconds, int clearbssid)
{
    uint32_t init_val, val, rval=0;
    const int ka_delay = 4;     /* Delay of 4 millisec between two KeepAlive's */
    uint32_t wow_event_mask;

    /*
     * ah_wow_event_mask is a mask to the AR_WOW_PATTERN_REG register to indicate
     * which WOW events that we have enabled. The WOW Events are from the
     * pattern_enable in this function and pattern_count of ar5416WowApplyPattern()
     */
    wow_event_mask = AH_PRIVATE(ah)->ah_wow_event_mask;

    /*
     * Untie Power-On-Reset from the PCI-E Reset. When we are in WOW sleep,
     * we do not want the Reset from the PCI-E to disturb our hw state.
     */
     if (AR_SREV_MERLIN_20_OR_LATER(ah) && 
        (AH_PRIVATE(ah)->ah_is_pci_express == AH_TRUE)) {
        /* 
         * We need to untie the internal POR (power-on-reset) to the external
         * PCI-E reset. We also need to tie the PCI-E Phy reset to the PCI-E reset.
         */
        u_int32_t wa_reg_val;
        if (AR_SREV_KITE(ah) || AR_SREV_KIWI(ah))
            wa_reg_val = AR9285_WA_DEFAULT;
        else
            wa_reg_val = AR9280_WA_DEFAULT;

        /*
         * In Merlin and Kite, bit 14 in WA register (disable L1) should only 
         * be set when device enters D3 and be cleared when device comes back to D0.
         */
        if (AH_PRIVATE(ah)->ah_config.ath_hal_pcie_waen & AR_WA_D3_L1_DISABLE)
            wa_reg_val = wa_reg_val | AR_WA_D3_L1_DISABLE;

        wa_reg_val = wa_reg_val & ~(AR_WA_UNTIE_RESET_EN);
        wa_reg_val = wa_reg_val | AR_WA_RESET_EN | AR_WA_POR_SHORT;
        OS_REG_WRITE(ah, AR_WA, wa_reg_val);
    
        if (!AR_SREV_KITE(ah) || AR_SREV_KITE_12_OR_LATER(ah)) {
            /* s
             * For WOW sleep, we reprogram the SerDes so that the PLL and CHK REQ
             * are both enabled. This uses more power but the Maverick team reported
             * that otherwise, WOW sleep is unable and chip may disappears.
             */
            ar928xConfigSerDes_WowSleep(ah);
        }
    }

    /*
     * Set the power states appropriately and enable pme.
     */
    val = OS_REG_READ(ah, AR_PCIE_PM_CTRL);
    val |= AR_PMCTRL_HOST_PME_EN | \
           AR_PMCTRL_PWR_PM_CTRL_ENA | AR_PMCTRL_AUX_PWR_DET;

    val &= ~AR_PMCTRL_WOW_PME_CLR;
    OS_REG_WRITE(ah, AR_PCIE_PM_CTRL, val);

    /*
     * Setup for for: 
     *     - beacon misses
     *     - magic pattern
     *     - keep alive timeout
     *     - pattern matching 
     */

    /*
     * Program some default values for keep-alives, beacon misses, etc.
     */
    init_val = OS_REG_READ(ah, AR_WOW_PATTERN_REG);
    val = AR_WOW_BACK_OFF_SHIFT(AR_WOW_PAT_BACKOFF) | init_val;
    OS_REG_WRITE(ah, AR_WOW_PATTERN_REG, val);
    rval = OS_REG_READ(ah, AR_WOW_PATTERN_REG);
    
    init_val = OS_REG_READ(ah, AR_WOW_COUNT_REG);
    val = AR_WOW_AIFS_CNT(AR_WOW_CNT_AIFS_CNT) | \
          AR_WOW_SLOT_CNT(AR_WOW_CNT_SLOT_CNT) | \
          AR_WOW_KEEP_ALIVE_CNT(AR_WOW_CNT_KA_CNT);
    OS_REG_WRITE(ah, AR_WOW_COUNT_REG, val);
    rval = OS_REG_READ(ah, AR_WOW_COUNT_REG);
  
    
    init_val = OS_REG_READ(ah, AR_WOW_BCN_TIMO_REG);
    if (pattern_enable & AH_WOW_BEACON_MISS) {
        val = AR_WOW_BEACON_TIMO;
    }
    else {
        /* We are not using the beacon miss. Program a large value. */
        val = AR_WOW_BEACON_TIMO_MAX;
    }
    OS_REG_WRITE(ah, AR_WOW_BCN_TIMO_REG, val);
    rval = OS_REG_READ(ah, AR_WOW_BCN_TIMO_REG);

    init_val = OS_REG_READ(ah, AR_WOW_KEEP_ALIVE_TIMO_REG);

    /* 
     * Keep Alive Timo in ms, except Merlin - see EV 62708
     */
    if (pattern_enable == 0 || AR_SREV_MERLIN(ah)) {
        val =  AR_WOW_KEEP_ALIVE_NEVER;
    } else {
        val = AH_PRIVATE(ah)->ah_config.ath_hal_keep_alive_timeout * 32;
    }
    OS_REG_WRITE(ah, AR_WOW_KEEP_ALIVE_TIMO_REG, val);
    rval = OS_REG_READ(ah, AR_WOW_KEEP_ALIVE_TIMO_REG);

    init_val = OS_REG_READ(ah, AR_WOW_KEEP_ALIVE_DELAY_REG);
    /*
     * Keep Alive delay in us. Based on 'power on clock' , therefore in uSec
     */
    val = ka_delay * 1000;
    OS_REG_WRITE(ah, AR_WOW_KEEP_ALIVE_DELAY_REG, val);
    rval = OS_REG_READ(ah, AR_WOW_KEEP_ALIVE_DELAY_REG);

    /*
     * Create KeepAlive Pattern to respond to beacons.
     */
    ar5416WowCreateKeepAlivePattern(ah);

    /*
     * Configure Mac Wow Registers.
     */

    val = OS_REG_READ(ah, AR_WOW_KEEP_ALIVE_REG);
    /*
     * Send keep alive timeouts anyway.
     */
    val &= ~AR_WOW_KEEP_ALIVE_AUTO_DIS;

    if (pattern_enable & AH_WOW_LINK_CHANGE) {
        val &= ~ AR_WOW_KEEP_ALIVE_FAIL_DIS;
        wow_event_mask |= AR_WOW_KEEP_ALIVE_FAIL;
    } else {
        val |=  AR_WOW_KEEP_ALIVE_FAIL_DIS;
    }
    OS_REG_WRITE(ah, AR_WOW_KEEP_ALIVE_REG, val);
    val = OS_REG_READ(ah, AR_WOW_KEEP_ALIVE_REG);
    val = OS_REG_READ(ah, AR_WOW_BCN_EN_REG);
    
    /*
     * We are relying on a bmiss failure. Ensure we have enough
     * threshold to prevent false positives.
     */
    OS_REG_RMW_FIELD(ah, AR_RSSI_THR, AR_RSSI_THR_BM_THR,
        AR_WOW_BMISSTHRESHOLD);

    /*
     * Beacon miss & user pattern events are broken in Owl.
     * Enable only for Merlin.
     * The workaround is done at the ath_dev layer using the 
     * sc->sc_wow_bmiss_intr field. 
     * XXX: we need to cleanup this workaround before the next chip that
     * fixes this issue.
     */
    if (!AR_SREV_MERLIN_10_OR_LATER(ah)) 
        pattern_enable &= ~AH_WOW_BEACON_MISS;

    if (pattern_enable & AH_WOW_BEACON_MISS) {
        val |= AR_WOW_BEACON_FAIL_EN;
        wow_event_mask |= AR_WOW_BEACON_FAIL;
    } else {
        val &= ~AR_WOW_BEACON_FAIL_EN;
    }
    OS_REG_WRITE(ah, AR_WOW_BCN_EN_REG, val);
    val = OS_REG_READ(ah, AR_WOW_BCN_EN_REG);

    /*
     * Enable the magic packet registers.
     */
    val = OS_REG_READ(ah, AR_WOW_PATTERN_REG);
    if (pattern_enable & AH_WOW_MAGIC_PATTERN_EN) {
        val |= AR_WOW_MAGIC_EN;
        wow_event_mask |= AR_WOW_MAGIC_PAT_FOUND;
    } else {
        val &= ~AR_WOW_MAGIC_EN;
    }
    val |= AR_WOW_MAC_INTR_EN;
    OS_REG_WRITE(ah, AR_WOW_PATTERN_REG, val);
    val = OS_REG_READ(ah, AR_WOW_PATTERN_REG);

    /* For Kite and later version of the chips
     * enable wow pattern match for packets less than
     * 256 bytes for all patterns.
     */
    if (AR_SREV_KITE_10_OR_LATER(ah)) {
        OS_REG_WRITE(ah, AR_WOW_PATTERN_MATCH_LT_256B_REG, AR_WOW_PATTERN_SUPPORTED);
    }

    /*
     * Set the power states appropriately and enable pme.
     */
    val = OS_REG_READ(ah, AR_PCIE_PM_CTRL);
    val |=  AR_PMCTRL_PWR_STATE_D1D3 | AR_PMCTRL_HOST_PME_EN | AR_PMCTRL_PWR_PM_CTRL_ENA;
    OS_REG_WRITE(ah, AR_PCIE_PM_CTRL, val);

    if (timeoutInSeconds) {
        /*
                The clearbssid parameter is set only for the case where the wake needs to be
                on a timeout. The timeout mechanism, at this time, is specific to Maverick. For a
                manuf test, the system is put into sleep with a timer. On timer expiry, the chip
                interrupts(timer) and wakes the system. Clearbssid is specified as TRUE since
                we do not want a spurious beacon miss. If specified as true, we clear the bssid regs.
             */
        // Setup the timer. 
        OS_REG_WRITE(ah, AR_NEXT_NDP_TIMER, OS_REG_READ(ah, AR_TSF_L32) + timeoutInSeconds * 1000000 ); // convert Timeout to uSecs.
        OS_REG_WRITE(ah, AR_NDP_PERIOD, 30 * 1000000); // timer_period = 30 seconds always.
        OS_REG_WRITE(ah, AR_TIMER_MODE, OS_REG_READ(ah, AR_TIMER_MODE) | AR_NDP_TIMER_EN); 
        // Enable the timer interrupt
        OS_REG_WRITE(ah, AR_IMR_S5, OS_REG_READ(ah, AR_IMR_S5) | AR_IMR_S5_GENTIMER7);
        OS_REG_WRITE(ah, AR_IMR, OS_REG_READ(ah, AR_IMR) | AR_IMR_GENTMR);
        if (clearbssid) {       
            // If the bssid regs are set and all we want is a wake on timer, we run into an issue
            // with the wake coming in too early.
            OS_REG_WRITE(ah, AR_BSS_ID0, 0);
            OS_REG_WRITE(ah, AR_BSS_ID1, 0);
        } 
    } 

    /*
     * enable seq number generation in hw
     */
    OS_REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);

    ar5416SetPowerModeWowSleep(ah);

    AH_PRIVATE(ah)->ah_wow_event_mask = wow_event_mask;

    return (AH_TRUE);
}
Ejemplo n.º 26
0
void
ar9280SpurMitigate(struct ath_hal *ah, const struct ieee80211_channel *chan)
{
    static const int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
                AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60 };
    static const int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
                AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60 };
    static int inc[4] = { 0, 100, 0, 0 };

    int bb_spur = AR_NO_SPUR;
    int freq;
    int bin, cur_bin;
    int bb_spur_off, spur_subchannel_sd;
    int spur_freq_sd;
    int spur_delta_phase;
    int denominator;
    int upper, lower, cur_vit_mask;
    int tmp, newVal;
    int i;
    CHAN_CENTERS centers;

    int8_t mask_m[123];
    int8_t mask_p[123];
    int8_t mask_amt;
    int tmp_mask;
    int cur_bb_spur;
    HAL_BOOL is2GHz = IEEE80211_IS_CHAN_2GHZ(chan);

    OS_MEMZERO(&mask_m, sizeof(int8_t) * 123);
    OS_MEMZERO(&mask_p, sizeof(int8_t) * 123);

    ar5416GetChannelCenters(ah, chan, &centers);
    freq = centers.synth_center;

    /*
     * Need to verify range +/- 9.38 for static ht20 and +/- 18.75 for ht40,
     * otherwise spur is out-of-band and can be ignored.
     */
    for (i = 0; i < AR5416_EEPROM_MODAL_SPURS; i++) {
        cur_bb_spur = ath_hal_getSpurChan(ah, i, is2GHz);
        /* Get actual spur freq in MHz from EEPROM read value */ 
        if (is2GHz) {
            cur_bb_spur =  (cur_bb_spur / 10) + AR_BASE_FREQ_2GHZ;
        } else {
            cur_bb_spur =  (cur_bb_spur / 10) + AR_BASE_FREQ_5GHZ;
        }

        if (AR_NO_SPUR == cur_bb_spur)
            break;
        cur_bb_spur = cur_bb_spur - freq;

        if (IEEE80211_IS_CHAN_HT40(chan)) {
            if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT40) && 
                (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT40)) {
                bb_spur = cur_bb_spur;
                break;
            }
        } else if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT20) &&
                   (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT20)) {
            bb_spur = cur_bb_spur;
            break;
        }
    }

    if (AR_NO_SPUR == bb_spur) {
#if 1
        /*
         * MRC CCK can interfere with beacon detection and cause deaf/mute.
         * Disable MRC CCK for now.
         */
        OS_REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK, AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
#else
        /* Enable MRC CCK if no spur is found in this channel. */
        OS_REG_SET_BIT(ah, AR_PHY_FORCE_CLKEN_CCK, AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
#endif
        return;
    } else {
        /* 
         * For Merlin, spur can break CCK MRC algorithm. Disable CCK MRC if spur
         * is found in this channel.
         */
        OS_REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK, AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
    }

    bin = bb_spur * 320;

    tmp = OS_REG_READ(ah, AR_PHY_TIMING_CTRL4_CHAIN(0));

    newVal = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
        AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
        AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
        AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
    OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4_CHAIN(0), newVal);

    newVal = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
        AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
        AR_PHY_SPUR_REG_MASK_RATE_SELECT |
        AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
        SM(AR5416_SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
    OS_REG_WRITE(ah, AR_PHY_SPUR_REG, newVal);

    /* Pick control or extn channel to cancel the spur */
    if (IEEE80211_IS_CHAN_HT40(chan)) {
        if (bb_spur < 0) {
            spur_subchannel_sd = 1;
            bb_spur_off = bb_spur + 10;
        } else {
            spur_subchannel_sd = 0;
            bb_spur_off = bb_spur - 10;
        }
    } else {
        spur_subchannel_sd = 0;
        bb_spur_off = bb_spur;
    }

    /*
     * spur_delta_phase = bb_spur/40 * 2**21 for static ht20,
     * /80 for dyn2040.
     */
    if (IEEE80211_IS_CHAN_HT40(chan))
        spur_delta_phase = ((bb_spur * 262144) / 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;    
    else
        spur_delta_phase = ((bb_spur * 524288) / 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;

    /*
     * in 11A mode the denominator of spur_freq_sd should be 40 and
     * it should be 44 in 11G
     */
    denominator = IEEE80211_IS_CHAN_2GHZ(chan) ? 44 : 40;
    spur_freq_sd = ((bb_spur_off * 2048) / denominator) & 0x3ff;

    newVal = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
        SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
        SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
    OS_REG_WRITE(ah, AR_PHY_TIMING11, newVal);

    /* Choose to cancel between control and extension channels */
    newVal = spur_subchannel_sd << AR_PHY_SFCORR_SPUR_SUBCHNL_SD_S;
    OS_REG_WRITE(ah, AR_PHY_SFCORR_EXT, newVal);

    /*
     * ============================================
     * Set Pilot and Channel Masks
     *
     * pilot mask 1 [31:0] = +6..-26, no 0 bin
     * pilot mask 2 [19:0] = +26..+7
     *
     * channel mask 1 [31:0] = +6..-26, no 0 bin
     * channel mask 2 [19:0] = +26..+7
     */
    cur_bin = -6000;
    upper = bin + 100;
    lower = bin - 100;

    for (i = 0; i < 4; i++) {
        int pilot_mask = 0;
        int chan_mask  = 0;
        int bp         = 0;
        for (bp = 0; bp < 30; bp++) {
            if ((cur_bin > lower) && (cur_bin < upper)) {
                pilot_mask = pilot_mask | 0x1 << bp;
                chan_mask  = chan_mask | 0x1 << bp;
            }
            cur_bin += 100;
        }
        cur_bin += inc[i];
        OS_REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
        OS_REG_WRITE(ah, chan_mask_reg[i], chan_mask);
    }

    /* =================================================
     * viterbi mask 1 based on channel magnitude
     * four levels 0-3
     *  - mask (-27 to 27) (reg 64,0x9900 to 67,0x990c)
     *      [1 2 2 1] for -9.6 or [1 2 1] for +16
     *  - enable_mask_ppm, all bins move with freq
     *
     *  - mask_select,    8 bits for rates (reg 67,0x990c)
     *  - mask_rate_cntl, 8 bits for rates (reg 67,0x990c)
     *      choose which mask to use mask or mask2
     */

    /*
     * viterbi mask 2  2nd set for per data rate puncturing
     * four levels 0-3
     *  - mask_select, 8 bits for rates (reg 67)
     *  - mask (-27 to 27) (reg 98,0x9988 to 101,0x9994)
     *      [1 2 2 1] for -9.6 or [1 2 1] for +16
     */
    cur_vit_mask = 6100;
    upper        = bin + 120;
    lower        = bin - 120;

    for (i = 0; i < 123; i++) {
        if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
            if ((abs(cur_vit_mask - bin)) < 75) {
                mask_amt = 1;
            } else {
                mask_amt = 0;
            }
            if (cur_vit_mask < 0) {
                mask_m[abs(cur_vit_mask / 100)] = mask_amt;
            } else {
                mask_p[cur_vit_mask / 100] = mask_amt;
            }
        }
        cur_vit_mask -= 100;
    }

    tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
          | (mask_m[48] << 26) | (mask_m[49] << 24)
          | (mask_m[50] << 22) | (mask_m[51] << 20)
          | (mask_m[52] << 18) | (mask_m[53] << 16)
          | (mask_m[54] << 14) | (mask_m[55] << 12)
          | (mask_m[56] << 10) | (mask_m[57] <<  8)
          | (mask_m[58] <<  6) | (mask_m[59] <<  4)
          | (mask_m[60] <<  2) | (mask_m[61] <<  0);
    OS_REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
    OS_REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);

    tmp_mask =             (mask_m[31] << 28)
          | (mask_m[32] << 26) | (mask_m[33] << 24)
          | (mask_m[34] << 22) | (mask_m[35] << 20)
          | (mask_m[36] << 18) | (mask_m[37] << 16)
          | (mask_m[48] << 14) | (mask_m[39] << 12)
          | (mask_m[40] << 10) | (mask_m[41] <<  8)
          | (mask_m[42] <<  6) | (mask_m[43] <<  4)
          | (mask_m[44] <<  2) | (mask_m[45] <<  0);
    OS_REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
    OS_REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);

    tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
          | (mask_m[18] << 26) | (mask_m[18] << 24)
          | (mask_m[20] << 22) | (mask_m[20] << 20)
          | (mask_m[22] << 18) | (mask_m[22] << 16)
          | (mask_m[24] << 14) | (mask_m[24] << 12)
          | (mask_m[25] << 10) | (mask_m[26] <<  8)
          | (mask_m[27] <<  6) | (mask_m[28] <<  4)
          | (mask_m[29] <<  2) | (mask_m[30] <<  0);
    OS_REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
    OS_REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);

    tmp_mask = (mask_m[ 0] << 30) | (mask_m[ 1] << 28)
          | (mask_m[ 2] << 26) | (mask_m[ 3] << 24)
          | (mask_m[ 4] << 22) | (mask_m[ 5] << 20)
          | (mask_m[ 6] << 18) | (mask_m[ 7] << 16)
          | (mask_m[ 8] << 14) | (mask_m[ 9] << 12)
          | (mask_m[10] << 10) | (mask_m[11] <<  8)
          | (mask_m[12] <<  6) | (mask_m[13] <<  4)
          | (mask_m[14] <<  2) | (mask_m[15] <<  0);
    OS_REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
    OS_REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);

    tmp_mask =             (mask_p[15] << 28)
          | (mask_p[14] << 26) | (mask_p[13] << 24)
          | (mask_p[12] << 22) | (mask_p[11] << 20)
          | (mask_p[10] << 18) | (mask_p[ 9] << 16)
          | (mask_p[ 8] << 14) | (mask_p[ 7] << 12)
          | (mask_p[ 6] << 10) | (mask_p[ 5] <<  8)
          | (mask_p[ 4] <<  6) | (mask_p[ 3] <<  4)
          | (mask_p[ 2] <<  2) | (mask_p[ 1] <<  0);
    OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
    OS_REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);

    tmp_mask =             (mask_p[30] << 28)
          | (mask_p[29] << 26) | (mask_p[28] << 24)
          | (mask_p[27] << 22) | (mask_p[26] << 20)
          | (mask_p[25] << 18) | (mask_p[24] << 16)
          | (mask_p[23] << 14) | (mask_p[22] << 12)
          | (mask_p[21] << 10) | (mask_p[20] <<  8)
          | (mask_p[19] <<  6) | (mask_p[18] <<  4)
          | (mask_p[17] <<  2) | (mask_p[16] <<  0);
    OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
    OS_REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);

    tmp_mask =             (mask_p[45] << 28)
          | (mask_p[44] << 26) | (mask_p[43] << 24)
          | (mask_p[42] << 22) | (mask_p[41] << 20)
          | (mask_p[40] << 18) | (mask_p[39] << 16)
          | (mask_p[38] << 14) | (mask_p[37] << 12)
          | (mask_p[36] << 10) | (mask_p[35] <<  8)
          | (mask_p[34] <<  6) | (mask_p[33] <<  4)
          | (mask_p[32] <<  2) | (mask_p[31] <<  0);
    OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
    OS_REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);

    tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
          | (mask_p[59] << 26) | (mask_p[58] << 24)
          | (mask_p[57] << 22) | (mask_p[56] << 20)
          | (mask_p[55] << 18) | (mask_p[54] << 16)
          | (mask_p[53] << 14) | (mask_p[52] << 12)
          | (mask_p[51] << 10) | (mask_p[50] <<  8)
          | (mask_p[49] <<  6) | (mask_p[48] <<  4)
          | (mask_p[47] <<  2) | (mask_p[46] <<  0);
    OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
    OS_REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
}
Ejemplo n.º 27
0
static HAL_BOOL
ar5416LoadNF(struct ath_hal *ah, const struct ieee80211_channel *chan)
{
	static const uint32_t ar5416_cca_regs[] = {
		AR_PHY_CCA,
		AR_PHY_CH1_CCA,
		AR_PHY_CH2_CCA,
		AR_PHY_EXT_CCA,
		AR_PHY_CH1_EXT_CCA,
		AR_PHY_CH2_EXT_CCA
	};
	struct ar5212NfCalHist *h;
	int i;
	int32_t val;
	uint8_t chainmask;
	int16_t default_nf = ar5416GetDefaultNF(ah, chan);

	/*
	 * Force NF calibration for all chains.
	 */
	if (AR_SREV_KITE(ah)) {
		/* Kite has only one chain */
		chainmask = 0x9;
	} else if (AR_SREV_MERLIN(ah) || AR_SREV_KIWI(ah)) {
		/* Merlin/Kiwi has only two chains */
		chainmask = 0x1B;
	} else {
		chainmask = 0x3F;
	}

	/*
	 * Write filtered NF values into maxCCApwr register parameter
	 * so we can load below.
	 */
	h = AH5416(ah)->ah_cal.nfCalHist;
	HALDEBUG(ah, HAL_DEBUG_NFCAL, "CCA: ");
	for (i = 0; i < AR5416_NUM_NF_READINGS; i ++) {

		/* Don't write to EXT radio CCA registers unless in HT/40 mode */
		/* XXX this check should really be cleaner! */
		if (i > 2 && !IEEE80211_IS_CHAN_HT40(chan))
			continue;

		if (chainmask & (1 << i)) { 
			int16_t nf_val;

			if (h)
				nf_val = h[i].privNF;
			else
				nf_val = default_nf;

			val = OS_REG_READ(ah, ar5416_cca_regs[i]);
			val &= 0xFFFFFE00;
			val |= (((uint32_t) nf_val << 1) & 0x1ff);
			HALDEBUG(ah, HAL_DEBUG_NFCAL, "[%d: %d]", i, nf_val);
			OS_REG_WRITE(ah, ar5416_cca_regs[i], val);
		}
	}
	HALDEBUG(ah, HAL_DEBUG_NFCAL, "\n");

	/* Load software filtered NF value into baseband internal minCCApwr variable. */
	OS_REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF);
	OS_REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
	OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);

	/* Wait for load to complete, should be fast, a few 10s of us. */
	if (! ar5212WaitNFCalComplete(ah, 1000)) {
		/*
		 * We timed out waiting for the noisefloor to load, probably due to an
		 * in-progress rx. Simply return here and allow the load plenty of time
		 * to complete before the next calibration interval.  We need to avoid
		 * trying to load -50 (which happens below) while the previous load is
		 * still in progress as this can cause rx deafness. Instead by returning
		 * here, the baseband nf cal will just be capped by our present
		 * noisefloor until the next calibration timer.
		 */
		HALDEBUG(ah, HAL_DEBUG_UNMASKABLE, "Timeout while waiting for "
		    "nf to load: AR_PHY_AGC_CONTROL=0x%x\n",
		    OS_REG_READ(ah, AR_PHY_AGC_CONTROL));
		return AH_FALSE;
	}

	/*
	 * Restore maxCCAPower register parameter again so that we're not capped
	 * by the median we just loaded.  This will be initial (and max) value
	 * of next noise floor calibration the baseband does.  
	 */
	for (i = 0; i < AR5416_NUM_NF_READINGS; i ++) {

		/* Don't write to EXT radio CCA registers unless in HT/40 mode */
		/* XXX this check should really be cleaner! */
		if (i > 2 && !IEEE80211_IS_CHAN_HT40(chan))
			continue;

		if (chainmask & (1 << i)) {	
			val = OS_REG_READ(ah, ar5416_cca_regs[i]);
			val &= 0xFFFFFE00;
			val |= (((uint32_t)(-50) << 1) & 0x1ff);
			OS_REG_WRITE(ah, ar5416_cca_regs[i], val);
		}
	}
	return AH_TRUE;
}
Ejemplo n.º 28
0
/*
 * Control Adaptive Noise Immunity Parameters
 */
HAL_BOOL
ar5212AniControl(struct ath_hal *ah, HAL_ANI_CMD cmd, int param)
{
#define N(a) (sizeof(a)/sizeof(a[0]))
	typedef int TABLE[];
	struct ath_hal_5212 *ahp = AH5212(ah);
	struct ar5212AniState *aniState = ahp->ah_curani;

	switch (cmd) {
	case HAL_ANI_NOISE_IMMUNITY_LEVEL: {
		u_int level = param;

		if (level >= N(ahp->ah_totalSizeDesired)) {
			HALDEBUG(ah, "%s: level out of range (%u > %u)\n",
				__func__, level, N(ahp->ah_totalSizeDesired));
			return AH_FALSE;
		}

		OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
			AR_PHY_DESIRED_SZ_TOT_DES, ahp->ah_totalSizeDesired[level]);
		OS_REG_RMW_FIELD(ah, AR_PHY_AGC_CTL1,
			  AR_PHY_AGC_CTL1_COARSE_LOW, ahp->ah_coarseLow[level]);
		OS_REG_RMW_FIELD(ah, AR_PHY_AGC_CTL1,
			  AR_PHY_AGC_CTL1_COARSE_HIGH, ahp->ah_coarseHigh[level]);
		OS_REG_RMW_FIELD(ah, AR_PHY_FIND_SIG,
			AR_PHY_FIND_SIG_FIRPWR, ahp->ah_firpwr[level]);

		if (level > aniState->noiseImmunityLevel)
			ahp->ah_stats.ast_ani_niup++;
		else if (level < aniState->noiseImmunityLevel)
			ahp->ah_stats.ast_ani_nidown++;
		aniState->noiseImmunityLevel = level;
		break;
	}
	case HAL_ANI_OFDM_WEAK_SIGNAL_DETECTION: {
		const TABLE m1ThreshLow   = { 127,   50 };
		const TABLE m2ThreshLow   = { 127,   40 };
		const TABLE m1Thresh      = { 127, 0x4d };
		const TABLE m2Thresh      = { 127, 0x40 };
		const TABLE m2CountThr    = {  31,   16 };
		const TABLE m2CountThrLow = {  63,   48 };
		u_int on = param ? 1 : 0;

		OS_REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
			AR_PHY_SFCORR_LOW_M1_THRESH_LOW, m1ThreshLow[on]);
		OS_REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
			AR_PHY_SFCORR_LOW_M2_THRESH_LOW, m2ThreshLow[on]);
		OS_REG_RMW_FIELD(ah, AR_PHY_SFCORR,
			AR_PHY_SFCORR_M1_THRESH, m1Thresh[on]);
		OS_REG_RMW_FIELD(ah, AR_PHY_SFCORR,
			AR_PHY_SFCORR_M2_THRESH, m2Thresh[on]);
		OS_REG_RMW_FIELD(ah, AR_PHY_SFCORR,
			AR_PHY_SFCORR_M2COUNT_THR, m2CountThr[on]);
		OS_REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
			AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW, m2CountThrLow[on]);

		if (on) {
			OS_REG_SET_BIT(ah, AR_PHY_SFCORR_LOW,
				AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
		} else {
			OS_REG_CLR_BIT(ah, AR_PHY_SFCORR_LOW,
				AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
		}
		if (!on != aniState->ofdmWeakSigDetectOff) {
			if (on)
				ahp->ah_stats.ast_ani_ofdmon++;
			else
				ahp->ah_stats.ast_ani_ofdmoff++;
			aniState->ofdmWeakSigDetectOff = !on;
		}
		break;
	}
	case HAL_ANI_CCK_WEAK_SIGNAL_THR: {
		const TABLE weakSigThrCck = { 8, 6 };
		u_int high = param ? 1 : 0;

		OS_REG_RMW_FIELD(ah, AR_PHY_CCK_DETECT,
			AR_PHY_CCK_DETECT_WEAK_SIG_THR_CCK,
			weakSigThrCck[high]);
		if (high != aniState->cckWeakSigThreshold) {
			if (high)
				ahp->ah_stats.ast_ani_cckhigh++;
			else
				ahp->ah_stats.ast_ani_ccklow++;
			aniState->cckWeakSigThreshold = high;
		}
		break;
	}
	case HAL_ANI_FIRSTEP_LEVEL: {
		const TABLE firstep = { 0, 4, 8 };
		u_int level = param;

		if (level >= N(firstep)) {
			HALDEBUG(ah, "%s: level out of range (%u > %u)\n",
				__func__, level, N(firstep));
			return AH_FALSE;
		}
		OS_REG_RMW_FIELD(ah, AR_PHY_FIND_SIG,
			AR_PHY_FIND_SIG_FIRSTEP, firstep[level]);
		if (level > aniState->firstepLevel)
			ahp->ah_stats.ast_ani_stepup++;
		else if (level < aniState->firstepLevel)
			ahp->ah_stats.ast_ani_stepdown++;
		aniState->firstepLevel = level;
		break;
	}
	case HAL_ANI_SPUR_IMMUNITY_LEVEL: {
		const TABLE cycpwrThr1 = { 2, 4, 6, 8, 10, 12, 14, 16 };
		u_int level = param;

		if (level >= N(cycpwrThr1)) {
			HALDEBUG(ah, "%s: level out of range (%u > %u)\n",
				__func__, level, N(cycpwrThr1));
			return AH_FALSE;
		}
		OS_REG_RMW_FIELD(ah, AR_PHY_TIMING5,
			AR_PHY_TIMING5_CYCPWR_THR1, cycpwrThr1[level]);
		if (level > aniState->spurImmunityLevel)
			ahp->ah_stats.ast_ani_spurup++;
		else if (level < aniState->spurImmunityLevel)
			ahp->ah_stats.ast_ani_spurdown++;
		aniState->spurImmunityLevel = level;
		break;
	}
	case HAL_ANI_PRESENT:
		break;
#ifdef AH_PRIVATE_DIAG
	case HAL_ANI_MODE:
		if (param == 0) {
			ahp->ah_procPhyErr &= ~HAL_PROCESS_ANI;
			/* Turn off HW counters if we have them */
			ar5212AniDetach(ah);
			ar5212SetRxFilter(ah,
				ar5212GetRxFilter(ah) &~ HAL_RX_FILTER_PHYERR);
		} else {			/* normal/auto mode */
			ahp->ah_procPhyErr |= HAL_PROCESS_ANI;
			if (ahp->ah_hasHwPhyCounters) {
				ar5212SetRxFilter(ah,
					ar5212GetRxFilter(ah) &~ HAL_RX_FILTER_PHYERR);
			} else {
				ar5212SetRxFilter(ah,
					ar5212GetRxFilter(ah) | HAL_RX_FILTER_PHYERR);
			}
		}
		break;
	case HAL_ANI_PHYERR_RESET:
		ahp->ah_stats.ast_ani_ofdmerrs = 0;
		ahp->ah_stats.ast_ani_cckerrs = 0;
		break;
#endif /* AH_PRIVATE_DIAG */
	default:
		HALDEBUG(ah, "%s: invalid cmd %u\n", __func__, cmd);
		return AH_FALSE;
	}
	return AH_TRUE;
#undef	N
}
Ejemplo n.º 29
0
static void
ar9285AniSetup(struct ath_hal *ah)
{
	/*
	 * These are the parameters from the AR5416 ANI code;
	 * they likely need quite a bit of adjustment for the
	 * AR9285.
	 */
        static const struct ar5212AniParams aniparams = {
                .maxNoiseImmunityLevel  = 4,    /* levels 0..4 */
                .totalSizeDesired       = { -55, -55, -55, -55, -62 },
                .coarseHigh             = { -14, -14, -14, -14, -12 },
                .coarseLow              = { -64, -64, -64, -64, -70 },
                .firpwr                 = { -78, -78, -78, -78, -80 },
                .maxSpurImmunityLevel   = 7,
                .cycPwrThr1             = { 2, 4, 6, 8, 10, 12, 14, 16 },
                .maxFirstepLevel        = 2,    /* levels 0..2 */
                .firstep                = { 0, 4, 8 },
                .ofdmTrigHigh           = 500,
                .ofdmTrigLow            = 200,
                .cckTrigHigh            = 200,
                .cckTrigLow             = 100,
                .rssiThrHigh            = 40,
                .rssiThrLow             = 7,
                .period                 = 100,
        };
	/* NB: disable ANI noise immmunity for reliable RIFS rx */
	AH5416(ah)->ah_ani_function &= ~(1 << HAL_ANI_NOISE_IMMUNITY_LEVEL);

        ar5416AniAttach(ah, &aniparams, &aniparams, AH_TRUE);
}

static const char * ar9285_lna_conf[] = {
	"LNA1-LNA2",
	"LNA2",
	"LNA1",
	"LNA1+LNA2",
};

static void
ar9285_eeprom_print_diversity_settings(struct ath_hal *ah)
{
	const HAL_EEPROM_v4k *ee = AH_PRIVATE(ah)->ah_eeprom;
	const MODAL_EEP4K_HEADER *pModal = &ee->ee_base.modalHeader;

	ath_hal_printf(ah, "[ath] AR9285 Main LNA config: %s\n",
	    ar9285_lna_conf[(pModal->antdiv_ctl2 >> 2) & 0x3]);
	ath_hal_printf(ah, "[ath] AR9285 Alt LNA config: %s\n",
	    ar9285_lna_conf[pModal->antdiv_ctl2 & 0x3]);
	ath_hal_printf(ah, "[ath] LNA diversity %s, Diversity %s\n",
	    ((pModal->antdiv_ctl1 & 0x1) ? "enabled" : "disabled"),
	    ((pModal->antdiv_ctl1 & 0x8) ? "enabled" : "disabled"));
}

/*
 * Attach for an AR9285 part.
 */
static struct ath_hal *
ar9285Attach(uint16_t devid, HAL_SOFTC sc,
	HAL_BUS_TAG st, HAL_BUS_HANDLE sh, uint16_t *eepromdata,
	HAL_STATUS *status)
{
	struct ath_hal_9285 *ahp9285;
	struct ath_hal_5212 *ahp;
	struct ath_hal *ah;
	uint32_t val;
	HAL_STATUS ecode;
	HAL_BOOL rfStatus;

	HALDEBUG(AH_NULL, HAL_DEBUG_ATTACH, "%s: sc %p st %p sh %p\n",
	    __func__, sc, (void*) st, (void*) sh);

	/* NB: memory is returned zero'd */
	ahp9285 = ath_hal_malloc(sizeof (struct ath_hal_9285));
	if (ahp9285 == AH_NULL) {
		HALDEBUG(AH_NULL, HAL_DEBUG_ANY,
		    "%s: cannot allocate memory for state block\n", __func__);
		*status = HAL_ENOMEM;
		return AH_NULL;
	}
	ahp = AH5212(ahp9285);
	ah = &ahp->ah_priv.h;

	ar5416InitState(AH5416(ah), devid, sc, st, sh, status);

	/*
	 * Use the "local" EEPROM data given to us by the higher layers.
	 * This is a private copy out of system flash. The Linux ath9k
	 * commit for the initial AR9130 support mentions MMIO flash
	 * access is "unreliable." -adrian
	 */
	if (eepromdata != AH_NULL) {
		AH_PRIVATE(ah)->ah_eepromRead = ath_hal_EepromDataRead;
		AH_PRIVATE(ah)->ah_eepromWrite = NULL;
		ah->ah_eepromdata = eepromdata;
	}

	/* override with 9285 specific state */
	AH5416(ah)->ah_initPLL = ar9280InitPLL;
	AH5416(ah)->ah_btCoexSetDiversity = ar9285BTCoexAntennaDiversity;

	ah->ah_setAntennaSwitch		= ar9285SetAntennaSwitch;
	ah->ah_configPCIE		= ar9285ConfigPCIE;
	ah->ah_disablePCIE		= ar9285DisablePCIE;
	ah->ah_setTxPower		= ar9285SetTransmitPower;
	ah->ah_setBoardValues		= ar9285SetBoardValues;
	ah->ah_btCoexSetParameter	= ar9285BTCoexSetParameter;
	ah->ah_divLnaConfGet		= ar9285_antdiv_comb_conf_get;
	ah->ah_divLnaConfSet		= ar9285_antdiv_comb_conf_set;

	AH5416(ah)->ah_cal.iqCalData.calData = &ar9280_iq_cal;
	AH5416(ah)->ah_cal.adcGainCalData.calData = &ar9280_adc_gain_cal;
	AH5416(ah)->ah_cal.adcDcCalData.calData = &ar9280_adc_dc_cal;
	AH5416(ah)->ah_cal.adcDcCalInitData.calData = &ar9280_adc_init_dc_cal;
	AH5416(ah)->ah_cal.suppCals = ADC_GAIN_CAL | ADC_DC_CAL | IQ_MISMATCH_CAL;

	AH5416(ah)->ah_spurMitigate	= ar9280SpurMitigate;
	AH5416(ah)->ah_writeIni		= ar9285WriteIni;
	AH5416(ah)->ah_rx_chainmask	= AR9285_DEFAULT_RXCHAINMASK;
	AH5416(ah)->ah_tx_chainmask	= AR9285_DEFAULT_TXCHAINMASK;
	
	ahp->ah_maxTxTrigLev		= MAX_TX_FIFO_THRESHOLD >> 1;

	if (!ar5416SetResetReg(ah, HAL_RESET_POWER_ON)) {
		/* reset chip */
		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: couldn't reset chip\n",
		    __func__);
		ecode = HAL_EIO;
		goto bad;
	}

	if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) {
		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: couldn't wakeup chip\n",
		    __func__);
		ecode = HAL_EIO;
		goto bad;
	}
	/* Read Revisions from Chips before taking out of reset */
	val = OS_REG_READ(ah, AR_SREV);
	HALDEBUG(ah, HAL_DEBUG_ATTACH,
	    "%s: ID 0x%x VERSION 0x%x TYPE 0x%x REVISION 0x%x\n",
	    __func__, MS(val, AR_XSREV_ID), MS(val, AR_XSREV_VERSION),
	    MS(val, AR_XSREV_TYPE), MS(val, AR_XSREV_REVISION));
	/* NB: include chip type to differentiate from pre-Sowl versions */
	AH_PRIVATE(ah)->ah_macVersion =
	    (val & AR_XSREV_VERSION) >> AR_XSREV_TYPE_S;
	AH_PRIVATE(ah)->ah_macRev = MS(val, AR_XSREV_REVISION);
	AH_PRIVATE(ah)->ah_ispcie = (val & AR_XSREV_TYPE_HOST_MODE) == 0;

	/* setup common ini data; rf backends handle remainder */
	if (AR_SREV_KITE_12_OR_LATER(ah)) {
		HAL_INI_INIT(&ahp->ah_ini_modes, ar9285Modes_v2, 6);
		HAL_INI_INIT(&ahp->ah_ini_common, ar9285Common_v2, 2);
		HAL_INI_INIT(&AH5416(ah)->ah_ini_pcieserdes,
		    ar9285PciePhy_clkreq_always_on_L1_v2, 2);
	} else {
		HAL_INI_INIT(&ahp->ah_ini_modes, ar9285Modes, 6);
		HAL_INI_INIT(&ahp->ah_ini_common, ar9285Common, 2);
		HAL_INI_INIT(&AH5416(ah)->ah_ini_pcieserdes,
		    ar9285PciePhy_clkreq_always_on_L1, 2);
	}
	ar5416AttachPCIE(ah);

	/* Attach methods that require MAC version/revision info */
	if (AR_SREV_KITE_12_OR_LATER(ah))
		AH5416(ah)->ah_cal_initcal      = ar9285InitCalHardware;
	if (AR_SREV_KITE_11_OR_LATER(ah))
		AH5416(ah)->ah_cal_pacal        = ar9002_hw_pa_cal;

	ecode = ath_hal_v4kEepromAttach(ah);
	if (ecode != HAL_OK)
		goto bad;

	if (!ar5416ChipReset(ah, AH_NULL)) {	/* reset chip */
		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n",
		    __func__);
		ecode = HAL_EIO;
		goto bad;
	}

	AH_PRIVATE(ah)->ah_phyRev = OS_REG_READ(ah, AR_PHY_CHIP_ID);

	if (!ar5212ChipTest(ah)) {
		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: hardware self-test failed\n",
		    __func__);
		ecode = HAL_ESELFTEST;
		goto bad;
	}

	/*
	 * Set correct Baseband to analog shift
	 * setting to access analog chips.
	 */
	OS_REG_WRITE(ah, AR_PHY(0), 0x00000007);

	/* Read Radio Chip Rev Extract */
	AH_PRIVATE(ah)->ah_analog5GhzRev = ar5416GetRadioRev(ah);
	switch (AH_PRIVATE(ah)->ah_analog5GhzRev & AR_RADIO_SREV_MAJOR) {
        case AR_RAD2133_SREV_MAJOR:	/* Sowl: 2G/3x3 */
	case AR_RAD5133_SREV_MAJOR:	/* Sowl: 2+5G/3x3 */
		break;
	default:
		if (AH_PRIVATE(ah)->ah_analog5GhzRev == 0) {
			AH_PRIVATE(ah)->ah_analog5GhzRev =
				AR_RAD5133_SREV_MAJOR;
			break;
		}
#ifdef AH_DEBUG
		HALDEBUG(ah, HAL_DEBUG_ANY,
		    "%s: 5G Radio Chip Rev 0x%02X is not supported by "
		    "this driver\n", __func__,
		    AH_PRIVATE(ah)->ah_analog5GhzRev);
		ecode = HAL_ENOTSUPP;
		goto bad;
#endif
	}
	rfStatus = ar9285RfAttach(ah, &ecode);
	if (!rfStatus) {
		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: RF setup failed, status %u\n",
		    __func__, ecode);
		goto bad;
	}

	HAL_INI_INIT(&ahp9285->ah_ini_rxgain, ar9280Modes_original_rxgain_v2,
	    6);

	if (AR_SREV_9285E_20(ah))
		ath_hal_printf(ah, "[ath] AR9285E_20 detected; using XE TX gain tables\n");

	/* setup txgain table */
	switch (ath_hal_eepromGet(ah, AR_EEP_TXGAIN_TYPE, AH_NULL)) {
	case AR5416_EEP_TXGAIN_HIGH_POWER:
		if (AR_SREV_9285E_20(ah))
			HAL_INI_INIT(&ahp9285->ah_ini_txgain,
			    ar9285Modes_XE2_0_high_power, 6);
		else
			HAL_INI_INIT(&ahp9285->ah_ini_txgain,
			    ar9285Modes_high_power_tx_gain_v2, 6);
		break;
	case AR5416_EEP_TXGAIN_ORIG:
		if (AR_SREV_9285E_20(ah))
			HAL_INI_INIT(&ahp9285->ah_ini_txgain,
			    ar9285Modes_XE2_0_normal_power, 6);
		else
			HAL_INI_INIT(&ahp9285->ah_ini_txgain,
			    ar9285Modes_original_tx_gain_v2, 6);
		break;
	default:
		HALASSERT(AH_FALSE);
		goto bad;		/* XXX ? try to continue */
	}

	/*
	 * Got everything we need now to setup the capabilities.
	 */
	if (!ar9285FillCapabilityInfo(ah)) {
		ecode = HAL_EEREAD;
		goto bad;
	}

	/*
	 * Print out the EEPROM antenna configuration mapping.
	 * Some devices have a hard-coded LNA configuration profile;
	 * others enable diversity.
	 */
	ar9285_eeprom_print_diversity_settings(ah);

	/* Print out whether the EEPROM settings enable AR9285 diversity */
	if (ar9285_check_div_comb(ah)) {
		ath_hal_printf(ah, "[ath] Enabling diversity for Kite\n");
	}

	/* Disable 11n for the AR2427 */
	if (devid == AR2427_DEVID_PCIE)
		AH_PRIVATE(ah)->ah_caps.halHTSupport = AH_FALSE;

	ecode = ath_hal_eepromGet(ah, AR_EEP_MACADDR, ahp->ah_macaddr);
	if (ecode != HAL_OK) {
		HALDEBUG(ah, HAL_DEBUG_ANY,
		    "%s: error getting mac address from EEPROM\n", __func__);
		goto bad;
        }
	/* XXX How about the serial number ? */
	/* Read Reg Domain */
	AH_PRIVATE(ah)->ah_currentRD =
	    ath_hal_eepromGet(ah, AR_EEP_REGDMN_0, AH_NULL);
	/*
         * For Kite and later chipsets, the following bits are not
	 * programmed in EEPROM and so are set as enabled always.
	 */
	AH_PRIVATE(ah)->ah_currentRDext = AR9285_RDEXT_DEFAULT;

	/*
	 * ah_miscMode is populated by ar5416FillCapabilityInfo()
	 * starting from griffin. Set here to make sure that
	 * AR_MISC_MODE_MIC_NEW_LOC_ENABLE is set before a GTK is
	 * placed into hardware.
	 */
	if (ahp->ah_miscMode != 0)
		OS_REG_WRITE(ah, AR_MISC_MODE, OS_REG_READ(ah, AR_MISC_MODE) | ahp->ah_miscMode);

	ar9285AniSetup(ah);			/* Anti Noise Immunity */

	/* Setup noise floor min/max/nominal values */
	AH5416(ah)->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9285_2GHZ;
	AH5416(ah)->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9285_2GHZ;
	AH5416(ah)->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9285_2GHZ;
	/* XXX no 5ghz values? */

	ar5416InitNfHistBuff(AH5416(ah)->ah_cal.nfCalHist);

	HALDEBUG(ah, HAL_DEBUG_ATTACH, "%s: return\n", __func__);

	return ah;
bad:
	if (ah != AH_NULL)
		ah->ah_detach(ah);
	if (status)
		*status = ecode;
	return AH_NULL;
}

static void
ar9285ConfigPCIE(struct ath_hal *ah, HAL_BOOL restore, HAL_BOOL power_off)
{
	uint32_t val;

	/*
	 * This workaround needs some integration work with the HAL
	 * config parameters and the if_ath_pci.c glue.
	 * Specifically, read the value of the PCI register 0x70c
	 * (4 byte PCI config space register) and store it in ath_hal_war70c.
	 * Then if it's non-zero, the below WAR would override register
	 * 0x570c upon suspend/resume.
	 */
#if 0
	if (AR_SREV_9285E_20(ah)) {
		val = AH_PRIVATE(ah)->ah_config.ath_hal_war70c;
		if (val) {
			val &= 0xffff00ff;
			val |= 0x6f00;
			OS_REG_WRITE(ah, 0x570c, val);
		}
	}
#endif

	if (AH_PRIVATE(ah)->ah_ispcie && !restore) {
		ath_hal_ini_write(ah, &AH5416(ah)->ah_ini_pcieserdes, 1, 0);
		OS_DELAY(1000);
	}

	/*
	 * Set PCIe workaround bits
	 *
	 * NOTE:
	 *
	 * In Merlin and Kite, bit 14 in WA register (disable L1) should only
	 * be set when device enters D3 and be cleared when device comes back
	 * to D0.
	 */
	if (power_off) {                /* Power-off */
		OS_REG_CLR_BIT(ah, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);

		val = OS_REG_READ(ah, AR_WA);

		/*
		 * Disable bit 6 and 7 before entering D3 to prevent
		 * system hang.
		 */
		val &= ~(AR_WA_BIT6 | AR_WA_BIT7);

		/*
		 * See above: set AR_WA_D3_L1_DISABLE when entering D3 state.
		 *
		 * XXX The reference HAL does it this way - it only sets
		 * AR_WA_D3_L1_DISABLE if it's set in AR9280_WA_DEFAULT,
		 * which it (currently) isn't.  So the following statement
		 * is currently a NOP.
		 */
		if (AR9285_WA_DEFAULT & AR_WA_D3_L1_DISABLE)
			val |= AR_WA_D3_L1_DISABLE;

		if (AR_SREV_9285E_20(ah))
			val |= AR_WA_BIT23;

		OS_REG_WRITE(ah, AR_WA, val);
	} else {			/* Power-on */
		val = AR9285_WA_DEFAULT;
		/*
		 * See note above: make sure L1_DISABLE is not set.
		 */
		val &= (~AR_WA_D3_L1_DISABLE);

		/* Software workaroud for ASPM system hang. */
		val |= (AR_WA_BIT6 | AR_WA_BIT7);

		if (AR_SREV_9285E_20(ah))
			val |= AR_WA_BIT23;

		OS_REG_WRITE(ah, AR_WA, val);

		/* set bit 19 to allow forcing of pcie core into L1 state */
		OS_REG_SET_BIT(ah, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);
	}
}
Ejemplo n.º 30
0
/*
 * Enable radar detection and set the radar parameters per the
 * values in pe
 */
void
ar5416EnableDfs(struct ath_hal *ah, HAL_PHYERR_PARAM *pe)
{
	uint32_t val;

	val = OS_REG_READ(ah, AR_PHY_RADAR_0);

	if (pe->pe_firpwr != HAL_PHYERR_PARAM_NOVAL) {
		val &= ~AR_PHY_RADAR_0_FIRPWR;
		val |= SM(pe->pe_firpwr, AR_PHY_RADAR_0_FIRPWR);
	}
	if (pe->pe_rrssi != HAL_PHYERR_PARAM_NOVAL) {
		val &= ~AR_PHY_RADAR_0_RRSSI;
		val |= SM(pe->pe_rrssi, AR_PHY_RADAR_0_RRSSI);
	}
	if (pe->pe_height != HAL_PHYERR_PARAM_NOVAL) {
		val &= ~AR_PHY_RADAR_0_HEIGHT;
		val |= SM(pe->pe_height, AR_PHY_RADAR_0_HEIGHT);
	}
	if (pe->pe_prssi != HAL_PHYERR_PARAM_NOVAL) {
		val &= ~AR_PHY_RADAR_0_PRSSI;
		val |= SM(pe->pe_prssi, AR_PHY_RADAR_0_PRSSI);
	}
	if (pe->pe_inband != HAL_PHYERR_PARAM_NOVAL) {
		val &= ~AR_PHY_RADAR_0_INBAND;
		val |= SM(pe->pe_inband, AR_PHY_RADAR_0_INBAND);
	}

	/*Enable FFT data*/
	val |= AR_PHY_RADAR_0_FFT_ENA;
	OS_REG_WRITE(ah, AR_PHY_RADAR_0, val);

	/* Implicitly enable */
	if (pe->pe_enabled == 1)
		OS_REG_SET_BIT(ah, AR_PHY_RADAR_0, AR_PHY_RADAR_0_ENA);
	else if (pe->pe_enabled == 0)
		OS_REG_CLR_BIT(ah, AR_PHY_RADAR_0, AR_PHY_RADAR_0_ENA);

	if (pe->pe_usefir128 == 1)
		OS_REG_SET_BIT(ah, AR_PHY_RADAR_1, AR_PHY_RADAR_1_USE_FIR128);
	else if (pe->pe_usefir128 == 0)
		OS_REG_CLR_BIT(ah, AR_PHY_RADAR_1, AR_PHY_RADAR_1_USE_FIR128);

	if (pe->pe_enmaxrssi == 1)
		OS_REG_SET_BIT(ah, AR_PHY_RADAR_1, AR_PHY_RADAR_1_MAX_RRSSI);
	else if (pe->pe_enmaxrssi == 0)
		OS_REG_CLR_BIT(ah, AR_PHY_RADAR_1, AR_PHY_RADAR_1_MAX_RRSSI);

	if (pe->pe_blockradar == 1)
		OS_REG_SET_BIT(ah, AR_PHY_RADAR_1, AR_PHY_RADAR_1_BLOCK_CHECK);
	else if (pe->pe_blockradar == 0)
		OS_REG_CLR_BIT(ah, AR_PHY_RADAR_1, AR_PHY_RADAR_1_BLOCK_CHECK);

	if (pe->pe_relstep != HAL_PHYERR_PARAM_NOVAL) {
		val = OS_REG_READ(ah, AR_PHY_RADAR_1);
		val &= ~AR_PHY_RADAR_1_RELSTEP_THRESH;
		val |= SM(pe->pe_relstep, AR_PHY_RADAR_1_RELSTEP_THRESH);
		OS_REG_WRITE(ah, AR_PHY_RADAR_1, val);
	}
	if (pe->pe_relpwr != HAL_PHYERR_PARAM_NOVAL) {
		val = OS_REG_READ(ah, AR_PHY_RADAR_1);
		val &= ~AR_PHY_RADAR_1_RELPWR_THRESH;
		val |= SM(pe->pe_relpwr, AR_PHY_RADAR_1_RELPWR_THRESH);
		OS_REG_WRITE(ah, AR_PHY_RADAR_1, val);
	}

	if (pe->pe_en_relstep_check == 1)
		OS_REG_SET_BIT(ah, AR_PHY_RADAR_1,
		    AR_PHY_RADAR_1_RELSTEP_CHECK);
	else if (pe->pe_en_relstep_check == 0)
		OS_REG_CLR_BIT(ah, AR_PHY_RADAR_1,
		    AR_PHY_RADAR_1_RELSTEP_CHECK);

	if (pe->pe_enrelpwr == 1)
		OS_REG_SET_BIT(ah, AR_PHY_RADAR_1,
		    AR_PHY_RADAR_1_RELPWR_ENA);
	else if (pe->pe_enrelpwr == 0)
		OS_REG_CLR_BIT(ah, AR_PHY_RADAR_1,
		    AR_PHY_RADAR_1_RELPWR_ENA);

	if (pe->pe_maxlen != HAL_PHYERR_PARAM_NOVAL) {
		val = OS_REG_READ(ah, AR_PHY_RADAR_1);
		val &= ~AR_PHY_RADAR_1_MAXLEN;
		val |= SM(pe->pe_maxlen, AR_PHY_RADAR_1_MAXLEN);
		OS_REG_WRITE(ah, AR_PHY_RADAR_1, val);
	}

	/*
	 * Enable HT/40 if the upper layer asks;
	 * it should check the channel is HT/40 and HAL_CAP_EXT_CHAN_DFS
	 * is available.
	 */
	if (pe->pe_extchannel == 1)
		OS_REG_SET_BIT(ah, AR_PHY_RADAR_EXT, AR_PHY_RADAR_EXT_ENA);
	else if (pe->pe_extchannel == 0)
		OS_REG_CLR_BIT(ah, AR_PHY_RADAR_EXT, AR_PHY_RADAR_EXT_ENA);
}