// -----------------------------------------------------------------------------
//! \brief      Initialization for the LCD Thread
//!
//! \return     void
// -----------------------------------------------------------------------------
static void LCDTask_inititializeTask(void)
{

    LCDTask_events = 0;
    LCDTask_State = LCDTASK_OFF_STATE;
    delay_ms(4000);
    // Handling of buttons, relay and MPU interrupt
    hlGpioPin = PIN_open(&pinGpioState, lcdMotionPinsCfg);
//    if (hGpioPin == 0) {
//        //HWREGB(GPIO_BASE+GPIO_O_DOUT3_0+Board_LCD_PWR) = 1;
//        //HWREGB(GPIO_BASE+GPIO_O_DOUT3_0+Board_LCD_PWR) = 0;
//    } else { 
    motion_state = PIN_getInputValue(Board_LCD_MOTION);
        PIN_registerIntCb(hlGpioPin, LCD_WakeupPinHwiFxn);
//    
//        // Enable IRQ
        PIN_setConfig(hlGpioPin, PIN_BM_IRQ, Board_LCD_MOTION | PIN_IRQ_BOTHEDGES);
//        // Enable wakeup
        //PIN_setConfig(hlGpioPin, PINCC26XX_BM_WAKEUP, Board_LCD_MOTION | PINCC26XX_WAKEUP_POSEDGE);
        
       
//        // Init SPI Bus
//        bspSpiOpen();
        // Init LCD Variables
        ILI9341_init(hGpioPin);
//    }
    
}
// -----------------------------------------------------------------------------
//! \brief      This routine initializes the transport layer and opens the port
//!             of the device. Note that based on project defines, either the
//!             UART, or SPI driver can be used.
//!
//! \param[in]  npiCBTx - Call back function for TX complete event
//! \param[in]  npiCBRx - Call back function for RX event
//! \param[in]  npiCBMrdy - Call back function for MRDY event
//!
//! \return     void
// -----------------------------------------------------------------------------
void NPITL_initTL(npiRtosCB_t npiCBTx, npiRtosCB_t npiCBRx, npiRtosCB_t npiCBMrdy)
{
    ICall_CSState key;
    key = ICall_enterCriticalSection();

    taskTxCB = npiCBTx;
    taskRxCB = npiCBRx;
#if (NPI_FLOW_CTRL == 1)
    taskMrdyCB = npiCBMrdy;
#endif // NPI_FLOW_CTRL = 1

    transportInit(npiRxBuf,npiTxBuf, NPITL_transmissionCallBack);

#if (NPI_FLOW_CTRL == 1)
    SRDY_DISABLE();

    // Initialize SRDY/MRDY. Enable int after callback registered
    hNpiHandshakePins = PIN_open(&npiHandshakePins, npiHandshakePinsCfg);
    PIN_registerIntCb(hNpiHandshakePins, NPITL_MRDYPinHwiFxn);
    PIN_setConfig(hNpiHandshakePins, PIN_BM_IRQ, MRDY_PIN | PIN_IRQ_BOTHEDGES);

    // Enable wakeup
    PIN_setConfig(hNpiHandshakePins, PINCC26XX_BM_WAKEUP, MRDY_PIN | PINCC26XX_WAKEUP_NEGEDGE);

    mrdy_state = PIN_getInputValue(MRDY_PIN);
#endif // NPI_FLOW_CTRL = 1

    ICall_leaveCriticalSection(key);

    return;
}
Ejemplo n.º 3
0
// -----------------------------------------------------------------------------
//! \brief      This callback is invoked on the completion of one transmission
//!             to/from the host MCU. Any bytes receives will be [0,Rxlen) in
//!             npiRxBuf.
//!             If bytes were receives or transmitted, this function notifies
//!             the NPI task via registered call backs
//!
//! \param[in]  Rxlen   - length of the data received
//! \param[in]  Txlen   - length of the data transferred
//!
//! \return     void
// -----------------------------------------------------------------------------
static void NPITL_transmissionCallBack(uint16_t Rxlen, uint16_t Txlen)
{
    npiRxBufHead = 0;
    npiRxBufTail = Rxlen;
    npiTxActive = FALSE;
    //Since the largest valid NPI packet size is 4096
    //valid RxLen fields should only be up to 0x0FFF
    //a larger RxLen value tells the TL that a Rx is in progress
    //and the UART cannot be closed yet
    //in the above case, a CB will be triggered for the Tx, but Rx will wait
    //until ReadCB completes at NPITLUART layer
    if(!(Rxlen & 0x1000))
    {
      //Since we have rx/tx'd a complete packet, it is time to close out the TL
      //and ready the processor for sleep
#ifdef SWHS_DEBUG  
      //Set Pin if in debug mode 
      PIN_setOutputValue(hNpiProfilingPin, Board_LED2, 1);
#endif //SWHS_DEBUG
      transportClose();
      // Open the Pins for ISR
      hNpiUartRxPin = PIN_open(&npiUartRxPin, npiUartRxPinCfg);
      PIN_registerIntCb(hNpiUartRxPin, NPITL_rxPinHwiFxn);
      PIN_setConfig(hNpiUartRxPin, 
                    PIN_BM_IRQ, 
                    Board_UART_RX | PIN_IRQ_BOTHEDGES);

      // Enable wakeup
      PIN_setConfig(hNpiUartRxPin, 
                    PINCC26XX_BM_WAKEUP, 
                    Board_UART_RX | PINCC26XX_WAKEUP_NEGEDGE);
  #ifdef SWHS_DEBUG  
      //Set Pin if in debug mode 
      PIN_setOutputValue(hNpiProfilingPin, Board_LED2, 0);
  #endif //SWHS_DEBUG
      //It is also valid to clear all flags at this point
      trasnportLayerState = TL_closed;
      
        // If Task is registered, invoke transaction complete callback
      if (taskCBs.transCompleteCB)
      {
          taskCBs.transCompleteCB(Rxlen, Txlen);
      }
      NPITL_relPM();
    }
    else
    {
      //be sure to indicate TL is still busy
      trasnportLayerState = TL_busy;
      // If Task is registered, invoke transaction complete callback
      //note that RxLen is zero because the read is incomplete
      if (taskCBs.transCompleteCB)
      {
          taskCBs.transCompleteCB(0, Txlen);
      }
      
    }
}
static void keysTaskInit(void)
{

	Util_constructClock(&longPressCheckClock, Keys_clockHandler, KEYS_LONG_PRESSURE_TIMEOUT,
			0, false, LONG_PRESSURE_TIMEOUT_EVT);

	hGpioPinKeys = PIN_open(&pinGpioStateKeys, KeysPinTable);
	status = PIN_registerIntCb(hGpioPinKeys, Key_callback);

	// Register task with BLE stack
	ICall_Errno err = ICall_registerApp(&keysSelfEntity, &keysSem);



}
Ejemplo n.º 5
0
// -----------------------------------------------------------------------------
//! \brief      This routine initializes the transport layer and opens the port
//!             of the device. Note that based on project defines, either the
//!             UART, or SPI driver can be used.
//!
//! \param[in]  params - Transport Layer parameters
//!
//! \return     void
// -----------------------------------------------------------------------------
void NPITL_openTL(NPITL_Params *params)
{
    _npiCSKey_t key;
    key = NPIUtil_EnterCS();
    
    // Set NPI Task Call backs
    memcpy(&taskCBs, &params->npiCallBacks, sizeof(params->npiCallBacks));
    
    // Allocate memory for Transport Layer Tx/Rx buffers
    npiBufSize = params->npiTLBufSize;
    npiRxBuf = NPIUTIL_MALLOC(params->npiTLBufSize);
    memset(npiRxBuf, 0, npiBufSize);
    npiTxBuf = NPIUTIL_MALLOC(params->npiTLBufSize);
    memset(npiTxBuf, 0, npiBufSize);

    // This will be updated to be able to select SPI/UART TL at runtime
    // Now only compile time with the NPI_USE_[UART,SPI] flag

#if defined(NPI_USE_UART)
#elif defined(NPI_USE_SPI)
    transportOpen(params->portBoardID, 
                  &params->portParams.spiParams, 
                  NPITL_transmissionCallBack);
#endif //NPI_USE_UART
    
	hNpiHandshakePins = PIN_open(&npiHandshakePins, npiHandshakePinsCfg);
	PIN_registerIntCb(hNpiHandshakePins, NPITL_remRdyPINHwiFxn);
	PIN_setConfig(hNpiHandshakePins,
				  PIN_BM_IRQ,
				  Board_UART_RX | PIN_IRQ_BOTHEDGES);

	// Enable wakeup
	PIN_setConfig(hNpiHandshakePins,
				  PINCC26XX_BM_WAKEUP,
				  Board_UART_RX | PINCC26XX_WAKEUP_NEGEDGE);
#ifdef NPI_SW_HANDSHAKING_DEBUG
	hNpiProfilingDebugPin= PIN_open(&npiProfilingDebugPin, npiProfilingDebugPinCfg);
#endif //NPI_SW_HANDSHAKING_DEBUG

	npiTLParams = *params;	//Keep a copy of TLParams local to the TL so that the UART can be closed/reopened
#ifndef POWER_SAVING
    // This call will start repeated Uart Reads when Power Savings is disabled
    transportRead();
#endif 

    NPIUtil_ExitCS(key);
}
Ejemplo n.º 6
0
// -----------------------------------------------------------------------------
//! \brief      This callback is invoked on the completion of one transmission
//!             to/from the host MCU. Any bytes receives will be [0,Rxlen) in
//!             npiRxBuf.
//!             If bytes were receives or transmitted, this function notifies
//!             the NPI task via registered call backs
//!
//! \param[in]  Rxlen   - length of the data received
//! \param[in]  Txlen   - length of the data transferred
//!
//! \return     void
// -----------------------------------------------------------------------------
static void NPITL_transmissionCallBack(uint16_t Rxlen, uint16_t Txlen)
{
    npiRxBufHead = 0;
    npiRxBufTail = Rxlen;
    npiTxActive = FALSE;
    
    // If Task is registered, invoke transaction complete callback
    if (taskCBs.transCompleteCB)
    {
        taskCBs.transCompleteCB(Rxlen, Txlen);
    }
#ifdef NPI_SW_HANDSHAKING_DEBUG
    //Set the profiling pin high
    PIN_setOutputValue(hNpiProfilingDebugPin, profilingDebugPin, 1);
#endif //NPI_SW_HANDSHAKING_DEBUG
    // Close the UART
    transportClose();
    // Open the Pins for ISR
    hNpiHandshakePins = PIN_open(&npiHandshakePins, npiHandshakePinsCfg);
    	//replace remRdyPIN with Board_UART_RX
    	PIN_registerIntCb(hNpiHandshakePins, NPITL_remRdyPINHwiFxn);
    	PIN_setConfig(hNpiHandshakePins,
    				  PIN_BM_IRQ,
    				  Board_UART_RX | PIN_IRQ_BOTHEDGES);

    	// Enable wakeup
    	PIN_setConfig(hNpiHandshakePins,
    				  PINCC26XX_BM_WAKEUP,
    				  Board_UART_RX | PINCC26XX_WAKEUP_NEGEDGE);
#ifdef NPI_SW_HANDSHAKING_DEBUG
    	//Indicate that we are now asleep in the GPIO state
    	PIN_setOutputValue(hNpiProfilingDebugPin, profilingDebugPin, 0);
#endif //NPI_SW_HANDSHAKING_DEBUG
    	//It is also valid to clear all flags at this point
    	_npiCSKey_t key;
    	key = NPIUtil_EnterCS();
    	handshakingState = HS_GPIO_STATE;
    	NPIUtil_ExitCS(key);
#ifdef POWER_SAVING
    NPITL_relPM();
#endif //POWER_SAVING
}
Ejemplo n.º 7
0
// -----------------------------------------------------------------------------
//! \brief      This routine initializes the transport layer and opens the port
//!             of the device. Note that based on project defines, either the
//!             UART, or SPI driver can be used.
//!
//! \param[in]  params - Transport Layer parameters
//!
//! \return     void
// -----------------------------------------------------------------------------
void NPITL_openTL(NPITL_Params *params)
{
    _npiCSKey_t key;
    key = NPIUtil_EnterCS();
    
    // Set NPI Task Call backs
    memcpy(&taskCBs, &params->npiCallBacks, sizeof(params->npiCallBacks));
    
    // Allocate memory for Transport Layer Tx/Rx buffers
    npiBufSize = params->npiTLBufSize;
    npiRxBuf = NPIUTIL_MALLOC(params->npiTLBufSize);
    memset(npiRxBuf, 0, npiBufSize);
    npiTxBuf = NPIUTIL_MALLOC(params->npiTLBufSize);
    memset(npiTxBuf, 0, npiBufSize);
    
    
    hNpiUartRxPin = PIN_open(&npiUartRxPin, npiUartRxPinCfg);
    PIN_registerIntCb(hNpiUartRxPin, NPITL_rxPinHwiFxn);
    PIN_setConfig(hNpiUartRxPin, 
                  PIN_BM_IRQ, 
                  Board_UART_RX | PIN_IRQ_BOTHEDGES);

    // Enable wakeup
    PIN_setConfig(hNpiUartRxPin, 
                  PINCC26XX_BM_WAKEUP, 
                  Board_UART_RX | PINCC26XX_WAKEUP_NEGEDGE);
    //Note that open TL is only called when NPI task is being initialized
    //transportLayerState variable defaults to closed.
#ifdef SWHS_DEBUG  
    //Open Profiling Pin if in debug mode 
    hNpiProfilingPin = PIN_open(&npiProfilingPin, npiProfilingPinCfg);
#endif //SWHS_DEBUG
    //Keep a copy of TLParams local to the TL so that the UART can be closed/reopened
    npiTLParams = *params;
    //Here we will initialize the transport which will setup the callbacks
    //This call does not open the UART
    transportInit( &npiTLParams.portParams.uartParams, 
                   NPITL_transmissionCallBack,
                   NPITL_handshakeCompleteCallBack);
    
    NPIUtil_ExitCS(key);
}
Ejemplo n.º 8
0
/*********************************************************************
 * @fn      Board_initKeys
 *
 * @brief   Enable interrupts for keys on GPIOs.
 *
 * @param   appKeyCB - application key pressed callback
 *
 * @return  none
 */
void Board_initKeys(keysPressedCB_t appKeyCB)
{
  // Initialize KEY pins. Enable int after callback registered
  hKeyPins = PIN_open(&keyPins, keyPinsCfg);
  PIN_registerIntCb(hKeyPins, Board_keyCallback);

  PIN_setConfig(hKeyPins, PIN_BM_IRQ, Board_BTN1 | PIN_IRQ_NEGEDGE);
  PIN_setConfig(hKeyPins, PIN_BM_IRQ, Board_BTN2 | PIN_IRQ_NEGEDGE);

#ifdef POWER_SAVING
  //Enable wakeup
  PIN_setConfig(hKeyPins, PINCC26XX_BM_WAKEUP, Board_BTN1 | PINCC26XX_WAKEUP_NEGEDGE);
  PIN_setConfig(hKeyPins, PINCC26XX_BM_WAKEUP, Board_BTN2 | PINCC26XX_WAKEUP_NEGEDGE);
#endif

  // Setup keycallback for keys
  Util_constructClock(&keyChangeClock, Board_keyChangeHandler,
                      KEY_DEBOUNCE_TIMEOUT, 0, false, 0);

  // Set the application callback
  appKeyChangeHandler = appKeyCB;
}
Ejemplo n.º 9
0
/*******************************************************************************
 * @fn      SensorTag_init
 *
 * @brief   Called during initialization and contains application
 *          specific initialization (ie. hardware initialization/setup,
 *          table initialization, power up notification, etc), and
 *          profile initialization/setup.
 *
 * @param   none
 *
 * @return  none
 */
static void SensorTag_init(void)
{
  //uint8_t selfTestMap;
  // Setup I2C for sensors
  //bspI2cInit();

  // Handling of buttons, LED, relay
  hGpioPin = PIN_open(&pinGpioState, SensortagAppPinTable);
  PIN_registerIntCb(hGpioPin, SensorTag_callback);

	// ***************************************************************************
  // N0 STACK API CALLS CAN OCCUR BEFORE THIS CALL TO ICall_registerApp
  // ***************************************************************************
  // Register the current thread as an ICall dispatcher application
  // so that the application can send and receive messages.
  ICall_registerApp(&selfEntity, &sem);

  // Create an RTOS queue for message from profile to be sent to app.
  appMsgQueue = Util_constructQueue(&appMsg);

  // Create one-shot clocks for internal periodic events.
  Util_constructClock(&periodicClock, SensorTag_clockHandler,
                      ST_PERIODIC_EVT_PERIOD, 0, false, ST_PERIODIC_EVT);

  // Setup the GAP
  GAP_SetParamValue(TGAP_CONN_PAUSE_PERIPHERAL, DEFAULT_CONN_PAUSE_PERIPHERAL);

  // Setup the GAP Peripheral Role Profile
  {
    // For all hardware platforms, device starts advertising upon initialization
    uint8_t initialAdvertEnable = TRUE;

    // By setting this to zero, the device will go into the waiting state after
    // being discoverable for 30.72 second, and will not being advertising again
    // until the enabler is set back to TRUE
    uint16_t advertOffTime = 0;

    uint8_t enableUpdateRequest = DEFAULT_ENABLE_UPDATE_REQUEST;
    uint16_t desiredMinInterval = DEFAULT_DESIRED_MIN_CONN_INTERVAL;
    uint16_t desiredMaxInterval = DEFAULT_DESIRED_MAX_CONN_INTERVAL;
    uint16_t desiredSlaveLatency = DEFAULT_DESIRED_SLAVE_LATENCY;
    uint16_t desiredConnTimeout = DEFAULT_DESIRED_CONN_TIMEOUT;

    // Set the GAP Role Parameters
    GAPRole_SetParameter(GAPROLE_ADVERT_ENABLED, sizeof(uint8_t),
                         &initialAdvertEnable);
    GAPRole_SetParameter(GAPROLE_ADVERT_OFF_TIME, sizeof(uint16_t),
                         &advertOffTime);

    //Returns 18, but this seems to be normal
    GAPRole_SetParameter(GAPROLE_SCAN_RSP_DATA, sizeof(scanRspData),
                         scanRspData);
    //Returns 18
    GAPRole_SetParameter(GAPROLE_ADVERT_DATA, sizeof(advertData), advertData);
    GAPRole_SetParameter(GAPROLE_PARAM_UPDATE_ENABLE, sizeof(uint8_t),
                         &enableUpdateRequest);
    GAPRole_SetParameter(GAPROLE_MIN_CONN_INTERVAL, sizeof(uint16_t),
                         &desiredMinInterval);
    GAPRole_SetParameter(GAPROLE_MAX_CONN_INTERVAL, sizeof(uint16_t),
                         &desiredMaxInterval);
    GAPRole_SetParameter(GAPROLE_SLAVE_LATENCY, sizeof(uint16_t),
                         &desiredSlaveLatency);
    GAPRole_SetParameter(GAPROLE_TIMEOUT_MULTIPLIER, sizeof(uint16_t),
                         &desiredConnTimeout);
  }

  // Set the GAP Characteristics
  GGS_SetParameter(GGS_DEVICE_NAME_ATT, GAP_DEVICE_NAME_LEN,
                   (void*)attDeviceName);


#ifdef FEATURE_OAD
  // Register connection parameter update
  GAPRole_RegisterAppCBs( &paramUpdateCB);
#endif

  // Set advertising interval
  {
    uint16_t advInt = DEFAULT_ADVERTISING_INTERVAL;

    GAP_SetParamValue(TGAP_LIM_DISC_ADV_INT_MIN, advInt);
    GAP_SetParamValue(TGAP_LIM_DISC_ADV_INT_MAX, advInt);
    GAP_SetParamValue(TGAP_GEN_DISC_ADV_INT_MIN, advInt);
    GAP_SetParamValue(TGAP_GEN_DISC_ADV_INT_MAX, advInt);
  }

   // Initialize GATT attributes
  GGS_AddService(GATT_ALL_SERVICES);           // GAP
  GATTServApp_AddService(GATT_ALL_SERVICES);   // GATT attributes
  DevInfo_AddService();                        // Device Information Service

  // Add application specific device information
  SensorTag_setDeviceInfo();

#ifdef FACTORY_IMAGE
  // Check if a factory image exists and apply current image if necessary
  //if (!SensorTag_hasFactoryImage())
  //{
  //  SensorTag_saveFactoryImage();
  //}
#endif

#ifdef FEATURE_REGISTER_SERVICE
  //Register_addService();                          // Generic register access
  //
#endif

#ifdef FEATURE_LCD
  SensorTagDisplay_init();                        // Display service DevPack LCD
#endif

#ifdef FEATURE_OAD
  SensorTagConnectionControl_init();              // Connection control to
                                                  // support OAD for iOs/Android
  OAD_addService();                               // OAD Profile
  OAD_register((oadTargetCBs_t *)&simpleBLEPeripheral_oadCBs);
  hOadQ = Util_constructQueue(&oadQ);
#endif

  // Start the Device
  GAPRole_StartDevice(&SensorTag_gapRoleCBs);

  // Start Bond Manager
  GAPBondMgr_Register(NULL);
  
  // Enable interrupt handling for keys and relay
  PIN_registerIntCb(hGpioPin, SensorTag_callback);
}
Ejemplo n.º 10
0
/*!
 *  @brief  Function to initialize the CC26XX SPI peripheral specified by the
 *          particular handle. The parameter specifies which mode the SPI
 *          will operate.
 *
 *  The function will set a dependency on it power domain, i.e. power up the
 *  module and enable the clock. The IOs are allocated. Neither the SPI nor UDMA module
 *  will be enabled.
 *
 *  @pre    SPI controller has been initialized.
 *          Calling context: Task
 *
 *  @param  handle        A SPI_Handle
 *
 *  @param  params        Pointer to a parameter block, if NULL it will use
 *                        default values
 *
 *  @return A SPI_Handle on success or a NULL on an error or if it has been
 *          already opened
 *
 *  @sa     SPICC26XXDMA_close()
 */
SPI_Handle SPICC26XXDMA_open(SPI_Handle handle, SPI_Params *params)
{
    /* Use union to save on stack allocation */
    union {
        Semaphore_Params semParams;
        Hwi_Params hwiParams;
    } paramsUnion;
    SPI_Params               defaultParams;
    SPICC26XX_Object         *object;
    SPICC26XX_HWAttrs const  *hwAttrs;
    unsigned int             key;

    /* Get the pointer to the object and hwAttrs */
    object = handle->object;
    hwAttrs = handle->hwAttrs;

    /* Disable preemption while checking if the SPI is open. */
    key = Hwi_disable();

    /* Check if the SPI is open already with the base addr. */
    if (object->isOpen == true) {
        Hwi_restore(key);

        Log_warning1("SPI:(%p) already in use.", hwAttrs->baseAddr);

        return (NULL);
    }

    /* Mark the handle as being used */
    object->isOpen = true;
    Hwi_restore(key);

    /* If params are NULL use defaults */
    if (params == NULL) {
        /* No params passed in, so use the defaults */
        SPI_Params_init(&defaultParams);
        params = &defaultParams;
    }

    Assert_isTrue((params->dataSize >= 4) &&
                  (params->dataSize <= 16), NULL);

    /* Initialize the SPI object */
    object->currentTransaction = NULL;
    object->bitRate            = params->bitRate;
    object->dataSize           = params->dataSize;
    object->frameFormat        = params->frameFormat;
    object->mode               = params->mode;
    object->transferMode       = params->transferMode;
    object->transferTimeout    = params->transferTimeout;
    object->returnPartial      = false;
#ifdef SPICC26XXDMA_WAKEUP_ENABLED
    object->wakeupCallbackFxn  = NULL;
#endif

    /* Determine if we need to use an 8-bit or 16-bit framesize for the DMA */
    object->frameSize = (params->dataSize < 9) ? SPICC26XXDMA_8bit : SPICC26XXDMA_16bit;

    Log_print2(Diags_USER2,"SPI:(%p) DMA buffer incrementation size: %s",
                            hwAttrs->baseAddr,
                           (object->frameSize) ? (UArg)"16-bit" : (UArg)"8-bit");

    /* Register power dependency - i.e. power up and enable clock for SPI. */
    Power_setDependency(hwAttrs->powerMngrId);

    /* Configure the hardware module */
    SPICC26XXDMA_initHw(handle);

    /* CSN is initialized using hwAttrs initially, but can be re-configured later */
    object->csnPin = hwAttrs->csnPin;

    /* Configure IOs after hardware has been initialized so that IOs aren't */
    /* toggled unnecessary and make sure it was successful */
    if (!SPICC26XXDMA_initIO(handle)) {
        /* Trying to use SPI driver when some other driver or application
        *  has already allocated these pins, error! */
        Log_warning0("Could not allocate SPI pins, already in use.");

        /* Release power dependency - i.e. potentially power down serial domain. */
        Power_releaseDependency(hwAttrs->powerMngrId);

        /* Mark the module as available */
        key = Hwi_disable();
        object->isOpen = false;
        Hwi_restore(key);

        /* Signal back to application that SPI driver was not succesfully opened */
        return (NULL);
    }

    /* Create the Hwi for this SPI peripheral. */
    Hwi_Params_init(&paramsUnion.hwiParams);
    paramsUnion.hwiParams.arg = (UArg) handle;
    Hwi_construct(&(object->hwi), (int) hwAttrs->intNum, SPICC26XXDMA_hwiFxn, &paramsUnion.hwiParams, NULL);

    /* Check the transfer mode */
    if (object->transferMode == SPI_MODE_BLOCKING) {
        Log_print1(Diags_USER2, "SPI DMA:(%p) in SPI_MODE_BLOCKING mode",
                                 hwAttrs->baseAddr);

        /* Create a semaphore to block task execution for the duration of the
         * SPI transfer */
        Semaphore_Params_init(&paramsUnion.semParams);
        paramsUnion.semParams.mode = Semaphore_Mode_BINARY;
        Semaphore_construct(&(object->transferComplete), 0, &paramsUnion.semParams);

        /* Store internal callback function */
        object->transferCallbackFxn = SPICC26XXDMA_transferCallback;
    }
    else {
        Log_print1(Diags_USER2, "SPI DMA:(%p) in SPI_MODE_CALLBACK mode", hwAttrs->baseAddr);

        /* Check to see if a callback function was defined for async mode */
        Assert_isTrue(params->transferCallbackFxn != NULL, NULL);

        /* Save the callback function pointer */
        object->transferCallbackFxn = params->transferCallbackFxn;
    }

    /* Declare the dependency on the UDMA driver */
    object->udmaHandle = UDMACC26XX_open();

    /* Configure PIN driver for CSN callback in optional RETURN_PARTIAL slave mode */
    /* and/or optional wake up on CSN assert slave mode */
    if (object->mode == SPI_SLAVE) {
        PIN_registerIntCb(object->pinHandle, SPICC26XXDMA_csnCallback);
        PIN_setUserArg(object->pinHandle, (UArg) handle);
    }

    Log_print1(Diags_USER1, "SPI:(%p) opened", hwAttrs->baseAddr);

    /* Register notification functions */
#ifdef SPICC26XXDMA_WAKEUP_ENABLED
    Power_registerNotify(&object->spiPreObj, Power_ENTERING_STANDBY, (Fxn)spiPreNotify, (UInt32)handle, NULL );
#endif
    Power_registerNotify(&object->spiPostObj, Power_AWAKE_STANDBY, (Fxn)spiPostNotify, (UInt32)handle, NULL );

    return (handle);
}
// -----------------------------------------------------------------------------
//! \brief      This routine initializes the transport layer and opens the port
//!             of the device. Note that based on project defines, either the
//!             UART, or SPI driver can be used.
//!
//! \param[in]  params - Transport Layer parameters
//!
//! \return     void
// -----------------------------------------------------------------------------
void NPITL_openTL(NPITL_Params *params)
{
    _npiCSKey_t key;
    key = NPIUtil_EnterCS();
    
    // Set NPI Task Call backs
    memcpy(&taskCBs, &params->npiCallBacks, sizeof(params->npiCallBacks));
    
    // Allocate memory for Transport Layer Tx/Rx buffers
    npiBufSize = params->npiTLBufSize;
    npiRxBuf = NPIUTIL_MALLOC(params->npiTLBufSize);
    memset(npiRxBuf, 0, npiBufSize);
    npiTxBuf = NPIUTIL_MALLOC(params->npiTLBufSize);
    memset(npiTxBuf, 0, npiBufSize);

    // This will be updated to be able to select SPI/UART TL at runtime
    // Now only compile time with the NPI_USE_[UART,SPI] flag
#if defined(NPI_USE_UART)
    transportOpen(params->portBoardID, 
                  &params->portParams.uartParams, 
                  NPITL_transmissionCallBack);
#elif defined(NPI_USE_SPI)
    transportOpen(params->portBoardID, 
                  &params->portParams.spiParams, 
                  NPITL_transmissionCallBack);
#endif //NPI_USE_UART
    
#if (NPI_FLOW_CTRL == 1)
    // Assign PIN IDs to remRdy and locRrdy
#ifdef NPI_MASTER
    remRdyPIN = (params->srdyPinID & IOC_IOID_MASK);
    locRdyPIN = (params->mrdyPinID & IOC_IOID_MASK);
#else
    remRdyPIN = (params->mrdyPinID & IOC_IOID_MASK);
    locRdyPIN = (params->srdyPinID & IOC_IOID_MASK);
#endif //NPI_MASTER
    
    // Add PIN IDs to PIN Configuration
    npiHandshakePinsCfg[REM_RDY_PIN_IDX] |= remRdyPIN;
    npiHandshakePinsCfg[LOC_RDY_PIN_IDX] |= locRdyPIN;
    
    // Initialize LOCRDY/REMRDY. Enable int after callback registered
    hNpiHandshakePins = PIN_open(&npiHandshakePins, npiHandshakePinsCfg);
    PIN_registerIntCb(hNpiHandshakePins, NPITL_remRdyPINHwiFxn);
    PIN_setConfig(hNpiHandshakePins, 
                  PIN_BM_IRQ, 
                  remRdyPIN | PIN_IRQ_BOTHEDGES);

    // Enable wakeup
    PIN_setConfig(hNpiHandshakePins, 
                  PINCC26XX_BM_WAKEUP, 
                  remRdyPIN | PINCC26XX_WAKEUP_NEGEDGE);
    
    remRdy_state = PIN_getInputValue(remRdyPIN);
    
    // If MRDY is already low then we must initiate a read because there was
    // a prior MRDY negedge that was missed
    if (!remRdy_state) 
    {
        NPITL_setPM();
        if (taskCBs.remRdyCB)
        {
            transportRemRdyEvent();
            LocRDY_ENABLE();
        }
    }
#endif // NPI_FLOW_CTRL = 1

#if (NPI_FLOW_CTRL == 0)
    // This call will start repeated Uart Reads when Power Savings is disabled
    transportRead();
#endif // NPI_FLOW_CTRL = 0

    NPIUtil_ExitCS(key);
}