Ejemplo n.º 1
0
/**
 * @brief Get the next smaller item from the old index
 *
 * Process flow
 * -# Examine the max offset position in the page
 * -# Search the next item
 * -# If the item has deleted flag, seearch the next one
 * -# If we can't find items any more, read the leaf page on the right side
 *	  and search the next again
 *
 * These members are updated:
 *	 - page : page which includes picked-up item
 *	 - offnum : item offset number of the picked-up item
 *
 * @param reader [in/out] BTReader structure
 * @return next index tuple, or null if no more tuples
 */
static IndexTuple
BTReaderGetNextItem(BTReader *reader)
{
	OffsetNumber	maxoff;
	ItemId			itemid;
	BTPageOpaque	opaque;

	/*
	 * If any leaf page isn't read, the state is treated like as EOF 
	 */
	if (reader->blkno == InvalidBlockNumber)
		return NULL;

	maxoff = PageGetMaxOffsetNumber(reader->page);

	for (;;)
	{
		/*
		 * If no one items are picked up, offnum is set to InvalidOffsetNumber.
		 */
		if (reader->offnum == InvalidOffsetNumber)
		{
			opaque = (BTPageOpaque) PageGetSpecialPointer(reader->page);
			reader->offnum = P_FIRSTDATAKEY(opaque);
		}
		else
			reader->offnum = OffsetNumberNext(reader->offnum);

		if (reader->offnum <= maxoff)
		{
			itemid = PageGetItemId(reader->page, reader->offnum);

			/* Ignore dead items */
			if (ItemIdIsDead(itemid))
				continue;

			return (IndexTuple) PageGetItem(reader->page, itemid);
		}
		else
		{
			/* The end of the leaf page. Go right. */
			opaque = (BTPageOpaque) PageGetSpecialPointer(reader->page);

			if (P_RIGHTMOST(opaque))
				return NULL;	/* No more index tuples */

			BTReaderReadPage(reader, opaque->btpo_next);
			maxoff = PageGetMaxOffsetNumber(reader->page);
		}
	}
}
Ejemplo n.º 2
0
/*
 * pgstat_btree_page -- check tuples in a btree page
 */
static void
pgstat_btree_page(pgstattuple_type *stat, Relation rel, BlockNumber blkno,
				  BufferAccessStrategy bstrategy)
{
	Buffer		buf;
	Page		page;

	buf = ReadBufferExtended(rel, MAIN_FORKNUM, blkno, RBM_NORMAL, bstrategy);
	LockBuffer(buf, BT_READ);
	page = BufferGetPage(buf);

	/* Page is valid, see what to do with it */
	if (PageIsNew(page))
	{
		/* fully empty page */
		stat->free_space += BLCKSZ;
	}
	else
	{
		BTPageOpaque opaque;

		opaque = (BTPageOpaque) PageGetSpecialPointer(page);
		if (opaque->btpo_flags & (BTP_DELETED | BTP_HALF_DEAD))
		{
			/* recyclable page */
			stat->free_space += BLCKSZ;
		}
		else if (P_ISLEAF(opaque))
		{
			pgstat_index_page(stat, page, P_FIRSTDATAKEY(opaque),
							  PageGetMaxOffsetNumber(page));
		}
		else
		{
			/* root or node */
		}
	}

	_bt_relbuf(rel, buf);
}
Ejemplo n.º 3
0
/*
 *	_bt_step() -- Step one item in the requested direction in a scan on
 *				  the tree.
 *
 *		*bufP is the current buffer (read-locked and pinned).  If we change
 *		pages, it's updated appropriately.
 *
 *		If successful, update scan's currentItemData and return true.
 *		If no adjacent record exists in the requested direction,
 *		release buffer pin/locks and return false.
 */
bool
_bt_step(IndexScanDesc scan, Buffer *bufP, ScanDirection dir)
{
	Relation	rel = scan->indexRelation;
	ItemPointer current = &(scan->currentItemData);
	BTScanOpaque so = (BTScanOpaque) scan->opaque;
	Page		page;
	BTPageOpaque opaque;
	OffsetNumber offnum,
				maxoff;
	BlockNumber blkno;

	/*
	 * Don't use ItemPointerGetOffsetNumber or you risk to get assertion
	 * due to ability of ip_posid to be equal 0.
	 */
	offnum = current->ip_posid;

	page = BufferGetPage(*bufP);
	opaque = (BTPageOpaque) PageGetSpecialPointer(page);
	maxoff = PageGetMaxOffsetNumber(page);

	if (ScanDirectionIsForward(dir))
	{
		if (!PageIsEmpty(page) && offnum < maxoff)
			offnum = OffsetNumberNext(offnum);
		else
		{
			/* Walk right to the next page with data */
			for (;;)
			{
				/* if we're at end of scan, release the buffer and return */
				if (P_RIGHTMOST(opaque))
				{
					_bt_relbuf(rel, *bufP);
					ItemPointerSetInvalid(current);
					*bufP = so->btso_curbuf = InvalidBuffer;
					return false;
				}
				/* step right one page */
				blkno = opaque->btpo_next;
				_bt_relbuf(rel, *bufP);
				*bufP = _bt_getbuf(rel, blkno, BT_READ);
				page = BufferGetPage(*bufP);
				opaque = (BTPageOpaque) PageGetSpecialPointer(page);
				if (!P_IGNORE(opaque))
				{
					maxoff = PageGetMaxOffsetNumber(page);
					/* done if it's not empty */
					offnum = P_FIRSTDATAKEY(opaque);
					if (!PageIsEmpty(page) && offnum <= maxoff)
						break;
				}
			}
		}
	}
	else
/* backwards scan */
	{
		if (offnum > P_FIRSTDATAKEY(opaque))
			offnum = OffsetNumberPrev(offnum);
		else
		{
			/*
			 * Walk left to the next page with data.  This is much more
			 * complex than the walk-right case because of the possibility
			 * that the page to our left splits while we are in flight to
			 * it, plus the possibility that the page we were on gets
			 * deleted after we leave it.  See nbtree/README for details.
			 */
			for (;;)
			{
				*bufP = _bt_walk_left(rel, *bufP);

				/* if we're at end of scan, return failure */
				if (*bufP == InvalidBuffer)
				{
					ItemPointerSetInvalid(current);
					so->btso_curbuf = InvalidBuffer;
					return false;
				}
				page = BufferGetPage(*bufP);
				opaque = (BTPageOpaque) PageGetSpecialPointer(page);

				/*
				 * Okay, we managed to move left to a non-deleted page.
				 * Done if it's not half-dead and not empty.  Else loop
				 * back and do it all again.
				 */
				if (!P_IGNORE(opaque))
				{
					maxoff = PageGetMaxOffsetNumber(page);
					offnum = maxoff;
					if (!PageIsEmpty(page) &&
						maxoff >= P_FIRSTDATAKEY(opaque))
						break;
				}
			}
		}
	}

	/* Update scan state */
	so->btso_curbuf = *bufP;
	blkno = BufferGetBlockNumber(*bufP);
	ItemPointerSet(current, blkno, offnum);

	return true;
}
Ejemplo n.º 4
0
Datum
readindex(PG_FUNCTION_ARGS)
{
	FuncCallContext	   *funcctx;
	readindexinfo	   *info;

	MIRROREDLOCK_BUFMGR_DECLARE;

	if (SRF_IS_FIRSTCALL())
	{
		Oid		irelid = PG_GETARG_OID(0);
		TupleDesc	tupdesc;
		MemoryContext oldcontext;
		AttrNumber		outattnum;
		Relation	irel;
		TupleDesc	itupdesc;
		int			i;
		AttrNumber	attno;

		irel = index_open(irelid, AccessShareLock);
		itupdesc = RelationGetDescr(irel);
		outattnum = FIXED_COLUMN + itupdesc->natts;

		funcctx = SRF_FIRSTCALL_INIT();
		oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);
		tupdesc = CreateTemplateTupleDesc(outattnum, false);
		attno = 1;
		TupleDescInitEntry(tupdesc, attno++, "ictid", TIDOID, -1, 0);
		TupleDescInitEntry(tupdesc, attno++, "hctid", TIDOID, -1, 0);
		TupleDescInitEntry(tupdesc, attno++, "aotid", TEXTOID, -1, 0);
		TupleDescInitEntry(tupdesc, attno++, "istatus", TEXTOID, -1, 0);
		TupleDescInitEntry(tupdesc, attno++, "hstatus", TEXTOID, -1, 0);

		for (i = 0; i < itupdesc->natts; i++)
		{
			Form_pg_attribute attr = itupdesc->attrs[i];
			TupleDescInitEntry(tupdesc, attno++, NameStr(attr->attname), attr->atttypid, attr->atttypmod, 0);
		}

		funcctx->tuple_desc = BlessTupleDesc(tupdesc);
		info = (readindexinfo *) palloc(sizeof(readindexinfo));
		funcctx->user_fctx = (void *) info;

		info->outattnum = outattnum;
		info->irel = irel;
		info->hrel = relation_open(irel->rd_index->indrelid, AccessShareLock);
		if (info->hrel->rd_rel != NULL &&
				(info->hrel->rd_rel->relstorage == 'a' ||
				 info->hrel->rd_rel->relstorage == 'c'))
		{
			relation_close(info->hrel, AccessShareLock);
			info->hrel = NULL;
		}
		info->num_pages = RelationGetNumberOfBlocks(irel);
		info->blkno = BTREE_METAPAGE + 1;
		info->page = NULL;

		MemoryContextSwitchTo(oldcontext);
	}

	funcctx = SRF_PERCALL_SETUP();
	info = (readindexinfo *) funcctx->user_fctx;

	while (info->blkno < info->num_pages)
	{
		Datum		values[255];
		bool		nulls[255];
		ItemPointerData		itid;
		HeapTuple	tuple;
		Datum		result;

		if (info->page == NULL)
		{
			MIRROREDLOCK_BUFMGR_LOCK;
			info->buf = ReadBuffer(info->irel, info->blkno);
			info->page = BufferGetPage(info->buf);
			info->opaque = (BTPageOpaque) PageGetSpecialPointer(info->page);
			info->minoff = P_FIRSTDATAKEY(info->opaque);
			info->maxoff = PageGetMaxOffsetNumber(info->page);
			info->offnum = info->minoff;
			MIRROREDLOCK_BUFMGR_UNLOCK;
		}
		if (!P_ISLEAF(info->opaque) || info->offnum > info->maxoff)
		{
			ReleaseBuffer(info->buf);
			info->page = NULL;
			info->blkno++;
			continue;
		}

		MemSet(nulls, false, info->outattnum * sizeof(bool));

		ItemPointerSet(&itid, info->blkno, info->offnum);
		values[0] = ItemPointerGetDatum(&itid);
		readindextuple(info, values, nulls);

		info->offnum = OffsetNumberNext(info->offnum);

		tuple = heap_form_tuple(funcctx->tuple_desc, values, nulls);
		result = HeapTupleGetDatum(tuple);
		SRF_RETURN_NEXT(funcctx, result);
	}

	if (info->hrel != NULL)
		relation_close(info->hrel, AccessShareLock);
	index_close(info->irel, AccessShareLock);
	SRF_RETURN_DONE(funcctx);
}
Ejemplo n.º 5
0
Archivo: nbtree.c Proyecto: LJoNe/gpdb
/*
 * For a newly inserted heap tid, check if an entry with this tid
 * already exists in a unique index.  If it does, abort the inserting
 * transaction.
 */
static void
_bt_validate_tid(Relation irel, ItemPointer h_tid)
{
	MIRROREDLOCK_BUFMGR_DECLARE;

	BlockNumber blkno;
	BlockNumber num_pages;
	Buffer buf;
	Page page;
	BTPageOpaque opaque;
	IndexTuple itup;
	OffsetNumber maxoff,
			minoff,
			offnum;

	elog(DEBUG1, "validating tid (%d,%d) for index (%s)",
		 ItemPointerGetBlockNumber(h_tid), ItemPointerGetOffsetNumber(h_tid),
		 RelationGetRelationName(irel));

	blkno = BTREE_METAPAGE + 1;
	num_pages = RelationGetNumberOfBlocks(irel);

	MIRROREDLOCK_BUFMGR_LOCK;
	for (; blkno < num_pages; blkno++)
	{
		buf = ReadBuffer(irel, blkno);
		page = BufferGetPage(buf);
		opaque = (BTPageOpaque) PageGetSpecialPointer(page);
		if (!PageIsNew(page))
			_bt_checkpage(irel, buf);
		if (P_ISLEAF(opaque))
		{
			minoff = P_FIRSTDATAKEY(opaque);
			maxoff = PageGetMaxOffsetNumber(page);
			for (offnum = minoff;
				 offnum <= maxoff;
				 offnum = OffsetNumberNext(offnum))
			{
				itup = (IndexTuple) PageGetItem(page,
												PageGetItemId(page, offnum));
				if (ItemPointerEquals(&itup->t_tid, h_tid))
				{
					Form_pg_attribute key_att = RelationGetDescr(irel)->attrs[0];
					Oid key = InvalidOid;
					bool isnull;
					if (key_att->atttypid == OIDOID)
					{
						key = DatumGetInt32(
								index_getattr(itup, 1, RelationGetDescr(irel), &isnull));
						elog(ERROR, "found tid (%d,%d), %s (%d) already in index (%s)",
							 ItemPointerGetBlockNumber(h_tid), ItemPointerGetOffsetNumber(h_tid),
							 NameStr(key_att->attname), key, RelationGetRelationName(irel));
					}
					else
					{
						elog(ERROR, "found tid (%d,%d) already in index (%s)",
							 ItemPointerGetBlockNumber(h_tid), ItemPointerGetOffsetNumber(h_tid),
							 RelationGetRelationName(irel));
					}
				}
			}
		}
		ReleaseBuffer(buf);
	}
	MIRROREDLOCK_BUFMGR_UNLOCK;
}
Ejemplo n.º 6
0
Archivo: nbtree.c Proyecto: LJoNe/gpdb
/*
 * btvacuumpage --- VACUUM one page
 *
 * This processes a single page for btvacuumscan().  In some cases we
 * must go back and re-examine previously-scanned pages; this routine
 * recurses when necessary to handle that case.
 *
 * blkno is the page to process.  orig_blkno is the highest block number
 * reached by the outer btvacuumscan loop (the same as blkno, unless we
 * are recursing to re-examine a previous page).
 */
static void
btvacuumpage(BTVacState *vstate, BlockNumber blkno, BlockNumber orig_blkno)
{
	MIRROREDLOCK_BUFMGR_DECLARE;

	IndexVacuumInfo *info = vstate->info;
	IndexBulkDeleteResult *stats = vstate->stats;
	IndexBulkDeleteCallback callback = vstate->callback;
	void	   *callback_state = vstate->callback_state;
	Relation	rel = info->index;
	bool		delete_now;
	BlockNumber recurse_to;
	Buffer		buf;
	Page		page;
	BTPageOpaque opaque;
restart:
	delete_now = false;
	recurse_to = P_NONE;

	/* call vacuum_delay_point while not holding any buffer lock */
	vacuum_delay_point();

	/*
	 * We can't use _bt_getbuf() here because it always applies
	 * _bt_checkpage(), which will barf on an all-zero page. We want to
	 * recycle all-zero pages, not fail.  Also, we want to use a nondefault
	 * buffer access strategy.
	 */
	
	// -------- MirroredLock ----------
	MIRROREDLOCK_BUFMGR_LOCK;
	
	buf = ReadBufferWithStrategy(rel, blkno, info->strategy);
	LockBuffer(buf, BT_READ);
	page = BufferGetPage(buf);
	opaque = (BTPageOpaque) PageGetSpecialPointer(page);
	if (!PageIsNew(page))
		_bt_checkpage(rel, buf);

	/*
	 * If we are recursing, the only case we want to do anything with is a
	 * live leaf page having the current vacuum cycle ID.  Any other state
	 * implies we already saw the page (eg, deleted it as being empty). In
	 * particular, we don't want to risk adding it to freePages twice.
	 */
	if (blkno != orig_blkno)
	{
		if (_bt_page_recyclable(page) ||
			P_IGNORE(opaque) ||
			!P_ISLEAF(opaque) ||
			opaque->btpo_cycleid != vstate->cycleid)
		{
			_bt_relbuf(rel, buf);

			MIRROREDLOCK_BUFMGR_UNLOCK;
			// -------- MirroredLock ----------

			return;
		}
	}

	/* Page is valid, see what to do with it */
	if (_bt_page_recyclable(page))
	{
		/* Okay to recycle this page */
		if (vstate->nFreePages < vstate->maxFreePages)
			vstate->freePages[vstate->nFreePages++] = blkno;
		vstate->totFreePages++;
		stats->pages_deleted++;
	}
	else if (P_ISDELETED(opaque))
	{
		/* Already deleted, but can't recycle yet */
		stats->pages_deleted++;
	}
	else if (P_ISHALFDEAD(opaque))
	{
		/* Half-dead, try to delete */
		delete_now = true;
	}
	else if (P_ISLEAF(opaque))
	{
		OffsetNumber deletable[MaxOffsetNumber];
		int			ndeletable;
		OffsetNumber offnum,
					minoff,
					maxoff;

		/*
		 * Trade in the initial read lock for a super-exclusive write lock on
		 * this page.  We must get such a lock on every leaf page over the
		 * course of the vacuum scan, whether or not it actually contains any
		 * deletable tuples --- see nbtree/README.
		 */
		LockBuffer(buf, BUFFER_LOCK_UNLOCK);
		LockBufferForCleanup(buf);

		/*
		 * Check whether we need to recurse back to earlier pages.	What we
		 * are concerned about is a page split that happened since we started
		 * the vacuum scan.  If the split moved some tuples to a lower page
		 * then we might have missed 'em.  If so, set up for tail recursion.
		 * (Must do this before possibly clearing btpo_cycleid below!)
		 */
		if (vstate->cycleid != 0 &&
			opaque->btpo_cycleid == vstate->cycleid &&
			!(opaque->btpo_flags & BTP_SPLIT_END) &&
			!P_RIGHTMOST(opaque) &&
			opaque->btpo_next < orig_blkno)
			recurse_to = opaque->btpo_next;

		/*
		 * Scan over all items to see which ones need deleted according to the
		 * callback function.
		 */
		ndeletable = 0;
		minoff = P_FIRSTDATAKEY(opaque);
		maxoff = PageGetMaxOffsetNumber(page);
		if (callback)
		{
			for (offnum = minoff;
				 offnum <= maxoff;
				 offnum = OffsetNumberNext(offnum))
			{
				IndexTuple	itup;
				ItemPointer htup;

				itup = (IndexTuple) PageGetItem(page,
												PageGetItemId(page, offnum));
				htup = &(itup->t_tid);
				if (callback(htup, callback_state))
					deletable[ndeletable++] = offnum;
			}
		}

		/*
		 * Apply any needed deletes.  We issue just one _bt_delitems() call
		 * per page, so as to minimize WAL traffic.
		 */
		if (ndeletable > 0)
		{
			_bt_delitems(rel, buf, deletable, ndeletable, true);
			stats->tuples_removed += ndeletable;
			/* must recompute maxoff */
			maxoff = PageGetMaxOffsetNumber(page);
		}
		else
		{
			/*
			 * If the page has been split during this vacuum cycle, it seems
			 * worth expending a write to clear btpo_cycleid even if we don't
			 * have any deletions to do.  (If we do, _bt_delitems takes care
			 * of this.)  This ensures we won't process the page again.
			 *
			 * We treat this like a hint-bit update because there's no need to
			 * WAL-log it.
			 */
			if (vstate->cycleid != 0 &&
				opaque->btpo_cycleid == vstate->cycleid)
			{
				opaque->btpo_cycleid = 0;
				SetBufferCommitInfoNeedsSave(buf);
			}
		}

		/*
		 * If it's now empty, try to delete; else count the live tuples. We
		 * don't delete when recursing, though, to avoid putting entries into
		 * freePages out-of-order (doesn't seem worth any extra code to handle
		 * the case).
		 */
		if (minoff > maxoff)
			delete_now = (blkno == orig_blkno);
		else
			stats->num_index_tuples += maxoff - minoff + 1;
	}

	if (delete_now)
	{
		MemoryContext oldcontext;
		int			ndel;

		/* Run pagedel in a temp context to avoid memory leakage */
		MemoryContextReset(vstate->pagedelcontext);
		oldcontext = MemoryContextSwitchTo(vstate->pagedelcontext);

		ndel = _bt_pagedel(rel, buf, NULL, info->vacuum_full);

		/* count only this page, else may double-count parent */
		if (ndel)
			stats->pages_deleted++;

		/*
		 * During VACUUM FULL it's okay to recycle deleted pages immediately,
		 * since there can be no other transactions scanning the index.  Note
		 * that we will only recycle the current page and not any parent pages
		 * that _bt_pagedel might have recursed to; this seems reasonable in
		 * the name of simplicity.	(Trying to do otherwise would mean we'd
		 * have to sort the list of recyclable pages we're building.)
		 */
		if (ndel && info->vacuum_full)
		{
			if (vstate->nFreePages < vstate->maxFreePages)
				vstate->freePages[vstate->nFreePages++] = blkno;
			vstate->totFreePages++;
		}

		MemoryContextSwitchTo(oldcontext);
		/* pagedel released buffer, so we shouldn't */
	}
	else
		_bt_relbuf(rel, buf);

	
	MIRROREDLOCK_BUFMGR_UNLOCK;
	// -------- MirroredLock ----------
	
	/*
	 * This is really tail recursion, but if the compiler is too stupid to
	 * optimize it as such, we'd eat an uncomfortably large amount of stack
	 * space per recursion level (due to the deletable[] array). A failure is
	 * improbable since the number of levels isn't likely to be large ... but
	 * just in case, let's hand-optimize into a loop.
	 */
	if (recurse_to != P_NONE)
	{
		blkno = recurse_to;
		goto restart;
	}
}
Ejemplo n.º 7
0
Archivo: nbtpage.c Proyecto: 50wu/gpdb
/*
 * Subroutine to pre-check whether a page deletion is safe, that is, its
 * parent page would be left in a valid or deletable state.
 *
 * "target" is the page we wish to delete, and "stack" is a search stack
 * leading to it (approximately).  Note that we will update the stack
 * entry(s) to reflect current downlink positions --- this is harmless and
 * indeed saves later search effort in _bt_pagedel.
 *
 * Note: it's OK to release page locks after checking, because a safe
 * deletion can't become unsafe due to concurrent activity.  A non-rightmost
 * page cannot become rightmost unless there's a concurrent page deletion,
 * but only VACUUM does page deletion and we only allow one VACUUM on an index
 * at a time.  An only child could acquire a sibling (of the same parent) only
 * by being split ... but that would make it a non-rightmost child so the
 * deletion is still safe.
 */
static bool
_bt_parent_deletion_safe(Relation rel, BlockNumber target, BTStack stack)
{
	BlockNumber parent;
	OffsetNumber poffset,
				maxoff;
	Buffer		pbuf;
	Page		page;
	BTPageOpaque opaque;

	MIRROREDLOCK_BUFMGR_MUST_ALREADY_BE_HELD;

	/*
	 * In recovery mode, assume the deletion being replayed is valid.  We
	 * can't always check it because we won't have a full search stack, and we
	 * should complain if there's a problem, anyway.
	 */
	if (InRecovery)
		return true;

	/* Locate the parent's downlink (updating the stack entry if needed) */
	ItemPointerSet(&(stack->bts_btentry.t_tid), target, P_HIKEY);
	pbuf = _bt_getstackbuf(rel, stack, BT_READ);
	if (pbuf == InvalidBuffer)
		elog(ERROR, "failed to re-find parent key in index \"%s\" for deletion target page %u",
			 RelationGetRelationName(rel), target);
	parent = stack->bts_blkno;
	poffset = stack->bts_offset;

	page = BufferGetPage(pbuf);
	opaque = (BTPageOpaque) PageGetSpecialPointer(page);
	maxoff = PageGetMaxOffsetNumber(page);

	/*
	 * If the target is the rightmost child of its parent, then we can't
	 * delete, unless it's also the only child.
	 */
	if (poffset >= maxoff)
	{
		/* It's rightmost child... */
		if (poffset == P_FIRSTDATAKEY(opaque))
		{
			/*
			 * It's only child, so safe if parent would itself be removable.
			 * We have to check the parent itself, and then recurse to test
			 * the conditions at the parent's parent.
			 */
			if (P_RIGHTMOST(opaque) || P_ISROOT(opaque))
			{
				_bt_relbuf(rel, pbuf);
				return false;
			}

			_bt_relbuf(rel, pbuf);
			return _bt_parent_deletion_safe(rel, parent, stack->bts_parent);
		}
		else
		{
			/* Unsafe to delete */
			_bt_relbuf(rel, pbuf);
			return false;
		}
	}
	else
	{
		/* Not rightmost child, so safe to delete */
		_bt_relbuf(rel, pbuf);
		return true;
	}
}
Ejemplo n.º 8
0
/*
 *	_bt_binsrch() -- Do a binary search for a key on a particular page.
 *
 * The passed scankey must be an insertion-type scankey (see nbtree/README),
 * but it can omit the rightmost column(s) of the index.
 *
 * When nextkey is false (the usual case), we are looking for the first
 * item >= scankey.  When nextkey is true, we are looking for the first
 * item strictly greater than scankey.
 *
 * On a leaf page, _bt_binsrch() returns the OffsetNumber of the first
 * key >= given scankey, or > scankey if nextkey is true.  (NOTE: in
 * particular, this means it is possible to return a value 1 greater than the
 * number of keys on the page, if the scankey is > all keys on the page.)
 *
 * On an internal (non-leaf) page, _bt_binsrch() returns the OffsetNumber
 * of the last key < given scankey, or last key <= given scankey if nextkey
 * is true.  (Since _bt_compare treats the first data key of such a page as
 * minus infinity, there will be at least one key < scankey, so the result
 * always points at one of the keys on the page.)  This key indicates the
 * right place to descend to be sure we find all leaf keys >= given scankey
 * (or leaf keys > given scankey when nextkey is true).
 *
 * This procedure is not responsible for walking right, it just examines
 * the given page.	_bt_binsrch() has no lock or refcount side effects
 * on the buffer.
 */
OffsetNumber
_bt_binsrch(Relation rel,
			Buffer buf,
			int keysz,
			ScanKey scankey,
			bool nextkey)
{
	Page		page;
	BTPageOpaque opaque;
	OffsetNumber low,
				high;
	int32		result,
				cmpval;

	page = BufferGetPage(buf);
	opaque = (BTPageOpaque) PageGetSpecialPointer(page);

	low = P_FIRSTDATAKEY(opaque);
	high = PageGetMaxOffsetNumber(page);

	/*
	 * If there are no keys on the page, return the first available slot. Note
	 * this covers two cases: the page is really empty (no keys), or it
	 * contains only a high key.  The latter case is possible after vacuuming.
	 * This can never happen on an internal page, however, since they are
	 * never empty (an internal page must have children).
	 */
	if (high < low)
		return low;

	/*
	 * Binary search to find the first key on the page >= scan key, or first
	 * key > scankey when nextkey is true.
	 *
	 * For nextkey=false (cmpval=1), the loop invariant is: all slots before
	 * 'low' are < scan key, all slots at or after 'high' are >= scan key.
	 *
	 * For nextkey=true (cmpval=0), the loop invariant is: all slots before
	 * 'low' are <= scan key, all slots at or after 'high' are > scan key.
	 *
	 * We can fall out when high == low.
	 */
	high++;						/* establish the loop invariant for high */

	cmpval = nextkey ? 0 : 1;	/* select comparison value */

	while (high > low)
	{
		OffsetNumber mid = low + ((high - low) / 2);

		/* We have low <= mid < high, so mid points at a real slot */

		result = _bt_compare(rel, keysz, scankey, page, mid);

		if (result >= cmpval)
			low = mid + 1;
		else
			high = mid;
	}

	/*
	 * At this point we have high == low, but be careful: they could point
	 * past the last slot on the page.
	 *
	 * On a leaf page, we always return the first key >= scan key (resp. >
	 * scan key), which could be the last slot + 1.
	 */
	if (P_ISLEAF(opaque))
		return low;

	/*
	 * On a non-leaf page, return the last key < scan key (resp. <= scan key).
	 * There must be one if _bt_compare() is playing by the rules.
	 */
	Assert(low > P_FIRSTDATAKEY(opaque));

	return OffsetNumberPrev(low);
}
Ejemplo n.º 9
0
/*
 * _bt_get_endpoint() -- Find the first or last page on a given tree level
 *
 * If the index is empty, we will return InvalidBuffer; any other failure
 * condition causes ereport().	We will not return a dead page.
 *
 * The returned buffer is pinned and read-locked.
 */
Buffer
_bt_get_endpoint(Relation rel, uint32 level, bool rightmost)
{
	Buffer		buf;
	Page		page;
	BTPageOpaque opaque;
	OffsetNumber offnum;
	BlockNumber blkno;
	IndexTuple	itup;

	/*
	 * If we are looking for a leaf page, okay to descend from fast root;
	 * otherwise better descend from true root.  (There is no point in being
	 * smarter about intermediate levels.)
	 */
	if (level == 0)
		buf = _bt_getroot(rel, BT_READ);
	else
		buf = _bt_gettrueroot(rel);

	if (!BufferIsValid(buf))
		return InvalidBuffer;

	page = BufferGetPage(buf);
	opaque = (BTPageOpaque) PageGetSpecialPointer(page);

	for (;;)
	{
		/*
		 * If we landed on a deleted page, step right to find a live page
		 * (there must be one).  Also, if we want the rightmost page, step
		 * right if needed to get to it (this could happen if the page split
		 * since we obtained a pointer to it).
		 */
		while (P_IGNORE(opaque) ||
			   (rightmost && !P_RIGHTMOST(opaque)))
		{
			blkno = opaque->btpo_next;
			if (blkno == P_NONE)
				elog(ERROR, "fell off the end of index \"%s\"",
					 RelationGetRelationName(rel));
			buf = _bt_relandgetbuf(rel, buf, blkno, BT_READ);
			page = BufferGetPage(buf);
			opaque = (BTPageOpaque) PageGetSpecialPointer(page);
		}

		/* Done? */
		if (opaque->btpo.level == level)
			break;
		if (opaque->btpo.level < level)
			elog(ERROR, "btree level %u not found in index \"%s\"",
				 level, RelationGetRelationName(rel));

		/* Descend to leftmost or rightmost child page */
		if (rightmost)
			offnum = PageGetMaxOffsetNumber(page);
		else
			offnum = P_FIRSTDATAKEY(opaque);

		itup = (IndexTuple) PageGetItem(page, PageGetItemId(page, offnum));
		blkno = ItemPointerGetBlockNumber(&(itup->t_tid));

		buf = _bt_relandgetbuf(rel, buf, blkno, BT_READ);
		page = BufferGetPage(buf);
		opaque = (BTPageOpaque) PageGetSpecialPointer(page);
	}

	return buf;
}
Ejemplo n.º 10
0
/**
 * @brief Read the left-most leaf page by walking down on index tree structure
 * from root node.
 *
 * Process flow
 * -# Open index file and read meta page
 * -# Get block number of root page
 * -# Read "fast root" page
 * -# Read left child page until reaching left-most leaf page
 *
 * After calling this function, the members of BTReader are the following:
 * - smgr : Smgr relation of the existing index file.
 * - blkno : block number of left-most leaf page. If there is no leaf page,
 *		   InvalidBlockNumber is set.
 * - offnum : InvalidOffsetNumber is set.
 * - page : Left-most leaf page, or undefined if no leaf page.
 *
 * @param reader [in/out] B-Tree index reader
 * @return true iff there are some tuples
 */
static bool
BTReaderInit(BTReader *reader, Relation rel)
{
	BTPageOpaque	metaopaque;
	BTMetaPageData *metad;
	BTPageOpaque	opaque;
	BlockNumber		blkno;

	/*
	 * HACK: We cannot use smgropen because smgrs returned from it
	 * will be closed automatically when we assign a new file node.
	 *
	 * XXX: It might be better to open the previous relfilenode with
	 * smgropen *after* RelationSetNewRelfilenode.
	 */
	memset(&reader->smgr, 0, sizeof(reader->smgr));
#if PG_VERSION_NUM >= 90100
	reader->smgr.smgr_rnode.node = rel->rd_node;
	reader->smgr.smgr_rnode.backend =
		rel->rd_backend == MyBackendId ? MyBackendId : InvalidBackendId;
#else
	reader->smgr.smgr_rnode = rel->rd_node;
#endif
	reader->smgr.smgr_which = 0;	/* md.c */

	reader->blkno = InvalidBlockNumber;
	reader->offnum = InvalidOffsetNumber;
	reader->page = palloc(BLCKSZ);

	/*
	 * Read meta page and check sanity of it.
	 * 
	 * XXX: It might be better to do REINDEX against corrupted indexes
	 * instead of raising errors because we've spent long time for data
	 * loading...
	 */
	BTReaderReadPage(reader, BTREE_METAPAGE);
	metaopaque = (BTPageOpaque) PageGetSpecialPointer(reader->page);
	metad = BTPageGetMeta(reader->page);

	if (!(metaopaque->btpo_flags & BTP_META) ||
		metad->btm_magic != BTREE_MAGIC)
		ereport(ERROR,
				(errcode(ERRCODE_INDEX_CORRUPTED),
				 errmsg("index \"%s\" is not a reader",
						RelationGetRelationName(rel))));

	if (metad->btm_version != BTREE_VERSION)
		ereport(ERROR,
				(errcode(ERRCODE_INDEX_CORRUPTED),
				 errmsg("version mismatch in index \"%s\": file version %d,"
						" code version %d",
						RelationGetRelationName(rel),
						metad->btm_version, BTREE_VERSION)));

	if (metad->btm_root == P_NONE)
	{
		/* No root page; We ignore the index in the subsequent build. */
		reader->blkno = InvalidBlockNumber;
		return false;
	}

	/* Go to the fast root page. */
	blkno = metad->btm_fastroot;
	BTReaderReadPage(reader, blkno);
	opaque = (BTPageOpaque) PageGetSpecialPointer(reader->page);

	/* Walk down to the left-most leaf page */
	while (!P_ISLEAF(opaque))
	{
		ItemId		firstid;
		IndexTuple	itup;

		/* Get the block number of the left child */
		firstid = PageGetItemId(reader->page, P_FIRSTDATAKEY(opaque));
		itup = (IndexTuple) PageGetItem(reader->page, firstid);
		blkno = ItemPointerGetBlockNumber(&(itup->t_tid));

		/* Go down to children */
		for (;;)
		{
			BTReaderReadPage(reader, blkno);
			opaque = (BTPageOpaque) PageGetSpecialPointer(reader->page);

			if (!P_IGNORE(opaque))
				break;

			if (P_RIGHTMOST(opaque))
			{
				/* We reach end of the index without any valid leaves. */
				reader->blkno = InvalidBlockNumber;
				return false;
			}
			blkno = opaque->btpo_next;
		}
	}
	
	return true;
}
Ejemplo n.º 11
0
static void
btree_xlog_split(bool onleft, bool isroot, XLogReaderState *record)
{
	XLogRecPtr	lsn = record->EndRecPtr;
	xl_btree_split *xlrec = (xl_btree_split *) XLogRecGetData(record);
	bool		isleaf = (xlrec->level == 0);
	Buffer		lbuf;
	Buffer		rbuf;
	Page		rpage;
	BTPageOpaque ropaque;
	char	   *datapos;
	Size		datalen;
	Item		left_hikey = NULL;
	Size		left_hikeysz = 0;
	BlockNumber leftsib;
	BlockNumber rightsib;
	BlockNumber rnext;

	XLogRecGetBlockTag(record, 0, NULL, NULL, &leftsib);
	XLogRecGetBlockTag(record, 1, NULL, NULL, &rightsib);
	if (!XLogRecGetBlockTag(record, 2, NULL, NULL, &rnext))
		rnext = P_NONE;

	/*
	 * Clear the incomplete split flag on the left sibling of the child page
	 * this is a downlink for.  (Like in btree_xlog_insert, this can be done
	 * before locking the other pages)
	 */
	if (!isleaf)
		_bt_clear_incomplete_split(record, 3);

	/* Reconstruct right (new) sibling page from scratch */
	rbuf = XLogInitBufferForRedo(record, 1);
	datapos = XLogRecGetBlockData(record, 1, &datalen);
	rpage = (Page) BufferGetPage(rbuf);

	_bt_pageinit(rpage, BufferGetPageSize(rbuf));
	ropaque = (BTPageOpaque) PageGetSpecialPointer(rpage);

	ropaque->btpo_prev = leftsib;
	ropaque->btpo_next = rnext;
	ropaque->btpo.level = xlrec->level;
	ropaque->btpo_flags = isleaf ? BTP_LEAF : 0;
	ropaque->btpo_cycleid = 0;

	_bt_restore_page(rpage, datapos, datalen);

	/*
	 * On leaf level, the high key of the left page is equal to the first key
	 * on the right page.
	 */
	if (isleaf)
	{
		ItemId		hiItemId = PageGetItemId(rpage, P_FIRSTDATAKEY(ropaque));

		left_hikey = PageGetItem(rpage, hiItemId);
		left_hikeysz = ItemIdGetLength(hiItemId);
	}

	PageSetLSN(rpage, lsn);
	MarkBufferDirty(rbuf);

	/* don't release the buffer yet; we touch right page's first item below */

	/* Now reconstruct left (original) sibling page */
	if (XLogReadBufferForRedo(record, 0, &lbuf) == BLK_NEEDS_REDO)
	{
		/*
		 * To retain the same physical order of the tuples that they had, we
		 * initialize a temporary empty page for the left page and add all the
		 * items to that in item number order.  This mirrors how _bt_split()
		 * works.  It's not strictly required to retain the same physical
		 * order, as long as the items are in the correct item number order,
		 * but it helps debugging.  See also _bt_restore_page(), which does
		 * the same for the right page.
		 */
		Page		lpage = (Page) BufferGetPage(lbuf);
		BTPageOpaque lopaque = (BTPageOpaque) PageGetSpecialPointer(lpage);
		OffsetNumber off;
		Item		newitem = NULL;
		Size		newitemsz = 0;
		Page		newlpage;
		OffsetNumber leftoff;

		datapos = XLogRecGetBlockData(record, 0, &datalen);

		if (onleft)
		{
			newitem = (Item) datapos;
			newitemsz = MAXALIGN(IndexTupleSize(newitem));
			datapos += newitemsz;
			datalen -= newitemsz;
		}

		/* Extract left hikey and its size (assuming 16-bit alignment) */
		if (!isleaf)
		{
			left_hikey = (Item) datapos;
			left_hikeysz = MAXALIGN(IndexTupleSize(left_hikey));
			datapos += left_hikeysz;
			datalen -= left_hikeysz;
		}
		Assert(datalen == 0);

		newlpage = PageGetTempPageCopySpecial(lpage);

		/* Set high key */
		leftoff = P_HIKEY;
		if (PageAddItem(newlpage, left_hikey, left_hikeysz,
						P_HIKEY, false, false) == InvalidOffsetNumber)
			elog(PANIC, "failed to add high key to left page after split");
		leftoff = OffsetNumberNext(leftoff);

		for (off = P_FIRSTDATAKEY(lopaque); off < xlrec->firstright; off++)
		{
			ItemId		itemid;
			Size		itemsz;
			Item		item;

			/* add the new item if it was inserted on left page */
			if (onleft && off == xlrec->newitemoff)
			{
				if (PageAddItem(newlpage, newitem, newitemsz, leftoff,
								false, false) == InvalidOffsetNumber)
					elog(ERROR, "failed to add new item to left page after split");
				leftoff = OffsetNumberNext(leftoff);
			}

			itemid = PageGetItemId(lpage, off);
			itemsz = ItemIdGetLength(itemid);
			item = PageGetItem(lpage, itemid);
			if (PageAddItem(newlpage, item, itemsz, leftoff,
							false, false) == InvalidOffsetNumber)
				elog(ERROR, "failed to add old item to left page after split");
			leftoff = OffsetNumberNext(leftoff);
		}

		/* cope with possibility that newitem goes at the end */
		if (onleft && off == xlrec->newitemoff)
		{
			if (PageAddItem(newlpage, newitem, newitemsz, leftoff,
							false, false) == InvalidOffsetNumber)
				elog(ERROR, "failed to add new item to left page after split");
			leftoff = OffsetNumberNext(leftoff);
		}

		PageRestoreTempPage(newlpage, lpage);

		/* Fix opaque fields */
		lopaque->btpo_flags = BTP_INCOMPLETE_SPLIT;
		if (isleaf)
			lopaque->btpo_flags |= BTP_LEAF;
		lopaque->btpo_next = rightsib;
		lopaque->btpo_cycleid = 0;

		PageSetLSN(lpage, lsn);
		MarkBufferDirty(lbuf);
	}

	/* We no longer need the buffers */
	if (BufferIsValid(lbuf))
		UnlockReleaseBuffer(lbuf);
	UnlockReleaseBuffer(rbuf);

	/*
	 * Fix left-link of the page to the right of the new right sibling.
	 *
	 * Note: in normal operation, we do this while still holding lock on the
	 * two split pages.  However, that's not necessary for correctness in WAL
	 * replay, because no other index update can be in progress, and readers
	 * will cope properly when following an obsolete left-link.
	 */
	if (rnext != P_NONE)
	{
		Buffer		buffer;

		if (XLogReadBufferForRedo(record, 2, &buffer) == BLK_NEEDS_REDO)
		{
			Page		page = (Page) BufferGetPage(buffer);
			BTPageOpaque pageop = (BTPageOpaque) PageGetSpecialPointer(page);

			pageop->btpo_prev = rightsib;

			PageSetLSN(page, lsn);
			MarkBufferDirty(buffer);
		}
		if (BufferIsValid(buffer))
			UnlockReleaseBuffer(buffer);
	}
}
Ejemplo n.º 12
0
Datum
readindex(PG_FUNCTION_ARGS)
{
	FuncCallContext	   *funcctx;
	readindexinfo	   *info;
	Relation	irel = NULL;
	Relation	hrel = NULL;

	MIRROREDLOCK_BUFMGR_DECLARE;

	if (SRF_IS_FIRSTCALL())
	{
		Oid		irelid = PG_GETARG_OID(0);
		TupleDesc	tupdesc;
		MemoryContext oldcontext;
		AttrNumber		outattnum;
		TupleDesc	itupdesc;
		int			i;
		AttrNumber	attno;

		irel = index_open(irelid, AccessShareLock);
		itupdesc = RelationGetDescr(irel);
		outattnum = FIXED_COLUMN + itupdesc->natts;

		funcctx = SRF_FIRSTCALL_INIT();
		oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);
		tupdesc = CreateTemplateTupleDesc(outattnum, false);
		attno = 1;
		TupleDescInitEntry(tupdesc, attno++, "ictid", TIDOID, -1, 0);
		TupleDescInitEntry(tupdesc, attno++, "hctid", TIDOID, -1, 0);
		TupleDescInitEntry(tupdesc, attno++, "aotid", TEXTOID, -1, 0);
		TupleDescInitEntry(tupdesc, attno++, "istatus", TEXTOID, -1, 0);
		TupleDescInitEntry(tupdesc, attno++, "hstatus", TEXTOID, -1, 0);

		for (i = 0; i < itupdesc->natts; i++)
		{
			Form_pg_attribute attr = itupdesc->attrs[i];
			TupleDescInitEntry(tupdesc, attno++, NameStr(attr->attname), attr->atttypid, attr->atttypmod, 0);
		}

		funcctx->tuple_desc = BlessTupleDesc(tupdesc);
		info = (readindexinfo *) palloc(sizeof(readindexinfo));
		funcctx->user_fctx = (void *) info;

		info->outattnum = outattnum;
		info->ireloid = irelid;

		hrel = relation_open(irel->rd_index->indrelid, AccessShareLock);
		if (hrel->rd_rel != NULL &&
			(hrel->rd_rel->relstorage == 'a' ||
			 hrel->rd_rel->relstorage == 'c'))
		{
			relation_close(hrel, AccessShareLock);
			hrel = NULL;
			info->hreloid = InvalidOid;
		}
		else
			info->hreloid = irel->rd_index->indrelid;
		info->num_pages = RelationGetNumberOfBlocks(irel);
		info->blkno = BTREE_METAPAGE + 1;
		info->page = NULL;

		MemoryContextSwitchTo(oldcontext);
	}

	funcctx = SRF_PERCALL_SETUP();
	info = (readindexinfo *) funcctx->user_fctx;

	/*
	 * Open the relations (on first call, we did that above already).
	 * We unfortunately have to look up the relcache entry on every call,
	 * because if we store it in the cross-call context, we won't get a
	 * chance to release it if the function isn't run to completion,
	 * e.g. because of a LIMIT clause. We only lock the relation on the
	 * first call, and keep the lock until completion, however.
	 */
	if (!irel)
		irel = index_open(info->ireloid, NoLock);
	if (!hrel && info->hreloid != InvalidOid)
		hrel = heap_open(info->hreloid, NoLock);

	while (info->blkno < info->num_pages)
	{
		Datum		values[255];
		bool		nulls[255];
		ItemPointerData		itid;
		HeapTuple	tuple;
		Datum		result;

		if (info->page == NULL)
		{
			Buffer		buf;

			/*
			 * Make copy of the page, because we cannot hold a buffer pin
			 * across calls (we wouldn't have a chance to release it, if the
			 * function isn't run to completion.)
			 */
			info->page = palloc(BLCKSZ);

			MIRROREDLOCK_BUFMGR_LOCK;
			buf = ReadBuffer(irel, info->blkno);
			memcpy(info->page, BufferGetPage(buf), BLCKSZ);
			ReleaseBuffer(buf);
			MIRROREDLOCK_BUFMGR_UNLOCK;

			info->opaque = (BTPageOpaque) PageGetSpecialPointer(info->page);
			info->minoff = P_FIRSTDATAKEY(info->opaque);
			info->maxoff = PageGetMaxOffsetNumber(info->page);
			info->offnum = info->minoff;
		}
		if (!P_ISLEAF(info->opaque) || info->offnum > info->maxoff)
		{
			pfree(info->page);
			info->page = NULL;
			info->blkno++;
			continue;
		}

		MemSet(nulls, false, info->outattnum * sizeof(bool));

		ItemPointerSet(&itid, info->blkno, info->offnum);
		values[0] = ItemPointerGetDatum(&itid);
		readindextuple(info, irel, hrel, values, nulls);

		info->offnum = OffsetNumberNext(info->offnum);

		tuple = heap_form_tuple(funcctx->tuple_desc, values, nulls);
		result = HeapTupleGetDatum(tuple);

		if (hrel != NULL)
			heap_close(hrel, NoLock);
		index_close(irel, NoLock);

		SRF_RETURN_NEXT(funcctx, result);
	}

	if (hrel != NULL)
		heap_close(hrel, AccessShareLock);
	index_close(irel, AccessShareLock);
	SRF_RETURN_DONE(funcctx);
}
Ejemplo n.º 13
0
/*
 * _bt_pagedel() -- Delete a page from the b-tree.
 *
 * This action unlinks the page from the b-tree structure, removing all
 * pointers leading to it --- but not touching its own left and right links.
 * The page cannot be physically reclaimed right away, since other processes
 * may currently be trying to follow links leading to the page; they have to
 * be allowed to use its right-link to recover.  See nbtree/README.
 *
 * On entry, the target buffer must be pinned and read-locked.	This lock and
 * pin will be dropped before exiting.
 *
 * Returns the number of pages successfully deleted (zero on failure; could
 * be more than one if parent blocks were deleted).
 *
 * NOTE: this leaks memory.  Rather than trying to clean up everything
 * carefully, it's better to run it in a temp context that can be reset
 * frequently.
 */
int
_bt_pagedel(Relation rel, Buffer buf, bool vacuum_full)
{
	BlockNumber target,
				leftsib,
				rightsib,
				parent;
	OffsetNumber poffset,
				maxoff;
	uint32		targetlevel,
				ilevel;
	ItemId		itemid;
	BTItem		targetkey,
				btitem;
	ScanKey		itup_scankey;
	BTStack		stack;
	Buffer		lbuf,
				rbuf,
				pbuf;
	bool		parent_half_dead;
	bool		parent_one_child;
	bool		rightsib_empty;
	Buffer		metabuf = InvalidBuffer;
	Page		metapg = NULL;
	BTMetaPageData *metad = NULL;
	Page		page;
	BTPageOpaque opaque;

	/*
	 * We can never delete rightmost pages nor root pages.	While at it, check
	 * that page is not already deleted and is empty.
	 */
	page = BufferGetPage(buf);
	opaque = (BTPageOpaque) PageGetSpecialPointer(page);
	if (P_RIGHTMOST(opaque) || P_ISROOT(opaque) || P_ISDELETED(opaque) ||
		P_FIRSTDATAKEY(opaque) <= PageGetMaxOffsetNumber(page))
	{
		_bt_relbuf(rel, buf);
		return 0;
	}

	/*
	 * Save info about page, including a copy of its high key (it must have
	 * one, being non-rightmost).
	 */
	target = BufferGetBlockNumber(buf);
	targetlevel = opaque->btpo.level;
	leftsib = opaque->btpo_prev;
	itemid = PageGetItemId(page, P_HIKEY);
	targetkey = CopyBTItem((BTItem) PageGetItem(page, itemid));

	/*
	 * We need to get an approximate pointer to the page's parent page. Use
	 * the standard search mechanism to search for the page's high key; this
	 * will give us a link to either the current parent or someplace to its
	 * left (if there are multiple equal high keys).  To avoid deadlocks, we'd
	 * better drop the target page lock first.
	 */
	_bt_relbuf(rel, buf);
	/* we need a scan key to do our search, so build one */
	itup_scankey = _bt_mkscankey(rel, &(targetkey->bti_itup));
	/* find the leftmost leaf page containing this key */
	stack = _bt_search(rel, rel->rd_rel->relnatts, itup_scankey, false,
					   &lbuf, BT_READ);
	/* don't need a pin on that either */
	_bt_relbuf(rel, lbuf);

	/*
	 * If we are trying to delete an interior page, _bt_search did more than
	 * we needed.  Locate the stack item pointing to our parent level.
	 */
	ilevel = 0;
	for (;;)
	{
		if (stack == NULL)
			elog(ERROR, "not enough stack items");
		if (ilevel == targetlevel)
			break;
		stack = stack->bts_parent;
		ilevel++;
	}

	/*
	 * We have to lock the pages we need to modify in the standard order:
	 * moving right, then up.  Else we will deadlock against other writers.
	 *
	 * So, we need to find and write-lock the current left sibling of the
	 * target page.  The sibling that was current a moment ago could have
	 * split, so we may have to move right.  This search could fail if either
	 * the sibling or the target page was deleted by someone else meanwhile;
	 * if so, give up.	(Right now, that should never happen, since page
	 * deletion is only done in VACUUM and there shouldn't be multiple VACUUMs
	 * concurrently on the same table.)
	 */
	if (leftsib != P_NONE)
	{
		lbuf = _bt_getbuf(rel, leftsib, BT_WRITE);
		page = BufferGetPage(lbuf);
		opaque = (BTPageOpaque) PageGetSpecialPointer(page);
		while (P_ISDELETED(opaque) || opaque->btpo_next != target)
		{
			/* step right one page */
			leftsib = opaque->btpo_next;
			_bt_relbuf(rel, lbuf);
			if (leftsib == P_NONE)
			{
				elog(LOG, "no left sibling (concurrent deletion?) in \"%s\"",
					 RelationGetRelationName(rel));
				return 0;
			}
			lbuf = _bt_getbuf(rel, leftsib, BT_WRITE);
			page = BufferGetPage(lbuf);
			opaque = (BTPageOpaque) PageGetSpecialPointer(page);
		}
	}
	else
		lbuf = InvalidBuffer;

	/*
	 * Next write-lock the target page itself.	It should be okay to take just
	 * a write lock not a superexclusive lock, since no scans would stop on an
	 * empty page.
	 */
	buf = _bt_getbuf(rel, target, BT_WRITE);
	page = BufferGetPage(buf);
	opaque = (BTPageOpaque) PageGetSpecialPointer(page);

	/*
	 * Check page is still empty etc, else abandon deletion.  The empty check
	 * is necessary since someone else might have inserted into it while we
	 * didn't have it locked; the others are just for paranoia's sake.
	 */
	if (P_RIGHTMOST(opaque) || P_ISROOT(opaque) || P_ISDELETED(opaque) ||
		P_FIRSTDATAKEY(opaque) <= PageGetMaxOffsetNumber(page))
	{
		_bt_relbuf(rel, buf);
		if (BufferIsValid(lbuf))
			_bt_relbuf(rel, lbuf);
		return 0;
	}
	if (opaque->btpo_prev != leftsib)
		elog(ERROR, "left link changed unexpectedly in block %u of \"%s\"",
			 target, RelationGetRelationName(rel));

	/*
	 * And next write-lock the (current) right sibling.
	 */
	rightsib = opaque->btpo_next;
	rbuf = _bt_getbuf(rel, rightsib, BT_WRITE);

	/*
	 * Next find and write-lock the current parent of the target page. This is
	 * essentially the same as the corresponding step of splitting.  However,
	 * it's possible for the search to fail (for reasons explained in README).
	 * If that happens, we recover by searching the whole parent level, which
	 * is a tad inefficient but doesn't happen often enough to be a problem.
	 */
	ItemPointerSet(&(stack->bts_btitem.bti_itup.t_tid),
				   target, P_HIKEY);
	pbuf = _bt_getstackbuf(rel, stack, BT_WRITE);
	if (pbuf == InvalidBuffer)
	{
		/* Find the leftmost page in the parent level */
		pbuf = _bt_get_endpoint(rel, opaque->btpo.level + 1, false);
		stack->bts_blkno = BufferGetBlockNumber(pbuf);
		stack->bts_offset = InvalidOffsetNumber;
		_bt_relbuf(rel, pbuf);
		/* and repeat search from there */
		pbuf = _bt_getstackbuf(rel, stack, BT_WRITE);
		if (pbuf == InvalidBuffer)
			elog(ERROR, "failed to re-find parent key in \"%s\" for deletion target page %u",
				 RelationGetRelationName(rel), target);
	}
	parent = stack->bts_blkno;
	poffset = stack->bts_offset;

	/*
	 * If the target is the rightmost child of its parent, then we can't
	 * delete, unless it's also the only child --- in which case the parent
	 * changes to half-dead status.
	 */
	page = BufferGetPage(pbuf);
	opaque = (BTPageOpaque) PageGetSpecialPointer(page);
	maxoff = PageGetMaxOffsetNumber(page);
	parent_half_dead = false;
	parent_one_child = false;
	if (poffset >= maxoff)
	{
		if (poffset == P_FIRSTDATAKEY(opaque))
			parent_half_dead = true;
		else
		{
			_bt_relbuf(rel, pbuf);
			_bt_relbuf(rel, rbuf);
			_bt_relbuf(rel, buf);
			if (BufferIsValid(lbuf))
				_bt_relbuf(rel, lbuf);
			return 0;
		}
	}
	else
	{
		/* Will there be exactly one child left in this parent? */
		if (OffsetNumberNext(P_FIRSTDATAKEY(opaque)) == maxoff)
			parent_one_child = true;
	}

	/*
	 * If we are deleting the next-to-last page on the target's level, then
	 * the rightsib is a candidate to become the new fast root. (In theory, it
	 * might be possible to push the fast root even further down, but the odds
	 * of doing so are slim, and the locking considerations daunting.)
	 *
	 * We can safely acquire a lock on the metapage here --- see comments for
	 * _bt_newroot().
	 */
	if (leftsib == P_NONE)
	{
		page = BufferGetPage(rbuf);
		opaque = (BTPageOpaque) PageGetSpecialPointer(page);
		Assert(opaque->btpo.level == targetlevel);
		if (P_RIGHTMOST(opaque))
		{
			/* rightsib will be the only one left on the level */
			metabuf = _bt_getbuf(rel, BTREE_METAPAGE, BT_WRITE);
			metapg = BufferGetPage(metabuf);
			metad = BTPageGetMeta(metapg);

			/*
			 * The expected case here is btm_fastlevel == targetlevel+1; if
			 * the fastlevel is <= targetlevel, something is wrong, and we
			 * choose to overwrite it to fix it.
			 */
			if (metad->btm_fastlevel > targetlevel + 1)
			{
				/* no update wanted */
				_bt_relbuf(rel, metabuf);
				metabuf = InvalidBuffer;
			}
		}
	}

	/*
	 * Here we begin doing the deletion.
	 */

	/* No ereport(ERROR) until changes are logged */
	START_CRIT_SECTION();

	/*
	 * Update parent.  The normal case is a tad tricky because we want to
	 * delete the target's downlink and the *following* key.  Easiest way is
	 * to copy the right sibling's downlink over the target downlink, and then
	 * delete the following item.
	 */
	page = BufferGetPage(pbuf);
	opaque = (BTPageOpaque) PageGetSpecialPointer(page);
	if (parent_half_dead)
	{
		PageIndexTupleDelete(page, poffset);
		opaque->btpo_flags |= BTP_HALF_DEAD;
	}
	else
	{
		OffsetNumber nextoffset;

		itemid = PageGetItemId(page, poffset);
		btitem = (BTItem) PageGetItem(page, itemid);
		Assert(ItemPointerGetBlockNumber(&(btitem->bti_itup.t_tid)) == target);
		ItemPointerSet(&(btitem->bti_itup.t_tid), rightsib, P_HIKEY);

		nextoffset = OffsetNumberNext(poffset);
		/* This part is just for double-checking */
		itemid = PageGetItemId(page, nextoffset);
		btitem = (BTItem) PageGetItem(page, itemid);
		if (ItemPointerGetBlockNumber(&(btitem->bti_itup.t_tid)) != rightsib)
			elog(PANIC, "right sibling is not next child in \"%s\"",
				 RelationGetRelationName(rel));
		PageIndexTupleDelete(page, nextoffset);
	}

	/*
	 * Update siblings' side-links.  Note the target page's side-links will
	 * continue to point to the siblings.
	 */
	if (BufferIsValid(lbuf))
	{
		page = BufferGetPage(lbuf);
		opaque = (BTPageOpaque) PageGetSpecialPointer(page);
		Assert(opaque->btpo_next == target);
		opaque->btpo_next = rightsib;
	}
	page = BufferGetPage(rbuf);
	opaque = (BTPageOpaque) PageGetSpecialPointer(page);
	Assert(opaque->btpo_prev == target);
	opaque->btpo_prev = leftsib;
	rightsib_empty = (P_FIRSTDATAKEY(opaque) > PageGetMaxOffsetNumber(page));

	/*
	 * Mark the page itself deleted.  It can be recycled when all current
	 * transactions are gone; or immediately if we're doing VACUUM FULL.
	 */
	page = BufferGetPage(buf);
	opaque = (BTPageOpaque) PageGetSpecialPointer(page);
	opaque->btpo_flags |= BTP_DELETED;
	opaque->btpo.xact =
		vacuum_full ? FrozenTransactionId : ReadNewTransactionId();

	/* And update the metapage, if needed */
	if (BufferIsValid(metabuf))
	{
		metad->btm_fastroot = rightsib;
		metad->btm_fastlevel = targetlevel;
	}

	/* XLOG stuff */
	if (!rel->rd_istemp)
	{
		xl_btree_delete_page xlrec;
		xl_btree_metadata xlmeta;
		uint8		xlinfo;
		XLogRecPtr	recptr;
		XLogRecData rdata[5];
		XLogRecData *nextrdata;

		xlrec.target.node = rel->rd_node;
		ItemPointerSet(&(xlrec.target.tid), parent, poffset);
		xlrec.deadblk = target;
		xlrec.leftblk = leftsib;
		xlrec.rightblk = rightsib;

		rdata[0].data = (char *) &xlrec;
		rdata[0].len = SizeOfBtreeDeletePage;
		rdata[0].buffer = InvalidBuffer;
		rdata[0].next = nextrdata = &(rdata[1]);

		if (BufferIsValid(metabuf))
		{
			xlmeta.root = metad->btm_root;
			xlmeta.level = metad->btm_level;
			xlmeta.fastroot = metad->btm_fastroot;
			xlmeta.fastlevel = metad->btm_fastlevel;

			nextrdata->data = (char *) &xlmeta;
			nextrdata->len = sizeof(xl_btree_metadata);
			nextrdata->buffer = InvalidBuffer;
			nextrdata->next = nextrdata + 1;
			nextrdata++;
			xlinfo = XLOG_BTREE_DELETE_PAGE_META;
		}
		else
			xlinfo = XLOG_BTREE_DELETE_PAGE;

		nextrdata->data = NULL;
		nextrdata->len = 0;
		nextrdata->next = nextrdata + 1;
		nextrdata->buffer = pbuf;
		nextrdata->buffer_std = true;
		nextrdata++;

		nextrdata->data = NULL;
		nextrdata->len = 0;
		nextrdata->buffer = rbuf;
		nextrdata->buffer_std = true;
		nextrdata->next = NULL;

		if (BufferIsValid(lbuf))
		{
			nextrdata->next = nextrdata + 1;
			nextrdata++;
			nextrdata->data = NULL;
			nextrdata->len = 0;
			nextrdata->buffer = lbuf;
			nextrdata->buffer_std = true;
			nextrdata->next = NULL;
		}

		recptr = XLogInsert(RM_BTREE_ID, xlinfo, rdata);

		if (BufferIsValid(metabuf))
		{
			PageSetLSN(metapg, recptr);
			PageSetTLI(metapg, ThisTimeLineID);
		}
		page = BufferGetPage(pbuf);
		PageSetLSN(page, recptr);
		PageSetTLI(page, ThisTimeLineID);
		page = BufferGetPage(rbuf);
		PageSetLSN(page, recptr);
		PageSetTLI(page, ThisTimeLineID);
		page = BufferGetPage(buf);
		PageSetLSN(page, recptr);
		PageSetTLI(page, ThisTimeLineID);
		if (BufferIsValid(lbuf))
		{
			page = BufferGetPage(lbuf);
			PageSetLSN(page, recptr);
			PageSetTLI(page, ThisTimeLineID);
		}
	}

	END_CRIT_SECTION();

	/* Write and release buffers */
	if (BufferIsValid(metabuf))
		_bt_wrtbuf(rel, metabuf);
	_bt_wrtbuf(rel, pbuf);
	_bt_wrtbuf(rel, rbuf);
	_bt_wrtbuf(rel, buf);
	if (BufferIsValid(lbuf))
		_bt_wrtbuf(rel, lbuf);

	/*
	 * If parent became half dead, recurse to try to delete it. Otherwise, if
	 * right sibling is empty and is now the last child of the parent, recurse
	 * to try to delete it.  (These cases cannot apply at the same time,
	 * though the second case might itself recurse to the first.)
	 */
	if (parent_half_dead)
	{
		buf = _bt_getbuf(rel, parent, BT_READ);
		return _bt_pagedel(rel, buf, vacuum_full) + 1;
	}
	if (parent_one_child && rightsib_empty)
	{
		buf = _bt_getbuf(rel, rightsib, BT_READ);
		return _bt_pagedel(rel, buf, vacuum_full) + 1;
	}

	return 1;
}
Ejemplo n.º 14
0
/*
 * Test whether an indextuple satisfies all the scankey conditions.
 *
 * If so, copy its TID into scan->xs_ctup.t_self, and return TRUE.
 * If not, return FALSE (xs_ctup is not changed).
 *
 * If the tuple fails to pass the qual, we also determine whether there's
 * any need to continue the scan beyond this tuple, and set *continuescan
 * accordingly.  See comments for bt_preproc_keys(), above, about how
 * this is done.
 *
 * scan: index scan descriptor (containing a search-type scankey)
 * page: buffer page containing index tuple
 * offnum: offset number of index tuple (must be a valid item!)
 * dir: direction we are scanning in
 * continuescan: output parameter (will be set correctly in all cases)
 */
bool
bt_check_keys(
	struct index_scan* scan,
	page_p page,
	item_id_t offnum,
	enum scandir dir,
	bool* continuescan)
{
	struct item_id *iid;
	bool tuple_valid;
	struct index_tuple *tuple;
	struct tuple *tupdesc;
	struct bt_scan_opaque *so;
	int keysz;
	int ikey;
	struct scankey *key;

	iid = PAGE_ITEM_ID(page, offnum);
	*continuescan = true;	/* default assumption */

	/*
	 * If the scan specifies not to return killed tuples, then we treat a
	 * killed tuple as not passing the qual.  Most of the time, it's a win to
	 * not bother examining the tuple's index keys, but just return
	 * immediately with continuescan = true to proceed to the next tuple.
	 * However, if this is the last tuple on the page, we should check the
	 * index keys to prevent uselessly advancing to the next page.
	 */
	if (scan->ignore_killed_tuples && ITEMID_DEAD(iid)) {
		/* return immediately if there are more tuples on the page */
		if (SCANDIR_FORWARD(dir)) {
			if (offnum < PAGE_MAX_ITEM_ID(page))
				return false;
		} else {
			struct bt_page_opaque *opaque;

			opaque = (struct bt_page_opaque *) PAGE_SPECIAL_PTR(page);
			if (offnum > P_FIRSTDATAKEY(opaque))
				return false;
		}

		/*
		 * OK, we want to check the keys, but we'll return FALSE even if the
		 * tuple passes the key tests.
		 */
		tuple_valid = false;
	} else
		tuple_valid = true;

	tuple = (struct index_tuple*) PAGE_GET_ITEM(page, iid);
	tupdesc = REL_DESC(scan->indexRelation);
	so = (struct bt_scan_opaque*) scan->opaque;
	keysz = so->numberOfKeys;

	for (key = so->keyData, ikey = 0; ikey < keysz; key++, ikey++) {
		datum_t datum;
		bool isNull;
		datum_t test;

		/* row-comparison keys need special processing */
		if (key->sk_flags & SK_ROW_HEADER) {
			if (bt_check_rowcompare(key, tuple, tupdesc, dir, continuescan))
				continue;

			return false;
		}

		datum = index_getattr(tuple, key->sk_attno, tupdesc, &isNull);
		if (key->sk_flags & SK_ISNULL) {
			/* Handle IS NULL/NOT NULL tests */
			if (key->sk_flags & SK_SEARCHNULL) {
				if (isNull)
					continue;	/* tuple satisfies this qual */
			} else {
				ASSERT(key->sk_flags & SK_SEARCHNOTNULL);
				if (!isNull)
					continue;	/* tuple satisfies this qual */
			}

			/*
			 * Tuple fails this qual.  If it's a required qual for the current
			 * scan direction, then we can conclude no further tuples will
			 * pass, either.
			 */
			if ((key->sk_flags & SK_BT_REQFWD)
				&& SCANDIR_FORWARD(dir))
				*continuescan = false;
			else if ((key->sk_flags & SK_BT_REQBKWD)
				&& SCANDIR_BACKWARD(dir))
				*continuescan = false;

			/*
			 * In any case, this indextuple doesn't match the qual.
			 */
			return false;
		}

		if (isNull) {
			if (key->sk_flags & SK_BT_NULLS_FIRST) {
				/*
				 * Since NULLs are sorted before non-NULLs, we know we have
				 * reached the lower limit of the range of values for this
				 * index attr.  On a backward scan, we can stop if this qual
				 * is one of the "must match" subset.  On a forward scan,
				 * however, we should keep going.
				 */
				if ((key->sk_flags & SK_BT_REQBKWD)
					&& SCANDIR_BACKWARD(dir))
					*continuescan = false;
			} else {
				/*
				 * Since NULLs are sorted after non-NULLs, we know we have
				 * reached the upper limit of the range of values for this
				 * index attr.  On a forward scan, we can stop if this qual is
				 * one of the "must match" subset.      On a backward scan,
				 * however, we should keep going.
				 */
				if ((key->sk_flags & SK_BT_REQFWD)
					&& SCANDIR_FORWARD(dir))
					*continuescan = false;
			}

			/*
			 * In any case, this indextuple doesn't match the qual.
			 */
			return false;
		}

		test = fc_2coll(&key->sk_func, key->sk_collation, datum, key->sk_argument);
		if (!D_TO_BOOL(test)) {
			/*
			 * Tuple fails this qual.  If it's a required qual for the current
			 * scan direction, then we can conclude no further tuples will
			 * pass, either.
			 *
			 * Note: because we stop the scan as soon as any required equality
			 * qual fails, it is critical that equality quals be used for the
			 * initial positioning in _bt_first() when they are available. See
			 * comments in _bt_first().
			 */
			if ((key->sk_flags & SK_BT_REQFWD)
				&& SCANDIR_FORWARD(dir))
				*continuescan = false;
			else if ((key->sk_flags & SK_BT_REQBKWD)
				&& SCANDIR_BACKWARD(dir))
				*continuescan = false;

			/*
			 * In any case, this indextuple doesn't match the qual.
			 */
			return false;
		}
	}

	/* If we get here, the tuple passes all index quals. */
	if (tuple_valid)
		scan->xs_ctup.t_self = tuple->t_tid;

	return tuple_valid;
}
Ejemplo n.º 15
0
/*
 * _bt_killitems - set LP_DEAD state for items an indexscan caller has
 * told us were killed
 *
 * scan->so contains information about the current page and killed tuples
 * thereon (generally, this should only be called if so->numKilled > 0).
 *
 * The caller must have pin on so->currPos.buf, but may or may not have
 * read-lock, as indicated by haveLock.  Note that we assume read-lock
 * is sufficient for setting LP_DEAD status (which is only a hint).
 *
 * We match items by heap TID before assuming they are the right ones to
 * delete.	We cope with cases where items have moved right due to insertions.
 * If an item has moved off the current page due to a split, we'll fail to
 * find it and do nothing (this is not an error case --- we assume the item
 * will eventually get marked in a future indexscan).  Note that because we
 * hold pin on the target page continuously from initially reading the items
 * until applying this function, VACUUM cannot have deleted any items from
 * the page, and so there is no need to search left from the recorded offset.
 * (This observation also guarantees that the item is still the right one
 * to delete, which might otherwise be questionable since heap TIDs can get
 * recycled.)
 */
void _bt_killitems(struct index_scan *scan, bool haveLock)
{
	struct bt_scan_opaque *so;
	page_p page;
	struct bt_page_opaque *opaque;
	item_id_t minoff;
	item_id_t maxoff;
	int i;
	bool killedsomething = false;

	so = (struct bt_scan_opaque *)scan->opaque;
	ASSERT(BUF_VALID(so->currPos.buf));

	if (!haveLock)
		lock_buf(so->currPos.buf, BT_READ);

	page = BUF_PAGE(so->currPos.buf);
	opaque = (struct bt_page_opaque *)PAGE_SPECIAL_PTR(page);
	minoff = P_FIRSTDATAKEY(opaque);
	maxoff = PAGE_MAX_ITEM_ID(page);

	for (i = 0; i < so->numKilled; i++) {
		int itemIndex = so->killedItems[i];
		struct bt_scan_item *kitem = &so->currPos.items[itemIndex];
		item_id_t offnum = kitem->indexOffset;

		ASSERT(itemIndex >= so->currPos.firstItem
			&& itemIndex <= so->currPos.lastItem);

		if (offnum < minoff)
			continue;	/* pure paranoia */

		while (offnum <= maxoff) {
			struct item_id *iid;
			struct index_tuple *ituple;

			iid = PAGE_ITEM_ID(page, offnum);
			ituple = (struct index_tuple *)PAGE_GET_ITEM(page, iid);
			if (item_ptr_eq(&ituple->t_tid, &kitem->heapTid)) {
				/* found the item */
				ITEMID_MARK_DEAD(iid);
				killedsomething = true;
				break;	/* out of inner search loop */
			}

			offnum = ITEM_ID_NEXT(offnum);
		}
	}

	/*
	 * Since this can be redone later if needed, it's treated the same as a
	 * commit-hint-bit status update for heap tuples: we mark the buffer dirty
	 * but don't make a WAL log entry.
	 *
	 * Whenever we mark anything LP_DEAD, we also set the page's
	 * BTP_HAS_GARBAGE flag, which is likewise just a hint.
	 */
	if (killedsomething) {
		opaque->btpo_flags |= BTP_HAS_GARBAGE;
		set_buf_commit_needs_save(so->currPos.buf);
	}

	if (!haveLock)
		lock_buf(so->currPos.buf, BUF_LOCK_UNLOCK);

	/*
	 * Always reset the scan state, so we don't look for same items on other
	 * pages.
	 */
	so->numKilled = 0;
}
Ejemplo n.º 16
0
/*
 *	_bt_readpage() -- Load data from current index page into so->currPos
 *
 * Caller must have pinned and read-locked so->currPos.buf; the buffer's state
 * is not changed here.  Also, currPos.moreLeft and moreRight must be valid;
 * they are updated as appropriate.  All other fields of so->currPos are
 * initialized from scratch here.
 *
 * We scan the current page starting at offnum and moving in the indicated
 * direction.  All items matching the scan keys are loaded into currPos.items.
 * moreLeft or moreRight (as appropriate) is cleared if _bt_checkkeys reports
 * that there can be no more matching tuples in the current scan direction.
 *
 * Returns true if any matching items found on the page, false if none.
 */
static bool
_bt_readpage(IndexScanDesc scan, ScanDirection dir, OffsetNumber offnum)
{
	BTScanOpaque so = (BTScanOpaque) scan->opaque;
	Page		page;
	BTPageOpaque opaque;
	OffsetNumber minoff;
	OffsetNumber maxoff;
	int			itemIndex;
	IndexTuple	itup;
	bool		continuescan;

	/* we must have the buffer pinned and locked */
	Assert(BufferIsValid(so->currPos.buf));

	page = BufferGetPage(so->currPos.buf);
	opaque = (BTPageOpaque) PageGetSpecialPointer(page);
	minoff = P_FIRSTDATAKEY(opaque);
	maxoff = PageGetMaxOffsetNumber(page);

	/*
	 * we must save the page's right-link while scanning it; this tells us
	 * where to step right to after we're done with these items.  There is no
	 * corresponding need for the left-link, since splits always go right.
	 */
	so->currPos.nextPage = opaque->btpo_next;

	/* initialize tuple workspace to empty */
	so->currPos.nextTupleOffset = 0;

	if (ScanDirectionIsForward(dir))
	{
		/* load items[] in ascending order */
		itemIndex = 0;

		offnum = Max(offnum, minoff);

		while (offnum <= maxoff)
		{
			itup = _bt_checkkeys(scan, page, offnum, dir, &continuescan);
			if (itup != NULL)
			{
				/* tuple passes all scan key conditions, so remember it */
				_bt_saveitem(so, itemIndex, offnum, itup);
				itemIndex++;
			}
			if (!continuescan)
			{
				/* there can't be any more matches, so stop */
				so->currPos.moreRight = false;
				break;
			}

			offnum = OffsetNumberNext(offnum);
		}

		Assert(itemIndex <= MaxIndexTuplesPerPage);
		so->currPos.firstItem = 0;
		so->currPos.lastItem = itemIndex - 1;
		so->currPos.itemIndex = 0;
	}
	else
	{
		/* load items[] in descending order */
		itemIndex = MaxIndexTuplesPerPage;

		offnum = Min(offnum, maxoff);

		while (offnum >= minoff)
		{
			itup = _bt_checkkeys(scan, page, offnum, dir, &continuescan);
			if (itup != NULL)
			{
				/* tuple passes all scan key conditions, so remember it */
				itemIndex--;
				_bt_saveitem(so, itemIndex, offnum, itup);
			}
			if (!continuescan)
			{
				/* there can't be any more matches, so stop */
				so->currPos.moreLeft = false;
				break;
			}

			offnum = OffsetNumberPrev(offnum);
		}

		Assert(itemIndex >= 0);
		so->currPos.firstItem = itemIndex;
		so->currPos.lastItem = MaxIndexTuplesPerPage - 1;
		so->currPos.itemIndex = MaxIndexTuplesPerPage - 1;
	}

	return (so->currPos.firstItem <= so->currPos.lastItem);
}
Ejemplo n.º 17
0
/*
 *	_bt_steppage() -- Step to next page containing valid data for scan
 *
 * On entry, so->currPos.buf must be pinned and read-locked.  We'll drop
 * the lock and pin before moving to next page.
 *
 * On success exit, we hold pin and read-lock on the next interesting page,
 * and so->currPos is updated to contain data from that page.
 *
 * If there are no more matching records in the given direction, we drop all
 * locks and pins, set so->currPos.buf to InvalidBuffer, and return FALSE.
 */
static bool
_bt_steppage(IndexScanDesc scan, ScanDirection dir)
{
	BTScanOpaque so = (BTScanOpaque) scan->opaque;
	Relation	rel;
	Page		page;
	BTPageOpaque opaque;

	/* we must have the buffer pinned and locked */
	Assert(BufferIsValid(so->currPos.buf));

	/* Before leaving current page, deal with any killed items */
	if (so->numKilled > 0)
		_bt_killitems(scan, true);

	/*
	 * Before we modify currPos, make a copy of the page data if there was a
	 * mark position that needs it.
	 */
	if (so->markItemIndex >= 0)
	{
		/* bump pin on current buffer for assignment to mark buffer */
		IncrBufferRefCount(so->currPos.buf);
		memcpy(&so->markPos, &so->currPos,
			   offsetof(BTScanPosData, items[1]) +
			   so->currPos.lastItem * sizeof(BTScanPosItem));
		if (so->markTuples)
			memcpy(so->markTuples, so->currTuples,
				   so->currPos.nextTupleOffset);
		so->markPos.itemIndex = so->markItemIndex;
		so->markItemIndex = -1;
	}

	rel = scan->indexRelation;

	if (ScanDirectionIsForward(dir))
	{
		/* Walk right to the next page with data */
		/* We must rely on the previously saved nextPage link! */
		BlockNumber blkno = so->currPos.nextPage;

		/* Remember we left a page with data */
		so->currPos.moreLeft = true;

		for (;;)
		{
			/* release the previous buffer */
			_bt_relbuf(rel, so->currPos.buf);
			so->currPos.buf = InvalidBuffer;
			/* if we're at end of scan, give up */
			if (blkno == P_NONE || !so->currPos.moreRight)
				return false;
			/* check for interrupts while we're not holding any buffer lock */
			CHECK_FOR_INTERRUPTS();
			/* step right one page */
			so->currPos.buf = _bt_getbuf(rel, blkno, BT_READ);
			/* check for deleted page */
			page = BufferGetPage(so->currPos.buf);
			opaque = (BTPageOpaque) PageGetSpecialPointer(page);
			if (!P_IGNORE(opaque))
			{
				PredicateLockPage(rel, blkno, scan->xs_snapshot);
				/* see if there are any matches on this page */
				/* note that this will clear moreRight if we can stop */
				if (_bt_readpage(scan, dir, P_FIRSTDATAKEY(opaque)))
					break;
			}
			/* nope, keep going */
			blkno = opaque->btpo_next;
		}
	}
	else
	{
		/* Remember we left a page with data */
		so->currPos.moreRight = true;

		/*
		 * Walk left to the next page with data.  This is much more complex
		 * than the walk-right case because of the possibility that the page
		 * to our left splits while we are in flight to it, plus the
		 * possibility that the page we were on gets deleted after we leave
		 * it.	See nbtree/README for details.
		 */
		for (;;)
		{
			/* Done if we know there are no matching keys to the left */
			if (!so->currPos.moreLeft)
			{
				_bt_relbuf(rel, so->currPos.buf);
				so->currPos.buf = InvalidBuffer;
				return false;
			}

			/* Step to next physical page */
			so->currPos.buf = _bt_walk_left(rel, so->currPos.buf);

			/* if we're physically at end of index, return failure */
			if (so->currPos.buf == InvalidBuffer)
				return false;

			/*
			 * Okay, we managed to move left to a non-deleted page. Done if
			 * it's not half-dead and contains matching tuples. Else loop back
			 * and do it all again.
			 */
			page = BufferGetPage(so->currPos.buf);
			opaque = (BTPageOpaque) PageGetSpecialPointer(page);
			if (!P_IGNORE(opaque))
			{
				PredicateLockPage(rel, BufferGetBlockNumber(so->currPos.buf), scan->xs_snapshot);
				/* see if there are any matches on this page */
				/* note that this will clear moreLeft if we can stop */
				if (_bt_readpage(scan, dir, PageGetMaxOffsetNumber(page)))
					break;
			}
		}
	}

	return true;
}
Ejemplo n.º 18
0
/*
 * _bt_killitems - set LP_DEAD state for items an indexscan caller has
 * told us were killed
 *
 * scan->so contains information about the current page and killed tuples
 * thereon (generally, this should only be called if so->numKilled > 0).
 *
 * The caller must have pin on so->currPos.buf, but may or may not have
 * read-lock, as indicated by haveLock.  Note that we assume read-lock
 * is sufficient for setting LP_DEAD status (which is only a hint).
 *
 * We match items by heap TID before assuming they are the right ones to
 * delete.	We cope with cases where items have moved right due to insertions.
 * If an item has moved off the current page due to a split, we'll fail to
 * find it and do nothing (this is not an error case --- we assume the item
 * will eventually get marked in a future indexscan).  Note that because we
 * hold pin on the target page continuously from initially reading the items
 * until applying this function, VACUUM cannot have deleted any items from
 * the page, and so there is no need to search left from the recorded offset.
 * (This observation also guarantees that the item is still the right one
 * to delete, which might otherwise be questionable since heap TIDs can get
 * recycled.)
 */
void
_bt_killitems(IndexScanDesc scan, bool haveLock)
{
	BTScanOpaque so = (BTScanOpaque) scan->opaque;
	Page		page;
	BTPageOpaque opaque;
	OffsetNumber minoff;
	OffsetNumber maxoff;
	int			i;
	bool		killedsomething = false;

	Assert(BufferIsValid(so->currPos.buf));

	if (!haveLock)
		LockBuffer(so->currPos.buf, BT_READ);

	page = BufferGetPage(so->currPos.buf);
	opaque = (BTPageOpaque) PageGetSpecialPointer(page);
	minoff = P_FIRSTDATAKEY(opaque);
	maxoff = PageGetMaxOffsetNumber(page);

	for (i = 0; i < so->numKilled; i++)
	{
		int			itemIndex = so->killedItems[i];
		BTScanPosItem *kitem = &so->currPos.items[itemIndex];
		OffsetNumber offnum = kitem->indexOffset;

		Assert(itemIndex >= so->currPos.firstItem &&
			   itemIndex <= so->currPos.lastItem);
		if (offnum < minoff)
			continue;			/* pure paranoia */
		while (offnum <= maxoff)
		{
			ItemId		iid = PageGetItemId(page, offnum);
			IndexTuple	ituple = (IndexTuple) PageGetItem(page, iid);

			if (ItemPointerEquals(&ituple->t_tid, &kitem->heapTid))
			{
				/* found the item */
				ItemIdMarkDead(iid);
				killedsomething = true;
				break;			/* out of inner search loop */
			}
			offnum = OffsetNumberNext(offnum);
		}
	}

	/*
	 * Since this can be redone later if needed, it's treated the same as a
	 * commit-hint-bit status update for heap tuples: we mark the buffer dirty
	 * but don't make a WAL log entry.
	 *
	 * Whenever we mark anything LP_DEAD, we also set the page's
	 * BTP_HAS_GARBAGE flag, which is likewise just a hint.
	 */
	if (killedsomething)
	{
		opaque->btpo_flags |= BTP_HAS_GARBAGE;
		SetBufferCommitInfoNeedsSave(so->currPos.buf);
	}

	if (!haveLock)
		LockBuffer(so->currPos.buf, BUFFER_LOCK_UNLOCK);

	/*
	 * Always reset the scan state, so we don't look for same items on other
	 * pages.
	 */
	so->numKilled = 0;
}
Ejemplo n.º 19
0
/*
 *	_bt_endpoint() -- Find the first or last page in the index, and scan
 * from there to the first key satisfying all the quals.
 *
 * This is used by _bt_first() to set up a scan when we've determined
 * that the scan must start at the beginning or end of the index (for
 * a forward or backward scan respectively).  Exit conditions are the
 * same as for _bt_first().
 */
static bool
_bt_endpoint(IndexScanDesc scan, ScanDirection dir)
{
	Relation	rel = scan->indexRelation;
	BTScanOpaque so = (BTScanOpaque) scan->opaque;
	Buffer		buf;
	Page		page;
	BTPageOpaque opaque;
	OffsetNumber start;
	BTScanPosItem *currItem;

	/*
	 * Scan down to the leftmost or rightmost leaf page.  This is a simplified
	 * version of _bt_search().  We don't maintain a stack since we know we
	 * won't need it.
	 */
	buf = _bt_get_endpoint(rel, 0, ScanDirectionIsBackward(dir));

	if (!BufferIsValid(buf))
	{
		/*
		 * Empty index. Lock the whole relation, as nothing finer to lock
		 * exists.
		 */
		PredicateLockRelation(rel, scan->xs_snapshot);
		so->currPos.buf = InvalidBuffer;
		return false;
	}

	PredicateLockPage(rel, BufferGetBlockNumber(buf), scan->xs_snapshot);
	page = BufferGetPage(buf);
	opaque = (BTPageOpaque) PageGetSpecialPointer(page);
	Assert(P_ISLEAF(opaque));

	if (ScanDirectionIsForward(dir))
	{
		/* There could be dead pages to the left, so not this: */
		/* Assert(P_LEFTMOST(opaque)); */

		start = P_FIRSTDATAKEY(opaque);
	}
	else if (ScanDirectionIsBackward(dir))
	{
		Assert(P_RIGHTMOST(opaque));

		start = PageGetMaxOffsetNumber(page);
	}
	else
	{
		elog(ERROR, "invalid scan direction: %d", (int) dir);
		start = 0;				/* keep compiler quiet */
	}

	/* remember which buffer we have pinned */
	so->currPos.buf = buf;

	/* initialize moreLeft/moreRight appropriately for scan direction */
	if (ScanDirectionIsForward(dir))
	{
		so->currPos.moreLeft = false;
		so->currPos.moreRight = true;
	}
	else
	{
		so->currPos.moreLeft = true;
		so->currPos.moreRight = false;
	}
	so->numKilled = 0;			/* just paranoia */
	so->markItemIndex = -1;		/* ditto */

	/*
	 * Now load data from the first page of the scan.
	 */
	if (!_bt_readpage(scan, dir, start))
	{
		/*
		 * There's no actually-matching data on this page.  Try to advance to
		 * the next page.  Return false if there's no matching data at all.
		 */
		if (!_bt_steppage(scan, dir))
			return false;
	}

	/* Drop the lock, but not pin, on the current page */
	LockBuffer(so->currPos.buf, BUFFER_LOCK_UNLOCK);

	/* OK, itemIndex says what to return */
	currItem = &so->currPos.items[so->currPos.itemIndex];
	scan->xs_ctup.t_self = currItem->heapTid;
	if (scan->xs_want_itup)
		scan->xs_itup = (IndexTuple) (so->currTuples + currItem->tupleOffset);

	return true;
}
Ejemplo n.º 20
0
/*
 * Test whether an indextuple satisfies all the scankey conditions.
 *
 * If so, copy its TID into scan->xs_ctup.t_self, and return TRUE.
 * If not, return FALSE (xs_ctup is not changed).
 *
 * If the tuple fails to pass the qual, we also determine whether there's
 * any need to continue the scan beyond this tuple, and set *continuescan
 * accordingly.  See comments for _bt_preprocess_keys(), above, about how
 * this is done.
 *
 * scan: index scan descriptor (containing a search-type scankey)
 * page: buffer page containing index tuple
 * offnum: offset number of index tuple (must be a valid item!)
 * dir: direction we are scanning in
 * continuescan: output parameter (will be set correctly in all cases)
 */
bool
_bt_checkkeys(IndexScanDesc scan,
			  Page page, OffsetNumber offnum,
			  ScanDirection dir, bool *continuescan)
{
	ItemId		iid = PageGetItemId(page, offnum);
	bool		tuple_valid;
	IndexTuple	tuple;
	TupleDesc	tupdesc;
	BTScanOpaque so;
	int			keysz;
	int			ikey;
	ScanKey		key;

	*continuescan = true;		/* default assumption */

	/*
	 * If the scan specifies not to return killed tuples, then we treat a
	 * killed tuple as not passing the qual.  Most of the time, it's a win to
	 * not bother examining the tuple's index keys, but just return
	 * immediately with continuescan = true to proceed to the next tuple.
	 * However, if this is the last tuple on the page, we should check the
	 * index keys to prevent uselessly advancing to the next page.
	 */
	if (scan->ignore_killed_tuples && ItemIdIsDead(iid))
	{
		/* return immediately if there are more tuples on the page */
		if (ScanDirectionIsForward(dir))
		{
			if (offnum < PageGetMaxOffsetNumber(page))
				return false;
		}
		else
		{
			BTPageOpaque opaque = (BTPageOpaque) PageGetSpecialPointer(page);

			if (offnum > P_FIRSTDATAKEY(opaque))
				return false;
		}

		/*
		 * OK, we want to check the keys, but we'll return FALSE even if the
		 * tuple passes the key tests.
		 */
		tuple_valid = false;
	}
	else
		tuple_valid = true;

	tuple = (IndexTuple) PageGetItem(page, iid);

	IncrIndexProcessed();

	tupdesc = RelationGetDescr(scan->indexRelation);
	so = (BTScanOpaque) scan->opaque;
	keysz = so->numberOfKeys;

	for (key = so->keyData, ikey = 0; ikey < keysz; key++, ikey++)
	{
		Datum		datum;
		bool		isNull;
		Datum		test;

		/* row-comparison keys need special processing */
		if (key->sk_flags & SK_ROW_HEADER)
		{
			if (_bt_check_rowcompare(key, tuple, tupdesc, dir, continuescan))
				continue;
			return false;
		}

		datum = index_getattr(tuple,
							  key->sk_attno,
							  tupdesc,
							  &isNull);

		if (key->sk_flags & SK_ISNULL)
		{
			/* Handle IS NULL tests */
			Assert(key->sk_flags & SK_SEARCHNULL);

			if (isNull)
				continue;		/* tuple satisfies this qual */

			/*
			 * Tuple fails this qual.  If it's a required qual for the current
			 * scan direction, then we can conclude no further tuples will
			 * pass, either.
			 */
			if ((key->sk_flags & SK_BT_REQFWD) &&
				ScanDirectionIsForward(dir))
				*continuescan = false;
			else if ((key->sk_flags & SK_BT_REQBKWD) &&
					 ScanDirectionIsBackward(dir))
				*continuescan = false;

			/*
			 * In any case, this indextuple doesn't match the qual.
			 */
			return false;
		}

		if (isNull)
		{
			if (key->sk_flags & SK_BT_NULLS_FIRST)
			{
				/*
				 * Since NULLs are sorted before non-NULLs, we know we have
				 * reached the lower limit of the range of values for this
				 * index attr.	On a backward scan, we can stop if this qual
				 * is one of the "must match" subset.  On a forward scan,
				 * however, we should keep going.
				 */
				if ((key->sk_flags & SK_BT_REQBKWD) &&
					ScanDirectionIsBackward(dir))
					*continuescan = false;
			}
			else
			{
				/*
				 * Since NULLs are sorted after non-NULLs, we know we have
				 * reached the upper limit of the range of values for this
				 * index attr.	On a forward scan, we can stop if this qual is
				 * one of the "must match" subset.	On a backward scan,
				 * however, we should keep going.
				 */
				if ((key->sk_flags & SK_BT_REQFWD) &&
					ScanDirectionIsForward(dir))
					*continuescan = false;
			}

			/*
			 * In any case, this indextuple doesn't match the qual.
			 */
			return false;
		}

		test = FunctionCall2(&key->sk_func, datum, key->sk_argument);

		if (!DatumGetBool(test))
		{
			/*
			 * Tuple fails this qual.  If it's a required qual for the current
			 * scan direction, then we can conclude no further tuples will
			 * pass, either.
			 *
			 * Note: because we stop the scan as soon as any required equality
			 * qual fails, it is critical that equality quals be used for the
			 * initial positioning in _bt_first() when they are available. See
			 * comments in _bt_first().
			 */
			if ((key->sk_flags & SK_BT_REQFWD) &&
				ScanDirectionIsForward(dir))
				*continuescan = false;
			else if ((key->sk_flags & SK_BT_REQBKWD) &&
					 ScanDirectionIsBackward(dir))
				*continuescan = false;

			/*
			 * In any case, this indextuple doesn't match the qual.
			 */
			return false;
		}
	}

	/* If we get here, the tuple passes all index quals. */
	if (tuple_valid)
		scan->xs_ctup.t_self = tuple->t_tid;

	return tuple_valid;
}
Ejemplo n.º 21
0
/*----------
 *	_bt_compare() -- Compare scankey to a particular tuple on the page.
 *
 * The passed scankey must be an insertion-type scankey (see nbtree/README),
 * but it can omit the rightmost column(s) of the index.
 *
 *	keysz: number of key conditions to be checked (might be less than the
 *		number of index columns!)
 *	page/offnum: location of btree item to be compared to.
 *
 *		This routine returns:
 *			<0 if scankey < tuple at offnum;
 *			 0 if scankey == tuple at offnum;
 *			>0 if scankey > tuple at offnum.
 *		NULLs in the keys are treated as sortable values.  Therefore
 *		"equality" does not necessarily mean that the item should be
 *		returned to the caller as a matching key!
 *
 * CRUCIAL NOTE: on a non-leaf page, the first data key is assumed to be
 * "minus infinity": this routine will always claim it is less than the
 * scankey.  The actual key value stored (if any, which there probably isn't)
 * does not matter.  This convention allows us to implement the Lehman and
 * Yao convention that the first down-link pointer is before the first key.
 * See backend/access/nbtree/README for details.
 *----------
 */
int32
_bt_compare(Relation rel,
			int keysz,
			ScanKey scankey,
			Page page,
			OffsetNumber offnum)
{
	TupleDesc	itupdesc = RelationGetDescr(rel);
	BTPageOpaque opaque = (BTPageOpaque) PageGetSpecialPointer(page);
	IndexTuple	itup;
	int			i;

	/*
	 * Force result ">" if target item is first data item on an internal page
	 * --- see NOTE above.
	 */
	if (!P_ISLEAF(opaque) && offnum == P_FIRSTDATAKEY(opaque))
		return 1;

	itup = (IndexTuple) PageGetItem(page, PageGetItemId(page, offnum));

	/*
	 * The scan key is set up with the attribute number associated with each
	 * term in the key.  It is important that, if the index is multi-key, the
	 * scan contain the first k key attributes, and that they be in order.	If
	 * you think about how multi-key ordering works, you'll understand why
	 * this is.
	 *
	 * We don't test for violation of this condition here, however.  The
	 * initial setup for the index scan had better have gotten it right (see
	 * _bt_first).
	 */

	for (i = 1; i <= keysz; i++)
	{
		Datum		datum;
		bool		isNull;
		int32		result;

		datum = index_getattr(itup, scankey->sk_attno, itupdesc, &isNull);

		/* see comments about NULLs handling in btbuild */
		if (scankey->sk_flags & SK_ISNULL)		/* key is NULL */
		{
			if (isNull)
				result = 0;		/* NULL "=" NULL */
			else if (scankey->sk_flags & SK_BT_NULLS_FIRST)
				result = -1;	/* NULL "<" NOT_NULL */
			else
				result = 1;		/* NULL ">" NOT_NULL */
		}
		else if (isNull)		/* key is NOT_NULL and item is NULL */
		{
			if (scankey->sk_flags & SK_BT_NULLS_FIRST)
				result = 1;		/* NOT_NULL ">" NULL */
			else
				result = -1;	/* NOT_NULL "<" NULL */
		}
		else
		{
			/*
			 * The sk_func needs to be passed the index value as left arg and
			 * the sk_argument as right arg (they might be of different
			 * types).	Since it is convenient for callers to think of
			 * _bt_compare as comparing the scankey to the index item, we have
			 * to flip the sign of the comparison result.  (Unless it's a DESC
			 * column, in which case we *don't* flip the sign.)
			 */
			result = DatumGetInt32(FunctionCall2Coll(&scankey->sk_func,
													 scankey->sk_collation,
													 datum,
													 scankey->sk_argument));

			if (!(scankey->sk_flags & SK_BT_DESC))
				result = -result;
		}

		/* if the keys are unequal, return the difference */
		if (result != 0)
			return result;

		scankey++;
	}

	/* if we get here, the keys are equal */
	return 0;
}
Ejemplo n.º 22
0
/*
 *	_bt_endpoint() -- Find the first or last key in the index.
 *
 * This is used by _bt_first() to set up a scan when we've determined
 * that the scan must start at the beginning or end of the index (for
 * a forward or backward scan respectively).
 */
static bool
_bt_endpoint(IndexScanDesc scan, ScanDirection dir)
{
	Relation	rel;
	Buffer		buf;
	Page		page;
	BTPageOpaque opaque;
	ItemPointer current;
	OffsetNumber maxoff;
	OffsetNumber start;
	BlockNumber blkno;
	BTItem		btitem;
	IndexTuple	itup;
	BTScanOpaque so;
	bool		res;
	bool		continuescan;

	rel = scan->indexRelation;
	current = &(scan->currentItemData);
	so = (BTScanOpaque) scan->opaque;

	/*
	 * Scan down to the leftmost or rightmost leaf page.  This is a
	 * simplified version of _bt_search().	We don't maintain a stack
	 * since we know we won't need it.
	 */
	buf = _bt_get_endpoint(rel, 0, ScanDirectionIsBackward(dir));

	if (!BufferIsValid(buf))
	{
		/* empty index... */
		ItemPointerSetInvalid(current);
		so->btso_curbuf = InvalidBuffer;
		return false;
	}

	blkno = BufferGetBlockNumber(buf);
	page = BufferGetPage(buf);
	opaque = (BTPageOpaque) PageGetSpecialPointer(page);
	Assert(P_ISLEAF(opaque));

	maxoff = PageGetMaxOffsetNumber(page);

	if (ScanDirectionIsForward(dir))
	{
		/* There could be dead pages to the left, so not this: */
		/* Assert(P_LEFTMOST(opaque)); */

		start = P_FIRSTDATAKEY(opaque);
	}
	else if (ScanDirectionIsBackward(dir))
	{
		Assert(P_RIGHTMOST(opaque));

		start = PageGetMaxOffsetNumber(page);
		if (start < P_FIRSTDATAKEY(opaque))		/* watch out for empty
												 * page */
			start = P_FIRSTDATAKEY(opaque);
	}
	else
	{
		elog(ERROR, "invalid scan direction: %d", (int) dir);
		start = 0;				/* keep compiler quiet */
	}

	ItemPointerSet(current, blkno, start);
	/* remember which buffer we have pinned */
	so->btso_curbuf = buf;

	/*
	 * Left/rightmost page could be empty due to deletions, if so step
	 * till we find a nonempty page.
	 */
	if (start > maxoff)
	{
		if (!_bt_step(scan, &buf, dir))
			return false;
		start = ItemPointerGetOffsetNumber(current);
		page = BufferGetPage(buf);
	}

	btitem = (BTItem) PageGetItem(page, PageGetItemId(page, start));
	itup = &(btitem->bti_itup);

	/* see if we picked a winner */
	if (_bt_checkkeys(scan, itup, dir, &continuescan))
	{
		/* yes, return it */
		scan->xs_ctup.t_self = itup->t_tid;
		res = true;
	}
	else if (continuescan)
	{
		/* no, but there might be another one that is */
		res = _bt_next(scan, dir);
	}
	else
	{
		/* no tuples in the index match this scan key */
		ItemPointerSetInvalid(current);
		so->btso_curbuf = InvalidBuffer;
		_bt_relbuf(rel, buf);
		res = false;
	}

	return res;
}
Ejemplo n.º 23
0
Archivo: nbtpage.c Proyecto: 50wu/gpdb
/*
 * _bt_pagedel() -- Delete a page from the b-tree, if legal to do so.
 *
 * This action unlinks the page from the b-tree structure, removing all
 * pointers leading to it --- but not touching its own left and right links.
 * The page cannot be physically reclaimed right away, since other processes
 * may currently be trying to follow links leading to the page; they have to
 * be allowed to use its right-link to recover.  See nbtree/README.
 *
 * On entry, the target buffer must be pinned and locked (either read or write
 * lock is OK).  This lock and pin will be dropped before exiting.
 *
 * The "stack" argument can be a search stack leading (approximately) to the
 * target page, or NULL --- outside callers typically pass NULL since they
 * have not done such a search, but internal recursion cases pass the stack
 * to avoid duplicated search effort.
 *
 * Returns the number of pages successfully deleted (zero if page cannot
 * be deleted now; could be more than one if parent pages were deleted too).
 *
 * NOTE: this leaks memory.  Rather than trying to clean up everything
 * carefully, it's better to run it in a temp context that can be reset
 * frequently.
 */
int
_bt_pagedel(Relation rel, Buffer buf, BTStack stack, bool vacuum_full)
{
	int			result;
	BlockNumber target,
				leftsib,
				rightsib,
				parent;
	OffsetNumber poffset,
				maxoff;
	uint32		targetlevel,
				ilevel;
	ItemId		itemid;
	IndexTuple	targetkey,
				itup;
	ScanKey		itup_scankey;
	Buffer		lbuf,
				rbuf,
				pbuf;
	bool		parent_half_dead;
	bool		parent_one_child;
	bool		rightsib_empty;
	Buffer		metabuf = InvalidBuffer;
	Page		metapg = NULL;
	BTMetaPageData *metad = NULL;
	Page		page;
	BTPageOpaque opaque;

	MIRROREDLOCK_BUFMGR_MUST_ALREADY_BE_HELD;

	// Fetch gp_persistent_relation_node information that will be added to XLOG record.
	RelationFetchGpRelationNodeForXLog(rel);

	/*
	 * We can never delete rightmost pages nor root pages.	While at it, check
	 * that page is not already deleted and is empty.
	 */
	page = BufferGetPage(buf);
	opaque = (BTPageOpaque) PageGetSpecialPointer(page);
	if (P_RIGHTMOST(opaque) || P_ISROOT(opaque) || P_ISDELETED(opaque) ||
		P_FIRSTDATAKEY(opaque) <= PageGetMaxOffsetNumber(page))
	{
		/* Should never fail to delete a half-dead page */
		Assert(!P_ISHALFDEAD(opaque));

		_bt_relbuf(rel, buf);
		return 0;
	}

	/*
	 * Save info about page, including a copy of its high key (it must have
	 * one, being non-rightmost).
	 */
	target = BufferGetBlockNumber(buf);
	targetlevel = opaque->btpo.level;
	leftsib = opaque->btpo_prev;
	itemid = PageGetItemId(page, P_HIKEY);
	targetkey = CopyIndexTuple((IndexTuple) PageGetItem(page, itemid));

	/*
	 * To avoid deadlocks, we'd better drop the target page lock before going
	 * further.
	 */
	_bt_relbuf(rel, buf);

	/*
	 * We need an approximate pointer to the page's parent page.  We use the
	 * standard search mechanism to search for the page's high key; this will
	 * give us a link to either the current parent or someplace to its left
	 * (if there are multiple equal high keys).  In recursion cases, the
	 * caller already generated a search stack and we can just re-use that
	 * work.
	 */
	if (stack == NULL)
	{
		if (!InRecovery)
		{
			/* we need an insertion scan key to do our search, so build one */
			itup_scankey = _bt_mkscankey(rel, targetkey);
			/* find the leftmost leaf page containing this key */
			stack = _bt_search(rel, rel->rd_rel->relnatts, itup_scankey, false,
							   &lbuf, BT_READ);
			/* don't need a pin on that either */
			_bt_relbuf(rel, lbuf);

			/*
			 * If we are trying to delete an interior page, _bt_search did
			 * more than we needed.  Locate the stack item pointing to our
			 * parent level.
			 */
			ilevel = 0;
			for (;;)
			{
				if (stack == NULL)
					elog(ERROR, "not enough stack items");
				if (ilevel == targetlevel)
					break;
				stack = stack->bts_parent;
				ilevel++;
			}
		}
		else
		{
			/*
			 * During WAL recovery, we can't use _bt_search (for one reason,
			 * it might invoke user-defined comparison functions that expect
			 * facilities not available in recovery mode).	Instead, just set
			 * up a dummy stack pointing to the left end of the parent tree
			 * level, from which _bt_getstackbuf will walk right to the parent
			 * page.  Painful, but we don't care too much about performance in
			 * this scenario.
			 */
			pbuf = _bt_get_endpoint(rel, targetlevel + 1, false);
			stack = (BTStack) palloc(sizeof(BTStackData));
			stack->bts_blkno = BufferGetBlockNumber(pbuf);
			stack->bts_offset = InvalidOffsetNumber;
			/* bts_btentry will be initialized below */
			stack->bts_parent = NULL;
			_bt_relbuf(rel, pbuf);
		}
	}

	/*
	 * We cannot delete a page that is the rightmost child of its immediate
	 * parent, unless it is the only child --- in which case the parent has to
	 * be deleted too, and the same condition applies recursively to it. We
	 * have to check this condition all the way up before trying to delete. We
	 * don't need to re-test when deleting a non-leaf page, though.
	 */
	if (targetlevel == 0 &&
		!_bt_parent_deletion_safe(rel, target, stack))
		return 0;

	/*
	 * We have to lock the pages we need to modify in the standard order:
	 * moving right, then up.  Else we will deadlock against other writers.
	 *
	 * So, we need to find and write-lock the current left sibling of the
	 * target page.  The sibling that was current a moment ago could have
	 * split, so we may have to move right.  This search could fail if either
	 * the sibling or the target page was deleted by someone else meanwhile;
	 * if so, give up.	(Right now, that should never happen, since page
	 * deletion is only done in VACUUM and there shouldn't be multiple VACUUMs
	 * concurrently on the same table.)
	 */
	if (leftsib != P_NONE)
	{
		lbuf = _bt_getbuf(rel, leftsib, BT_WRITE);
		page = BufferGetPage(lbuf);
		opaque = (BTPageOpaque) PageGetSpecialPointer(page);
		while (P_ISDELETED(opaque) || opaque->btpo_next != target)
		{
			/* step right one page */
			leftsib = opaque->btpo_next;
			_bt_relbuf(rel, lbuf);
			if (leftsib == P_NONE)
			{
				elog(LOG, "no left sibling (concurrent deletion?) in \"%s\"",
					 RelationGetRelationName(rel));
				return 0;
			}
			lbuf = _bt_getbuf(rel, leftsib, BT_WRITE);
			page = BufferGetPage(lbuf);
			opaque = (BTPageOpaque) PageGetSpecialPointer(page);
		}
	}
	else
		lbuf = InvalidBuffer;

	/*
	 * Next write-lock the target page itself.	It should be okay to take just
	 * a write lock not a superexclusive lock, since no scans would stop on an
	 * empty page.
	 */
	buf = _bt_getbuf(rel, target, BT_WRITE);
	page = BufferGetPage(buf);
	opaque = (BTPageOpaque) PageGetSpecialPointer(page);

	/*
	 * Check page is still empty etc, else abandon deletion.  The empty check
	 * is necessary since someone else might have inserted into it while we
	 * didn't have it locked; the others are just for paranoia's sake.
	 */
	if (P_RIGHTMOST(opaque) || P_ISROOT(opaque) || P_ISDELETED(opaque) ||
		P_FIRSTDATAKEY(opaque) <= PageGetMaxOffsetNumber(page))
	{
		_bt_relbuf(rel, buf);
		if (BufferIsValid(lbuf))
			_bt_relbuf(rel, lbuf);
		return 0;
	}
	if (opaque->btpo_prev != leftsib)
		elog(ERROR, "left link changed unexpectedly in block %u of index \"%s\"",
			 target, RelationGetRelationName(rel));

	/*
	 * And next write-lock the (current) right sibling.
	 */
	rightsib = opaque->btpo_next;
	rbuf = _bt_getbuf(rel, rightsib, BT_WRITE);
	page = BufferGetPage(rbuf);
	opaque = (BTPageOpaque) PageGetSpecialPointer(page);
	if (opaque->btpo_prev != target)
		elog(ERROR, "right sibling's left-link doesn't match: "
			 "block %u links to %u instead of expected %u in index \"%s\"",
			 rightsib, opaque->btpo_prev, target,
			 RelationGetRelationName(rel));

	/*
	 * Next find and write-lock the current parent of the target page. This is
	 * essentially the same as the corresponding step of splitting.
	 */
	ItemPointerSet(&(stack->bts_btentry.t_tid), target, P_HIKEY);
	pbuf = _bt_getstackbuf(rel, stack, BT_WRITE);
	if (pbuf == InvalidBuffer)
		elog(ERROR, "failed to re-find parent key in index \"%s\" for deletion target page %u",
			 RelationGetRelationName(rel), target);
	parent = stack->bts_blkno;
	poffset = stack->bts_offset;

	/*
	 * If the target is the rightmost child of its parent, then we can't
	 * delete, unless it's also the only child --- in which case the parent
	 * changes to half-dead status.  The "can't delete" case should have been
	 * detected by _bt_parent_deletion_safe, so complain if we see it now.
	 */
	page = BufferGetPage(pbuf);
	opaque = (BTPageOpaque) PageGetSpecialPointer(page);
	maxoff = PageGetMaxOffsetNumber(page);
	parent_half_dead = false;
	parent_one_child = false;
	if (poffset >= maxoff)
	{
		if (poffset == P_FIRSTDATAKEY(opaque))
			parent_half_dead = true;
		else
			elog(ERROR, "failed to delete rightmost child %u of block %u in index \"%s\"",
				 target, parent, RelationGetRelationName(rel));
	}
	else
	{
		/* Will there be exactly one child left in this parent? */
		if (OffsetNumberNext(P_FIRSTDATAKEY(opaque)) == maxoff)
			parent_one_child = true;
	}

	/*
	 * If we are deleting the next-to-last page on the target's level, then
	 * the rightsib is a candidate to become the new fast root. (In theory, it
	 * might be possible to push the fast root even further down, but the odds
	 * of doing so are slim, and the locking considerations daunting.)
	 *
	 * We don't support handling this in the case where the parent is becoming
	 * half-dead, even though it theoretically could occur.
	 *
	 * We can safely acquire a lock on the metapage here --- see comments for
	 * _bt_newroot().
	 */
	if (leftsib == P_NONE && !parent_half_dead)
	{
		page = BufferGetPage(rbuf);
		opaque = (BTPageOpaque) PageGetSpecialPointer(page);
		Assert(opaque->btpo.level == targetlevel);
		if (P_RIGHTMOST(opaque))
		{
			/* rightsib will be the only one left on the level */
			metabuf = _bt_getbuf(rel, BTREE_METAPAGE, BT_WRITE);
			metapg = BufferGetPage(metabuf);
			metad = BTPageGetMeta(metapg);

			/*
			 * The expected case here is btm_fastlevel == targetlevel+1; if
			 * the fastlevel is <= targetlevel, something is wrong, and we
			 * choose to overwrite it to fix it.
			 */
			if (metad->btm_fastlevel > targetlevel + 1)
			{
				/* no update wanted */
				_bt_relbuf(rel, metabuf);
				metabuf = InvalidBuffer;
			}
		}
	}

	/*
	 * Check that the parent-page index items we're about to delete/overwrite
	 * contain what we expect.  This can fail if the index has become
	 * corrupt for some reason.  We want to throw any error before entering
	 * the critical section --- otherwise it'd be a PANIC.
	 *
	 * The test on the target item is just an Assert because _bt_getstackbuf
	 * should have guaranteed it has the expected contents.  The test on the
	 * next-child downlink is known to sometimes fail in the field, though.
	 */
	page = BufferGetPage(pbuf);
	opaque = (BTPageOpaque) PageGetSpecialPointer(page);

#ifdef USE_ASSERT_CHECKING
	itemid = PageGetItemId(page, poffset);
	itup = (IndexTuple) PageGetItem(page, itemid);
	Assert(ItemPointerGetBlockNumber(&(itup->t_tid)) == target);
#endif

	if (!parent_half_dead)
	{
		OffsetNumber nextoffset;

		nextoffset = OffsetNumberNext(poffset);
		itemid = PageGetItemId(page, nextoffset);
		itup = (IndexTuple) PageGetItem(page, itemid);
		if (ItemPointerGetBlockNumber(&(itup->t_tid)) != rightsib)
			elog(ERROR, "right sibling %u of block %u is not next child %u of block %u in index \"%s\"",
				 rightsib, target, ItemPointerGetBlockNumber(&(itup->t_tid)),
				 parent, RelationGetRelationName(rel));
	}

	/*
	 * Here we begin doing the deletion.
	 */

	/* No ereport(ERROR) until changes are logged */
	START_CRIT_SECTION();

	/*
	 * Update parent.  The normal case is a tad tricky because we want to
	 * delete the target's downlink and the *following* key.  Easiest way is
	 * to copy the right sibling's downlink over the target downlink, and then
	 * delete the following item.
	 */
	if (parent_half_dead)
	{
		PageIndexTupleDelete(page, poffset);
		opaque->btpo_flags |= BTP_HALF_DEAD;
	}
	else
	{
		OffsetNumber nextoffset;

		itemid = PageGetItemId(page, poffset);
		itup = (IndexTuple) PageGetItem(page, itemid);
		ItemPointerSet(&(itup->t_tid), rightsib, P_HIKEY);

		nextoffset = OffsetNumberNext(poffset);
		PageIndexTupleDelete(page, nextoffset);
	}

	/*
	 * Update siblings' side-links.  Note the target page's side-links will
	 * continue to point to the siblings.  Asserts here are just rechecking
	 * things we already verified above.
	 */
	if (BufferIsValid(lbuf))
	{
		page = BufferGetPage(lbuf);
		opaque = (BTPageOpaque) PageGetSpecialPointer(page);
		Assert(opaque->btpo_next == target);
		opaque->btpo_next = rightsib;
	}
	page = BufferGetPage(rbuf);
	opaque = (BTPageOpaque) PageGetSpecialPointer(page);
	Assert(opaque->btpo_prev == target);
	opaque->btpo_prev = leftsib;
	rightsib_empty = (P_FIRSTDATAKEY(opaque) > PageGetMaxOffsetNumber(page));

	/*
	 * Mark the page itself deleted.  It can be recycled when all current
	 * transactions are gone; or immediately if we're doing VACUUM FULL.
	 */
	page = BufferGetPage(buf);
	opaque = (BTPageOpaque) PageGetSpecialPointer(page);
	opaque->btpo_flags &= ~BTP_HALF_DEAD;
	opaque->btpo_flags |= BTP_DELETED;
	opaque->btpo.xact =
		vacuum_full ? FrozenTransactionId : ReadNewTransactionId();

	/* And update the metapage, if needed */
	if (BufferIsValid(metabuf))
	{
		metad->btm_fastroot = rightsib;
		metad->btm_fastlevel = targetlevel;
		MarkBufferDirty(metabuf);
	}

	/* Must mark buffers dirty before XLogInsert */
	MarkBufferDirty(pbuf);
	MarkBufferDirty(rbuf);
	MarkBufferDirty(buf);
	if (BufferIsValid(lbuf))
		MarkBufferDirty(lbuf);

	/* XLOG stuff */
	if (!rel->rd_istemp)
	{
		xl_btree_delete_page xlrec;
		xl_btree_metadata xlmeta;
		uint8		xlinfo;
		XLogRecPtr	recptr;
		XLogRecData rdata[5];
		XLogRecData *nextrdata;

		xl_btreetid_set(&(xlrec.target), rel, parent, poffset);
		xlrec.deadblk = target;
		xlrec.leftblk = leftsib;
		xlrec.rightblk = rightsib;

		rdata[0].data = (char *) &xlrec;
		rdata[0].len = SizeOfBtreeDeletePage;
		rdata[0].buffer = InvalidBuffer;
		rdata[0].next = nextrdata = &(rdata[1]);

		if (BufferIsValid(metabuf))
		{
			xlmeta.root = metad->btm_root;
			xlmeta.level = metad->btm_level;
			xlmeta.fastroot = metad->btm_fastroot;
			xlmeta.fastlevel = metad->btm_fastlevel;

			nextrdata->data = (char *) &xlmeta;
			nextrdata->len = sizeof(xl_btree_metadata);
			nextrdata->buffer = InvalidBuffer;
			nextrdata->next = nextrdata + 1;
			nextrdata++;
			xlinfo = XLOG_BTREE_DELETE_PAGE_META;
		}
		else if (parent_half_dead)
			xlinfo = XLOG_BTREE_DELETE_PAGE_HALF;
		else
			xlinfo = XLOG_BTREE_DELETE_PAGE;

		nextrdata->data = NULL;
		nextrdata->len = 0;
		nextrdata->next = nextrdata + 1;
		nextrdata->buffer = pbuf;
		nextrdata->buffer_std = true;
		nextrdata++;

		nextrdata->data = NULL;
		nextrdata->len = 0;
		nextrdata->buffer = rbuf;
		nextrdata->buffer_std = true;
		nextrdata->next = NULL;

		if (BufferIsValid(lbuf))
		{
			nextrdata->next = nextrdata + 1;
			nextrdata++;
			nextrdata->data = NULL;
			nextrdata->len = 0;
			nextrdata->buffer = lbuf;
			nextrdata->buffer_std = true;
			nextrdata->next = NULL;
		}

		recptr = XLogInsert(RM_BTREE_ID, xlinfo, rdata);

		if (BufferIsValid(metabuf))
		{
			PageSetLSN(metapg, recptr);
			PageSetTLI(metapg, ThisTimeLineID);
		}
		page = BufferGetPage(pbuf);
		PageSetLSN(page, recptr);
		PageSetTLI(page, ThisTimeLineID);
		page = BufferGetPage(rbuf);
		PageSetLSN(page, recptr);
		PageSetTLI(page, ThisTimeLineID);
		page = BufferGetPage(buf);
		PageSetLSN(page, recptr);
		PageSetTLI(page, ThisTimeLineID);
		if (BufferIsValid(lbuf))
		{
			page = BufferGetPage(lbuf);
			PageSetLSN(page, recptr);
			PageSetTLI(page, ThisTimeLineID);
		}
	}

	END_CRIT_SECTION();

	/* release metapage; send out relcache inval if metapage changed */
	if (BufferIsValid(metabuf))
	{
		CacheInvalidateRelcache(rel);
		_bt_relbuf(rel, metabuf);
	}
	/* can always release leftsib immediately */
	if (BufferIsValid(lbuf))
		_bt_relbuf(rel, lbuf);

	/*
	 * If parent became half dead, recurse to delete it. Otherwise, if right
	 * sibling is empty and is now the last child of the parent, recurse to
	 * try to delete it.  (These cases cannot apply at the same time, though
	 * the second case might itself recurse to the first.)
	 *
	 * When recursing to parent, we hold the lock on the target page until
	 * done.  This delays any insertions into the keyspace that was just
	 * effectively reassigned to the parent's right sibling.  If we allowed
	 * that, and there were enough such insertions before we finish deleting
	 * the parent, page splits within that keyspace could lead to inserting
	 * out-of-order keys into the grandparent level.  It is thought that that
	 * wouldn't have any serious consequences, but it still seems like a
	 * pretty bad idea.
	 */
	if (parent_half_dead)
	{
		/* recursive call will release pbuf */
		_bt_relbuf(rel, rbuf);
		result = _bt_pagedel(rel, pbuf, stack->bts_parent, vacuum_full) + 1;
		_bt_relbuf(rel, buf);
	}
	else if (parent_one_child && rightsib_empty)
	{
		_bt_relbuf(rel, pbuf);
		_bt_relbuf(rel, buf);
		/* recursive call will release rbuf */
		result = _bt_pagedel(rel, rbuf, stack, vacuum_full) + 1;
	}
	else
	{
		_bt_relbuf(rel, pbuf);
		_bt_relbuf(rel, buf);
		_bt_relbuf(rel, rbuf);
		result = 1;
	}

	return result;
}
Ejemplo n.º 24
0
/*
 *	_bt_binsrch() -- Do a binary search for a key on a particular page.
 *
 * The scankey we get has the compare function stored in the procedure
 * entry of each data struct.  We invoke this regproc to do the
 * comparison for every key in the scankey.
 *
 * On a leaf page, _bt_binsrch() returns the OffsetNumber of the first
 * key >= given scankey.  (NOTE: in particular, this means it is possible
 * to return a value 1 greater than the number of keys on the page,
 * if the scankey is > all keys on the page.)
 *
 * On an internal (non-leaf) page, _bt_binsrch() returns the OffsetNumber
 * of the last key < given scankey.  (Since _bt_compare treats the first
 * data key of such a page as minus infinity, there will be at least one
 * key < scankey, so the result always points at one of the keys on the
 * page.)  This key indicates the right place to descend to be sure we
 * find all leaf keys >= given scankey.
 *
 * This procedure is not responsible for walking right, it just examines
 * the given page.	_bt_binsrch() has no lock or refcount side effects
 * on the buffer.
 */
OffsetNumber
_bt_binsrch(Relation rel,
			Buffer buf,
			int keysz,
			ScanKey scankey)
{
	TupleDesc	itupdesc;
	Page		page;
	BTPageOpaque opaque;
	OffsetNumber low,
				high;
	int32		result;

	itupdesc = RelationGetDescr(rel);
	page = BufferGetPage(buf);
	opaque = (BTPageOpaque) PageGetSpecialPointer(page);

	low = P_FIRSTDATAKEY(opaque);
	high = PageGetMaxOffsetNumber(page);

	/*
	 * If there are no keys on the page, return the first available slot.
	 * Note this covers two cases: the page is really empty (no keys), or
	 * it contains only a high key.  The latter case is possible after
	 * vacuuming.  This can never happen on an internal page, however,
	 * since they are never empty (an internal page must have children).
	 */
	if (high < low)
		return low;

	/*
	 * Binary search to find the first key on the page >= scan key. Loop
	 * invariant: all slots before 'low' are < scan key, all slots at or
	 * after 'high' are >= scan key.  We can fall out when high == low.
	 */
	high++;						/* establish the loop invariant for high */

	while (high > low)
	{
		OffsetNumber mid = low + ((high - low) / 2);

		/* We have low <= mid < high, so mid points at a real slot */

		result = _bt_compare(rel, keysz, scankey, page, mid);

		if (result > 0)
			low = mid + 1;
		else
			high = mid;
	}

	/*
	 * At this point we have high == low, but be careful: they could point
	 * past the last slot on the page.
	 *
	 * On a leaf page, we always return the first key >= scan key (which
	 * could be the last slot + 1).
	 */
	if (P_ISLEAF(opaque))
		return low;

	/*
	 * On a non-leaf page, return the last key < scan key. There must be
	 * one if _bt_compare() is playing by the rules.
	 */
	Assert(low > P_FIRSTDATAKEY(opaque));

	return OffsetNumberPrev(low);
}
Ejemplo n.º 25
0
Archivo: nbtree.c Proyecto: LJoNe/gpdb
/*
 * Post vacuum, iterate over all entries in index, check if the h_tid
 * of each entry exists and is not dead.  For specific system tables,
 * also ensure that the key in index entry matches the corresponding
 * attribute in the heap tuple.
 */
void
_bt_validate_vacuum(Relation irel, Relation hrel, TransactionId oldest_xmin)
{
	MIRROREDLOCK_BUFMGR_DECLARE;

	BlockNumber blkno;
	BlockNumber num_pages;
	Buffer ibuf = InvalidBuffer;
	Buffer hbuf = InvalidBuffer;
	Page ipage;
	BTPageOpaque opaque;
	IndexTuple itup;
	HeapTupleData htup;
	OffsetNumber maxoff,
			minoff,
			offnum;
	Oid ioid,
		hoid;
	bool isnull;

	blkno = BTREE_METAPAGE + 1;
	num_pages = RelationGetNumberOfBlocks(irel);

	elog(LOG, "btvalidatevacuum: index %s, heap %s",
		 RelationGetRelationName(irel), RelationGetRelationName(hrel));

	MIRROREDLOCK_BUFMGR_LOCK;
	for (; blkno < num_pages; blkno++)
	{
		ibuf = ReadBuffer(irel, blkno);
		ipage = BufferGetPage(ibuf);
		opaque = (BTPageOpaque) PageGetSpecialPointer(ipage);
		if (!PageIsNew(ipage))
			_bt_checkpage(irel, ibuf);
		if (P_ISLEAF(opaque))
		{
			minoff = P_FIRSTDATAKEY(opaque);
			maxoff = PageGetMaxOffsetNumber(ipage);
			for (offnum = minoff;
				 offnum <= maxoff;
				 offnum = OffsetNumberNext(offnum))
			{
				itup = (IndexTuple) PageGetItem(ipage,
												PageGetItemId(ipage, offnum));
				ItemPointerCopy(&itup->t_tid, &htup.t_self);
				/*
				 * TODO: construct a tid bitmap based on index tids
				 * and fetch heap tids in order afterwards.  That will
				 * also allow validating if a heap tid appears twice
				 * in a unique index.
				 */
				if (!heap_release_fetch(hrel, SnapshotAny, &htup,
										&hbuf, true, NULL))
				{
					elog(ERROR, "btvalidatevacuum: tid (%d,%d) from index %s "
						 "not found in heap %s",
						 ItemPointerGetBlockNumber(&itup->t_tid),
						 ItemPointerGetOffsetNumber(&itup->t_tid),
						 RelationGetRelationName(irel),
						 RelationGetRelationName(hrel));
				}
				switch (HeapTupleSatisfiesVacuum(hrel, htup.t_data, oldest_xmin, hbuf))
				{
					case HEAPTUPLE_RECENTLY_DEAD:
					case HEAPTUPLE_LIVE:
					case HEAPTUPLE_INSERT_IN_PROGRESS:
					case HEAPTUPLE_DELETE_IN_PROGRESS:
						/* these tuples are considered alive by vacuum */
						break;
					case HEAPTUPLE_DEAD:
						elog(ERROR, "btvalidatevacuum: vacuum did not remove "
							 "dead tuple (%d,%d) from heap %s and index %s",
							 ItemPointerGetBlockNumber(&itup->t_tid),
							 ItemPointerGetOffsetNumber(&itup->t_tid),
							 RelationGetRelationName(hrel),
							 RelationGetRelationName(irel));
						break;
					default:
						elog(ERROR, "btvalidatevacuum: invalid visibility");
						break;
				}
				switch(RelationGetRelid(irel))
				{
					case DatabaseOidIndexId:
					case TypeOidIndexId:
					case ClassOidIndexId:
					case ConstraintOidIndexId:
						hoid = HeapTupleGetOid(&htup);
						ioid = index_getattr(itup, 1, RelationGetDescr(irel), &isnull);
						if (hoid != ioid)
						{
							elog(ERROR,
								 "btvalidatevacuum: index oid(%d) != heap oid(%d)"
								 " tuple (%d,%d) index %s", ioid, hoid,
								 ItemPointerGetBlockNumber(&itup->t_tid),
								 ItemPointerGetOffsetNumber(&itup->t_tid),
								 RelationGetRelationName(irel));
						}
						break;
					case GpRelationNodeOidIndexId:
						hoid = heap_getattr(&htup, 1, RelationGetDescr(hrel), &isnull);
						ioid = index_getattr(itup, 1, RelationGetDescr(irel), &isnull);
						if (hoid != ioid)
						{
							elog(ERROR,
								 "btvalidatevacuum: index oid(%d) != heap oid(%d)"
								 " tuple (%d,%d) index %s", ioid, hoid,
								 ItemPointerGetBlockNumber(&itup->t_tid),
								 ItemPointerGetOffsetNumber(&itup->t_tid),
								 RelationGetRelationName(irel));
						}
						int4 hsegno = heap_getattr(&htup, 2, RelationGetDescr(hrel), &isnull);
						int4 isegno = index_getattr(itup, 2, RelationGetDescr(irel), &isnull);
						if (isegno != hsegno)
						{
							elog(ERROR,
								 "btvalidatevacuum: index segno(%d) != heap segno(%d)"
								 " tuple (%d,%d) index %s", isegno, hsegno,
								 ItemPointerGetBlockNumber(&itup->t_tid),
								 ItemPointerGetOffsetNumber(&itup->t_tid),
								 RelationGetRelationName(irel));
						}
						break;
					default:
						break;
				}
				if (RelationGetNamespace(irel) == PG_AOSEGMENT_NAMESPACE)
				{
					int4 isegno = index_getattr(itup, 1, RelationGetDescr(irel), &isnull);
					int4 hsegno = heap_getattr(&htup, 1, RelationGetDescr(hrel), &isnull);
					if (isegno != hsegno)
					{
						elog(ERROR,
							 "btvalidatevacuum: index segno(%d) != heap segno(%d)"
							 " tuple (%d,%d) index %s", isegno, hsegno,
							 ItemPointerGetBlockNumber(&itup->t_tid),
							 ItemPointerGetOffsetNumber(&itup->t_tid),
							 RelationGetRelationName(irel));
					}
				}
			}
		}
		if (BufferIsValid(ibuf))
			ReleaseBuffer(ibuf);
	}
	if (BufferIsValid(hbuf))
		ReleaseBuffer(hbuf);
	MIRROREDLOCK_BUFMGR_UNLOCK;
}
Ejemplo n.º 26
0
/*----------
 *	_bt_compare() -- Compare scankey to a particular tuple on the page.
 *
 *	keysz: number of key conditions to be checked (might be less than the
 *	total length of the scan key!)
 *	page/offnum: location of btree item to be compared to.
 *
 *		This routine returns:
 *			<0 if scankey < tuple at offnum;
 *			 0 if scankey == tuple at offnum;
 *			>0 if scankey > tuple at offnum.
 *		NULLs in the keys are treated as sortable values.  Therefore
 *		"equality" does not necessarily mean that the item should be
 *		returned to the caller as a matching key!
 *
 * CRUCIAL NOTE: on a non-leaf page, the first data key is assumed to be
 * "minus infinity": this routine will always claim it is less than the
 * scankey.  The actual key value stored (if any, which there probably isn't)
 * does not matter.  This convention allows us to implement the Lehman and
 * Yao convention that the first down-link pointer is before the first key.
 * See backend/access/nbtree/README for details.
 *----------
 */
int32
_bt_compare(Relation rel,
			int keysz,
			ScanKey scankey,
			Page page,
			OffsetNumber offnum)
{
	TupleDesc	itupdesc = RelationGetDescr(rel);
	BTPageOpaque opaque = (BTPageOpaque) PageGetSpecialPointer(page);
	BTItem		btitem;
	IndexTuple	itup;
	int			i;

	/*
	 * Force result ">" if target item is first data item on an internal
	 * page --- see NOTE above.
	 */
	if (!P_ISLEAF(opaque) && offnum == P_FIRSTDATAKEY(opaque))
		return 1;

	btitem = (BTItem) PageGetItem(page, PageGetItemId(page, offnum));
	itup = &(btitem->bti_itup);

	/*
	 * The scan key is set up with the attribute number associated with
	 * each term in the key.  It is important that, if the index is
	 * multi-key, the scan contain the first k key attributes, and that
	 * they be in order.  If you think about how multi-key ordering works,
	 * you'll understand why this is.
	 *
	 * We don't test for violation of this condition here, however.  The
	 * initial setup for the index scan had better have gotten it right
	 * (see _bt_first).
	 */

	for (i = 0; i < keysz; i++)
	{
		ScanKey		entry = &scankey[i];
		Datum		datum;
		bool		isNull;
		int32		result;

		datum = index_getattr(itup, entry->sk_attno, itupdesc, &isNull);

		/* see comments about NULLs handling in btbuild */
		if (entry->sk_flags & SK_ISNULL)		/* key is NULL */
		{
			if (isNull)
				result = 0;		/* NULL "=" NULL */
			else
				result = 1;		/* NULL ">" NOT_NULL */
		}
		else if (isNull)		/* key is NOT_NULL and item is NULL */
		{
			result = -1;		/* NOT_NULL "<" NULL */
		}
		else
		{
			result = DatumGetInt32(FunctionCall2(&entry->sk_func,
												 entry->sk_argument,
												 datum));
		}

		/* if the keys are unequal, return the difference */
		if (result != 0)
			return result;
	}

	/* if we get here, the keys are equal */
	return 0;
}
Ejemplo n.º 27
0
/*
 * btvacuumpage --- VACUUM one page
 *
 * This processes a single page for btvacuumscan().  In some cases we
 * must go back and re-examine previously-scanned pages; this routine
 * recurses when necessary to handle that case.
 *
 * blkno is the page to process.  orig_blkno is the highest block number
 * reached by the outer btvacuumscan loop (the same as blkno, unless we
 * are recursing to re-examine a previous page).
 */
static void
btvacuumpage(BTVacState *vstate, BlockNumber blkno, BlockNumber orig_blkno)
{
	IndexVacuumInfo *info = vstate->info;
	IndexBulkDeleteResult *stats = vstate->stats;
	IndexBulkDeleteCallback callback = vstate->callback;
	void	   *callback_state = vstate->callback_state;
	Relation	rel = info->index;
	bool		delete_now;
	BlockNumber recurse_to;
	Buffer		buf;
	Page		page;
	BTPageOpaque opaque = NULL;

restart:
	delete_now = false;
	recurse_to = P_NONE;

	/* call vacuum_delay_point while not holding any buffer lock */
	vacuum_delay_point();

	/*
	 * We can't use _bt_getbuf() here because it always applies
	 * _bt_checkpage(), which will barf on an all-zero page. We want to
	 * recycle all-zero pages, not fail.  Also, we want to use a nondefault
	 * buffer access strategy.
	 */
	buf = ReadBufferExtended(rel, MAIN_FORKNUM, blkno, RBM_NORMAL,
							 info->strategy);
	LockBuffer(buf, BT_READ);
	page = BufferGetPage(buf);
	if (!PageIsNew(page))
	{
		_bt_checkpage(rel, buf);
		opaque = (BTPageOpaque) PageGetSpecialPointer(page);
	}

	/*
	 * If we are recursing, the only case we want to do anything with is a
	 * live leaf page having the current vacuum cycle ID.  Any other state
	 * implies we already saw the page (eg, deleted it as being empty).
	 */
	if (blkno != orig_blkno)
	{
		if (_bt_page_recyclable(page) ||
			P_IGNORE(opaque) ||
			!P_ISLEAF(opaque) ||
			opaque->btpo_cycleid != vstate->cycleid)
		{
			_bt_relbuf(rel, buf);
			return;
		}
	}

	/* Page is valid, see what to do with it */
	if (_bt_page_recyclable(page))
	{
		/* Okay to recycle this page */
		RecordFreeIndexPage(rel, blkno);
		vstate->totFreePages++;
		stats->pages_deleted++;
	}
	else if (P_ISDELETED(opaque))
	{
		/* Already deleted, but can't recycle yet */
		stats->pages_deleted++;
	}
	else if (P_ISHALFDEAD(opaque))
	{
		/* Half-dead, try to delete */
		delete_now = true;
	}
	else if (P_ISLEAF(opaque))
	{
		OffsetNumber deletable[MaxOffsetNumber];
		int			ndeletable;
		OffsetNumber offnum,
					minoff,
					maxoff;

		/*
		 * Trade in the initial read lock for a super-exclusive write lock on
		 * this page.  We must get such a lock on every leaf page over the
		 * course of the vacuum scan, whether or not it actually contains any
		 * deletable tuples --- see nbtree/README.
		 */
		LockBuffer(buf, BUFFER_LOCK_UNLOCK);
		LockBufferForCleanup(buf);

		/*
		 * Remember highest leaf page number we've taken cleanup lock on; see
		 * notes in btvacuumscan
		 */
		if (blkno > vstate->lastBlockLocked)
			vstate->lastBlockLocked = blkno;

		/*
		 * Check whether we need to recurse back to earlier pages.  What we
		 * are concerned about is a page split that happened since we started
		 * the vacuum scan.  If the split moved some tuples to a lower page
		 * then we might have missed 'em.  If so, set up for tail recursion.
		 * (Must do this before possibly clearing btpo_cycleid below!)
		 */
		if (vstate->cycleid != 0 &&
			opaque->btpo_cycleid == vstate->cycleid &&
			!(opaque->btpo_flags & BTP_SPLIT_END) &&
			!P_RIGHTMOST(opaque) &&
			opaque->btpo_next < orig_blkno)
			recurse_to = opaque->btpo_next;

		/*
		 * Scan over all items to see which ones need deleted according to the
		 * callback function.
		 */
		ndeletable = 0;
		minoff = P_FIRSTDATAKEY(opaque);
		maxoff = PageGetMaxOffsetNumber(page);
		if (callback)
		{
			for (offnum = minoff;
				 offnum <= maxoff;
				 offnum = OffsetNumberNext(offnum))
			{
				IndexTuple	itup;
				ItemPointer htup;

				itup = (IndexTuple) PageGetItem(page,
												PageGetItemId(page, offnum));
				htup = &(itup->t_tid);

				/*
				 * During Hot Standby we currently assume that
				 * XLOG_BTREE_VACUUM records do not produce conflicts. That is
				 * only true as long as the callback function depends only
				 * upon whether the index tuple refers to heap tuples removed
				 * in the initial heap scan. When vacuum starts it derives a
				 * value of OldestXmin. Backends taking later snapshots could
				 * have a RecentGlobalXmin with a later xid than the vacuum's
				 * OldestXmin, so it is possible that row versions deleted
				 * after OldestXmin could be marked as killed by other
				 * backends. The callback function *could* look at the index
				 * tuple state in isolation and decide to delete the index
				 * tuple, though currently it does not. If it ever did, we
				 * would need to reconsider whether XLOG_BTREE_VACUUM records
				 * should cause conflicts. If they did cause conflicts they
				 * would be fairly harsh conflicts, since we haven't yet
				 * worked out a way to pass a useful value for
				 * latestRemovedXid on the XLOG_BTREE_VACUUM records. This
				 * applies to *any* type of index that marks index tuples as
				 * killed.
				 */
				if (callback(htup, callback_state))
					deletable[ndeletable++] = offnum;
			}
		}

		/*
		 * Apply any needed deletes.  We issue just one _bt_delitems_vacuum()
		 * call per page, so as to minimize WAL traffic.
		 */
		if (ndeletable > 0)
		{
			/*
			 * Notice that the issued XLOG_BTREE_VACUUM WAL record includes
			 * all information to the replay code to allow it to get a cleanup
			 * lock on all pages between the previous lastBlockVacuumed and
			 * this page. This ensures that WAL replay locks all leaf pages at
			 * some point, which is important should non-MVCC scans be
			 * requested. This is currently unused on standby, but we record
			 * it anyway, so that the WAL contains the required information.
			 *
			 * Since we can visit leaf pages out-of-order when recursing,
			 * replay might end up locking such pages an extra time, but it
			 * doesn't seem worth the amount of bookkeeping it'd take to avoid
			 * that.
			 */
			_bt_delitems_vacuum(rel, buf, deletable, ndeletable,
								vstate->lastBlockVacuumed);

			/*
			 * Remember highest leaf page number we've issued a
			 * XLOG_BTREE_VACUUM WAL record for.
			 */
			if (blkno > vstate->lastBlockVacuumed)
				vstate->lastBlockVacuumed = blkno;

			stats->tuples_removed += ndeletable;
			/* must recompute maxoff */
			maxoff = PageGetMaxOffsetNumber(page);
		}
		else
		{
			/*
			 * If the page has been split during this vacuum cycle, it seems
			 * worth expending a write to clear btpo_cycleid even if we don't
			 * have any deletions to do.  (If we do, _bt_delitems_vacuum takes
			 * care of this.)  This ensures we won't process the page again.
			 *
			 * We treat this like a hint-bit update because there's no need to
			 * WAL-log it.
			 */
			if (vstate->cycleid != 0 &&
				opaque->btpo_cycleid == vstate->cycleid)
			{
				opaque->btpo_cycleid = 0;
				MarkBufferDirtyHint(buf, true);
			}
		}

		/*
		 * If it's now empty, try to delete; else count the live tuples. We
		 * don't delete when recursing, though, to avoid putting entries into
		 * freePages out-of-order (doesn't seem worth any extra code to handle
		 * the case).
		 */
		if (minoff > maxoff)
			delete_now = (blkno == orig_blkno);
		else
			stats->num_index_tuples += maxoff - minoff + 1;
	}

	if (delete_now)
	{
		MemoryContext oldcontext;
		int			ndel;

		/* Run pagedel in a temp context to avoid memory leakage */
		MemoryContextReset(vstate->pagedelcontext);
		oldcontext = MemoryContextSwitchTo(vstate->pagedelcontext);

		ndel = _bt_pagedel(rel, buf);

		/* count only this page, else may double-count parent */
		if (ndel)
			stats->pages_deleted++;

		MemoryContextSwitchTo(oldcontext);
		/* pagedel released buffer, so we shouldn't */
	}
	else
		_bt_relbuf(rel, buf);

	/*
	 * This is really tail recursion, but if the compiler is too stupid to
	 * optimize it as such, we'd eat an uncomfortably large amount of stack
	 * space per recursion level (due to the deletable[] array). A failure is
	 * improbable since the number of levels isn't likely to be large ... but
	 * just in case, let's hand-optimize into a loop.
	 */
	if (recurse_to != P_NONE)
	{
		blkno = recurse_to;
		goto restart;
	}
}
Ejemplo n.º 28
0
/* checks the individual attributes of the tuple */
uint32 check_index_tuple_attributes(Relation rel, PageHeader header, int block, OffsetNumber offnum, char *buffer, int dlen) {
  
	IndexTuple tuple;
	uint32 nerrs = 0;
	int j, off;
	
	bits8 * bitmap;
	BTPageOpaque opaque;
	ItemId	linp;

	ereport(DEBUG2,(errmsg("[%d:%d] checking attributes for the tuple", block, offnum)));
	
	/* get the index tuple and info about the page */
	linp = &header->pd_linp[offnum - 1];
	tuple = (IndexTuple)(buffer + linp->lp_off);
	opaque = (BTPageOpaque)(buffer + header->pd_special);
	
	/* current attribute offset - always starts at (buffer + off) */
	off = linp->lp_off + IndexInfoFindDataOffset(tuple->t_info);
	
	ereport(DEBUG3,(errmsg("[%d:%d] tuple has %d attributes", block, offnum,
						   RelationGetNumberOfAttributes(rel))));
	/* XXX: MAXALIGN */
	bitmap = (bits8*)(buffer + linp->lp_off + sizeof(IndexTupleData));
	
	/* TODO This is mostly copy'n'paste from check_heap_tuple_attributes,
	   so maybe it could be refactored to share the code. */

	/* For non-leaf pages, the first data tuple may or may not actually have any
	   data. See src/backend/access/nbtree/README, "Notes About Data
	   Representation".
	*/
	if (!P_ISLEAF(opaque) && offnum == P_FIRSTDATAKEY(opaque) && dlen == 0) {
		ereport(DEBUG3, (errmsg("[%d:%d] first data key tuple on non-leaf block => no data, skipping", block, offnum)));
		return nerrs;
	}

	/* check all the index attributes */
	for (j = 0; j < rel->rd_att->natts; j++) {
		
		/* default length of the attribute */
		int len = rel->rd_att->attrs[j]->attlen;
		
		/* copy from src/backend/commands/analyze.c */
		bool is_varlena  = (!rel->rd_att->attrs[j]->attbyval && len == -1);
		bool is_varwidth = (!rel->rd_att->attrs[j]->attbyval && len < 0); /* thus it's "len = -2" */
		
		/* if the attribute is marked as NULL (in the tuple header), skip to the next attribute */
		if (IndexTupleHasNulls(tuple) && att_isnull(j, bitmap)) {
			ereport(DEBUG3, (errmsg("[%d:%d] attribute '%s' is NULL (skipping)", block, offnum, rel->rd_att->attrs[j]->attname.data)));
			continue;
		}

		/* fix the alignment (see src/include/access/tupmacs.h) */
		off = att_align_pointer(off, rel->rd_att->attrs[j]->attalign, rel->rd_att->attrs[j]->attlen, buffer+off);
		
		if (is_varlena) { 
		
			/*
			  other interesting macros (see postgres.h) - should do something about those ...
			  
			  VARATT_IS_COMPRESSED(PTR)			VARATT_IS_4B_C(PTR)
			  VARATT_IS_EXTERNAL(PTR)				VARATT_IS_1B_E(PTR)
			  VARATT_IS_SHORT(PTR)				VARATT_IS_1B(PTR)
			  VARATT_IS_EXTENDED(PTR)				(!VARATT_IS_4B_U(PTR))
			*/
			
			len = VARSIZE_ANY(buffer + off);
			
			if (len < 0) {
				ereport(WARNING, (errmsg("[%d:%d] attribute '%s' has negative length < 0 (%d)", block, offnum, rel->rd_att->attrs[j]->attname.data, len)));
				++nerrs;
				break;
			}
			
			if (VARATT_IS_COMPRESSED(buffer + off)) {
				/* the raw length should be less than 1G (and positive) */
				if ((VARRAWSIZE_4B_C(buffer + off) < 0) || (VARRAWSIZE_4B_C(buffer + off) > 1024*1024)) {
					ereport(WARNING, (errmsg("[%d:%d]  attribute '%s' has invalid length %d (should be between 0 and 1G)", block, offnum, rel->rd_att->attrs[j]->attname.data, VARRAWSIZE_4B_C(buffer + off))));
					++nerrs;
					/* no break here, this does not break the page structure - we may check the other attributes */
				}
			}
				
			/* FIXME Check if the varlena value may be detoasted. */
			
		} else if (is_varwidth) {
		
			/* get the C-string length (at most to the end of tuple), +1 as it does not include '\0' at the end */
			/* if the string is not properly terminated, then this returns 'remaining space + 1' so it's detected */
			len = strnlen(buffer + off, linp->lp_off + len + linp->lp_len - off) + 1;
			
		}
			
		/* Check if the length makes sense (is not negative and does not overflow
		 * the tuple end, stop validating the other rows (we don't know where to
		 * continue anyway). */
		
		if ((dlen > 0) && (off + len > (linp->lp_off + linp->lp_len))) {
			ereport(WARNING,
					(errmsg("[%d:%d] attribute '%s' (off=%d len=%d) overflows tuple end (off=%d, len=%d)",
							block, offnum, rel->rd_att->attrs[j]->attname.data,
							off, len, linp->lp_off, linp->lp_len)));
			++nerrs;
			break;
		}
		
		/* skip to the next attribute */
		off += (dlen > 0) ? len : 0;
		
		ereport(DEBUG3,(errmsg("[%d:%d] attribute '%s' len=%d", block, offnum, rel->rd_att->attrs[j]->attname.data, len)));
	}
	
	ereport(DEBUG3,
			(errmsg("[%d:%d] last attribute ends at %d, tuple ends at %d",
					block, offnum, off, linp->lp_off + linp->lp_len)));
	
	/* after the last attribute, the offset should be less than the end of the tuple */
	if (MAXALIGN(off) > linp->lp_off + linp->lp_len) {
		ereport(WARNING,
				(errmsg("[%d:%d] the last attribute ends at %d but the tuple ends at %d",
						block, offnum, off, linp->lp_off + linp->lp_len)));
		++nerrs;
	}
	
	return nerrs;
}