Ejemplo n.º 1
0
/*@C
    DMMGSolve - Actually solves the (non)linear system defined with the DMMG

    Collective on DMMG

    Input Parameter:
.   dmmg - the context

    Level: advanced

    Options Database:
+   -dmmg_grid_sequence - use grid sequencing to get the initial solution for each level from the previous
-   -dmmg_monitor_solution - display the solution at each iteration

     Notes: For linear (KSP) problems may be called more than once, uses the same 
    matrices but recomputes the right hand side for each new solve. Call DMMGSetKSP()
    to generate new matrices.
 
.seealso DMMGCreate(), DMMGDestroy(), DMMG, DMMGSetSNES(), DMMGSetKSP(), DMMGSetUp(), DMMGSetMatType()

@*/
PetscErrorCode PETSCSNES_DLLEXPORT DMMGSolve(DMMG *dmmg)
{
  PetscErrorCode ierr;
  PetscInt       i,nlevels = dmmg[0]->nlevels;
  PetscTruth     gridseq = PETSC_FALSE,vecmonitor = PETSC_FALSE,flg;

  PetscFunctionBegin;
  ierr = PetscOptionsGetTruth(0,"-dmmg_grid_sequence",&gridseq,PETSC_NULL);CHKERRQ(ierr);
  ierr = PetscOptionsGetTruth(0,"-dmmg_monitor_solution",&vecmonitor,PETSC_NULL);CHKERRQ(ierr);
  if (gridseq) {
    if (dmmg[0]->initialguess) {
      ierr = (*dmmg[0]->initialguess)(dmmg[0],dmmg[0]->x);CHKERRQ(ierr);
      if (dmmg[0]->ksp && !dmmg[0]->snes) {
        ierr = KSPSetInitialGuessNonzero(dmmg[0]->ksp,PETSC_TRUE);CHKERRQ(ierr);
      }
    }
    for (i=0; i<nlevels-1; i++) {
      ierr = (*dmmg[i]->solve)(dmmg,i);CHKERRQ(ierr);
      if (vecmonitor) {
        ierr = VecView(dmmg[i]->x,PETSC_VIEWER_DRAW_(dmmg[i]->comm));CHKERRQ(ierr);
      }
      ierr = MatInterpolate(dmmg[i+1]->R,dmmg[i]->x,dmmg[i+1]->x);CHKERRQ(ierr);
      if (dmmg[i+1]->ksp && !dmmg[i+1]->snes) {
        ierr = KSPSetInitialGuessNonzero(dmmg[i+1]->ksp,PETSC_TRUE);CHKERRQ(ierr);
     }
    }
  } else {
    if (dmmg[nlevels-1]->initialguess) {
      ierr = (*dmmg[nlevels-1]->initialguess)(dmmg[nlevels-1],dmmg[nlevels-1]->x);CHKERRQ(ierr);
    }
  }

  /*ierr = VecView(dmmg[nlevels-1]->x,PETSC_VIEWER_DRAW_WORLD);CHKERRQ(ierr);*/

  ierr = (*DMMGGetFine(dmmg)->solve)(dmmg,nlevels-1);CHKERRQ(ierr);
  if (vecmonitor) {
     ierr = VecView(dmmg[nlevels-1]->x,PETSC_VIEWER_DRAW_(dmmg[nlevels-1]->comm));CHKERRQ(ierr);
  }

  flg  = PETSC_FALSE;
  ierr = PetscOptionsGetTruth(PETSC_NULL,"-dmmg_view",&flg,PETSC_NULL);CHKERRQ(ierr);
  if (flg && !PetscPreLoadingOn) {
    PetscViewer viewer;
    ierr = PetscViewerASCIIGetStdout(dmmg[0]->comm,&viewer);CHKERRQ(ierr);
    ierr = DMMGView(dmmg,viewer);CHKERRQ(ierr);
  }
  flg  = PETSC_FALSE;
  ierr = PetscOptionsGetTruth(PETSC_NULL,"-dmmg_view_binary",&flg,PETSC_NULL);CHKERRQ(ierr);
  if (flg && !PetscPreLoadingOn) {
    ierr = DMMGView(dmmg,PETSC_VIEWER_BINARY_(dmmg[0]->comm));CHKERRQ(ierr);
  }
  PetscFunctionReturn(0);
}
Ejemplo n.º 2
0
static PetscErrorCode bfgs_apply(PC pc, Vec xin, Vec xout)
{
  TaoLMVMMat *M ;
  TaoVecPetsc Xin(xin);
  TaoVecPetsc Xout(xout);
  TaoTruth info2;
  int info;

  PetscFunctionBegin;

  PetscTruth VerbosePrint = PETSC_FALSE; 
  PetscOptionsGetTruth(PETSC_NULL,"-verboseapp",&VerbosePrint,PETSC_NULL);

  info = PCShellGetContext(pc,(void**)&M); CHKERRQ(info);

  PetscScalar solnNorm,solnDot;
  info = VecNorm(xin,NORM_2,&solnNorm); CHKERRQ(info)
  info=PetscPrintf(PETSC_COMM_WORLD,"bfgs_apply: ||Xin||_2 = %22.15e\n",solnNorm);
  if(VerbosePrint) VecView(xin,0);

  info = M->Solve(&Xin, &Xout, &info2); CHKERRQ(info);

  info = VecNorm(xout,NORM_2,&solnNorm); CHKERRQ(info)
  info = VecDot(xin,xout,&solnDot); CHKERRQ(info)
  info=PetscPrintf(PETSC_COMM_WORLD,"bfgs_apply: ||Xout||_2 = %22.15e, Xin^T Xout= %22.15e\n",solnNorm,solnDot);
  if(VerbosePrint) VecView(xout,0);

  PetscFunctionReturn(0);
}
Ejemplo n.º 3
0
/*
Only the options related to GtKG should be set here.
*/
PetscErrorCode BSSCR_PCSetFromOptions_GtKG( PC pc )
{
	PC_GtKG ctx = (PC_GtKG)pc->data;
	PetscTruth ivalue, flg;
	
	PetscOptionsGetTruth( PETSC_NULL, "-pc_gtkg_monitor", &ivalue, &flg );
	if( flg==PETSC_TRUE ) {
		ctx->monitor_activated = ivalue;
	}
	
	PetscOptionsGetTruth( PETSC_NULL, "-pc_gtkg_monitor_rhs_consistency", &ivalue, &flg );
	if( flg==PETSC_TRUE ) {
		ctx->monitor_rhs_consistency = ivalue;
	}
	
	
	PetscFunctionReturn(0);
}
Ejemplo n.º 4
0
int main(int argc,char **argv)
{
  PetscMPIInt    rank;
  PetscInt       m = PETSC_DECIDE,n = PETSC_DECIDE,p = PETSC_DECIDE,M = 3,N = 5,P=3,s=1;
  PetscInt       *lx = PETSC_NULL,*ly = PETSC_NULL,*lz = PETSC_NULL;
  PetscErrorCode ierr;
  PetscTruth     flg = PETSC_FALSE;
  DA             da;
  Vec            local,global,vslice;
  PetscScalar    value;
  DAPeriodicType wrap = DA_XYPERIODIC;
  DAStencilType  stencil_type = DA_STENCIL_BOX;
  VecScatter     scatter;

  ierr = PetscInitialize(&argc,&argv,(char*)0,help);CHKERRQ(ierr); 
  ierr = MPI_Comm_rank(PETSC_COMM_WORLD,&rank);CHKERRQ(ierr);

  /* Read options */  
  ierr = PetscOptionsGetInt(PETSC_NULL,"-M",&M,PETSC_NULL);CHKERRQ(ierr);
  ierr = PetscOptionsGetInt(PETSC_NULL,"-N",&N,PETSC_NULL);CHKERRQ(ierr);
  ierr = PetscOptionsGetInt(PETSC_NULL,"-P",&P,PETSC_NULL);CHKERRQ(ierr);
  ierr = PetscOptionsGetInt(PETSC_NULL,"-m",&m,PETSC_NULL);CHKERRQ(ierr);
  ierr = PetscOptionsGetInt(PETSC_NULL,"-n",&n,PETSC_NULL);CHKERRQ(ierr);
  ierr = PetscOptionsGetInt(PETSC_NULL,"-p",&p,PETSC_NULL);CHKERRQ(ierr);
  ierr = PetscOptionsGetInt(PETSC_NULL,"-s",&s,PETSC_NULL);CHKERRQ(ierr);
  ierr = PetscOptionsGetTruth(PETSC_NULL,"-star",&flg,PETSC_NULL);CHKERRQ(ierr); 
  if (flg) stencil_type =  DA_STENCIL_STAR;

  /* Create distributed array and get vectors */
  ierr = DACreate3d(PETSC_COMM_WORLD,wrap,stencil_type,M,N,P,m,n,p,1,s,
                    lx,ly,lz,&da);CHKERRQ(ierr);
  ierr = DAView(da,PETSC_VIEWER_DRAW_WORLD);CHKERRQ(ierr);
  ierr = DACreateGlobalVector(da,&global);CHKERRQ(ierr);
  ierr = DACreateLocalVector(da,&local);CHKERRQ(ierr);

  ierr = GenerateSliceScatter(da,&scatter,&vslice);CHKERRQ(ierr);

  /* Put the value rank+1 into all locations of vslice and transfer back to global vector */
  value = 1.0 + rank;
  ierr = VecSet(vslice,value);CHKERRQ(ierr);
  ierr = VecScatterBegin(scatter,vslice,global,INSERT_VALUES,SCATTER_REVERSE);CHKERRQ(ierr);
  ierr = VecScatterEnd(scatter,vslice,global,INSERT_VALUES,SCATTER_REVERSE);CHKERRQ(ierr);

  ierr = VecView(global,PETSC_VIEWER_DRAW_WORLD);CHKERRQ(ierr);

  ierr = VecDestroy(local);CHKERRQ(ierr);
  ierr = VecDestroy(global);CHKERRQ(ierr);
  ierr = DADestroy(da);CHKERRQ(ierr);
  ierr = PetscFinalize();CHKERRQ(ierr);
  return 0;
}
Ejemplo n.º 5
0
/*
Only the options related to GtKG should be set here.
*/
PetscErrorCode BSSCR_PCSetFromOptions_ScGtKG( PC pc )
{
	PC_SC_GtKG ctx = (PC_SC_GtKG)pc->data;
	PetscTruth ivalue, flg;
	
	if(ctx->ksp_BBt!=PETSC_NULL) {
		PetscOptionsGetTruth( PETSC_NULL, "-pc_gtkg_monitor", &ivalue, &flg );
		BSSCR_PCScGtKGSetSubKSPMonitor( pc, ivalue );
		
	}
	
	
	PetscFunctionReturn(0);
}
Ejemplo n.º 6
0
/*
    PFStringCreateFunction - Creates a function from a string

   Collective over PF

  Input Parameters:
+    pf - the function object
-    string - the string that defines the function

  Output Parameter:
.    f - the function pointer.

.seealso: PFSetFromOptions()

*/
PetscErrorCode PETSCVEC_DLLEXPORT PFStringCreateFunction(PF pf,char *string,void **f)
{
#if defined(PETSC_USE_DYNAMIC_LIBRARIES)
  PetscErrorCode ierr;
  char       task[1024],tmp[256],lib[PETSC_MAX_PATH_LEN],username[64];
  FILE       *fd;
  PetscTruth tmpshared,wdshared,keeptmpfiles = PETSC_FALSE;
  MPI_Comm   comm;
#endif

  PetscFunctionBegin;
#if defined(PETSC_USE_DYNAMIC_LIBRARIES)
  ierr = PetscStrfree(pf->data);CHKERRQ(ierr);
  ierr = PetscStrallocpy(string,(char**)&pf->data);CHKERRQ(ierr);

  /* create the new C function and compile it */
  ierr = PetscSharedTmp(((PetscObject)pf)->comm,&tmpshared);CHKERRQ(ierr);
  ierr = PetscSharedWorkingDirectory(((PetscObject)pf)->comm,&wdshared);CHKERRQ(ierr);
  if (tmpshared) {  /* do it in /tmp since everyone has one */
    ierr = PetscGetTmp(((PetscObject)pf)->comm,tmp,PETSC_MAX_PATH_LEN);CHKERRQ(ierr);
    comm = ((PetscObject)pf)->comm;
  } else if (!wdshared) {  /* each one does in private /tmp */
    ierr = PetscGetTmp(((PetscObject)pf)->comm,tmp,PETSC_MAX_PATH_LEN);CHKERRQ(ierr);
    comm = PETSC_COMM_SELF;
  } else { /* do it in current directory */
    ierr = PetscStrcpy(tmp,".");CHKERRQ(ierr);
    comm = ((PetscObject)pf)->comm;
  } 
  ierr = PetscOptionsGetTruth(((PetscObject)pf)->prefix,"-pf_string_keep_files",&keeptmpfiles,PETSC_NULL);CHKERRQ(ierr);
  if (keeptmpfiles) {
    sprintf(task,"cd %s ; mkdir ${USERNAME} ; cd ${USERNAME} ; \\cp -f ${PETSC_DIR}/src/pf/impls/string/makefile ./makefile ; ke  MIN=%d NOUT=%d petscdlib STRINGFUNCTION=\"%s\" ; sync\n",tmp,(int)pf->dimin,(int)pf->dimout,string);
  } else {
    sprintf(task,"cd %s ; mkdir ${USERNAME} ;cd ${USERNAME} ; \\cp -f ${PETSC_DIR}/src/pf/impls/string/makefile ./makefile ; make  MIN=%d NOUT=%d -f makefile petscdlib STRINGFUNCTION=\"%s\" ; \\rm -f makefile petscdlib.c libpetscdlib.a ;  sync\n",tmp,(int)pf->dimin,(int)pf->dimout,string);
  }
#if defined(PETSC_HAVE_POPEN)
  ierr = PetscPOpen(comm,PETSC_NULL,task,"r",&fd);CHKERRQ(ierr);
  ierr = PetscPClose(comm,fd);CHKERRQ(ierr);
#else
  SETERRQ(PETSC_ERR_SUP_SYS,"Cannot run external programs on this machine");
#endif

  ierr = MPI_Barrier(comm);CHKERRQ(ierr);

  /* load the apply function from the dynamic library */
  ierr = PetscGetUserName(username,64);CHKERRQ(ierr);
  sprintf(lib,"%s/%s/libpetscdlib",tmp,username);
  ierr = PetscDLLibrarySym(comm,PETSC_NULL,lib,"PFApply_String",f);CHKERRQ(ierr);
#endif
  PetscFunctionReturn(0);    
}
Ejemplo n.º 7
0
/*@C
    DMMGSetDM - Sets the coarse grid information for the grids

    Collective on DMMG

    Input Parameter:
+   dmmg - the context
-   dm - the DA or DMComposite object

    Options Database Keys:
.   -dmmg_refine: Use the input problem as the coarse level and refine. Otherwise, use it as the fine level and coarsen.

    Level: advanced

.seealso DMMGCreate(), DMMGDestroy(), DMMGSetMatType()

@*/
PetscErrorCode PETSCSNES_DLLEXPORT DMMGSetDM(DMMG *dmmg, DM dm)
{
  PetscInt       nlevels     = dmmg[0]->nlevels;
  PetscTruth     doRefine    = PETSC_TRUE;
  PetscInt       i;
  DM             *hierarchy;
  PetscErrorCode ierr;

  PetscFunctionBegin;
  if (!dmmg) SETERRQ(PETSC_ERR_ARG_NULL,"Passing null as DMMG");

  /* Create DM data structure for all the levels */
  ierr = PetscOptionsGetTruth(PETSC_NULL, "-dmmg_refine", &doRefine, PETSC_IGNORE);CHKERRQ(ierr);
  ierr = PetscObjectReference((PetscObject) dm);CHKERRQ(ierr);
  ierr = PetscMalloc(nlevels*sizeof(DM),&hierarchy);CHKERRQ(ierr);
  if (doRefine) {
    ierr = DMRefineHierarchy(dm,nlevels-1,hierarchy);CHKERRQ(ierr);
    dmmg[0]->dm = dm;
    for(i=1; i<nlevels; ++i) {
      dmmg[i]->dm = hierarchy[i-1];
    }
  } else {
    dmmg[nlevels-1]->dm = dm;
    ierr = DMCoarsenHierarchy(dm,nlevels-1,hierarchy);CHKERRQ(ierr);
    for(i=0; i<nlevels-1; ++i) {
      dmmg[nlevels-2-i]->dm = hierarchy[i];
    }
  }
  ierr = PetscFree(hierarchy);CHKERRQ(ierr);
  /* Cleanup old structures (should use some private Destroy() instead) */
  for(i = 0; i < nlevels; ++i) {
    if (dmmg[i]->B) {ierr = MatDestroy(dmmg[i]->B);CHKERRQ(ierr); dmmg[i]->B = PETSC_NULL;}
    if (dmmg[i]->J) {ierr = MatDestroy(dmmg[i]->J);CHKERRQ(ierr); dmmg[i]->J = PETSC_NULL;}
  }

  /* Create work vectors and matrix for each level */
  for (i=0; i<nlevels; i++) {
    ierr = DMCreateGlobalVector(dmmg[i]->dm,&dmmg[i]->x);CHKERRQ(ierr);
    ierr = VecDuplicate(dmmg[i]->x,&dmmg[i]->b);CHKERRQ(ierr);
    ierr = VecDuplicate(dmmg[i]->x,&dmmg[i]->r);CHKERRQ(ierr);
  }

  /* Create interpolation/restriction between levels */
  for (i=1; i<nlevels; i++) {
    ierr = DMGetInterpolation(dmmg[i-1]->dm,dmmg[i]->dm,&dmmg[i]->R,PETSC_NULL);CHKERRQ(ierr);
  }
  PetscFunctionReturn(0);
}
Ejemplo n.º 8
0
/* Sets up Solver to be a custom ksp (KSP_BSSCR) solve by default: */
void _StokesBlockKSPInterface_Solve( void* solver, void* _stokesSLE ) {
  StokesBlockKSPInterface* self    = (StokesBlockKSPInterface*)solver;
  PetscLogDouble flopsA,flopsB;
  PetscTruth found, get_flops;

  found = PETSC_FALSE;
  get_flops = PETSC_FALSE;
  PetscOptionsGetTruth( PETSC_NULL, "-get_flops", &get_flops, &found);
  if(get_flops){
    PetscGetFlops(&flopsA); }

  _BlockSolve(solver, _stokesSLE);

  if(get_flops){
    PetscGetFlops(&flopsB);
    self->stats.total_flops=(double)(flopsB-flopsA); }
}
Ejemplo n.º 9
0
void bsscr_writeMat(Mat K, char name[], char message[]){
    PetscViewer             mat_view_file;
    char str[100];
    PetscTruth dump=PETSC_FALSE;
    PetscOptionsGetTruth( PETSC_NULL ,"-dump_matvec", &dump, 0 );
    if(dump){
    if( K != NULL ) {
	PetscPrintf( PETSC_COMM_WORLD,"%s \n",message);
	PetscObjectSetName((PetscObject)K,name);
	sprintf(str,"%smatrixBin",name);
	PetscViewerBinaryOpen( PETSC_COMM_WORLD, str, FILE_MODE_WRITE, &mat_view_file );
	PetscViewerSetFormat( mat_view_file, PETSC_VIEWER_NATIVE );
	MatView( K, mat_view_file );
	Stg_PetscViewerDestroy(&mat_view_file );
	sprintf(str,"%smatrix.m",name);
	PetscViewerASCIIOpen( PETSC_COMM_WORLD, str, &mat_view_file );
	PetscViewerSetFormat( mat_view_file, PETSC_VIEWER_ASCII_MATLAB );
	MatView( K, mat_view_file );
	Stg_PetscViewerDestroy(&mat_view_file );
    }
    }
}
Ejemplo n.º 10
0
void bsscr_dirwriteVec(Vec V, char name[], char dir[], char message[]){
    PetscViewer             vec_view_file;
    char str[100];
    PetscTruth dump=PETSC_FALSE;
    PetscOptionsGetTruth( PETSC_NULL ,"-dump_matvec", &dump, 0 );
    if(dump){
    if( V != NULL ) {
	PetscPrintf( PETSC_COMM_WORLD,"%s \n",message);
	PetscObjectSetName((PetscObject)V,name);
	sprintf(str,"%s%svectorBin",dir,name);
	PetscViewerBinaryOpen( PETSC_COMM_WORLD, str, FILE_MODE_WRITE, &vec_view_file );
	PetscViewerSetFormat( vec_view_file, PETSC_VIEWER_NATIVE );
	VecView( V, vec_view_file );
	Stg_PetscViewerDestroy(&vec_view_file );
	sprintf(str,"%s%svector.m",dir,name);
	PetscViewerASCIIOpen( PETSC_COMM_WORLD, str, &vec_view_file );
	PetscViewerSetFormat( vec_view_file, PETSC_VIEWER_ASCII_MATLAB );
	VecView( V, vec_view_file );
	Stg_PetscViewerDestroy(&vec_view_file );
    }
    }
}
Ejemplo n.º 11
0
int main(int argc,char **argv)
{
  PetscMPIInt    rank;
  PetscInt       M = -10,N = -8;
  PetscErrorCode ierr;
  PetscTruth     flg = PETSC_FALSE;
  DA             da;
  PetscViewer    viewer;
  Vec            local,global;
  PetscScalar    value;
  DAPeriodicType ptype = DA_NONPERIODIC;
  DAStencilType  stype = DA_STENCIL_BOX;
#if defined(PETSC_HAVE_MATLAB_ENGINE)
  PetscViewer    mviewer;
#endif

  ierr = PetscInitialize(&argc,&argv,(char*)0,help);CHKERRQ(ierr); 
  ierr = PetscViewerDrawOpen(PETSC_COMM_WORLD,0,"",300,0,300,300,&viewer);CHKERRQ(ierr);
#if defined(PETSC_HAVE_MATLAB_ENGINE)
  ierr = PetscViewerMatlabOpen(PETSC_COMM_WORLD,"tmp.mat",FILE_MODE_WRITE,&mviewer);CHKERRQ(ierr);
#endif

  ierr = PetscOptionsGetTruth(PETSC_NULL,"-star_stencil",&flg,PETSC_NULL);CHKERRQ(ierr);
  if (flg) stype = DA_STENCIL_STAR;
      
  /* Create distributed array and get vectors */
  ierr = DACreate2d(PETSC_COMM_WORLD,ptype,stype,M,N,PETSC_DECIDE,PETSC_DECIDE,1,1,PETSC_NULL,PETSC_NULL,&da);CHKERRQ(ierr);
  ierr = DACreateGlobalVector(da,&global);CHKERRQ(ierr);
  ierr = DACreateLocalVector(da,&local);CHKERRQ(ierr);

  value = -3.0;
  ierr = VecSet(global,value);CHKERRQ(ierr);
  ierr = DAGlobalToLocalBegin(da,global,INSERT_VALUES,local);CHKERRQ(ierr);
  ierr = DAGlobalToLocalEnd(da,global,INSERT_VALUES,local);CHKERRQ(ierr);

  ierr = MPI_Comm_rank(PETSC_COMM_WORLD,&rank);CHKERRQ(ierr);
  value = rank+1;
  ierr = VecScale(local,value);CHKERRQ(ierr);
  ierr = DALocalToGlobal(da,local,ADD_VALUES,global);CHKERRQ(ierr);
  
  flg  = PETSC_FALSE;
  ierr = PetscOptionsGetTruth(PETSC_NULL, "-view_global", &flg,PETSC_NULL);CHKERRQ(ierr);
  if (flg) { /* view global vector in natural ordering */
    ierr = VecView(global,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);
  }
  ierr = DAView(da,viewer);CHKERRQ(ierr);
  ierr = VecView(global,viewer);CHKERRQ(ierr);
#if defined(PETSC_HAVE_MATLAB_ENGINE)
  ierr = DAView(da,mviewer);CHKERRQ(ierr);
  ierr = VecView(global,mviewer);CHKERRQ(ierr);
#endif

  /* Free memory */
#if defined(PETSC_HAVE_MATLAB_ENGINE)
  ierr = PetscViewerDestroy(mviewer);CHKERRQ(ierr);
#endif
  ierr = PetscViewerDestroy(viewer);CHKERRQ(ierr);
  ierr = VecDestroy(local);CHKERRQ(ierr);
  ierr = VecDestroy(global);CHKERRQ(ierr);
  ierr = DADestroy(da);CHKERRQ(ierr);
  ierr = PetscFinalize();CHKERRQ(ierr);
  return 0;
}
Ejemplo n.º 12
0
/*@C
    ISLocalToGlobalMappingGetInfo - Gets the neighbor information for each processor and 
     each index shared by more than one processor 

    Collective on ISLocalToGlobalMapping

    Input Parameters:
.   mapping - the mapping from local to global indexing

    Output Parameter:
+   nproc - number of processors that are connected to this one
.   proc - neighboring processors
.   numproc - number of indices for each subdomain (processor)
-   indices - indices of nodes (in local numbering) shared with neighbors (sorted by global numbering)

    Level: advanced

    Concepts: mapping^local to global

    Fortran Usage: 
$        ISLocalToGlobalMpngGetInfoSize(ISLocalToGlobalMapping,PetscInt nproc,PetscInt numprocmax,ierr) followed by 
$        ISLocalToGlobalMappingGetInfo(ISLocalToGlobalMapping,PetscInt nproc, PetscInt procs[nproc],PetscInt numprocs[nproc],
          PetscInt indices[nproc][numprocmax],ierr)
        There is no ISLocalToGlobalMappingRestoreInfo() in Fortran. You must make sure that procs[], numprocs[] and 
        indices[][] are large enough arrays, either by allocating them dynamically or defining static ones large enough.


.seealso: ISLocalToGlobalMappingDestroy(), ISLocalToGlobalMappingCreateIS(), ISLocalToGlobalMappingCreate(),
          ISLocalToGlobalMappingRestoreInfo()
@*/
PetscErrorCode PETSCVEC_DLLEXPORT ISLocalToGlobalMappingGetInfo(ISLocalToGlobalMapping mapping,PetscInt *nproc,PetscInt *procs[],PetscInt *numprocs[],PetscInt **indices[])
{
  PetscErrorCode ierr;
  PetscMPIInt    size,rank,tag1,tag2,tag3,*len,*source,imdex;
  PetscInt       i,n = mapping->n,Ng,ng,max = 0,*lindices = mapping->indices;
  PetscInt       *nprocs,*owner,nsends,*sends,j,*starts,nmax,nrecvs,*recvs,proc;
  PetscInt       cnt,scale,*ownedsenders,*nownedsenders,rstart,nowned;
  PetscInt       node,nownedm,nt,*sends2,nsends2,*starts2,*lens2,*dest,nrecvs2,*starts3,*recvs2,k,*bprocs,*tmp;
  PetscInt       first_procs,first_numprocs,*first_indices;
  MPI_Request    *recv_waits,*send_waits;
  MPI_Status     recv_status,*send_status,*recv_statuses;
  MPI_Comm       comm = ((PetscObject)mapping)->comm;
  PetscTruth     debug = PETSC_FALSE;

  PetscFunctionBegin;
  PetscValidHeaderSpecific(mapping,IS_LTOGM_COOKIE,1);
  ierr   = MPI_Comm_size(comm,&size);CHKERRQ(ierr);
  ierr   = MPI_Comm_rank(comm,&rank);CHKERRQ(ierr);
  if (size == 1) {
    *nproc         = 0;
    *procs         = PETSC_NULL;
    ierr           = PetscMalloc(sizeof(PetscInt),numprocs);CHKERRQ(ierr);
    (*numprocs)[0] = 0;
    ierr           = PetscMalloc(sizeof(PetscInt*),indices);CHKERRQ(ierr); 
    (*indices)[0]  = PETSC_NULL;
    PetscFunctionReturn(0);
  }

  ierr = PetscOptionsGetTruth(PETSC_NULL,"-islocaltoglobalmappinggetinfo_debug",&debug,PETSC_NULL);CHKERRQ(ierr);

  /*
    Notes on ISLocalToGlobalMappingGetInfo

    globally owned node - the nodes that have been assigned to this processor in global
           numbering, just for this routine.

    nontrivial globally owned node - node assigned to this processor that is on a subdomain
           boundary (i.e. is has more than one local owner)

    locally owned node - node that exists on this processors subdomain

    nontrivial locally owned node - node that is not in the interior (i.e. has more than one
           local subdomain
  */
  ierr = PetscObjectGetNewTag((PetscObject)mapping,&tag1);CHKERRQ(ierr);
  ierr = PetscObjectGetNewTag((PetscObject)mapping,&tag2);CHKERRQ(ierr);
  ierr = PetscObjectGetNewTag((PetscObject)mapping,&tag3);CHKERRQ(ierr);

  for (i=0; i<n; i++) {
    if (lindices[i] > max) max = lindices[i];
  }
  ierr   = MPI_Allreduce(&max,&Ng,1,MPIU_INT,MPI_MAX,comm);CHKERRQ(ierr);
  Ng++;
  ierr   = MPI_Comm_size(comm,&size);CHKERRQ(ierr);
  ierr   = MPI_Comm_rank(comm,&rank);CHKERRQ(ierr);
  scale  = Ng/size + 1;
  ng     = scale; if (rank == size-1) ng = Ng - scale*(size-1); ng = PetscMax(1,ng);
  rstart = scale*rank;

  /* determine ownership ranges of global indices */
  ierr = PetscMalloc(2*size*sizeof(PetscInt),&nprocs);CHKERRQ(ierr);
  ierr = PetscMemzero(nprocs,2*size*sizeof(PetscInt));CHKERRQ(ierr);

  /* determine owners of each local node  */
  ierr = PetscMalloc(n*sizeof(PetscInt),&owner);CHKERRQ(ierr);
  for (i=0; i<n; i++) {
    proc             = lindices[i]/scale; /* processor that globally owns this index */
    nprocs[2*proc+1] = 1;                 /* processor globally owns at least one of ours */
    owner[i]         = proc;              
    nprocs[2*proc]++;                     /* count of how many that processor globally owns of ours */
  }
  nsends = 0; for (i=0; i<size; i++) nsends += nprocs[2*i+1];
  ierr = PetscInfo1(mapping,"Number of global owners for my local data %d\n",nsends);CHKERRQ(ierr);

  /* inform other processors of number of messages and max length*/
  ierr = PetscMaxSum(comm,nprocs,&nmax,&nrecvs);CHKERRQ(ierr);
  ierr = PetscInfo1(mapping,"Number of local owners for my global data %d\n",nrecvs);CHKERRQ(ierr);

  /* post receives for owned rows */
  ierr = PetscMalloc((2*nrecvs+1)*(nmax+1)*sizeof(PetscInt),&recvs);CHKERRQ(ierr);
  ierr = PetscMalloc((nrecvs+1)*sizeof(MPI_Request),&recv_waits);CHKERRQ(ierr);
  for (i=0; i<nrecvs; i++) {
    ierr = MPI_Irecv(recvs+2*nmax*i,2*nmax,MPIU_INT,MPI_ANY_SOURCE,tag1,comm,recv_waits+i);CHKERRQ(ierr);
  }

  /* pack messages containing lists of local nodes to owners */
  ierr       = PetscMalloc((2*n+1)*sizeof(PetscInt),&sends);CHKERRQ(ierr);
  ierr       = PetscMalloc((size+1)*sizeof(PetscInt),&starts);CHKERRQ(ierr);
  starts[0]  = 0; 
  for (i=1; i<size; i++) { starts[i] = starts[i-1] + 2*nprocs[2*i-2];} 
  for (i=0; i<n; i++) {
    sends[starts[owner[i]]++] = lindices[i];
    sends[starts[owner[i]]++] = i;
  }
  ierr = PetscFree(owner);CHKERRQ(ierr);
  starts[0]  = 0; 
  for (i=1; i<size; i++) { starts[i] = starts[i-1] + 2*nprocs[2*i-2];} 

  /* send the messages */
  ierr = PetscMalloc((nsends+1)*sizeof(MPI_Request),&send_waits);CHKERRQ(ierr);
  ierr = PetscMalloc((nsends+1)*sizeof(PetscInt),&dest);CHKERRQ(ierr);
  cnt = 0;
  for (i=0; i<size; i++) {
    if (nprocs[2*i]) {
      ierr      = MPI_Isend(sends+starts[i],2*nprocs[2*i],MPIU_INT,i,tag1,comm,send_waits+cnt);CHKERRQ(ierr);
      dest[cnt] = i;
      cnt++;
    }
  }
  ierr = PetscFree(starts);CHKERRQ(ierr);

  /* wait on receives */
  ierr = PetscMalloc((nrecvs+1)*sizeof(PetscMPIInt),&source);CHKERRQ(ierr);
  ierr = PetscMalloc((nrecvs+1)*sizeof(PetscMPIInt),&len);CHKERRQ(ierr);
  cnt  = nrecvs; 
  ierr = PetscMalloc((ng+1)*sizeof(PetscInt),&nownedsenders);CHKERRQ(ierr);
  ierr = PetscMemzero(nownedsenders,ng*sizeof(PetscInt));CHKERRQ(ierr);
  while (cnt) {
    ierr = MPI_Waitany(nrecvs,recv_waits,&imdex,&recv_status);CHKERRQ(ierr);
    /* unpack receives into our local space */
    ierr           = MPI_Get_count(&recv_status,MPIU_INT,&len[imdex]);CHKERRQ(ierr);
    source[imdex]  = recv_status.MPI_SOURCE;
    len[imdex]     = len[imdex]/2;
    /* count how many local owners for each of my global owned indices */
    for (i=0; i<len[imdex]; i++) nownedsenders[recvs[2*imdex*nmax+2*i]-rstart]++;
    cnt--;
  }
  ierr = PetscFree(recv_waits);CHKERRQ(ierr);

  /* count how many globally owned indices are on an edge multiplied by how many processors own them. */
  nowned  = 0;
  nownedm = 0;
  for (i=0; i<ng; i++) {
    if (nownedsenders[i] > 1) {nownedm += nownedsenders[i]; nowned++;}
  }

  /* create single array to contain rank of all local owners of each globally owned index */
  ierr      = PetscMalloc((nownedm+1)*sizeof(PetscInt),&ownedsenders);CHKERRQ(ierr);
  ierr      = PetscMalloc((ng+1)*sizeof(PetscInt),&starts);CHKERRQ(ierr);
  starts[0] = 0;
  for (i=1; i<ng; i++) {
    if (nownedsenders[i-1] > 1) starts[i] = starts[i-1] + nownedsenders[i-1];
    else starts[i] = starts[i-1];
  }

  /* for each nontrival globally owned node list all arriving processors */
  for (i=0; i<nrecvs; i++) {
    for (j=0; j<len[i]; j++) {
      node = recvs[2*i*nmax+2*j]-rstart;
      if (nownedsenders[node] > 1) {
        ownedsenders[starts[node]++] = source[i];
      }
    }
  }

  if (debug) { /* -----------------------------------  */
    starts[0]    = 0;
    for (i=1; i<ng; i++) {
      if (nownedsenders[i-1] > 1) starts[i] = starts[i-1] + nownedsenders[i-1];
      else starts[i] = starts[i-1];
    }
    for (i=0; i<ng; i++) {
      if (nownedsenders[i] > 1) {
        ierr = PetscSynchronizedPrintf(comm,"[%d] global node %d local owner processors: ",rank,i+rstart);CHKERRQ(ierr);
        for (j=0; j<nownedsenders[i]; j++) {
          ierr = PetscSynchronizedPrintf(comm,"%d ",ownedsenders[starts[i]+j]);CHKERRQ(ierr);
        }
        ierr = PetscSynchronizedPrintf(comm,"\n");CHKERRQ(ierr);
      }
    }
    ierr = PetscSynchronizedFlush(comm);CHKERRQ(ierr);
  }/* -----------------------------------  */

  /* wait on original sends */
  if (nsends) {
    ierr = PetscMalloc(nsends*sizeof(MPI_Status),&send_status);CHKERRQ(ierr);
    ierr = MPI_Waitall(nsends,send_waits,send_status);CHKERRQ(ierr);
    ierr = PetscFree(send_status);CHKERRQ(ierr);
  }
  ierr = PetscFree(send_waits);CHKERRQ(ierr);
  ierr = PetscFree(sends);CHKERRQ(ierr);
  ierr = PetscFree(nprocs);CHKERRQ(ierr);

  /* pack messages to send back to local owners */
  starts[0]    = 0;
  for (i=1; i<ng; i++) {
    if (nownedsenders[i-1] > 1) starts[i] = starts[i-1] + nownedsenders[i-1];
    else starts[i] = starts[i-1];
  }
  nsends2 = nrecvs;
  ierr    = PetscMalloc((nsends2+1)*sizeof(PetscInt),&nprocs);CHKERRQ(ierr); /* length of each message */
  for (i=0; i<nrecvs; i++) {
    nprocs[i] = 1;
    for (j=0; j<len[i]; j++) {
      node = recvs[2*i*nmax+2*j]-rstart;
      if (nownedsenders[node] > 1) {
        nprocs[i] += 2 + nownedsenders[node];
      }
    }
  }
  nt = 0; for (i=0; i<nsends2; i++) nt += nprocs[i];
  ierr = PetscMalloc((nt+1)*sizeof(PetscInt),&sends2);CHKERRQ(ierr); 
  ierr = PetscMalloc((nsends2+1)*sizeof(PetscInt),&starts2);CHKERRQ(ierr);
  starts2[0] = 0; for (i=1; i<nsends2; i++) starts2[i] = starts2[i-1] + nprocs[i-1];
  /*
     Each message is 1 + nprocs[i] long, and consists of 
       (0) the number of nodes being sent back 
       (1) the local node number,
       (2) the number of processors sharing it,
       (3) the processors sharing it
  */
  for (i=0; i<nsends2; i++) {
    cnt = 1;
    sends2[starts2[i]] = 0;
    for (j=0; j<len[i]; j++) {
      node = recvs[2*i*nmax+2*j]-rstart;
      if (nownedsenders[node] > 1) {
        sends2[starts2[i]]++;
        sends2[starts2[i]+cnt++] = recvs[2*i*nmax+2*j+1];
        sends2[starts2[i]+cnt++] = nownedsenders[node];
        ierr = PetscMemcpy(&sends2[starts2[i]+cnt],&ownedsenders[starts[node]],nownedsenders[node]*sizeof(PetscInt));CHKERRQ(ierr);
        cnt += nownedsenders[node];
      }
    }
  }

  /* receive the message lengths */
  nrecvs2 = nsends;
  ierr = PetscMalloc((nrecvs2+1)*sizeof(PetscInt),&lens2);CHKERRQ(ierr);  
  ierr = PetscMalloc((nrecvs2+1)*sizeof(PetscInt),&starts3);CHKERRQ(ierr);  
  ierr = PetscMalloc((nrecvs2+1)*sizeof(MPI_Request),&recv_waits);CHKERRQ(ierr);
  for (i=0; i<nrecvs2; i++) {
    ierr = MPI_Irecv(&lens2[i],1,MPIU_INT,dest[i],tag2,comm,recv_waits+i);CHKERRQ(ierr);
  }

  /* send the message lengths */
  for (i=0; i<nsends2; i++) {
    ierr = MPI_Send(&nprocs[i],1,MPIU_INT,source[i],tag2,comm);CHKERRQ(ierr);
  }

  /* wait on receives of lens */
  if (nrecvs2) {
    ierr = PetscMalloc(nrecvs2*sizeof(MPI_Status),&recv_statuses);CHKERRQ(ierr);
    ierr = MPI_Waitall(nrecvs2,recv_waits,recv_statuses);CHKERRQ(ierr);
    ierr = PetscFree(recv_statuses);CHKERRQ(ierr);
  }
  ierr = PetscFree(recv_waits);

  starts3[0] = 0;
  nt         = 0;
  for (i=0; i<nrecvs2-1; i++) {
    starts3[i+1] = starts3[i] + lens2[i];
    nt          += lens2[i];
  }
  nt += lens2[nrecvs2-1];

  ierr = PetscMalloc((nt+1)*sizeof(PetscInt),&recvs2);CHKERRQ(ierr);
  ierr = PetscMalloc((nrecvs2+1)*sizeof(MPI_Request),&recv_waits);CHKERRQ(ierr);
  for (i=0; i<nrecvs2; i++) {
    ierr = MPI_Irecv(recvs2+starts3[i],lens2[i],MPIU_INT,dest[i],tag3,comm,recv_waits+i);CHKERRQ(ierr);
  }
  
  /* send the messages */
  ierr = PetscMalloc((nsends2+1)*sizeof(MPI_Request),&send_waits);CHKERRQ(ierr);
  for (i=0; i<nsends2; i++) {
    ierr = MPI_Isend(sends2+starts2[i],nprocs[i],MPIU_INT,source[i],tag3,comm,send_waits+i);CHKERRQ(ierr);
  }

  /* wait on receives */
  if (nrecvs2) {
    ierr = PetscMalloc(nrecvs2*sizeof(MPI_Status),&recv_statuses);CHKERRQ(ierr);
    ierr = MPI_Waitall(nrecvs2,recv_waits,recv_statuses);CHKERRQ(ierr);
    ierr = PetscFree(recv_statuses);CHKERRQ(ierr);
  }
  ierr = PetscFree(recv_waits);CHKERRQ(ierr);
  ierr = PetscFree(nprocs);CHKERRQ(ierr);

  if (debug) { /* -----------------------------------  */
    cnt = 0;
    for (i=0; i<nrecvs2; i++) {
      nt = recvs2[cnt++];
      for (j=0; j<nt; j++) {
        ierr = PetscSynchronizedPrintf(comm,"[%d] local node %d number of subdomains %d: ",rank,recvs2[cnt],recvs2[cnt+1]);CHKERRQ(ierr);
        for (k=0; k<recvs2[cnt+1]; k++) {
          ierr = PetscSynchronizedPrintf(comm,"%d ",recvs2[cnt+2+k]);CHKERRQ(ierr);
        }
        cnt += 2 + recvs2[cnt+1];
        ierr = PetscSynchronizedPrintf(comm,"\n");CHKERRQ(ierr);
      }
    }
    ierr = PetscSynchronizedFlush(comm);CHKERRQ(ierr);
  } /* -----------------------------------  */

  /* count number subdomains for each local node */
  ierr = PetscMalloc(size*sizeof(PetscInt),&nprocs);CHKERRQ(ierr);
  ierr = PetscMemzero(nprocs,size*sizeof(PetscInt));CHKERRQ(ierr);
  cnt  = 0;
  for (i=0; i<nrecvs2; i++) {
    nt = recvs2[cnt++];
    for (j=0; j<nt; j++) {
      for (k=0; k<recvs2[cnt+1]; k++) {
        nprocs[recvs2[cnt+2+k]]++;
      }
      cnt += 2 + recvs2[cnt+1];
    }
  }
  nt = 0; for (i=0; i<size; i++) nt += (nprocs[i] > 0);
  *nproc    = nt;
  ierr = PetscMalloc((nt+1)*sizeof(PetscInt),procs);CHKERRQ(ierr);
  ierr = PetscMalloc((nt+1)*sizeof(PetscInt),numprocs);CHKERRQ(ierr);
  ierr = PetscMalloc((nt+1)*sizeof(PetscInt*),indices);CHKERRQ(ierr);
  ierr = PetscMalloc(size*sizeof(PetscInt),&bprocs);CHKERRQ(ierr);
  cnt       = 0;
  for (i=0; i<size; i++) {
    if (nprocs[i] > 0) {
      bprocs[i]        = cnt;
      (*procs)[cnt]    = i;
      (*numprocs)[cnt] = nprocs[i];
      ierr             = PetscMalloc(nprocs[i]*sizeof(PetscInt),&(*indices)[cnt]);CHKERRQ(ierr);
      cnt++;
    }
  }

  /* make the list of subdomains for each nontrivial local node */
  ierr = PetscMemzero(*numprocs,nt*sizeof(PetscInt));CHKERRQ(ierr);
  cnt  = 0;
  for (i=0; i<nrecvs2; i++) {
    nt = recvs2[cnt++];
    for (j=0; j<nt; j++) {
      for (k=0; k<recvs2[cnt+1]; k++) {
        (*indices)[bprocs[recvs2[cnt+2+k]]][(*numprocs)[bprocs[recvs2[cnt+2+k]]]++] = recvs2[cnt];
      }
      cnt += 2 + recvs2[cnt+1];
    }
  }
  ierr = PetscFree(bprocs);CHKERRQ(ierr);
  ierr = PetscFree(recvs2);CHKERRQ(ierr);

  /* sort the node indexing by their global numbers */
  nt = *nproc;
  for (i=0; i<nt; i++) {
    ierr = PetscMalloc(((*numprocs)[i])*sizeof(PetscInt),&tmp);CHKERRQ(ierr);
    for (j=0; j<(*numprocs)[i]; j++) {
      tmp[j] = lindices[(*indices)[i][j]];
    }
    ierr = PetscSortIntWithArray((*numprocs)[i],tmp,(*indices)[i]);CHKERRQ(ierr); 
    ierr = PetscFree(tmp);CHKERRQ(ierr);
  }

  if (debug) { /* -----------------------------------  */
    nt = *nproc;
    for (i=0; i<nt; i++) {
      ierr = PetscSynchronizedPrintf(comm,"[%d] subdomain %d number of indices %d: ",rank,(*procs)[i],(*numprocs)[i]);CHKERRQ(ierr);
      for (j=0; j<(*numprocs)[i]; j++) {
        ierr = PetscSynchronizedPrintf(comm,"%d ",(*indices)[i][j]);CHKERRQ(ierr);
      }
      ierr = PetscSynchronizedPrintf(comm,"\n");CHKERRQ(ierr);
    }
    ierr = PetscSynchronizedFlush(comm);CHKERRQ(ierr);
  } /* -----------------------------------  */

  /* wait on sends */
  if (nsends2) {
    ierr = PetscMalloc(nsends2*sizeof(MPI_Status),&send_status);CHKERRQ(ierr);
    ierr = MPI_Waitall(nsends2,send_waits,send_status);CHKERRQ(ierr);
    ierr = PetscFree(send_status);CHKERRQ(ierr);
  }

  ierr = PetscFree(starts3);CHKERRQ(ierr);
  ierr = PetscFree(dest);CHKERRQ(ierr);
  ierr = PetscFree(send_waits);CHKERRQ(ierr);

  ierr = PetscFree(nownedsenders);CHKERRQ(ierr);
  ierr = PetscFree(ownedsenders);CHKERRQ(ierr);
  ierr = PetscFree(starts);CHKERRQ(ierr);
  ierr = PetscFree(starts2);CHKERRQ(ierr);
  ierr = PetscFree(lens2);CHKERRQ(ierr);

  ierr = PetscFree(source);CHKERRQ(ierr);
  ierr = PetscFree(len);CHKERRQ(ierr);
  ierr = PetscFree(recvs);CHKERRQ(ierr);
  ierr = PetscFree(nprocs);CHKERRQ(ierr);
  ierr = PetscFree(sends2);CHKERRQ(ierr);

  /* put the information about myself as the first entry in the list */
  first_procs    = (*procs)[0];
  first_numprocs = (*numprocs)[0];
  first_indices  = (*indices)[0];
  for (i=0; i<*nproc; i++) {
    if ((*procs)[i] == rank) {
      (*procs)[0]    = (*procs)[i];
      (*numprocs)[0] = (*numprocs)[i];
      (*indices)[0]  = (*indices)[i];
      (*procs)[i]    = first_procs; 
      (*numprocs)[i] = first_numprocs;
      (*indices)[i]  = first_indices;
      break;
    }
  }
  PetscFunctionReturn(0);
}
Ejemplo n.º 13
0
int main(int argc,char **argv)
{
  PetscErrorCode ierr;
  KSP            ksp;
  PC             pc;
  Vec            x,b;
  DA             da;
  Mat            A,Atrans;
  PetscInt       dof=1,M=-8;
  PetscTruth     flg,trans=PETSC_FALSE;

  PetscInitialize(&argc,&argv,(char *)0,help);
  ierr = PetscOptionsGetInt(PETSC_NULL,"-dof",&dof,PETSC_NULL);CHKERRQ(ierr);
  ierr = PetscOptionsGetInt(PETSC_NULL,"-M",&M,PETSC_NULL);CHKERRQ(ierr);
  ierr = PetscOptionsGetTruth(PETSC_NULL,"-trans",&trans,PETSC_NULL);CHKERRQ(ierr);

  ierr = DACreate(PETSC_COMM_WORLD,&da);CHKERRQ(ierr);
  ierr = DASetDim(da,3);CHKERRQ(ierr);
  ierr = DASetPeriodicity(da,DA_NONPERIODIC);CHKERRQ(ierr);
  ierr = DASetStencilType(da,DA_STENCIL_STAR);CHKERRQ(ierr);
  ierr = DASetSizes(da,M,M,M);CHKERRQ(ierr);
  ierr = DASetNumProcs(da,PETSC_DECIDE,PETSC_DECIDE,PETSC_DECIDE);CHKERRQ(ierr);
  ierr = DASetDof(da,dof);CHKERRQ(ierr);
  ierr = DASetStencilWidth(da,1);CHKERRQ(ierr);
  ierr = DASetVertexDivision(da,PETSC_NULL,PETSC_NULL,PETSC_NULL);CHKERRQ(ierr);
  ierr = DASetFromOptions(da);CHKERRQ(ierr);

  ierr = DACreateGlobalVector(da,&x);CHKERRQ(ierr);
  ierr = DACreateGlobalVector(da,&b);CHKERRQ(ierr);
  ierr = ComputeRHS(da,b);CHKERRQ(ierr);
  ierr = DAGetMatrix(da,MATBAIJ,&A);CHKERRQ(ierr);
  ierr = ComputeMatrix(da,A);CHKERRQ(ierr);


  /* A is non-symmetric. Make A = 0.5*(A + Atrans) symmetric for testing icc and cholesky */
  ierr = MatTranspose(A,MAT_INITIAL_MATRIX,&Atrans);CHKERRQ(ierr);
  ierr = MatAXPY(A,1.0,Atrans,DIFFERENT_NONZERO_PATTERN);CHKERRQ(ierr);
  ierr = MatScale(A,0.5);CHKERRQ(ierr);
  ierr = MatDestroy(Atrans);CHKERRQ(ierr);

  /* Test sbaij matrix */
  flg  = PETSC_FALSE;
  ierr = PetscOptionsGetTruth(PETSC_NULL, "-test_sbaij1", &flg,PETSC_NULL);CHKERRQ(ierr);
  if (flg){
    Mat sA;
    ierr = MatConvert(A,MATSBAIJ,MAT_INITIAL_MATRIX,&sA);CHKERRQ(ierr);
    ierr = MatDestroy(A);CHKERRQ(ierr);
    A = sA;
  }

  ierr = KSPCreate(PETSC_COMM_WORLD,&ksp);CHKERRQ(ierr);
  ierr = KSPSetFromOptions(ksp);CHKERRQ(ierr);
  ierr = KSPSetOperators(ksp,A,A,SAME_NONZERO_PATTERN);CHKERRQ(ierr);
  ierr = KSPGetPC(ksp,&pc);CHKERRQ(ierr);
  ierr = PCSetDA(pc,da);CHKERRQ(ierr);
 
  if (trans) {
    ierr = KSPSolveTranspose(ksp,b,x);CHKERRQ(ierr);
  } else {
    ierr = KSPSolve(ksp,b,x);CHKERRQ(ierr);
  }

  /* check final residual */
  flg  = PETSC_FALSE;
  ierr = PetscOptionsGetTruth(PETSC_NULL, "-check_final_residual", &flg,PETSC_NULL);CHKERRQ(ierr);
  if (flg){
    Vec            b1;
    PetscReal      norm;
    ierr = KSPGetSolution(ksp,&x);CHKERRQ(ierr);
    ierr = VecDuplicate(b,&b1);CHKERRQ(ierr);
    ierr = MatMult(A,x,b1);CHKERRQ(ierr);
    ierr = VecAXPY(b1,-1.0,b);CHKERRQ(ierr);
    ierr = VecNorm(b1,NORM_2,&norm);CHKERRQ(ierr);
    ierr = PetscPrintf(PETSC_COMM_WORLD,"Final residual %g\n",norm);CHKERRQ(ierr);
    ierr = VecDestroy(b1);CHKERRQ(ierr);
  }
   
  ierr = KSPDestroy(ksp);CHKERRQ(ierr);
  ierr = VecDestroy(x);CHKERRQ(ierr);
  ierr = VecDestroy(b);CHKERRQ(ierr);
  ierr = MatDestroy(A);CHKERRQ(ierr);
  ierr = DADestroy(da);CHKERRQ(ierr);
  ierr = PetscFinalize();CHKERRQ(ierr);
  return 0;
}
Ejemplo n.º 14
0
int main(int argc,char **args)
{
  Vec            x,b,u;      /* approx solution, RHS, exact solution */
  Mat            A;            /* linear system matrix */
  KSP            ksp;         /* KSP context */
  KSP            *subksp;     /* array of local KSP contexts on this processor */
  PC             pc;           /* PC context */
  PC             subpc;        /* PC context for subdomain */
  PetscReal      norm;         /* norm of solution error */
  PetscErrorCode ierr;
  PetscInt       i,j,Ii,J,*blks,m = 8,n;
  PetscMPIInt    rank,size;
  PetscInt       its,nlocal,first,Istart,Iend;
  PetscScalar    v,one = 1.0,none = -1.0;
  PetscTruth     isbjacobi,flg = PETSC_FALSE;

  PetscInitialize(&argc,&args,(char *)0,help);
  ierr = PetscOptionsGetInt(PETSC_NULL,"-m",&m,PETSC_NULL);CHKERRQ(ierr);
  ierr = MPI_Comm_rank(PETSC_COMM_WORLD,&rank);CHKERRQ(ierr);
  ierr = MPI_Comm_size(PETSC_COMM_WORLD,&size);CHKERRQ(ierr);
  n = m+2;

  /* -------------------------------------------------------------------
         Compute the matrix and right-hand-side vector that define
         the linear system, Ax = b.
     ------------------------------------------------------------------- */

  /* 
     Create and assemble parallel matrix
  */
  ierr = MatCreate(PETSC_COMM_WORLD,&A);CHKERRQ(ierr);
  ierr = MatSetSizes(A,PETSC_DECIDE,PETSC_DECIDE,m*n,m*n);CHKERRQ(ierr);
  ierr = MatSetFromOptions(A);CHKERRQ(ierr);
  ierr = MatGetOwnershipRange(A,&Istart,&Iend);CHKERRQ(ierr);
  for (Ii=Istart; Ii<Iend; Ii++) { 
    v = -1.0; i = Ii/n; j = Ii - i*n;  
    if (i>0)   {J = Ii - n; ierr = MatSetValues(A,1,&Ii,1,&J,&v,ADD_VALUES);CHKERRQ(ierr);}
    if (i<m-1) {J = Ii + n; ierr = MatSetValues(A,1,&Ii,1,&J,&v,ADD_VALUES);CHKERRQ(ierr);}
    if (j>0)   {J = Ii - 1; ierr = MatSetValues(A,1,&Ii,1,&J,&v,ADD_VALUES);CHKERRQ(ierr);}
    if (j<n-1) {J = Ii + 1; ierr = MatSetValues(A,1,&Ii,1,&J,&v,ADD_VALUES);CHKERRQ(ierr);}
    v = 4.0; ierr = MatSetValues(A,1,&Ii,1,&Ii,&v,ADD_VALUES);CHKERRQ(ierr);
  }
  ierr = MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
  ierr = MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);

  /*
     Create parallel vectors
  */
  ierr = VecCreate(PETSC_COMM_WORLD,&u);CHKERRQ(ierr);
  ierr = VecSetSizes(u,PETSC_DECIDE,m*n);CHKERRQ(ierr);
  ierr = VecSetFromOptions(u);CHKERRQ(ierr);
  ierr = VecDuplicate(u,&b);CHKERRQ(ierr);
  ierr = VecDuplicate(b,&x);CHKERRQ(ierr);

  /*
     Set exact solution; then compute right-hand-side vector.
  */
  ierr = VecSet(u,one);CHKERRQ(ierr);
  ierr = MatMult(A,u,b);CHKERRQ(ierr);

  /*
     Create linear solver context
  */
  ierr = KSPCreate(PETSC_COMM_WORLD,&ksp);CHKERRQ(ierr);

  /* 
     Set operators. Here the matrix that defines the linear system
     also serves as the preconditioning matrix.
  */
  ierr = KSPSetOperators(ksp,A,A,DIFFERENT_NONZERO_PATTERN);CHKERRQ(ierr);

  /*
     Set default preconditioner for this program to be block Jacobi.
     This choice can be overridden at runtime with the option
        -pc_type <type>
  */
  ierr = KSPGetPC(ksp,&pc);CHKERRQ(ierr);
  ierr = PCSetType(pc,PCBJACOBI);CHKERRQ(ierr);


  /* -------------------------------------------------------------------
                   Define the problem decomposition
     ------------------------------------------------------------------- */

  /* 
     Call PCBJacobiSetTotalBlocks() to set individually the size of
     each block in the preconditioner.  This could also be done with
     the runtime option
         -pc_bjacobi_blocks <blocks>
     Also, see the command PCBJacobiSetLocalBlocks() to set the
     local blocks.

      Note: The default decomposition is 1 block per processor.
  */
  ierr = PetscMalloc(m*sizeof(PetscInt),&blks);CHKERRQ(ierr);
  for (i=0; i<m; i++) blks[i] = n;
  ierr = PCBJacobiSetTotalBlocks(pc,m,blks);CHKERRQ(ierr);
  ierr = PetscFree(blks);CHKERRQ(ierr);


  /* -------------------------------------------------------------------
               Set the linear solvers for the subblocks
     ------------------------------------------------------------------- */

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
       Basic method, should be sufficient for the needs of most users.
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

     By default, the block Jacobi method uses the same solver on each
     block of the problem.  To set the same solver options on all blocks, 
     use the prefix -sub before the usual PC and KSP options, e.g.,
          -sub_pc_type <pc> -sub_ksp_type <ksp> -sub_ksp_rtol 1.e-4
  */

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
        Advanced method, setting different solvers for various blocks.
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

     Note that each block's KSP context is completely independent of
     the others, and the full range of uniprocessor KSP options is
     available for each block. The following section of code is intended
     to be a simple illustration of setting different linear solvers for
     the individual blocks.  These choices are obviously not recommended
     for solving this particular problem.
  */
  ierr = PetscTypeCompare((PetscObject)pc,PCBJACOBI,&isbjacobi);CHKERRQ(ierr);
  if (isbjacobi) {
    /* 
       Call KSPSetUp() to set the block Jacobi data structures (including
       creation of an internal KSP context for each block).

       Note: KSPSetUp() MUST be called before PCBJacobiGetSubKSP().
    */
    ierr = KSPSetUp(ksp);CHKERRQ(ierr);

    /*
       Extract the array of KSP contexts for the local blocks
    */
    ierr = PCBJacobiGetSubKSP(pc,&nlocal,&first,&subksp);CHKERRQ(ierr);

    /*
       Loop over the local blocks, setting various KSP options
       for each block.  
    */
    for (i=0; i<nlocal; i++) {
      ierr = KSPGetPC(subksp[i],&subpc);CHKERRQ(ierr);
      if (!rank) {
        if (i%2) {
          ierr = PCSetType(subpc,PCILU);CHKERRQ(ierr);
        } else {
          ierr = PCSetType(subpc,PCNONE);CHKERRQ(ierr);
          ierr = KSPSetType(subksp[i],KSPBCGS);CHKERRQ(ierr);
          ierr = KSPSetTolerances(subksp[i],1.e-6,PETSC_DEFAULT,PETSC_DEFAULT,PETSC_DEFAULT);CHKERRQ(ierr);
        }
      } else {
        ierr = PCSetType(subpc,PCJACOBI);CHKERRQ(ierr);
        ierr = KSPSetType(subksp[i],KSPGMRES);CHKERRQ(ierr);
        ierr = KSPSetTolerances(subksp[i],1.e-7,PETSC_DEFAULT,PETSC_DEFAULT,PETSC_DEFAULT);CHKERRQ(ierr);
      }
    }
  }

  /* -------------------------------------------------------------------
                      Solve the linear system
     ------------------------------------------------------------------- */

  /* 
    Set runtime options
  */
  ierr = KSPSetFromOptions(ksp);CHKERRQ(ierr);

  /*
     Solve the linear system
  */
  ierr = KSPSolve(ksp,b,x);CHKERRQ(ierr);

  /*
     View info about the solver
  */
  ierr = PetscOptionsGetTruth(PETSC_NULL,"-nokspview",&flg,PETSC_NULL);CHKERRQ(ierr);
  if (!flg) {
    ierr = KSPView(ksp,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);
  }

  /* -------------------------------------------------------------------
                      Check solution and clean up
     ------------------------------------------------------------------- */

  /*
     Check the error
  */
  ierr = VecAXPY(x,none,u);CHKERRQ(ierr);
  ierr = VecNorm(x,NORM_2,&norm);CHKERRQ(ierr);
  ierr = KSPGetIterationNumber(ksp,&its);CHKERRQ(ierr);
  ierr = PetscPrintf(PETSC_COMM_WORLD,"Norm of error %A iterations %D\n",norm,its);CHKERRQ(ierr);

  /* 
     Free work space.  All PETSc objects should be destroyed when they
     are no longer needed.
  */
  ierr = KSPDestroy(ksp);CHKERRQ(ierr);
  ierr = VecDestroy(u);CHKERRQ(ierr);  ierr = VecDestroy(x);CHKERRQ(ierr);
  ierr = VecDestroy(b);CHKERRQ(ierr);  ierr = MatDestroy(A);CHKERRQ(ierr);
  ierr = PetscFinalize();CHKERRQ(ierr);
  return 0;
}
PetscErrorCode BSSCR_DRIVER_flex( KSP ksp, Mat stokes_A, Vec stokes_x, Vec stokes_b, Mat approxS, KSP ksp_K,
                                  MatStokesBlockScaling BA, PetscTruth sym, KSP_BSSCR * bsscrp_self )
{
    char name[PETSC_MAX_PATH_LEN];
    char ubefore[100];
    char uafter[100];
    char pbefore[100];
    char pafter[100];
    PetscTruth flg, flg2, truth, useAcceleratingSmoothingMG, useFancySmoothingMG;
    PetscTruth usePreviousGuess, useNormInfStoppingConditions, useNormInfMonitor, found, extractMats;
    Mat K,G,D,C;
    Vec u,p,f,h;
    Mat S;
    Vec h_hat,t,t2,q,v;

    KSP ksp_inner;
    KSP ksp_S;
    KSP ksp_cleaner;
    KSPType ksp_inner_type;
        
    PetscTruth has_cnst_nullspace;
    PC pc_S, pc_MG, pcInner;
    PetscInt monitor_index,max_it,min_it;
    Vec nsp_vec = PETSC_NULL; 
        
    PetscReal scr_rtol;
    PetscReal inner_rtol;
    PetscReal vSolver_rtol;
        
    PetscScalar uNormInf, pNormInf;
    PetscScalar uNorm, pNorm, rNorm, fNorm;
    PetscInt  uSize, pSize;
    PetscInt    lmin,lmax;
    PetscInt  iterations;
    PetscReal   min,max;
    PetscReal p_sum;

    MGContext mgCtx;
    PC shellPC;

    double t0, t1;
    double mgSetupTime, scrSolveTime, a11SingleSolveTime, solutionAnalysisTime;
    Index nx,ny,nz;
    PetscInt j,start,end;

    static int been_here = 0;  /* Ha Ha Ha !! */

    /* get sub matrix / vector objects */
    MatNestGetSubMat( stokes_A, 0,0, &K );
    MatNestGetSubMat( stokes_A, 0,1, &G );
    MatNestGetSubMat( stokes_A, 1,0, &D );
    MatNestGetSubMat( stokes_A, 1,1, &C );
        
    VecNestGetSubVec( stokes_x, 0, &u );
    VecNestGetSubVec( stokes_x, 1, &p );
        
    VecNestGetSubVec( stokes_b, 0, &f );
    VecNestGetSubVec( stokes_b, 1, &h );

    /* PetscPrintf( PETSC_COMM_WORLD,  "\t Adress of stokes_x is %p\n", stokes_x); */
    /* VecNorm( u, NORM_2, &uNorm ); */
    /* PetscPrintf( PETSC_COMM_WORLD,  "\t u Norm is %.6e in %s: address is %p\n",uNorm,__func__,u); */
    /* VecNorm( p, NORM_2, &pNorm ); */
    /* PetscPrintf( PETSC_COMM_WORLD,  "\t p Norm is %.6e in %s: addres is %p\n",pNorm,__func__,p); */
    /* Create Schur complement matrix */
        
    //MatCreateSchurFromBlock( stokes_A, 0.0, "MatSchur_A11", &S );
    MatCreateSchurComplement(K,K,G,D,C, &S);
    /* configure inner solver */
    if (ksp_K!=PETSC_NULL) {
        MatSchurComplementSetKSP( S, ksp_K );
        MatSchurComplementGetKSP( S, &ksp_inner );
    }
    else {
        abort();
        MatSchurComplementGetKSP( S, &ksp_inner );
        KSPSetType( ksp_inner, "cg" );
    }
    KSPGetPC( ksp_inner, &pcInner );

    /* If we're using multigrid, replace the preconditioner here
       so we get the same options prefix. */

    if(bsscrp_self->mg) {
        mgSetupTime=setupMG( bsscrp_self, ksp_inner, pcInner, K, &mgCtx );
    }

    /* SETFROMOPTIONS MIGHT F**K MG UP */
    KSPSetOptionsPrefix( ksp_inner, "A11_" );
    KSPSetFromOptions( ksp_inner );

    useNormInfStoppingConditions = PETSC_FALSE;
    PetscOptionsGetTruth( PETSC_NULL ,"-A11_use_norm_inf_stopping_condition", &useNormInfStoppingConditions, &found );
    if(useNormInfStoppingConditions) 
        BSSCR_KSPSetNormInfConvergenceTest( ksp_inner ); 

    useNormInfMonitor = PETSC_FALSE; 
    PetscOptionsGetTruth( PETSC_NULL, "-A11_ksp_norm_inf_monitor", &useNormInfMonitor, &found );
    if(useNormInfMonitor) 
        KSPMonitorSet( ksp_inner, BSSCR_KSPNormInfMonitor, PETSC_NULL, PETSC_NULL );
        
    useNormInfMonitor = PETSC_FALSE; 
    PetscOptionsGetTruth( PETSC_NULL, "-A11_ksp_norm_inf_to_norm_2_monitor", &useNormInfMonitor, &found );
    if(useNormInfMonitor) 
        KSPMonitorSet( ksp_inner, BSSCR_KSPNormInfToNorm2Monitor, PETSC_NULL, PETSC_NULL );

    /* create right hand side */
    /* h_hat = G'*inv(K)*f - h */
    MatGetVecs(K,PETSC_NULL,&t);
    MatGetVecs( S, PETSC_NULL, &h_hat );

    KSPSetOptionsPrefix( ksp_inner, "A11_" );
    KSPSetFromOptions( ksp_inner );

    KSPSolve(ksp_inner,f,t);/* t=f/K */
    //bsscr_writeVec( t, "ts", "Writing t vector");
    MatMult(D,t,h_hat);/* G'*t */
    VecAXPY(h_hat, -1.0, h);/* h_hat = h_hat - h */
    Stg_VecDestroy(&t);
    //bsscr_writeVec( h_hat, "h_hat", "Writing h_hat Vector in Solver");
    //MatSchurApplyReductionToVecFromBlock( S, stokes_b, h_hat );
        
    /* create solver for S p = h_hat */

    KSPCreate( PETSC_COMM_WORLD, &ksp_S );
    KSPSetOptionsPrefix( ksp_S, "scr_");
    Stg_KSPSetOperators( ksp_S, S,S, SAME_NONZERO_PATTERN );
    KSPSetType( ksp_S, "cg" );
        
    /* Build preconditioner for S */
    KSPGetPC( ksp_S, &pc_S );
    BSSCR_BSSCR_StokesCreatePCSchur2( K,G,D,C,approxS,pc_S,sym, bsscrp_self );

    KSPSetFromOptions(ksp_S);

    /* Set specific monitor test */
    KSPGetTolerances( ksp_S, PETSC_NULL, PETSC_NULL, PETSC_NULL, &max_it );
    //BSSCR_KSPLogSetMonitor( ksp_S, max_it, &monitor_index );
        
    /* Pressure / Velocity Solve */   
    scrSolveTime = MPI_Wtime();
    PetscPrintf( PETSC_COMM_WORLD, "\t* Pressure / Velocity Solve \n");

    usePreviousGuess = PETSC_FALSE; 
    if(been_here)
        PetscOptionsGetTruth( PETSC_NULL, "-scr_use_previous_guess", &usePreviousGuess, &found );
    
    if(usePreviousGuess) {   /* Note this should actually look at checkpoint information */
        KSPSetInitialGuessNonzero( ksp_S, PETSC_TRUE );
    }
    else {
        KSPSetInitialGuessNonzero( ksp_S, PETSC_FALSE );
    }
    
    //KSPSetRelativeRhsConvergenceTest( ksp_S );

    useNormInfStoppingConditions = PETSC_FALSE;
    PetscOptionsGetTruth( PETSC_NULL ,"-scr_use_norm_inf_stopping_condition", &useNormInfStoppingConditions, &found );
    if(useNormInfStoppingConditions) 
        BSSCR_KSPSetNormInfConvergenceTest(ksp_S); 

    useNormInfMonitor = PETSC_FALSE; 
    PetscOptionsGetTruth( PETSC_NULL, "-scr_ksp_norm_inf_monitor", &useNormInfMonitor, &found );
    if(useNormInfMonitor) 
        KSPMonitorSet( ksp_S, BSSCR_KSPNormInfToNorm2Monitor, PETSC_NULL, PETSC_NULL );


    PetscPrintf( PETSC_COMM_WORLD, "\t* KSPSolve( ksp_S, h_hat, p )\n");
    /* if h_hat needs to be fixed up ..take out any nullspace vectors here */
    /* we want to check that there is no "noise" in the null-space in the h vector */
    /* this causes problems when we are trying to solve a Jacobian system when the Residual is almost converged */
    if(bsscrp_self->check_pressureNS){
        bsscrp_self->buildPNS(ksp);/* build and set nullspace vectors on bsscr - which is on ksp (function pointer is set in KSPSetUp_BSSCR */
    }

    PetscScalar norm, a, a1, a2, hnorm, pnorm, gnorm;
    MatNorm(G,NORM_INFINITY,&gnorm);
    VecNorm(h_hat, NORM_2, &hnorm);
    hnorm=hnorm/gnorm;

    if((hnorm < 1e-6) && (hnorm > 1e-20)){
        VecScale(h_hat,1.0/hnorm);
    }
    /* test to see if v or t are in nullspace of G and orthogonalize wrt h_hat if needed */
    KSPRemovePressureNullspace_BSSCR(ksp, h_hat);
    /***************************************/
    /* set convergence test to use min_it */
    found = PETSC_FALSE;
    min_it = 0;
    PetscOptionsGetInt( PETSC_NULL,"-scr_ksp_set_min_it_converge", &min_it, &found);
    if(found && min_it > 0){
        BSSCR_KSPSetConvergenceMinIts(ksp_S, min_it, bsscrp_self);
    }
    KSPSolve( ksp_S, h_hat, p );
    sprintf(pafter,"psafter_%d",been_here);
    bsscr_writeVec( p, pafter, "Writing p Vector in Solver");
    /***************************************/
    if((hnorm < 1e-6) && (hnorm > 1e-20)){
        VecScale(h_hat,hnorm);
        VecScale(p,hnorm);
    }
    KSPRemovePressureNullspace_BSSCR(ksp, p);


    scrSolveTime =  MPI_Wtime() - scrSolveTime;
    PetscPrintf( PETSC_COMM_WORLD, "\n\t* KSPSolve( ksp_S, h_hat, p )  Solve  Finished in time: %lf seconds\n\n", scrSolveTime);
    /* Resolve with this pressure to obtain solution for u */
        
    /* obtain solution for u */       
    VecDuplicate( u, &t );
    MatMult( G, p, t);
    VecAYPX( t, -1.0, f ); /* t <- -t + f */
    MatSchurComplementGetKSP( S, &ksp_inner );
        
 
    a11SingleSolveTime = MPI_Wtime();         /* ----------------------------------  Final V Solve */
        
    if(usePreviousGuess)      
        KSPSetInitialGuessNonzero( ksp_inner, PETSC_TRUE ); 

    KSPSetOptionsPrefix( ksp_inner, "backsolveA11_" );
    KSPSetFromOptions( ksp_inner );
    KSPSolve( ksp_inner, t, u );       /* Solve, then restore default tolerance and initial guess */          


    a11SingleSolveTime = MPI_Wtime() - a11SingleSolveTime;            /* ------------------ Final V Solve */

        
    PetscPrintf( PETSC_COMM_WORLD,  "\n\nSCR Solver Summary:\n\n");
  
    if(bsscrp_self->mg)
        PetscPrintf( PETSC_COMM_WORLD, "  Multigrid setup:        = %.4g secs \n", mgSetupTime);

    KSPGetIterationNumber( ksp_S, &iterations);
    PetscPrintf( PETSC_COMM_WORLD,     "  Pressure Solve:         = %.4g secs / %d its\n", scrSolveTime, iterations);
    KSPGetIterationNumber( ksp_inner, &iterations);
    PetscPrintf( PETSC_COMM_WORLD,     "  Final V Solve:          = %.4g secs / %d its\n\n", a11SingleSolveTime, iterations);
    
    /* Analysis of solution:
       This can be somewhat time consuming as it requires allocation / de-allocation, 
       computing vector norms etc. So we make it optional..
       This should be put into a proper KSP  monitor now?
    */        
    flg = PETSC_TRUE;
    PetscOptionsGetTruth( PETSC_NULL, "-scr_ksp_solution_summary", &flg, &found );
        
    if(flg) {
        
        solutionAnalysisTime = MPI_Wtime();
        
        VecGetSize( u, &uSize ); 
        VecGetSize( p, &pSize );
        
        VecDuplicate( u, &t2 );
        MatMult( K, u, t2);
        VecAYPX( t2, -1.0, t ); /* t2 <- -t2 + t  ... should be the formal residual vector */
        
        VecNorm( t2, NORM_2, &rNorm );      
        VecNorm( f,  NORM_2, &fNorm );      
        
        PetscPrintf( PETSC_COMM_WORLD,  "  |f - K u - G p|/|f|     = %.6e\n", rNorm/fNorm );
                
        VecDuplicate( p, &q );
        MatMult( D, u, q );
        VecNorm( u, NORM_2, &uNorm );       
        VecNorm( q, NORM_2, &rNorm );       
        
        PetscPrintf( PETSC_COMM_WORLD,  "  |G^T u|_2/|u|_2         = %.6e\n", sqrt( (double) uSize / (double) pSize ) * rNorm / uNorm);
        
        VecNorm( q, NORM_INFINITY, &rNorm );
        
        PetscPrintf( PETSC_COMM_WORLD,  "  |G^T u|_infty/|u|_2     = %.6e\n", sqrt( (double) uSize ) * rNorm / uNorm);

        VecNorm( u, NORM_INFINITY, &uNormInf );
        VecNorm( u, NORM_2,        &uNorm );
        VecGetSize( u, &uSize );
        
        VecNorm( p, NORM_INFINITY, &pNormInf );
        VecNorm( p, NORM_2,        &pNorm );
        
        PetscPrintf( PETSC_COMM_WORLD,  "  |u|_{\\infty}  = %.6e , u_rms = %.6e\n", 
                     uNormInf, uNorm / sqrt( (double) uSize ) );
                
        PetscPrintf( PETSC_COMM_WORLD,  "  |p|_{\\infty}  = %.6e , p_rms = %.6e\n",
                     pNormInf, pNorm / sqrt( (double) pSize ) );

        VecMax( u, &lmax, &max );
        VecMin( u, &lmin, &min );
        PetscPrintf( PETSC_COMM_WORLD,  "  min/max(u)    = %.6e [%d] / %.6e [%d]\n",min,lmin,max,lmax);

        VecMax( p, &lmax, &max );
        VecMin( p, &lmin, &min );
        PetscPrintf( PETSC_COMM_WORLD,  "  min/max(p)    = %.6e [%d] / %.6e [%d]\n",min,lmin,max,lmax);
       
        VecSum( p, &p_sum );
        PetscPrintf( PETSC_COMM_WORLD,  "  \\sum_i p_i    = %.6e \n", p_sum );
        
        solutionAnalysisTime = MPI_Wtime() - solutionAnalysisTime;
        
        PetscPrintf( PETSC_COMM_WORLD,  "\n  Time for this analysis  = %.4g secs\n\n",solutionAnalysisTime);
        
        Stg_VecDestroy(&t2 );
        Stg_VecDestroy(&q );
            
    }
                
    if(bsscrp_self->mg) {
        //MG_inner_solver_pcmg_shutdown( pcInner );
    }

    Stg_VecDestroy(&t );

        
//      KSPLogDestroyMonitor( ksp_S );
        
    Stg_KSPDestroy(&ksp_S );
    //Stg_KSPDestroy(&ksp_inner );
    Stg_VecDestroy(&h_hat );
    Stg_MatDestroy(&S );

    /* Destroy nullspace vector if it exists. */
    if(nsp_vec)
        Stg_VecDestroy(&nsp_vec);
       
    //been_here = 1;
    been_here++;
    PetscFunctionReturn(0);
}
void PETScMGSolver_UpdateSolvers( PETScMGSolver* self ) {
	PETScMGSolver_Level*	level;
	PC			pc;
	KSP			levelKSP;
	PC			levelPC;
	PetscErrorCode		ec;
	unsigned		l_i;
	PetscTruth              smoothers_differ, flag;
	PetscMPIInt             size;
        MPI_Comm                comm;

	assert( self && Stg_CheckType( self, PETScMGSolver ) );

	ec = KSPGetPC( self->mgData->ksp, &pc );
	CheckPETScError( ec );

	ec = PCMGSetLevels( pc, self->nLevels, PETSC_NULL );
	CheckPETScError( ec );
	ec = PCMGSetType( pc, PC_MG_MULTIPLICATIVE );
	CheckPETScError( ec );

	ec=PetscOptionsGetTruth( PETSC_NULL, "-pc_mg_different_smoothers", &smoothers_differ, &flag ); CheckPETScError(ec);

	ec=PetscObjectGetComm( (PetscObject)pc, &comm ); CheckPETScError(ec);
	MPI_Comm_size( comm, &size );

	for( l_i = 1; l_i < self->nLevels; l_i++ ) {
		level = self->levels + l_i;

		printf("Configuring MG level %d \n", l_i );
		ec = PCMGGetSmootherDown( pc, l_i, &levelKSP );
		CheckPETScError( ec );
		if(smoothers_differ==PETSC_TRUE) { ec=KSPAppendOptionsPrefix( levelKSP, "down_" ); CheckPETScError(ec); }
		ec = KSPSetType( levelKSP, KSPRICHARDSON ); CheckPETScError( ec );
		ec = KSPGetPC( levelKSP, &levelPC ); CheckPETScError( ec );

		if(size==1) {
		  ec = PCSetType( levelPC, PCSOR ); CheckPETScError( ec );
		}
		/* This does not work - bug with the order the operators are created I guess */
		/* For parallel jobs you best bet is to use the command line args and let petsc work it out */
		/*
		else {
		  KSP *sub_ksp;
		  PetscInt k, n_local, first_local;
		  PC sub_pc;

		  PCSetType( levelPC, PCBJACOBI );
		  KSPSetUp( levelKSP );
		  PCBJacobiGetSubKSP( levelPC, &n_local,&first_local,&sub_ksp);
		  for(k=0;k<n_local;k++ ) {
		    KSPSetType( sub_ksp[k], KSPFGMRES );
		    KSPGetPC( sub_ksp[k], &sub_pc );
		    PCSetType( sub_pc, PCSOR );
		  }
		}
		*/
		ec = KSPSetTolerances( levelKSP, PETSC_DEFAULT, PETSC_DEFAULT, PETSC_DEFAULT, level->nDownIts ); CheckPETScError( ec );
		if( l_i == self->nLevels - 1 ) { 
		  ec = KSPSetInitialGuessNonzero( levelKSP, PETSC_TRUE );  CheckPETScError( ec );
		} 
		else {  ec = KSPSetInitialGuessNonzero( levelKSP, PETSC_FALSE ); CheckPETScError( ec );  }

		ec = PCMGGetSmootherUp( pc, l_i, &levelKSP ); CheckPETScError( ec );
		if(smoothers_differ==PETSC_TRUE) { ec=KSPAppendOptionsPrefix( levelKSP, "up_" ); CheckPETScError(ec); }
		ec = KSPSetType( levelKSP, KSPRICHARDSON ); CheckPETScError( ec );
		ec = KSPGetPC( levelKSP, &levelPC ); CheckPETScError( ec );
		if(size==1) {
		  ec = PCSetType( levelPC, PCSOR ); CheckPETScError( ec );
		}
		ec = KSPSetTolerances( levelKSP, PETSC_DEFAULT, PETSC_DEFAULT, PETSC_DEFAULT, level->nUpIts ); CheckPETScError( ec );
		ec = KSPSetInitialGuessNonzero( levelKSP, PETSC_TRUE ); CheckPETScError( ec );

		ec = PCMGSetCyclesOnLevel( pc, l_i, level->nCycles ); CheckPETScError( ec );
	}
}
Ejemplo n.º 17
0
PetscErrorCode KSPSetUp_BSSCR(KSP ksp)
{
    KSP_BSSCR  *bsscr = (KSP_BSSCR *)ksp->data;
    Mat K;
    Stokes_SLE*  stokesSLE  = (Stokes_SLE*)bsscr->st_sle;
    PetscTruth ismumps,augment,scale,konly,found,conp,checkerp;

    PetscFunctionBegin;

    BSSCR_PetscExtStokesSolversInitialize();

    K = stokesSLE->kStiffMat->matrix;
    bsscr->K2=PETSC_NULL;

    BSSCR_MatStokesBlockScalingCreate( &(bsscr->BA) );/* allocate memory for scaling struct */
    found = PETSC_FALSE;
    augment = PETSC_TRUE;
    PetscOptionsGetTruth(PETSC_NULL, "-augmented_lagrangian", &augment, &found);
    if(augment){
        bsscr->buildK2 = bsscr_buildK2; }
    else {
        bsscr->buildK2 = PETSC_NULL; }

    /***************************************************************************************************************/
    /** Do scaling *************************************************************************************************/
    /***************************************************************************************************************/
    found = PETSC_FALSE;
    scale = PETSC_FALSE;/* scaling off by default */
    PetscOptionsGetTruth(PETSC_NULL, "-rescale_equations", &scale, &found);
    Stg_PetscObjectTypeCompare((PetscObject)K, "mataijmumps", &ismumps);/** older versions of petsc have this */
    if(ismumps && scale){
        PetscPrintf( PETSC_COMM_WORLD, "\t* Not applying scaling to matrices as MatGetRowMax operation not defined for MATAIJMUMPS matrix type \n");
        scale = PETSC_FALSE;
    }
    if( scale ) {
        bsscr->scale       = KSPScale_BSSCR;
        bsscr->unscale     = KSPUnscale_BSSCR;
        bsscr->do_scaling  = PETSC_TRUE;
        bsscr->scaletype   = KONLY;
        konly = PETSC_TRUE;
        found = PETSC_FALSE;
        PetscOptionsGetTruth(PETSC_NULL, "-k_scale_only", &konly, &found);
        if(!konly){ bsscr->scaletype = DEFAULT; }
    }

    /***************************************************************************************************************/
    /**  Set up functions for building Pressure Null Space Vectors *************************************************/
    /***************************************************************************************************************/
    found = PETSC_FALSE;
    checkerp = PETSC_FALSE;
    PetscOptionsGetTruth(PETSC_NULL, "-remove_checkerboard_pressure_null_space", &checkerp, &found );
    if(checkerp){
        bsscr->check_cb_pressureNS    = PETSC_TRUE;
        bsscr->check_pressureNS       = PETSC_TRUE;
        bsscr->buildPNS               = KSPBuildPressure_CB_Nullspace_BSSCR;
    }
    found = PETSC_FALSE;
    conp = PETSC_FALSE;
    PetscOptionsGetTruth(PETSC_NULL, "-remove_constant_pressure_null_space", &conp, &found );
    if(conp){
        bsscr->check_const_pressureNS = PETSC_TRUE;
        bsscr->check_pressureNS       = PETSC_TRUE;
        bsscr->buildPNS               = KSPBuildPressure_Const_Nullspace_BSSCR;
    }
    /***************************************************************************************************************/
    PetscFunctionReturn(0);
}
Ejemplo n.º 18
0
PetscErrorCode  KSPSolve_BSSCR(KSP ksp)
{
    Mat            Amat,Pmat; /* Stokes Matrix and it's Preconditioner matrix: Both 2x2 PetscExt block matrices */
    Vec            B, X; /* rhs and solution vectors */
    //MatStructure   pflag;
    PetscErrorCode ierr;
    KSP_BSSCR *    bsscr;
    Stokes_SLE *    SLE;
    //PETScMGSolver * MG;
    Mat K,D,ApproxS;
    MatStokesBlockScaling BA;
    PetscTruth flg, sym, augment;
    double TotalSolveTime;

    PetscFunctionBegin;

    TotalSolveTime = MPI_Wtime();

    PetscPrintf( PETSC_COMM_WORLD, "\nBSSCR -- Block Stokes Schur Compliment Reduction Solver \n");
    /** Get the stokes Block matrix and its preconditioner matrix */
    ierr = Stg_PCGetOperators(ksp->pc,&Amat,&Pmat,PETSC_NULL);CHKERRQ(ierr);

    /** In Petsc proper, KSP's ksp->data is usually set in KSPCreate_XXX function.
        Here it is set in the _StokesBlockKSPInterface_Solve function instead so that we can ensure that the solver
        has everything it needs */

    bsscr         = (KSP_BSSCR*)ksp->data;
    //MG            = (PETScMGSolver*)bsscr->mg;
    SLE           = (Stokes_SLE*)bsscr->st_sle;
    X             = ksp->vec_sol;
    B             = ksp->vec_rhs;

    if( bsscr->do_scaling ){
        (*bsscr->scale)(ksp); /* scales everything including the UW preconditioner */
        BA =  bsscr->BA;
    }

    if( (bsscr->k2type != 0) ){
      if(bsscr->buildK2 != PETSC_NULL) {
            (*bsscr->buildK2)(ksp); /* building K2 from scaled version of stokes operators: K2 lives on bsscr struct = ksp->data */
        }
    }

    /* get sub matrix / vector objects */
    MatNestGetSubMat( Amat, 0,0, &K );
    /* Underworld preconditioner matrix*/
    ApproxS = PETSC_NULL;
    if( ((StokesBlockKSPInterface*)SLE->solver)->preconditioner ) { /* SLE->solver->st_sle == SLE here, by the way */
        StiffnessMatrix *preconditioner;
        preconditioner = ((StokesBlockKSPInterface*)SLE->solver)->preconditioner;
        ApproxS = BSSCR_GetPetscMatrix( preconditioner->matrix );
    }

    sym = bsscr->DIsSym;

    MatNestGetSubMat( Amat, 1,0, &D );if(!D){ PetscPrintf( PETSC_COMM_WORLD, "D does not exist but should!!\n"); exit(1); }

    /**********************************************************/
    /******* SOLVE!! ******************************************/
    /**********************************************************/
    flg = PETSC_FALSE;
    augment = PETSC_TRUE;
    PetscOptionsGetTruth(PETSC_NULL, "-augmented_lagrangian", &augment, &flg);
    BSSCR_DRIVER_auglag( ksp, Amat, X, B, ApproxS, BA, sym, bsscr );

    /**********************************************************/
    /***** END SOLVE!! ****************************************/
    /**********************************************************/
    if( bsscr->do_scaling ){
        (*bsscr->unscale)(ksp);  }
    if( (bsscr->k2type != 0) && bsscr->K2 != PETSC_NULL ){
        if(bsscr->k2type != K2_SLE){/* don't destroy here, as in this case, K2 is just pointing to an existing matrix on the SLE */
            Stg_MatDestroy(&bsscr->K2 );
        }
        bsscr->K2built = PETSC_FALSE;
        bsscr->K2 = PETSC_NULL;  }

    ksp->reason = KSP_CONVERGED_RTOL;

    TotalSolveTime =  MPI_Wtime() - TotalSolveTime;
    PetscPrintf( PETSC_COMM_WORLD, "  Total BSSCR Linear solve time: %lf seconds\n\n", TotalSolveTime);
    bsscr->solver->stats.total_time=TotalSolveTime;
    PetscFunctionReturn(0);
}
Ejemplo n.º 19
0
int main(int argc,char **args)
{
  Vec            x,b,u;      /* approx solution, RHS, exact solution */
  Mat            A;            /* linear system matrix */
  KSP            ksp;         /* linear solver context */
  PetscReal      norm;         /* norm of solution error */
  PetscInt       dim,i,j,Ii,J,Istart,Iend,n = 6,its,use_random;
  PetscErrorCode ierr;
  PetscScalar    v,none = -1.0,sigma2,pfive = 0.5,*xa;
  PetscRandom    rctx;
  PetscReal      h2,sigma1 = 100.0;
  PetscTruth     flg = PETSC_FALSE;

  PetscInitialize(&argc,&args,(char *)0,help);
#if !defined(PETSC_USE_COMPLEX)
  SETERRQ(1,"This example requires complex numbers");
#endif

  ierr = PetscOptionsGetReal(PETSC_NULL,"-sigma1",&sigma1,PETSC_NULL);CHKERRQ(ierr);
  ierr = PetscOptionsGetInt(PETSC_NULL,"-n",&n,PETSC_NULL);CHKERRQ(ierr);
  dim = n*n;

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
         Compute the matrix and right-hand-side vector that define
         the linear system, Ax = b.
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  /* 
     Create parallel matrix, specifying only its global dimensions.
     When using MatCreate(), the matrix format can be specified at
     runtime. Also, the parallel partitioning of the matrix is
     determined by PETSc at runtime.
  */
  ierr = MatCreate(PETSC_COMM_WORLD,&A);CHKERRQ(ierr);
  ierr = MatSetSizes(A,PETSC_DECIDE,PETSC_DECIDE,dim,dim);CHKERRQ(ierr);
  ierr = MatSetFromOptions(A);CHKERRQ(ierr);

  /* 
     Currently, all PETSc parallel matrix formats are partitioned by
     contiguous chunks of rows across the processors.  Determine which
     rows of the matrix are locally owned. 
  */
  ierr = MatGetOwnershipRange(A,&Istart,&Iend);CHKERRQ(ierr);

  /* 
     Set matrix elements in parallel.
      - Each processor needs to insert only elements that it owns
        locally (but any non-local elements will be sent to the
        appropriate processor during matrix assembly). 
      - Always specify global rows and columns of matrix entries.
  */

  ierr = PetscOptionsGetTruth(PETSC_NULL,"-norandom",&flg,PETSC_NULL);CHKERRQ(ierr);
  if (flg) use_random = 0;
  else     use_random = 1;
  if (use_random) {
    ierr = PetscRandomCreate(PETSC_COMM_WORLD,&rctx);CHKERRQ(ierr);
    ierr = PetscRandomSetFromOptions(rctx);CHKERRQ(ierr);
    ierr = PetscRandomSetInterval(rctx,0.0,PETSC_i);CHKERRQ(ierr);
  } else {
    sigma2 = 10.0*PETSC_i;
  }
  h2 = 1.0/((n+1)*(n+1));
  for (Ii=Istart; Ii<Iend; Ii++) { 
    v = -1.0; i = Ii/n; j = Ii - i*n;  
    if (i>0) {
      J = Ii-n; ierr = MatSetValues(A,1,&Ii,1,&J,&v,ADD_VALUES);CHKERRQ(ierr);}
    if (i<n-1) {
      J = Ii+n; ierr = MatSetValues(A,1,&Ii,1,&J,&v,ADD_VALUES);CHKERRQ(ierr);}
    if (j>0) {
      J = Ii-1; ierr = MatSetValues(A,1,&Ii,1,&J,&v,ADD_VALUES);CHKERRQ(ierr);}
    if (j<n-1) {
      J = Ii+1; ierr = MatSetValues(A,1,&Ii,1,&J,&v,ADD_VALUES);CHKERRQ(ierr);}
    if (use_random) {ierr = PetscRandomGetValue(rctx,&sigma2);CHKERRQ(ierr);}
    v = 4.0 - sigma1*h2 + sigma2*h2;
    ierr = MatSetValues(A,1,&Ii,1,&Ii,&v,ADD_VALUES);CHKERRQ(ierr);
  }
  if (use_random) {ierr = PetscRandomDestroy(rctx);CHKERRQ(ierr);}

  /* 
     Assemble matrix, using the 2-step process:
       MatAssemblyBegin(), MatAssemblyEnd()
     Computations can be done while messages are in transition
     by placing code between these two statements.
  */
  ierr = MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
  ierr = MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);

  /* 
     Create parallel vectors.
      - When using VecCreate(), VecSetSizes() and VecSetFromOptions(),
      we specify only the vector's global
        dimension; the parallel partitioning is determined at runtime. 
      - Note: We form 1 vector from scratch and then duplicate as needed.
  */
  ierr = VecCreate(PETSC_COMM_WORLD,&u);CHKERRQ(ierr);
  ierr = VecSetSizes(u,PETSC_DECIDE,dim);CHKERRQ(ierr);
  ierr = VecSetFromOptions(u);CHKERRQ(ierr);
  ierr = VecDuplicate(u,&b);CHKERRQ(ierr); 
  ierr = VecDuplicate(b,&x);CHKERRQ(ierr);

  /* 
     Set exact solution; then compute right-hand-side vector.
  */
  
  if (use_random) {
    ierr = PetscRandomCreate(PETSC_COMM_WORLD,&rctx);CHKERRQ(ierr);
    ierr = PetscRandomSetFromOptions(rctx);CHKERRQ(ierr);
    ierr = VecSetRandom(u,rctx);CHKERRQ(ierr);
  } else {
    ierr = VecSet(u,pfive);CHKERRQ(ierr);
  }
  ierr = MatMult(A,u,b);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
                Create the linear solver and set various options
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

  /* 
     Create linear solver context
  */
  ierr = KSPCreate(PETSC_COMM_WORLD,&ksp);CHKERRQ(ierr);

  /* 
     Set operators. Here the matrix that defines the linear system
     also serves as the preconditioning matrix.
  */
  ierr = KSPSetOperators(ksp,A,A,DIFFERENT_NONZERO_PATTERN);CHKERRQ(ierr);

  /* 
    Set runtime options, e.g.,
        -ksp_type <type> -pc_type <type> -ksp_monitor -ksp_rtol <rtol>
  */
  ierr = KSPSetFromOptions(ksp);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
                      Solve the linear system
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

  ierr = KSPSolve(ksp,b,x);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
                      Check solution and clean up
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

  /*
      Print the first 3 entries of x; this demonstrates extraction of the
      real and imaginary components of the complex vector, x.
  */
  flg  = PETSC_FALSE;
  ierr = PetscOptionsGetTruth(PETSC_NULL,"-print_x3",&flg,PETSC_NULL);CHKERRQ(ierr);
  if (flg) {
    ierr = VecGetArray(x,&xa);CHKERRQ(ierr);
    ierr = PetscPrintf(PETSC_COMM_WORLD,"The first three entries of x are:\n");CHKERRQ(ierr);
    for (i=0; i<3; i++){
      ierr = PetscPrintf(PETSC_COMM_WORLD,"x[%D] = %G + %G i\n",i,PetscRealPart(xa[i]),PetscImaginaryPart(xa[i]));CHKERRQ(ierr);
  }
    ierr = VecRestoreArray(x,&xa);CHKERRQ(ierr);
  }

  /* 
     Check the error
  */
  ierr = VecAXPY(x,none,u);CHKERRQ(ierr);
  ierr = VecNorm(x,NORM_2,&norm);CHKERRQ(ierr);
  ierr = KSPGetIterationNumber(ksp,&its);CHKERRQ(ierr);
  ierr = PetscPrintf(PETSC_COMM_WORLD,"Norm of error %A iterations %D\n",norm,its);CHKERRQ(ierr);

  /* 
     Free work space.  All PETSc objects should be destroyed when they
     are no longer needed.
  */
  ierr = KSPDestroy(ksp);CHKERRQ(ierr);
  if (use_random) {ierr = PetscRandomDestroy(rctx);CHKERRQ(ierr);}
  ierr = VecDestroy(u);CHKERRQ(ierr); ierr = VecDestroy(x);CHKERRQ(ierr);
  ierr = VecDestroy(b);CHKERRQ(ierr); ierr = MatDestroy(A);CHKERRQ(ierr);
  ierr = PetscFinalize();CHKERRQ(ierr);
  return 0;
}
Ejemplo n.º 20
0
int main(int argc,char **argv)
{
  PetscInt       i,j,M = 10,N = 8,m = PETSC_DECIDE,n = PETSC_DECIDE;
  PetscMPIInt    rank;
  PetscErrorCode ierr;
  PetscTruth     flg = PETSC_FALSE;
  DA             da;
  PetscViewer    viewer;
  Vec            localall,global;
  PetscScalar    value,*vlocal;
  DAPeriodicType ptype = DA_NONPERIODIC;
  DAStencilType  stype = DA_STENCIL_BOX;
  VecScatter     tolocalall,fromlocalall;
  PetscInt       start,end;
  

  ierr = PetscInitialize(&argc,&argv,(char*)0,help);CHKERRQ(ierr); 
  ierr = PetscViewerDrawOpen(PETSC_COMM_WORLD,0,"",300,0,300,300,&viewer);CHKERRQ(ierr);

  /* Read options */
  ierr = PetscOptionsGetInt(PETSC_NULL,"-M",&M,PETSC_NULL);CHKERRQ(ierr);
  ierr = PetscOptionsGetInt(PETSC_NULL,"-N",&N,PETSC_NULL);CHKERRQ(ierr);
  ierr = PetscOptionsGetInt(PETSC_NULL,"-m",&m,PETSC_NULL);CHKERRQ(ierr);
  ierr = PetscOptionsGetInt(PETSC_NULL,"-n",&n,PETSC_NULL);CHKERRQ(ierr);
  ierr = PetscOptionsGetTruth(PETSC_NULL,"-star_stencil",&flg,PETSC_NULL);CHKERRQ(ierr);
  if (flg) stype = DA_STENCIL_STAR;

  /* Create distributed array and get vectors */
  ierr = DACreate2d(PETSC_COMM_WORLD,ptype,stype,
                    M,N,m,n,1,1,PETSC_NULL,PETSC_NULL,&da);CHKERRQ(ierr);
  ierr = DACreateGlobalVector(da,&global);CHKERRQ(ierr);
  ierr = VecCreateSeq(PETSC_COMM_SELF,M*N,&localall);CHKERRQ(ierr);

  ierr = MPI_Comm_rank(PETSC_COMM_WORLD,&rank);CHKERRQ(ierr);
  ierr = VecGetOwnershipRange(global,&start,&end);CHKERRQ(ierr);
  for (i=start; i<end; i++) {
    value = 5.0*rank;
    ierr  = VecSetValues(global,1,&i,&value,INSERT_VALUES);CHKERRQ(ierr);
  }
  ierr = VecView(global,viewer);CHKERRQ(ierr);

  /*
     Create Scatter from global DA parallel vector to local vector that
   contains all entries
  */
  ierr = DAGlobalToNaturalAllCreate(da,&tolocalall);CHKERRQ(ierr);
  ierr = DANaturalAllToGlobalCreate(da,&fromlocalall);CHKERRQ(ierr);

  ierr = VecScatterBegin(tolocalall,global,localall,INSERT_VALUES,SCATTER_FORWARD);CHKERRQ(ierr);
  ierr = VecScatterEnd(tolocalall,global,localall,INSERT_VALUES,SCATTER_FORWARD);CHKERRQ(ierr);

  ierr = VecGetArray(localall,&vlocal);CHKERRQ(ierr);
  for (j=0; j<N; j++) {
    for (i=0; i<M; i++) {
      *vlocal++ += i + j*M;
    }
  }
  ierr = VecRestoreArray(localall,&vlocal);CHKERRQ(ierr);

  /* scatter back to global vector */
  ierr = VecScatterBegin(fromlocalall,localall,global,INSERT_VALUES,SCATTER_FORWARD);CHKERRQ(ierr);
  ierr = VecScatterEnd(fromlocalall,localall,global,INSERT_VALUES,SCATTER_FORWARD);CHKERRQ(ierr);

  ierr = VecView(global,viewer);CHKERRQ(ierr);

  /* Free memory */
  ierr = VecScatterDestroy(tolocalall);CHKERRQ(ierr);
  ierr = VecScatterDestroy(fromlocalall);CHKERRQ(ierr);
  ierr = PetscViewerDestroy(viewer);CHKERRQ(ierr);
  ierr = VecDestroy(localall);CHKERRQ(ierr);
  ierr = VecDestroy(global);CHKERRQ(ierr);
  ierr = DADestroy(da);CHKERRQ(ierr);
  ierr = PetscFinalize();CHKERRQ(ierr);
  return 0;
}
Ejemplo n.º 21
0
int main(int argc, char **argv) {
  PetscInitialize(&argc, &argv, "cmame.opt", help);

  int rank;
  MPI_Comm_rank(MPI_COMM_WORLD, &rank);

  // The global domain size
  double gSize[3];
  gSize[0] = 1.; gSize[1] = 1.; gSize[2] = 1.;

  // Parameters for the balancing algorithm.
  // Refer to manual for details ... 
  bool incCorner = 1; // balance across corners = true  
  unsigned int maxNumPts= 1; // maximum number of points per octant
  unsigned int dim=3; // spatial dimensions 

  // unsigned int maxDepth=8; // maximum depth of the octree, has to be <= 30
  int maxDepth=8; // maximum depth of the octree, has to be <= 30

  int Ns = 32;
  unsigned int dof = 3;

  char problemName[PETSC_MAX_PATH_LEN];
  char filename[PETSC_MAX_PATH_LEN];

  double t0 = 0.0;
  double dt = 0.1;
  double t1 = 1.0;
  double beta = 0.000001;

  Vec rho;        // density - elemental scalar
  Vec lambda;     // Lame parameter - lambda - elemental scalar
  Vec mu;         // Lame parameter - mu - elemental scalar
  Vec fibers;     // Fiber orientations - nodal vector (3-dof)

  std::vector<Vec> tau;        // the scalar activation - nodal scalar

  std::vector<ot::TreeNode> linOct, balOct, newLinOct;
  std::vector<double> pts;

  // Initial conditions
  Vec initialDisplacement; 
  Vec initialVelocity;

  double nu, E;
  nu = 0.45;
  E = 1000;

  timeInfo ti;

  PetscTruth mf = PETSC_FALSE;
  bool mfree = false;

  PetscOptionsGetTruth(0, "-mfree", &mf, 0);

  if (mf == PETSC_TRUE) {
    mfree = true;
  } else
    mfree = false;

  double ctrst = 1.0;
  // get Ns
  CHKERRQ ( PetscOptionsGetInt(0,"-Ns",&Ns,0) );
  CHKERRQ ( PetscOptionsGetInt(0,"-mdepth",&maxDepth,0) );

  CHKERRQ ( PetscOptionsGetScalar(0,"-ctrst",&ctrst,0) );
  CHKERRQ ( PetscOptionsGetScalar(0,"-t0",&t0,0) );
  CHKERRQ ( PetscOptionsGetScalar(0,"-nu",&nu,0) );
  CHKERRQ ( PetscOptionsGetScalar(0,"-Youngs",&E,0) );
  CHKERRQ ( PetscOptionsGetScalar(0,"-t1",&t1,0) );
  CHKERRQ ( PetscOptionsGetScalar(0,"-dt",&dt,0) );
  CHKERRQ ( PetscOptionsGetScalar(0,"-beta",&beta,0) );
  CHKERRQ ( PetscOptionsGetString(PETSC_NULL,"-pn",problemName,PETSC_MAX_PATH_LEN-1,PETSC_NULL));

  // Time info for timestepping
  ti.start = t0;
  ti.stop  = t1;
  ti.step  = dt;

  if (!rank) {
    std::cout << "Grid size is " << Ns+1 << " and NT is " << (int)ceil(1.0/dt) << std::endl;
    std::cout << "MaxDepth is " << maxDepth << std::endl;
  }

  /*
  for (int i=0; i<3*Ns*Ns*Ns; i++) {
    double val = gaussian(); //randgauss(0., 1., 2.0, 0.);
    // std::cout << val << std::endl;
    pts.push_back(val);
  }

  MPI_Barrier(MPI_COMM_WORLD);  
*/
  /*********************************************************************** */
  // CONSTRUCT: Construct the linear octree from the points ...
  /*********************************************************************** */
  // ot::points2Octree(pts, gSize, linOct, dim, maxDepth, maxNumPts, MPI_COMM_WORLD);

  // The points are not needed anymore, and can be cleared to free memory.
  // pts.clear();

  if (!rank) {
    ot::readNodesFromFile("test.256.oct", newLinOct);
    std::cout << "Finished reading" << std::endl;
  }

  // std::sort(linOct.begin(), linOct.end());
  std::cout << rank << " Original octree size is " << newLinOct.size() << std::endl;

  /*
  par::Partition<ot::TreeNode>(linoct, newLinOct, MPI_COMM_WORLD);
  linOct.clear();
  */
  par::sampleSort<ot::TreeNode>(newLinOct, linOct, MPI_COMM_WORLD);
  newLinOct.clear();

  std::cout << rank << ": after Part octree size is " << linOct.size() << std::endl;

  /*********************************************************************** */
  // BALANCE: Balance the linear octree to enforce the 2:1 balance conditions.
  /*********************************************************************** */
  ot::balanceOctree (linOct, balOct, dim, maxDepth, incCorner, MPI_COMM_WORLD);

  std::cout << "Balanced octree size is " << balOct.size() << std::endl;

  // The linear octree (unbalanced) can be cleared to free memory.
  linOct.clear();

  // If desired the octree can be written to a file using the supplied routine ...
  ot::writeNodesToFile("filename.oct", balOct);

  /*********************************************************************** */
  // MESH : Construct the octree-based Distruted Array.
  /*********************************************************************** */
  ot::DA da(balOct,MPI_COMM_WORLD);
  balOct.clear();

  MPI_Barrier(MPI_COMM_WORLD);

  if (!rank)
    std::cout <<"Finshed Meshing" << std::endl;

  PetscFinalize();
  return 0;

  // create Matrices and Vectors
  elasMass *Mass = new elasMass(feMat::OCT); // Mass Matrix
  elasStiffness *Stiffness = new elasStiffness(feMat::OCT); // Stiffness matrix
  raleighDamping *Damping = new raleighDamping(feMat::OCT); // Damping Matrix

  cardiacForce *Force = new cardiacForce(feVec::OCT); // Force Vector

  // create vectors 

  da.createVector(rho, false, false, 1);
  da.createVector(mu, false, false, 1);
  da.createVector(lambda, false, false, 1);

  da.createVector(initialDisplacement, false, false, dof);
  da.createVector(initialVelocity, false, false, dof);

  // Set initial conditions
  CHKERRQ( VecSet ( initialDisplacement, 0.0) ); 
  CHKERRQ( VecSet ( initialVelocity, 0.0) );

  int parFac = 2;
  int numParams = 120;

  CHKERRQ ( PetscOptionsGetInt(0,"-pFac", &parFac,0) );

  numParams = parFac*parFac*parFac*5*3;
  if (!rank)
    std::cout << "Total number of unknowns is " << numParams << std::endl;

  // Generate the basis ...
  std::vector < radialBasis > spatialBasis;
  bSplineBasis temporalBasis(3, 5);	// this creates and sets up the basis ...
  // temporalBasis.knot();

  double fac = 1.0/parFac;
  double ssq = fac*fac/5.5452; // 8log(2) = 5.5452
  PetscPrintf(0, "SSQ is %f\n", ssq); 
  // Now to set up the radial bases ...
  for (int k=0; k<parFac; k++) {
    for (int j=0; j<parFac; j++) {
      for (int i=0; i<parFac; i++) {
        // std::cout << "Adding radial basis at: " << fac/2+i*fac << ", " << fac/2+j*fac << ", " << fac/2+k*fac << std::endl;
        radialBasis tmp(Point( fac/2+i*fac,fac/2+j*fac,fac/2+k*fac), Point(ssq,ssq,ssq));
        spatialBasis.push_back(tmp);
      }
    }
  }

  /*
  // Homogeneous material properties ...
  CHKERRQ( VecSet ( rho, 1.0) ); 

  nu = 0.45; E = 1000;
  double mmu = E/(2*(1+nu));
  double llam = E*nu/((1+nu)*(1-2*nu));

  CHKERRQ( VecSet ( mu, mmu) ); 
  CHKERRQ( VecSet ( lambda, llam) );
  */


  PetscScalar *muArray, *lamArray, *rhoArray;
  // Read in material properties from file ...
  unsigned int elemSize = Ns*Ns*Ns;

  unsigned char *tmp_mat = new unsigned char[elemSize];  
  double *tmp_tau = new double[elemSize];
  double *tmp_fib = new double[dof*elemSize];

  // generate filenames & read in the raw arrays first ...
  std::ifstream fin;

  sprintf(filename, "%s.%d.img", problemName, Ns); 
  fin.open(filename, std::ios::binary); fin.read((char *)tmp_mat, elemSize); fin.close();

  nu = 0.35; E = 1000;
  double mmu = E/(2*(1+nu));
  double llam = E*nu/((1+nu)*(1-2*nu));
  nu = 0.45; E = 1000*ctrst;
  double mmu2 = E/(2*(1+nu));
  double llam2 = E*nu/((1+nu)*(1-2*nu));

  da.vecGetBuffer(mu, muArray,true,true,false,1);
  da.vecGetBuffer(lambda, lamArray,true,true,false,1);
  da.vecGetBuffer(rho, rhoArray,true,true,false,1);

  for ( da.init<ot::DA::ALL>(), da.init<ot::DA::WRITABLE>(); da.curr() < da.end<ot::DA::ALL>(); da.next<ot::DA::ALL>()) {
    unsigned int i = da.curr();
    Point pt;
    pt = da.getCurrentOffset();

    int indx = pt.z()*Ns*Ns + pt.y()*Ns + pt.x();

    if ( tmp_mat[indx] ) {
      muArray[i] = mmu2;
      lamArray[i] = llam2;
      rhoArray[i] = 1.0;
    } else {
      muArray[i] = mmu;
      lamArray[i] = llam;
      rhoArray[i] = 1.0;
    }
  }

  da.vecRestoreBuffer(mu, muArray,true,true,false,1);
  da.vecRestoreBuffer(lambda, lamArray,true,true,false,1);
  da.vecRestoreBuffer(rho, rhoArray,true,true,false,1);

  delete [] tmp_mat;

  // Now set the activation ...
  unsigned int numSteps = (unsigned int)(ceil(( ti.stop - ti.start)/ti.step));

  Vec tauVec, tmpTau;

  // Create elemental vector ...
  da.createVector(tmpTau, true, true, 1);
  da.createVector(fibers, true, true, 3);
  
  PetscScalar *tauArray;

  // load the fibers ...
  da.vecGetBuffer(fibers, tauArray, true, true, 3);
    
  sprintf(filename, "%s.%d.fibers", problemName, Ns);
  std::ifstream fin3(filename, std::ios::binary); fin3.read((char *)tmp_fib, dof*elemSize*sizeof(double)); fin3.close();

  for ( da.init<ot::DA::ALL>(), da.init<ot::DA::WRITABLE>(); da.curr() < da.end<ot::DA::ALL>(); da.next<ot::DA::ALL>()) {
    unsigned int i = da.curr();
    Point pt;
    pt = da.getCurrentOffset();

    int indx = pt.z()*Ns*Ns + pt.y()*Ns + pt.x();

    for (int d=0; d<dof; d++) {
      tauArray[dof*i+d] = tmp_tau[dof*indx+d];
    }
  }

  da.vecRestoreBuffer(fibers, tauArray, true, true, 3);

  delete [] tmp_fib;


  // loop through time steps
  for (unsigned int t=0; t<numSteps+1; t++) {
    // a. Create new nodal vector ...
    da.createVector(tauVec, false, true, 1);

    VecSet( tmpTau, 0.0 );
    da.vecGetBuffer(tmpTau, tauArray, true, true, 1);

    // b. read in the activation 
    // std::cout << "Setting force vectors" << std::endl;
    sprintf(filename, "%s.%d.%.3d.fld", problemName, Ns, t);
    // std::cout << "Reading force file " << filename << std::endl;
    fin.open(filename); fin.read((char *)tmp_tau, elemSize*sizeof(double)); fin.close();

    // c. set the values ...
    for ( da.init<ot::DA::ALL>(), da.init<ot::DA::WRITABLE>(); da.curr() < da.end<ot::DA::ALL>(); da.next<ot::DA::ALL>()) {
      unsigned int i = da.curr();
      Point pt;
      pt = da.getCurrentOffset();

      int indx = pt.z()*Ns*Ns + pt.y()*Ns + pt.x();
      
      tauArray[i] = tmp_tau[indx];
    }

    // restore
    da.vecRestoreBuffer(tmpTau, tauArray, true, true, 1);
    // d. element2node
    elementToNode(da, tmpTau, tauVec, 1);

    // store in vector 
    tau.push_back(tauVec);
  }

  // Setup Matrices and Force Vector ...

  Mass->setProblemDimensions(1.0, 1.0, 1.0);
  Mass->setDA(&da);
  Mass->setDof(dof);
  Mass->setDensity(rho);

  Stiffness->setProblemDimensions(1.0, 1.0, 1.0);
  Stiffness->setDA(&da);
  Stiffness->setDof(dof);
  Stiffness->setLame(lambda, mu);

  Damping->setAlpha(0.0);
  Damping->setBeta(0.00075);
  Damping->setMassMatrix(Mass);
  Damping->setStiffnessMatrix(Stiffness);
  Damping->setDA(&da);
  Damping->setDof(dof);

  // Force Vector
  Force->setProblemDimensions(1.0,1.0,1.0);
  Force->setDA(&da);
  // Force->setFDynamic(tau);
  Force->setActivationVec(tau);
  Force->setFiberOrientations(fibers);
  Force->setTimeInfo(&ti);

  // Newmark time stepper ...
  newmark *ts = new newmark; 

  ts->setMassMatrix(Mass);
  ts->setDampingMatrix(Damping);
  ts->setStiffnessMatrix(Stiffness);
  ts->damp(false);
  ts->setTimeFrames(1);
  ts->storeVec(true);

  ts->setForceVector(Force);

  ts->setInitialDisplacement(initialDisplacement);
  ts->setInitialVelocity(initialVelocity);

  ts->setTimeInfo(&ti);
  ts->setAdjoint(false); // set if adjoint or forward
  ts->useMatrixFree(mfree);

  //if (!rank)
  //  std::cout << RED"Initializing Newmark"NRM << std::endl;
  double itime = MPI_Wtime();
  ts->init(); // initialize IMPORTANT 
  //if (!rank)
  //  std::cout << RED"Starting Newmark Solve"NRM << std::endl;
  double stime = MPI_Wtime();
  ts->solve();// solve 
  double etime = MPI_Wtime();
  
  // PetscFinalize();
Vec alpha, outvec;
  PetscScalar *avec;

  VecCreateSeq(PETSC_COMM_SELF, numParams, &alpha);

  VecGetArray(alpha, &avec);

  for (int j=0; j<numParams; j++)
    avec[j] = 0.0;

  avec[1] = 1.0;

  VecRestoreArray(alpha, &avec);

  VecDuplicate(alpha, &outvec);

  // Inverse solver set up
  parametricActivationInverse *hyperInv = new parametricActivationInverse;

  hyperInv->setBasis(spatialBasis, temporalBasis);

  hyperInv->setForwardInitialConditions(initialDisplacement, initialVelocity);

  hyperInv->setTimeStepper(ts);		 // set the timestepper

  hyperInv->setInitialGuess(alpha);// set the initial guess 

  hyperInv->setRegularizationParameter(beta);	// set the regularization paramter

  // hyperInv->setObservations(solvec); // set the data for the problem 

  hyperInv->init();	// initialize the inverse solver

  hyperInv->solve();

  Vec FinalSolution;
  hyperInv->getCurrentControl(FinalSolution);


  char fname[256];
  sprintf(fname, "%s.soln.%d.%d.raw",problemName, Ns, parFac );

  std::ofstream sol;
  if (!rank) {
    sol.open(fname, std::ios::binary);

    VecGetArray(FinalSolution, &avec);
    sol.write((char *)avec, numParams*sizeof(PetscScalar));
    VecRestoreArray(outvec, &avec);

    sol.close();
  }

  PetscFinalize();
}
Ejemplo n.º 22
0
int main(int argc,char **argv)
{
  PetscMPIInt    size,rank;
  PetscInt       M=8,dof=1,stencil_width=1,i,start,end,P=5,N = 6,m=PETSC_DECIDE,n=PETSC_DECIDE,p=PETSC_DECIDE,pt = 0,st = 0;
  PetscErrorCode ierr;
  PetscTruth     flg2,flg3,flg;
  DAPeriodicType periodic = DA_NONPERIODIC;
  DAStencilType  stencil_type = DA_STENCIL_STAR;
  DA             da;
  SDA            sda;
  Vec            local,global,local_copy;
  PetscScalar    value,*in,*out;
  PetscReal      norm,work;
  PetscViewer    viewer;
  char           filename[PETSC_MAX_PATH_LEN];
  FILE           *file;


  ierr = PetscInitialize(&argc,&argv,(char*)0,help);CHKERRQ(ierr); 

  ierr = PetscOptionsGetInt(PETSC_NULL,"-M",&M,PETSC_NULL);CHKERRQ(ierr);
  ierr = PetscOptionsGetInt(PETSC_NULL,"-N",&N,PETSC_NULL);CHKERRQ(ierr);
  ierr = PetscOptionsGetInt(PETSC_NULL,"-P",&P,PETSC_NULL);CHKERRQ(ierr);
  ierr = PetscOptionsGetInt(PETSC_NULL,"-dof",&dof,PETSC_NULL);CHKERRQ(ierr); 
  ierr = PetscOptionsGetInt(PETSC_NULL,"-stencil_width",&stencil_width,PETSC_NULL);CHKERRQ(ierr); 
  ierr = PetscOptionsGetInt(PETSC_NULL,"-periodic",&pt,PETSC_NULL);CHKERRQ(ierr); 
  periodic = (DAPeriodicType) pt;
  ierr = PetscOptionsGetInt(PETSC_NULL,"-stencil_type",&st,PETSC_NULL);CHKERRQ(ierr); 
  stencil_type = (DAStencilType) st;

  ierr = PetscOptionsHasName(PETSC_NULL,"-1d",&flg2);CHKERRQ(ierr);
  ierr = PetscOptionsHasName(PETSC_NULL,"-2d",&flg2);CHKERRQ(ierr);
  ierr = PetscOptionsHasName(PETSC_NULL,"-3d",&flg3);CHKERRQ(ierr);
  if (flg2) {
    ierr = DACreate2d(PETSC_COMM_WORLD,periodic,stencil_type,M,N,m,n,dof,stencil_width,0,0,&da);CHKERRQ(ierr);
    ierr = SDACreate2d(PETSC_COMM_WORLD,periodic,stencil_type,M,N,m,n,dof,stencil_width,0,0,&sda);CHKERRQ(ierr);
  } else if (flg3) {
    ierr = DACreate3d(PETSC_COMM_WORLD,periodic,stencil_type,M,N,P,m,n,p,dof,stencil_width,0,0,0,&da);CHKERRQ(ierr);
    ierr = SDACreate3d(PETSC_COMM_WORLD,periodic,stencil_type,M,N,P,m,n,p,dof,stencil_width,0,0,0,&sda);CHKERRQ(ierr);
  }
  else {
    ierr = DACreate1d(PETSC_COMM_WORLD,periodic,M,dof,stencil_width,PETSC_NULL,&da);CHKERRQ(ierr);
    ierr = SDACreate1d(PETSC_COMM_WORLD,periodic,M,dof,stencil_width,PETSC_NULL,&sda);CHKERRQ(ierr);
  }

  ierr = DACreateGlobalVector(da,&global);CHKERRQ(ierr);
  ierr = DACreateLocalVector(da,&local);CHKERRQ(ierr);
  ierr = VecDuplicate(local,&local_copy);CHKERRQ(ierr);
  
  /* zero out vectors so that ghostpoints are zero */
  value = 0;
  ierr = VecSet(local,value);CHKERRQ(ierr);
  ierr = VecSet(local_copy,value);CHKERRQ(ierr);

  ierr = VecGetOwnershipRange(global,&start,&end);CHKERRQ(ierr);
  for (i=start; i<end; i++) {
    value = i + 1;
    ierr = VecSetValues(global,1,&i,&value,INSERT_VALUES);CHKERRQ(ierr);
  }
  ierr = VecAssemblyBegin(global);CHKERRQ(ierr);
  ierr = VecAssemblyEnd(global);CHKERRQ(ierr);

  ierr = DAGlobalToLocalBegin(da,global,INSERT_VALUES,local);CHKERRQ(ierr);
  ierr = DAGlobalToLocalEnd(da,global,INSERT_VALUES,local);CHKERRQ(ierr);

  flg  = PETSC_FALSE;
  ierr = PetscOptionsGetTruth(PETSC_NULL,"-same_array",&flg,PETSC_NULL);CHKERRQ(ierr);
  if (flg) {
    /* test the case where the input and output array is the same */
    ierr = VecCopy(local,local_copy);CHKERRQ(ierr);
    ierr = VecGetArray(local_copy,&in);CHKERRQ(ierr);
    ierr = VecRestoreArray(local_copy,PETSC_NULL);CHKERRQ(ierr);
    ierr = SDALocalToLocalBegin(sda,in,INSERT_VALUES,in);CHKERRQ(ierr);
    ierr = SDALocalToLocalEnd(sda,in,INSERT_VALUES,in);CHKERRQ(ierr);
  } else {
    ierr = VecGetArray(local,&out);CHKERRQ(ierr);
    ierr = VecRestoreArray(local,PETSC_NULL);CHKERRQ(ierr);
    ierr = VecGetArray(local_copy,&in);CHKERRQ(ierr);
    ierr = VecRestoreArray(local_copy,PETSC_NULL);CHKERRQ(ierr);
    ierr = SDALocalToLocalBegin(sda,out,INSERT_VALUES,in);CHKERRQ(ierr);
    ierr = SDALocalToLocalEnd(sda,out,INSERT_VALUES,in);CHKERRQ(ierr);
  }

  flg  = PETSC_FALSE;
  ierr = PetscOptionsGetTruth(PETSC_NULL,"-save",&flg,PETSC_NULL);CHKERRQ(ierr);
  if (flg) {
    ierr = MPI_Comm_rank(PETSC_COMM_WORLD,&rank);CHKERRQ(ierr);
    sprintf(filename,"local.%d",rank);
    ierr = PetscViewerASCIIOpen(PETSC_COMM_SELF,filename,&viewer);CHKERRQ(ierr);
    ierr = PetscViewerASCIIGetPointer(viewer,&file);CHKERRQ(ierr);
    ierr = VecView(local,viewer);CHKERRQ(ierr);
    fprintf(file,"Vector with correct ghost points\n");
    ierr = VecView(local_copy,viewer);CHKERRQ(ierr);
    ierr = PetscViewerDestroy(viewer);CHKERRQ(ierr);
  }

  ierr = VecAXPY(local_copy,-1.0,local);CHKERRQ(ierr);
  ierr = VecNorm(local_copy,NORM_MAX,&work);CHKERRQ(ierr);
  ierr = MPI_Allreduce(&work,&norm,1,MPIU_REAL,MPI_MAX,PETSC_COMM_WORLD);CHKERRQ(ierr);
  if (norm != 0.0) {
    ierr = MPI_Comm_size(PETSC_COMM_WORLD,&size);CHKERRQ(ierr);
    ierr = PetscPrintf(PETSC_COMM_WORLD,"Norm of difference %G should be zero\n",norm);CHKERRQ(ierr);
    ierr = PetscPrintf(PETSC_COMM_WORLD,"  Number of processors %d\n",size);CHKERRQ(ierr);
    ierr = PetscPrintf(PETSC_COMM_WORLD,"  M,N,P,dof %D %D %D %D\n",M,N,P,dof);CHKERRQ(ierr);
    ierr = PetscPrintf(PETSC_COMM_WORLD,"  stencil_width %D stencil_type %d periodic %d\n",stencil_width,(int)stencil_type,(int)periodic);CHKERRQ(ierr);
    ierr = PetscPrintf(PETSC_COMM_WORLD,"  dimension %d\n",1 + (int) flg2 + (int) flg3);CHKERRQ(ierr);
  }
   
  ierr = DADestroy(da);CHKERRQ(ierr);
  ierr = SDADestroy(sda);CHKERRQ(ierr);
  ierr = VecDestroy(local_copy);CHKERRQ(ierr);
  ierr = VecDestroy(local);CHKERRQ(ierr);
  ierr = VecDestroy(global);CHKERRQ(ierr);
  ierr = PetscFinalize();CHKERRQ(ierr);
  return 0;
}
Ejemplo n.º 23
0
/*
Builds 
  B Y1 X1 Bt 
and creates a ksp when C=0, otherwise it builds 
  B Y1 X1 Bt - C
*/
PetscErrorCode BSSCR_PCScGtKGUseStandardBBtOperator( PC pc ) 
{
	PC_SC_GtKG ctx = (PC_SC_GtKG)pc->data;
	PetscReal  fill;
	Mat        diag_mat,C;
	Vec        diag;
	PetscInt   M,N, m,n;
	MPI_Comm   comm;
	PetscInt   nnz_I, nnz_G;
	MatType    mtype;
	const char *prefix;
	Mat BBt;
	KSP ksp;
	PetscTruth ivalue, flg, has_cnst_nullsp;
	
	
	BSSCR_BSSCR_pc_error_ScGtKG( pc, __func__ );
	
	/* Assemble BBt */
	MatGetSize( ctx->Bt, &M, &N );
	MatGetLocalSize( ctx->Bt, &m, &n );
	
	MatGetVecs( ctx->Bt, PETSC_NULL, &diag );
	
	/* Define diagonal matrix Y1 X1 */
	VecPointwiseMult( diag, ctx->Y1, ctx->X1 );
	
	PetscObjectGetComm( (PetscObject)ctx->F, &comm ); 
	MatCreate( comm, &diag_mat );
	MatSetSizes( diag_mat, m,m , M, M );
#if (((PETSC_VERSION_MAJOR==3) && (PETSC_VERSION_MINOR>=3)) || (PETSC_VERSION_MAJOR>3) )
        MatSetUp(diag_mat);
#endif
	MatGetType( ctx->Bt, &mtype );
	MatSetType( diag_mat, mtype );
	
	MatDiagonalSet( diag_mat, diag, INSERT_VALUES );
	
	/* Build operator B Y1 X1 Bt */
	BSSCR_BSSCR_get_number_nonzeros_AIJ_ScGtKG( diag_mat, &nnz_I );
	BSSCR_BSSCR_get_number_nonzeros_AIJ_ScGtKG( ctx->Bt, &nnz_G );
	/* 
	Not sure the best way to estimate the fill factor.
	BBt is a laplacian on the pressure space. 
	This might tell us something useful...
	*/
	fill = (PetscReal)(nnz_G)/(PetscReal)( nnz_I );
	MatPtAP( diag_mat, ctx->Bt, MAT_INITIAL_MATRIX, fill, &BBt );
	
	Stg_MatDestroy(&diag_mat );
	Stg_VecDestroy(&diag );
	
	
	C = ctx->C;
	if( C !=PETSC_NULL ) {
		MatAXPY( BBt, -1.0, C, DIFFERENT_NONZERO_PATTERN );
	}
	
	
	/* Build the solver */
	KSPCreate( ((PetscObject)pc)->comm, &ksp );
	
	Stg_KSPSetOperators( ksp, BBt, BBt, SAME_NONZERO_PATTERN );
	
	PCGetOptionsPrefix( pc,&prefix );
	KSPSetOptionsPrefix( ksp, prefix );
	KSPAppendOptionsPrefix( ksp, "pc_gtkg_" ); /* -pc_GtKG_ksp_type <type>, -ksp_GtKG_pc_type <type> */
	
	BSSCR_PCScGtKGSetKSP( pc, ksp );
	
	BSSCR_MatContainsConstNullSpace( BBt, NULL, &has_cnst_nullsp );
	if( has_cnst_nullsp == PETSC_TRUE ) {
		BSSCR_PCScGtKGAttachNullSpace( pc );
	}
	
	PetscOptionsGetTruth( PETSC_NULL, "-pc_gtkg_monitor", &ivalue, &flg );
	BSSCR_PCScGtKGSetSubKSPMonitor( pc, ivalue );
	
	Stg_KSPDestroy(&ksp);
	Stg_MatDestroy(&BBt);
	
	PetscFunctionReturn(0);
}
PetscErrorCode BSSCR_DRIVER_auglag( KSP ksp, Mat stokes_A, Vec stokes_x, Vec stokes_b, Mat approxS,
                                          MatStokesBlockScaling BA, PetscTruth sym, KSP_BSSCR * bsscrp_self )
{
    AugLagStokes_SLE *    stokesSLE = (AugLagStokes_SLE*)bsscrp_self->solver->st_sle;
    PetscTruth uzawastyle, KisJustK=PETSC_TRUE, restorek, change_A11rhspresolve;
    PetscTruth usePreviousGuess, useNormInfStoppingConditions, useNormInfMonitor, found, forcecorrection;
    PetscTruth change_backsolve, mg_active;
    PetscErrorCode ierr;
    //PetscInt monitor_index;
    PetscInt max_it,min_it;
    KSP ksp_inner, ksp_S, ksp_new_inner;
    PC pc_S, pcInner;
    Mat K,G,D,C, S, K2;// Korig;
    Vec u,p,f,f2=0,f3=0,h, h_hat,t;
    MGContext mgCtx;
    double mgSetupTime, scrSolveTime, a11SingleSolveTime, penaltyNumber;// hFactor;
    static int been_here = 0;  /* Ha Ha Ha !! */

    char name[PETSC_MAX_PATH_LEN];
    char matname[PETSC_MAX_PATH_LEN];
    char suffix[PETSC_MAX_PATH_LEN];
    char str[PETSC_MAX_PATH_LEN];
    PetscTruth flg, extractMats;
    PetscLogDouble flopsA,flopsB;

    /***************************************************************************************************************/
    /***************************************************************************************************************/
    //if( bsscrp_self->solver->st_sle->context->loadFromCheckPoint ){
    //    been_here=1;
    //}
    /* get sub matrix / vector objects */
    /* note that here, the matrix D should always exist. It is set up in  _StokesBlockKSPInterface_Solve in StokesBlockKSPInterface.c */
    /* now extract K,G etc from a MatNest object */
    MatNestGetSubMat( stokes_A, 0,0, &K );
    MatNestGetSubMat( stokes_A, 0,1, &G );
    MatNestGetSubMat( stokes_A, 1,0, &D );if(!D){ PetscPrintf( PETSC_COMM_WORLD, "D does not exist but should!!\n"); exit(1); }
    MatNestGetSubMat( stokes_A, 1,1, &C );  
    VecNestGetSubVec( stokes_x, 0, &u );
    VecNestGetSubVec( stokes_x, 1, &p );
    VecNestGetSubVec( stokes_b, 0, &f );
    VecNestGetSubVec( stokes_b, 1, &h );
    
    PetscPrintf( PETSC_COMM_WORLD,  "\n\n----------  AUGMENTED LAGRANGIAN K2 METHOD ---------\n\n" );
    PetscPrintf( PETSC_COMM_WORLD,      "----------- Penalty = %f\n\n", bsscrp_self->solver->penaltyNumber );
    sprintf(suffix,"%s","x");

    PetscOptionsGetString( PETSC_NULL, "-matsuffix", suffix, PETSC_MAX_PATH_LEN-1, &extractMats );

    flg=0;
    PetscOptionsGetString( PETSC_NULL, "-matdumpdir", name, PETSC_MAX_PATH_LEN-1, &flg );
    if(flg){
        sprintf(str,"%s/",name); sprintf(matname,"K%s",suffix);
        bsscr_dirwriteMat( K, matname,str, "Writing K matrix in al Solver");
        sprintf(str,"%s/",name); sprintf(matname,"G%s",suffix);
        bsscr_dirwriteMat( G, matname,str, "Writing G matrix in al Solver");
        sprintf(str,"%s/",name); sprintf(matname,"D%s",suffix);
        bsscr_dirwriteMat( D, matname,str, "Writing D matrix in al Solver");
        sprintf(str,"%s/",name); sprintf(matname,"f%s",suffix);
        bsscr_dirwriteVec( f, matname,str, "Writing f vector in al Solver");
        sprintf(str,"%s/",name); sprintf(matname,"h%s",suffix);
        bsscr_dirwriteVec( h, matname,str, "Writing h vector in al Solver");
        sprintf(str,"%s/",name); sprintf(matname,"Shat%s",suffix);
        bsscr_dirwriteMat( approxS, matname,str, "Writing Shat matrix in al Solver");
        if(C){
          sprintf(str,"%s/",name); sprintf(matname,"C%s",suffix);
          bsscr_dirwriteMat( C, matname,str, "Writing C matrix in al Solver");
        }
    }

    mg_active=PETSC_TRUE;
    PetscOptionsGetTruth( PETSC_NULL ,"-A11_mg_active", &mg_active, &found );
    bsscrp_self->solver->mg_active=mg_active;

    penaltyNumber = bsscrp_self->solver->penaltyNumber;
    //hFactor = stokesSLE->hFactor;
    /***************************************************************************************************************/
    /***************************************************************************************************************/
    /******  GET K2   ****************************************************************************************/
    if(penaltyNumber > 1e-10 && bsscrp_self->k2type){
        flg=0;
        PetscOptionsGetString( PETSC_NULL, "-matdumpdir", name, PETSC_MAX_PATH_LEN-1, &flg );
        if(flg){
            sprintf(str,"%s/",name);   sprintf(matname,"K2%s",suffix);
            bsscr_dirwriteMat( bsscrp_self->K2, matname,str, "Writing K2 matrix in al Solver");
        }
        K2=bsscrp_self->K2;
        scrSolveTime = MPI_Wtime();
        ierr=MatAXPY(K,penaltyNumber,K2,DIFFERENT_NONZERO_PATTERN);CHKERRQ(ierr);/* Computes K = penaltyNumber*K2 + K */
        scrSolveTime =  MPI_Wtime() - scrSolveTime;
        PetscPrintf( PETSC_COMM_WORLD, "\n\t* K+p*K2 in time: %lf seconds\n\n", scrSolveTime);
        KisJustK=PETSC_FALSE;
        forcecorrection=PETSC_TRUE;
        PetscOptionsGetTruth( PETSC_NULL ,"-force_correction", &forcecorrection, &found );
        if(forcecorrection){
            if(bsscrp_self->f2 && forcecorrection){ 
                f2=bsscrp_self->f2;
                ierr=VecAXPY(f,penaltyNumber,f2);/*  f <- f +a*f2 */
            }else{
                switch (bsscrp_self->k2type) {
                case (K2_GG):
                {
                    VecDuplicate( u, &f3 );
                    MatMult( G, h, f3);   ierr=VecAXPY(f,penaltyNumber,f3);/*  f <- f +a*f2 */
                }
                break;
                case (K2_GMG):
                {
                    Mat M;
                    Vec Mdiag;
                    VecDuplicate( u, &f3 );
                    M = bsscrp_self->solver->mStiffMat->matrix;
                    MatGetVecs( M, &Mdiag, PETSC_NULL );
                    MatGetDiagonal( M, Mdiag );
                    VecReciprocal(Mdiag);
                    VecPointwiseMult(Mdiag,Mdiag,h);
                    MatMult( G, Mdiag, f3);   ierr=VecAXPY(f,penaltyNumber,f3);/*  f <- f +a*f2 */
                    Stg_VecDestroy(&Mdiag);
                }
                break;
                case (K2_DGMGD):
                {
                    Mat M;
                    Vec Mdiag;
                    VecDuplicate( u, &f3 );
                    M = bsscrp_self->solver->mStiffMat->matrix;
                    MatGetVecs( M, &Mdiag, PETSC_NULL );
                    MatGetDiagonal( M, Mdiag );
                    VecReciprocal(Mdiag);
                    VecPointwiseMult(Mdiag,Mdiag,h);
                    MatMult( G, Mdiag, f3);   ierr=VecAXPY(f,penaltyNumber,f3);/*  f <- f +a*f2 */
                    Stg_VecDestroy(&Mdiag);
                }
                break;
                case (K2_NULL):
                {
                    ;
                }
                break;
                case (K2_SLE):
                {
                    ;
                }
                break;
                }
            }
        }
    }

    /* Create Schur complement matrix */
    MatCreateSchurComplement(K,K,G,D,C, &S);
    MatSchurComplementGetKSP( S, &ksp_inner);
    KSPGetPC( ksp_inner, &pcInner );
    /***************************************************************************************************************/
    /***************************************************************************************************************/
    /*********    SET PREFIX FOR INNER/VELOCITY KSP    *************************************************************/
    KSPSetOptionsPrefix( ksp_inner, "A11_" );
    KSPSetFromOptions( ksp_inner );
    Stg_KSPSetOperators(ksp_inner, K, K, DIFFERENT_NONZERO_PATTERN);

    useNormInfStoppingConditions = PETSC_FALSE;
    PetscOptionsGetTruth( PETSC_NULL ,"-A11_use_norm_inf_stopping_condition", &useNormInfStoppingConditions, &found );
    if(useNormInfStoppingConditions) 
        BSSCR_KSPSetNormInfConvergenceTest( ksp_inner ); 

    useNormInfMonitor = PETSC_FALSE; 
    PetscOptionsGetTruth( PETSC_NULL, "-A11_ksp_norm_inf_monitor", &useNormInfMonitor, &found );
    if(useNormInfMonitor)  KSPMonitorSet( ksp_inner, BSSCR_KSPNormInfMonitor, PETSC_NULL, PETSC_NULL );

    useNormInfMonitor = PETSC_FALSE; 
    PetscOptionsGetTruth( PETSC_NULL, "-A11_ksp_norm_inf_to_norm_2_monitor", &useNormInfMonitor, &found );
    if(useNormInfMonitor)  KSPMonitorSet( ksp_inner, BSSCR_KSPNormInfToNorm2Monitor, PETSC_NULL, PETSC_NULL );
    /***************************************************************************************************************/
    /***************************************************************************************************************/
    /* If multigrid is enabled, set it now. */
    change_A11rhspresolve = PETSC_FALSE; 
    PetscOptionsGetTruth( PETSC_NULL, "-change_A11rhspresolve", &change_A11rhspresolve, &found );

    if(bsscrp_self->solver->mg_active && !change_A11rhspresolve) { mgSetupTime=setupMG( bsscrp_self, ksp_inner, pcInner, K, &mgCtx ); }
    /***************************************************************************************************************/
    /***************************************************************************************************************/
    /* create right hand side */
    if(change_A11rhspresolve){
      //Stg_KSPDestroy(&ksp_inner );
      KSPCreate(PETSC_COMM_WORLD, &ksp_new_inner);
      Stg_KSPSetOperators(ksp_new_inner, K, K, DIFFERENT_NONZERO_PATTERN);
      KSPSetOptionsPrefix(ksp_new_inner, "rhsA11_");
      MatSchurComplementSetKSP( S, ksp_new_inner );/* this call destroys the ksp_inner that is already set on S */
      ksp_inner=ksp_new_inner;
      KSPGetPC( ksp_inner, &pcInner );
      KSPSetFromOptions(ksp_inner); /* make sure we are setting up our solver how we want it */
    }
    MatGetVecs( S, PETSC_NULL, &h_hat );
    Vec f_tmp;
    /* It may be the case that the current velocity solution might not be bad guess for f_tmp? <-- maybe not */
    MatGetVecs( K, PETSC_NULL, &f_tmp );
    scrSolveTime = MPI_Wtime();
    KSPSolve(ksp_inner, f, f_tmp);
    scrSolveTime =  MPI_Wtime() - scrSolveTime;
    PetscPrintf( PETSC_COMM_WORLD, "\n\t*  KSPSolve for RHS setup Finished in time: %lf seconds\n\n", scrSolveTime);
    MatMult(D, f_tmp, h_hat);
    VecAYPX(h_hat, -1.0, h); /* Computes y = x + alpha y.  h_hat -> h - Gt*K^(-1)*f*/
    Stg_VecDestroy(&f_tmp);

    if(bsscrp_self->solver->mg_active && change_A11rhspresolve) {
      //Stg_KSPDestroy(&ksp_inner );
      KSPCreate(PETSC_COMM_WORLD, &ksp_new_inner);
      Stg_KSPSetOperators(ksp_new_inner, K, K, DIFFERENT_NONZERO_PATTERN);
      KSPSetOptionsPrefix( ksp_new_inner, "A11_" );
      MatSchurComplementSetKSP( S, ksp_new_inner );
      ksp_inner=ksp_new_inner;
      //MatSchurSetKSP( S, ksp_inner );
      KSPGetPC( ksp_inner, &pcInner );
      KSPSetFromOptions( ksp_inner );
      mgSetupTime=setupMG( bsscrp_self, ksp_inner, pcInner, K, &mgCtx ); 
    }
    /* create solver for S p = h_hat */
    KSPCreate( PETSC_COMM_WORLD, &ksp_S );
    KSPSetOptionsPrefix( ksp_S, "scr_");
    /* By default use the UW approxS Schur preconditioner -- same as the one used by the Uzawa solver */
    /* Note that if scaling is activated then the approxS matrix has been scaled already */
    /* so no need to rebuild in the case of scaling as we have been doing */
    if(!approxS){ PetscPrintf( PETSC_COMM_WORLD,  "WARNING approxS is NULL\n"); }
    Stg_KSPSetOperators( ksp_S, S, S, SAME_NONZERO_PATTERN );
    KSPSetType( ksp_S, "cg" );
    KSPGetPC( ksp_S, &pc_S );
    BSSCR_BSSCR_StokesCreatePCSchur2( K,G,D,C,approxS, pc_S, sym, bsscrp_self );

    flg=0;
    PetscOptionsGetString( PETSC_NULL, "-NN", name, PETSC_MAX_PATH_LEN-1, &flg );
    if(flg){
      Mat Smat, Pmat;                                                                                                 
      //MatStructure mstruct;  
      Stg_PCGetOperators( pc_S, &Smat, &Pmat, NULL );
      sprintf(str,"%s/",name); sprintf(matname,"Pmat%s",suffix);
      bsscr_dirwriteMat( Pmat, matname,str, "Writing Pmat matrix in al Solver");
    }
   
    uzawastyle=PETSC_FALSE;
    PetscOptionsGetTruth( PETSC_NULL, "-uzawa_style", &uzawastyle, &found );
    if(uzawastyle){
        /* now want to set up the ksp_S->pc to be of type ksp (gmres) by default to match Uzawa */
        KSP pc_ksp;
        KSPGetPC( ksp_S, &pc_S );
        PCSetType(pc_S,PCKSP);
        PCKSPGetKSP( pc_S, &pc_ksp);
        KSPSetType(pc_ksp, "gmres" );
        KSPSetOptionsPrefix( pc_ksp, "scrPCKSP_");
        KSPSetFromOptions( pc_ksp );
    }
    KSPSetFromOptions( ksp_S );
    /* Set specific monitor test */
    KSPGetTolerances( ksp_S, PETSC_NULL, PETSC_NULL, PETSC_NULL, &max_it );
    // Weirdness with petsc 3.2 here...look at it later
    //BSSCR_KSPLogSetMonitor( ksp_S, max_it, &monitor_index );

    /***************************************************************************************************************/
    /* Pressure / Velocity Solve */     
    /***************************************************************************************************************/
    PetscPrintf( PETSC_COMM_WORLD, "\t* Pressure / Velocity Solve \n");
    /***************************************************************************************************************/
    /***************************************************************************************************************/
    usePreviousGuess = PETSC_FALSE; 
    if(been_here)
        PetscOptionsGetTruth( PETSC_NULL, "-scr_use_previous_guess", &usePreviousGuess, &found );
    if(usePreviousGuess) {   /* Note this should actually look at checkpoint information */
        KSPSetInitialGuessNonzero( ksp_S, PETSC_TRUE ); }
    else {
        KSPSetInitialGuessNonzero( ksp_S, PETSC_FALSE ); }
    /***************************************************************************************************************/
    /***************************************************************************************************************/
    /*******     SET CONVERGENCE TESTS     *************************************************************************/
    useNormInfStoppingConditions = PETSC_FALSE;
    PetscOptionsGetTruth( PETSC_NULL ,"-scr_use_norm_inf_stopping_condition", &useNormInfStoppingConditions, &found );
    if(useNormInfStoppingConditions) 
        BSSCR_KSPSetNormInfConvergenceTest(ksp_S); 

    useNormInfMonitor = PETSC_FALSE; 
    PetscOptionsGetTruth( PETSC_NULL, "-scr_ksp_norm_inf_monitor", &useNormInfMonitor, &found );
    if(useNormInfMonitor) 
        KSPMonitorSet( ksp_S, BSSCR_KSPNormInfToNorm2Monitor, PETSC_NULL, PETSC_NULL );
    /***************************************************************************************************************/
    /***************************************************************************************************************/
    /*******   PRESSURE SOLVE   ************************************************************************************/
    PetscPrintf( PETSC_COMM_WORLD, "\t* KSPSolve( ksp_S, h_hat, p )\n");
    /* if h_hat needs to be fixed up ..take out any nullspace vectors here */
    /* we want to check that there is no "noise" in the null-space in the h vector */
    /* this causes problems when we are trying to solve a Jacobian system when the Residual is almost converged */
    if(bsscrp_self->check_pressureNS){
        bsscrp_self->buildPNS(ksp);/* build and set nullspace vectors on bsscr - which is on ksp (function pointer is set in KSPSetUp_BSSCR) */
    }

    PetscScalar hnorm, gnorm;
    MatNorm(G,NORM_INFINITY,&gnorm);
    VecNorm(h_hat, NORM_2, &hnorm);
    hnorm=hnorm/gnorm;

    if((hnorm < 1e-6) && (hnorm > 1e-20)){
        VecScale(h_hat,1.0/hnorm);
    }
    /* test to see if v or t are in nullspace of G and orthogonalize wrt h_hat if needed */
    KSPRemovePressureNullspace_BSSCR(ksp, h_hat);
    /* set convergence test to use min_it */
    found = PETSC_FALSE;
    min_it = 0;
    PetscOptionsGetInt( PETSC_NULL,"-scr_ksp_set_min_it_converge", &min_it, &found);
    if(found && min_it > 0){
        BSSCR_KSPSetConvergenceMinIts(ksp_S, min_it, bsscrp_self);
    }

    /** Pressure Solve **/
    PetscGetFlops(&flopsA);
    scrSolveTime = MPI_Wtime();
    KSPSolve( ksp_S, h_hat, p );
    scrSolveTime =  MPI_Wtime() - scrSolveTime;
    PetscGetFlops(&flopsB);
    PetscPrintf( PETSC_COMM_WORLD, "\n\t* KSPSolve( ksp_S, h_hat, p )  Solve Finished in time: %lf seconds\n\n", scrSolveTime);
    bsscrp_self->solver->stats.pressure_time=scrSolveTime;
    bsscrp_self->solver->stats.pressure_flops=(double)(flopsB-flopsA);

    /***************************************/
    if((hnorm < 1e-6) && (hnorm > 1e-20)){
        VecScale(h_hat,hnorm);
        VecScale(p,hnorm);
    }
    KSPRemovePressureNullspace_BSSCR(ksp, p);

    /***************************************************************************************************************/
    /***************************************************************************************************************/
    /* restore K and f for the Velocity back solve */
    found = PETSC_FALSE;
    restorek = PETSC_FALSE;
    PetscOptionsGetTruth( PETSC_NULL, "-restore_K", &restorek, &found);
    //PetscOptionsGetString( PETSC_NULL, "-restore_K", name, PETSC_MAX_PATH_LEN-1, &flg );
    if(penaltyNumber > 1e-10 && bsscrp_self->k2type){
        if(restorek){
            penaltyNumber = -penaltyNumber;
            if(f2) { ierr=VecAXPY(f,penaltyNumber,f2); }/*  f <- f +a*f2 */
            if(f3) { ierr=VecAXPY(f,penaltyNumber,f3); }/*  f <- f +a*f3 */
            ierr=MatAXPY(K,penaltyNumber,K2,DIFFERENT_NONZERO_PATTERN);CHKERRQ(ierr);/* Computes K = penaltyNumber*K2 + K */
            //K=Korig;
            Stg_KSPSetOperators(ksp_inner, K, K, DIFFERENT_NONZERO_PATTERN);
            KisJustK=PETSC_TRUE;          
        }      
    }
    if(f3){ Stg_VecDestroy(&f3 ); } /* always destroy this local vector if was created */

    /* obtain solution for u */
    VecDuplicate( u, &t );   MatMult( G, p, t);  VecAYPX( t, -1.0, f ); /*** t <- -t + f   = f - G*p  ***/
    MatSchurComplementGetKSP( S, &ksp_inner );
    a11SingleSolveTime = MPI_Wtime();           /* ----------------------------------  Final V Solve */
    if(usePreviousGuess) KSPSetInitialGuessNonzero( ksp_inner, PETSC_TRUE );

    /***************************************************************************************************************/
    /***************************************************************************************************************/
    /*******   VELOCITY SOLVE   ************************************************************************************/
    /** Easier to just create a new KSP here if we want to do backsolve diffferently. (getting petsc errors now when switching from fgmres) */
    change_backsolve=PETSC_FALSE;
    PetscOptionsGetTruth( PETSC_NULL, "-change_backsolve", &change_backsolve, &found );
    if(change_backsolve){
      //Stg_KSPDestroy(&ksp_inner );
      KSPCreate(PETSC_COMM_WORLD, &ksp_new_inner);
      Stg_KSPSetOperators(ksp_new_inner, K, K, DIFFERENT_NONZERO_PATTERN);
      KSPSetOptionsPrefix(ksp_new_inner, "backsolveA11_");
      KSPSetFromOptions(ksp_new_inner); /* make sure we are setting up our solver how we want it */
      MatSchurComplementSetKSP( S, ksp_new_inner );/* need to give the Schur it's inner ksp back for when we destroy it at end */
      ksp_inner=ksp_new_inner;
    }

    PetscGetFlops(&flopsA);
    KSPSolve(ksp_inner, t, u);         /* Solve, then restore default tolerance and initial guess */
    PetscGetFlops(&flopsB);
    bsscrp_self->solver->stats.velocity_backsolve_flops=(double)(flopsB-flopsA);
    a11SingleSolveTime = MPI_Wtime() - a11SingleSolveTime;              /* ------------------ Final V Solve */
    bsscrp_self->solver->stats.velocity_backsolve_time=a11SingleSolveTime;

    flg=0;
    PetscOptionsGetString( PETSC_NULL, "-solutiondumpdir", name, PETSC_MAX_PATH_LEN-1, &flg );
    if(flg){
        sprintf(str,"%s/",name); sprintf(matname,"p%s",suffix);
        bsscr_dirwriteVec( p, matname,str, "Writing p vector in al Solver");
        sprintf(str,"%s/",name); sprintf(matname,"u%s",suffix);
        bsscr_dirwriteVec( u, matname,str, "Writing u vector in al Solver");
        sprintf(str,"%s/",name); sprintf(matname,"h_hat%s",suffix);
        bsscr_dirwriteVec( h_hat, matname,str, "Writing h_hat vector in al Solver");

    }

    found = PETSC_FALSE;
    restorek = PETSC_FALSE;
    PetscOptionsGetTruth( PETSC_NULL, "-restore_K_after_solve", &restorek, &found);
    if(penaltyNumber > 1e-10 && bsscrp_self->k2type){
        if(restorek){
            penaltyNumber = -penaltyNumber;
            ierr=MatAXPY(K,penaltyNumber,K2,DIFFERENT_NONZERO_PATTERN);CHKERRQ(ierr);/* Computes K = penaltyNumber*K2 + K */
            KisJustK=PETSC_TRUE;          
        }      
    }
    /***************************************************************************************************************/
    /***************************************************************************************************************/
    /******     SOLUTION SUMMARY      ******************************************************************************/
    bsscr_summary(bsscrp_self,ksp_S,ksp_inner,K,K2,D,G,C,u,p,f,h,t,penaltyNumber,KisJustK, mgSetupTime, scrSolveTime, a11SingleSolveTime);
    //bsscr_summary(bsscrp_self,ksp_S,ksp_inner,K,Korig,K2,D,G,C,u,p,f,h,t,penaltyNumber,KisJustK, mgSetupTime, scrSolveTime, a11SingleSolveTime);
    /***************************************************************************************************************/
    /***************************************************************************************************************/
    Stg_VecDestroy(&t );
    Stg_KSPDestroy(&ksp_S );
    Stg_VecDestroy(&h_hat );
    Stg_MatDestroy(&S );//This will destroy ksp_inner: also.. pcInner == pc_MG and is destroyed when ksp_inner is 
    been_here = 1;
    PetscFunctionReturn(0);
}
Ejemplo n.º 25
0
static int TaoSolve_BNLS(TAO_SOLVER tao, void*solver){

  TAO_BNLS *bnls = (TAO_BNLS *)solver;
  int info;
  TaoInt lsflag,iter=0;
  TaoTerminateReason reason=TAO_CONTINUE_ITERATING;
  double f,f_full,gnorm,gdx,stepsize=1.0;
  TaoTruth success;
  TaoVec *XU, *XL;
  TaoVec *X,  *G=bnls->G, *PG=bnls->PG;
  TaoVec *R=bnls->R, *DXFree=bnls->DXFree;
  TaoVec *DX=bnls->DX, *Work=bnls->Work;
  TaoMat *H, *Hsub=bnls->Hsub;
  TaoIndexSet *FreeVariables = bnls->FreeVariables;

  TaoFunctionBegin;

  /* Check if upper bound greater than lower bound. */
  info = TaoGetSolution(tao,&X);CHKERRQ(info); bnls->X=X;
  info = TaoGetVariableBounds(tao,&XL,&XU);CHKERRQ(info);
  info = TaoEvaluateVariableBounds(tao,XL,XU); CHKERRQ(info);
  info = TaoGetHessian(tao,&H);CHKERRQ(info); bnls->H=H;

  /*   Project the current point onto the feasible set */
  info = X->Median(XL,X,XU); CHKERRQ(info);
  
  TaoLinearSolver *tls;
  // Modify the linear solver to a conjugate gradient method
  info = TaoGetLinearSolver(tao, &tls); CHKERRQ(info);
  TaoLinearSolverPetsc *pls;
  pls  = dynamic_cast <TaoLinearSolverPetsc *> (tls);
  // set trust radius to zero 
  // PETSc ignores this case and should return the negative curvature direction
  // at its current default length
  pls->SetTrustRadius(0.0);

  if(!bnls->M) bnls->M = new TaoLMVMMat(X);
  TaoLMVMMat *M = bnls->M;
  KSP pksp = pls->GetKSP();
  // we will want to provide an initial guess in case neg curvature on the first iteration
  info = KSPSetInitialGuessNonzero(pksp,PETSC_TRUE); CHKERRQ(info);
  PC ppc;
  // Modify the preconditioner to use the bfgs approximation
  info = KSPGetPC(pksp, &ppc); CHKERRQ(info);
  PetscTruth  BFGSPreconditioner=PETSC_FALSE;// debug flag
  info = PetscOptionsGetTruth(PETSC_NULL,"-bnls_pc_bfgs",
                              &BFGSPreconditioner,PETSC_NULL); CHKERRQ(info);
  if( BFGSPreconditioner) 
    { 
     info=PetscInfo(tao,"TaoSolve_BNLS:  using bfgs preconditioner\n");
     info = KSPSetNormType(pksp, KSP_NORM_PRECONDITIONED); CHKERRQ(info);
     info = PCSetType(ppc, PCSHELL); CHKERRQ(info);
     info = PCShellSetName(ppc, "bfgs"); CHKERRQ(info);
     info = PCShellSetContext(ppc, M); CHKERRQ(info);
     info = PCShellSetApply(ppc, bfgs_apply); CHKERRQ(info);
    }
  else
    {// default to none
     info=PetscInfo(tao,"TaoSolve_BNLS:  using no preconditioner\n");
     info = PCSetType(ppc, PCNONE); CHKERRQ(info);
    }

  info = TaoComputeMeritFunctionGradient(tao,X,&f,G);CHKERRQ(info);
  info = PG->BoundGradientProjection(G,XL,X,XU);CHKERRQ(info);
  info = PG->Norm2(&gnorm); CHKERRQ(info);
  
  // Set initial scaling for the function
  if (f != 0.0) {
    info = M->SetDelta(2.0 * TaoAbsDouble(f) / (gnorm*gnorm)); CHKERRQ(info);
  }
  else {
    info = M->SetDelta(2.0 / (gnorm*gnorm)); CHKERRQ(info);
  }
  
  while (reason==TAO_CONTINUE_ITERATING){
    
    /* Project the gradient and calculate the norm */
    info = PG->BoundGradientProjection(G,XL,X,XU);CHKERRQ(info);
    info = PG->Norm2(&gnorm); CHKERRQ(info);
    
    info = M->Update(X, PG); CHKERRQ(info);

    PetscScalar ewAtol  = PetscMin(0.5,gnorm)*gnorm;
    info = KSPSetTolerances(pksp,PETSC_DEFAULT,ewAtol,
                            PETSC_DEFAULT, PETSC_DEFAULT); CHKERRQ(info);
    info=PetscInfo1(tao,"TaoSolve_BNLS: gnorm =%g\n",gnorm);
    pksp->printreason = PETSC_TRUE;
    info = KSPView(pksp,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(info);
    M->View();

    info = TaoMonitor(tao,iter++,f,gnorm,0.0,stepsize,&reason);
    CHKERRQ(info);
    if (reason!=TAO_CONTINUE_ITERATING) break;

    info = FreeVariables->WhichEqual(PG,G); CHKERRQ(info);

    info = TaoComputeHessian(tao,X,H);CHKERRQ(info);
    
    /* Create a reduced linear system */

    info = R->SetReducedVec(G,FreeVariables);CHKERRQ(info);
    info = R->Negate();CHKERRQ(info);

    /* Use gradient as initial guess */
    PetscTruth  UseGradientIG=PETSC_FALSE;// debug flag
    info = PetscOptionsGetTruth(PETSC_NULL,"-bnls_use_gradient_ig",
                                &UseGradientIG,PETSC_NULL); CHKERRQ(info);
    if(UseGradientIG)
      info = DX->CopyFrom(G);
    else
     {
      info=PetscInfo(tao,"TaoSolve_BNLS: use bfgs init guess \n");
      info = M->Solve(G, DX, &success);
     }
    CHKERRQ(info);
    info = DXFree->SetReducedVec(DX,FreeVariables);CHKERRQ(info);
    info = DXFree->Negate(); CHKERRQ(info);
    
    info = Hsub->SetReducedMatrix(H,FreeVariables,FreeVariables);CHKERRQ(info);

    bnls->gamma_factor /= 2;
    success = TAO_FALSE;

    while (success==TAO_FALSE) {
      
      /* Approximately solve the reduced linear system */
      info = TaoPreLinearSolve(tao,Hsub);CHKERRQ(info);
      info = TaoLinearSolve(tao,Hsub,R,DXFree,&success);CHKERRQ(info);

      info = DX->SetToZero(); CHKERRQ(info);
      info = DX->ReducedXPY(DXFree,FreeVariables);CHKERRQ(info);
      info = DX->Dot(G,&gdx); CHKERRQ(info);

      if (gdx>=0 || success==TAO_FALSE) { /* use bfgs direction */
        info = M->Solve(G, DX, &success); CHKERRQ(info);
        info = DX->BoundGradientProjection(DX,XL,X,XU); CHKERRQ(info);
        info = DX->Negate(); CHKERRQ(info);
        // Check for success (descent direction)
        info = DX->Dot(G,&gdx); CHKERRQ(info);
        if (gdx >= 0) {
          // Step is not descent or solve was not successful
          // Use steepest descent direction (scaled)
          if (f != 0.0) {
            info = M->SetDelta(2.0 * TaoAbsDouble(f) / (gnorm*gnorm)); CHKERRQ(info);
          }
          else {
            info = M->SetDelta(2.0 / (gnorm*gnorm)); CHKERRQ(info);
          }
          info = M->Reset(); CHKERRQ(info);
          info = M->Update(X, G); CHKERRQ(info);
          info = DX->CopyFrom(G);
          info = DX->Negate(); CHKERRQ(info);
          info = DX->Dot(G,&gdx); CHKERRQ(info);
          info=PetscInfo1(tao,"LMVM Solve Fail use steepest descent, gdx %22.12e \n",gdx);
        } 
        else {
          info=PetscInfo1(tao,"Newton Solve Fail use BFGS direction, gdx %22.12e \n",gdx);
        } 
	success = TAO_TRUE;
//        bnls->gamma_factor *= 2; 
//        bnls->gamma = bnls->gamma_factor*(gnorm); 
//#if !defined(PETSC_USE_COMPLEX)
//        info=PetscInfo2(tao,"TaoSolve_NLS:  modify diagonal (assume same nonzero structure), gamma_factor=%g, gamma=%g\n",bnls->gamma_factor,bnls->gamma);
//	CHKERRQ(info);
//#else
//        info=PetscInfo3(tao,"TaoSolve_NLS:  modify diagonal (asuume same nonzero structure), gamma_factor=%g, gamma=%g, gdx %22.12e \n",
//	     bnls->gamma_factor,PetscReal(bnls->gamma),gdx);CHKERRQ(info);
//#endif
//        info = Hsub->ShiftDiagonal(bnls->gamma);CHKERRQ(info);
//        if (f != 0.0) {
//          info = M->SetDelta(2.0 * TaoAbsDouble(f) / (gnorm*gnorm)); CHKERRQ(info);
//        }
//        else {
//          info = M->SetDelta(2.0 / (gnorm*gnorm)); CHKERRQ(info);
//        }
//        info = M->Reset(); CHKERRQ(info);
//        info = M->Update(X, G); CHKERRQ(info);
//        success = TAO_FALSE;
      } else {
        info=PetscInfo1(tao,"Newton Solve is descent direction, gdx %22.12e \n",gdx);
	success = TAO_TRUE;
      }

    }
    
    stepsize=1.0;	
    info = TaoLineSearchApply(tao,X,G,DX,Work,
			      &f,&f_full,&stepsize,&lsflag);
    CHKERRQ(info);

    
  }  /* END MAIN LOOP  */

  TaoFunctionReturn(0);
}
Ejemplo n.º 26
0
void bsscr_summary(KSP_BSSCR * bsscrp_self, KSP ksp_S, KSP ksp_inner,
		   Mat K,Mat K2,Mat D,Mat G,Mat C,Vec u,Vec p,Vec f,Vec h,Vec t,
		   double penaltyNumber,PetscTruth KisJustK,double mgSetupTime,double scrSolveTime,double a11SingleSolveTime){
    PetscTruth flg, found;
    PetscInt   uSize, pSize, lmax, lmin, iterations;
    PetscReal  rNorm, fNorm, uNorm, uNormInf, pNorm, pNormInf, p_sum, min, max;
    Vec q, qq, t2, t3;
    double solutionAnalysisTime;

      PetscPrintf( PETSC_COMM_WORLD,  "\n\nSCR Solver Summary:\n\n");
      if(bsscrp_self->mg)
	    PetscPrintf( PETSC_COMM_WORLD, "  Multigrid setup:        = %.4g secs \n", mgSetupTime);

      KSPGetIterationNumber( ksp_S, &iterations);
      bsscrp_self->solver->stats.pressure_its = iterations;
      PetscPrintf( PETSC_COMM_WORLD,     "  Pressure Solve:         = %.4g secs / %d its\n", scrSolveTime, iterations);
      KSPGetIterationNumber( ksp_inner, &iterations);
      bsscrp_self->solver->stats.velocity_backsolve_its = iterations;
      PetscPrintf( PETSC_COMM_WORLD,     "  Final V Solve:          = %.4g secs / %d its\n\n", a11SingleSolveTime, iterations);

      /***************************************************************************************************************/

      flg = PETSC_FALSE; /* Off by default */
	  PetscOptionsGetTruth( PETSC_NULL, "-scr_ksp_solution_summary", &flg, &found );

      if(flg) {
	    PetscScalar KuNorm;
	    solutionAnalysisTime = MPI_Wtime();
	    VecGetSize( u, &uSize );
	    VecGetSize( p, &pSize );
	    VecDuplicate( u, &t2 );
	    VecDuplicate( u, &t3 );
	    MatMult( K, u, t3); VecNorm( t3, NORM_2, &KuNorm );
	    double angle, kdot;
	    if(penaltyNumber > 1e-10){/* should change this to ifK2built maybe */
          MatMult( K2, u, t2); VecNorm( t2, NORM_2, &rNorm );
          VecDot(t2,t3,&kdot);
          angle = (kdot/(rNorm*KuNorm));
          PetscPrintf( PETSC_COMM_WORLD,  "  <K u, K2 u>/(|K u| |K2 u|)    = %.6e\n", angle);
	    }
	    VecNorm( t, NORM_2, &rNorm ); /* t = f- G p  should be the formal residual vector, calculated on line 267 in auglag-driver-DGTGD.c */
	    VecDot(t3,t,&kdot);
	    angle = (kdot/(rNorm*KuNorm));
            PetscPrintf( PETSC_COMM_WORLD,  "  <K u, (f-G p)>/(|K u| |f- G p|)    = %.6e\n\n", angle);

	    MatMult( K, u, t2); VecNorm(t2, NORM_2, &KuNorm);
	    VecAYPX( t2, -1.0, t ); /* t2 <- -t2 + t  : t = f- G p  should be the formal residual vector, calculated on line 267 in auglag-driver-DGTGD.c*/
	    VecNorm( t2, NORM_2, &rNorm );
	    VecNorm( f,  NORM_2, &fNorm );
	    if(KisJustK){
          PetscPrintf( PETSC_COMM_WORLD,"Velocity back-solve with original K matrix\n");
          PetscPrintf( PETSC_COMM_WORLD,"Solved    K u = G p -f\n");
          PetscPrintf( PETSC_COMM_WORLD,"Residual with original K matrix\n");
          PetscPrintf( PETSC_COMM_WORLD,  "  |f - K u - G p|                       = %.12e\n", rNorm);
          PetscPrintf( PETSC_COMM_WORLD,  "  |f - K u - G p|/|f|                   = %.12e\n", rNorm/fNorm);
          if(penaltyNumber > 1e-10){/* means the restore_K flag was used */
            //if(K2 && f2){
            MatAXPY(K,penaltyNumber,K2,DIFFERENT_NONZERO_PATTERN);/* Computes K = penaltyNumber*K2 + K */
            //VecAXPY(f,penaltyNumber,f2); /* f = penaltyNumber*f2 + f */
            KisJustK=PETSC_FALSE;
            MatMult( K, u, t2);
            MatMult( G, p, t);
            VecAYPX( t, -1.0, f ); /* t <- -t + f */
            VecAYPX( t2, -1.0, t ); /* t2 <- -t2 + t */
            VecNorm( t2, NORM_2, &rNorm );
            PetscPrintf( PETSC_COMM_WORLD,"Residual with K+K2 matrix and f rhs vector\n");
            PetscPrintf( PETSC_COMM_WORLD,  "  |(f) - (K + K2) u - G p|         = %.12e\n", rNorm);
            //}
          }
	    }
	    else{
          PetscPrintf( PETSC_COMM_WORLD,"Velocity back-solve with K+K2 matrix\n");
          PetscPrintf( PETSC_COMM_WORLD,"Solved    (K + K2) u = G p - (f)\n");
          PetscPrintf( PETSC_COMM_WORLD,"Residual with K+K2 matrix and f rhs vector\n");
          PetscPrintf( PETSC_COMM_WORLD,  "  |(f) - (K + K2) u - G p|         = %.12e\n", rNorm);
          PetscReal KK2Norm,KK2Normf;
          MatNorm(K,NORM_1,&KK2Norm);
          MatNorm(K,NORM_FROBENIUS,&KK2Normf);
          penaltyNumber = -penaltyNumber;
          MatAXPY(K,penaltyNumber,K2,DIFFERENT_NONZERO_PATTERN);/* Computes K = penaltyNumber*K2 + K */
          //VecAXPY(f,penaltyNumber,f2); /* f = penaltyNumber*f2 + f */
          KisJustK=PETSC_FALSE;
          MatMult( K, u, t2);    /* t2 = K*u  */
          MatMult( G, p, t);     /* t  = G*p  */
          VecAYPX( t, -1.0, f ); /* t <- f - t ; t = f - G*p  */
          VecAYPX( t2, -1.0, t ); /* t2 <- t - t2; t2 = f - G*p - K*u  */
          VecNorm( t2, NORM_2, &rNorm );
          PetscPrintf( PETSC_COMM_WORLD,"Residual with original K matrix\n");
          PetscPrintf( PETSC_COMM_WORLD,  "  |f - K u - G p|                       = %.12e\n", rNorm);
          PetscPrintf( PETSC_COMM_WORLD,  "  |f - K u - G p|/|f|                   = %.12e\n", rNorm/fNorm);
          PetscReal KNorm, K2Norm;
          MatNorm(K,NORM_1,&KNorm);	  MatNorm(K2,NORM_1,&K2Norm);
          PetscPrintf( PETSC_COMM_WORLD,"K and K2 norm_1    %.12e %.12e   ratio %.12e\n",KNorm,K2Norm,K2Norm/KNorm);
          MatNorm(K,NORM_INFINITY,&KNorm);  MatNorm(K2,NORM_INFINITY,&K2Norm);
          PetscPrintf( PETSC_COMM_WORLD,"K and K2 norm_inf  %.12e %.12e   ratio %.12e\n",KNorm,K2Norm,K2Norm/KNorm);
          MatNorm(K,NORM_FROBENIUS,&KNorm); MatNorm(K2,NORM_FROBENIUS,&K2Norm);
          PetscPrintf( PETSC_COMM_WORLD,"K and K2 norm_frob %.12e %.12e   ratio %.12e\n",KNorm,K2Norm,K2Norm/KNorm);
          PetscPrintf( PETSC_COMM_WORLD,"K+r*K2 norm_1    %.12e\n",KK2Norm);
          PetscPrintf( PETSC_COMM_WORLD,"K+r*K2 norm_frob %.12e\n",KK2Normf);
          penaltyNumber = -penaltyNumber;
          MatAXPY(K,penaltyNumber,K2,DIFFERENT_NONZERO_PATTERN);/* Computes K = penaltyNumber*K2 + K */
        }
        PetscPrintf( PETSC_COMM_WORLD,"\n");
        PetscPrintf( PETSC_COMM_WORLD,  "  |K u|    = %.12e\n", KuNorm);
        if(penaltyNumber > 1e-10){
          MatMult( K2, u, t2); VecNorm( t2, NORM_2, &rNorm );
          PetscPrintf( PETSC_COMM_WORLD,  "  |K2 u|   = %.12e\n", rNorm);
          PetscPrintf( PETSC_COMM_WORLD,"\n");
	    }



	    VecDuplicate( p, &q );
	    MatMult( D, u, q );   /* q = G'*u = D*u */
	    VecNorm( u, NORM_2, &uNorm );
	    VecNorm( q, NORM_2, &rNorm );

	    PetscPrintf( PETSC_COMM_WORLD,  "  |G^T u|_2               = %.6e\n", rNorm );
	    PetscPrintf( PETSC_COMM_WORLD,  "  |G^T u|_2/|u|_2         = %.6e\n", sqrt( (double) uSize / (double) pSize ) * rNorm / uNorm);

	    VecDuplicate( p, &qq );
	    MatMultTranspose( G, u, qq );
	    VecNorm( qq, NORM_2, &rNorm );
	    PetscPrintf( PETSC_COMM_WORLD,  "  |G^T u|/|u|             = %.8e\n", rNorm/uNorm ); /* to compare directly with Uzawa */

	    VecNorm( q, NORM_INFINITY, &rNorm );
	    PetscPrintf( PETSC_COMM_WORLD,  "  |G^T u|_infty/|u|_2     = %.6e\n", sqrt( (double) uSize ) * rNorm / uNorm);
	    /* create G'*u+C*p-h to check on this constraint */
	    /* already have q = D*u */
	    VecZeroEntries(qq);
	    if(C){
          MatMult( C, p, qq );
	    }
	    VecAYPX( q, 1.0, qq ); /* q = q+qq; G'*u + C*p*/
	    VecAXPY( q, -1.0, h ); /* q = q-h;  G'*u + C*p - h  */
	    VecNorm( q, NORM_2, &rNorm );
	    PetscPrintf( PETSC_COMM_WORLD,  "  |G^T u + C p - h|        = %.8e  :constraint\n", rNorm );

	    VecNorm( u, NORM_INFINITY, &uNormInf );
	    VecNorm( u, NORM_2,        &uNorm );
	    VecGetSize( u, &uSize );

	    VecNorm( p, NORM_INFINITY, &pNormInf );
	    VecNorm( p, NORM_2,        &pNorm );

	    PetscPrintf( PETSC_COMM_WORLD,  "  |u|_{\\infty}  = %.6e , u_rms = %.6e\n",
	                 uNormInf, uNorm / sqrt( (double) uSize ) );

	    PetscPrintf( PETSC_COMM_WORLD,  "  |p|_{\\infty}  = %.6e , p_rms = %.6e\n",
	                 pNormInf, pNorm / sqrt( (double) pSize ) );

	    VecMax( u, &lmax, &max );
	    VecMin( u, &lmin, &min );
	    PetscPrintf( PETSC_COMM_WORLD,  "  min/max(u)    = %.6e [%d] / %.6e [%d]\n",min,lmin,max,lmax);
        bsscrp_self->solver->stats.vmin = min;
        bsscrp_self->solver->stats.vmax = max;

	    VecMax( p, &lmax, &max );
	    VecMin( p, &lmin, &min );
	    PetscPrintf( PETSC_COMM_WORLD,  "  min/max(p)    = %.6e [%d] / %.6e [%d]\n",min,lmin,max,lmax);
        bsscrp_self->solver->stats.pmin = min;
        bsscrp_self->solver->stats.pmax = max;

	    VecSum( p, &p_sum );
	    PetscPrintf( PETSC_COMM_WORLD,  "  \\sum_i p_i    = %.6e \n", p_sum );
        bsscrp_self->solver->stats.p_sum=p_sum;

	    solutionAnalysisTime = MPI_Wtime() - solutionAnalysisTime;

	    PetscPrintf( PETSC_COMM_WORLD,  "\n  Time for this analysis  = %.4g secs\n\n",solutionAnalysisTime);

	    Stg_VecDestroy(&t2 );
	    Stg_VecDestroy(&t3 );
	    Stg_VecDestroy(&q );
	    Stg_VecDestroy(&qq );
      }

}