Ejemplo n.º 1
0
static PyObject *
PyUFunc_Accumulate(PyUFuncObject *ufunc, PyArrayObject *arr, PyArrayObject *out,
                   int axis, int otype)
{
    PyArrayObject *op[2];
    PyArray_Descr *op_dtypes[2] = {NULL, NULL};
    int op_axes_arrays[2][NPY_MAXDIMS];
    int *op_axes[2] = {op_axes_arrays[0], op_axes_arrays[1]};
    npy_uint32 op_flags[2];
    int idim, ndim, otype_final;
    int needs_api, need_outer_iterator;

    NpyIter *iter = NULL, *iter_inner = NULL;

    /* The selected inner loop */
    PyUFuncGenericFunction innerloop = NULL;
    void *innerloopdata = NULL;

    const char *ufunc_name = ufunc->name ? ufunc->name : "(unknown)";

    /* These parameters come from extobj= or from a TLS global */
    int buffersize = 0, errormask = 0;

    NPY_BEGIN_THREADS_DEF;

    NPY_UF_DBG_PRINT1("\nEvaluating ufunc %s.accumulate\n", ufunc_name);

#if 0
    printf("Doing %s.accumulate on array with dtype :  ", ufunc_name);
    PyObject_Print((PyObject *)PyArray_DESCR(arr), stdout, 0);
    printf("\n");
#endif

    if (_get_bufsize_errmask(NULL, "accumulate", &buffersize, &errormask) < 0) {
        return NULL;
    }

    /* Take a reference to out for later returning */
    Py_XINCREF(out);

    otype_final = otype;
    if (get_binary_op_function(ufunc, &otype_final,
                                &innerloop, &innerloopdata) < 0) {
        PyArray_Descr *dtype = PyArray_DescrFromType(otype);
        PyErr_Format(PyExc_ValueError,
                     "could not find a matching type for %s.accumulate, "
                     "requested type has type code '%c'",
                            ufunc_name, dtype ? dtype->type : '-');
        Py_XDECREF(dtype);
        goto fail;
    }

    ndim = PyArray_NDIM(arr);

    /*
     * Set up the output data type, using the input's exact
     * data type if the type number didn't change to preserve
     * metadata
     */
    if (PyArray_DESCR(arr)->type_num == otype_final) {
        if (PyArray_ISNBO(PyArray_DESCR(arr)->byteorder)) {
            op_dtypes[0] = PyArray_DESCR(arr);
            Py_INCREF(op_dtypes[0]);
        }
        else {
            op_dtypes[0] = PyArray_DescrNewByteorder(PyArray_DESCR(arr),
                                                    NPY_NATIVE);
        }
    }
    else {
        op_dtypes[0] = PyArray_DescrFromType(otype_final);
    }
    if (op_dtypes[0] == NULL) {
        goto fail;
    }

#if NPY_UF_DBG_TRACING
    printf("Found %s.accumulate inner loop with dtype :  ", ufunc_name);
    PyObject_Print((PyObject *)op_dtypes[0], stdout, 0);
    printf("\n");
#endif

    /* Set up the op_axes for the outer loop */
    for (idim = 0; idim < ndim; ++idim) {
        op_axes_arrays[0][idim] = idim;
        op_axes_arrays[1][idim] = idim;
    }

    /* The per-operand flags for the outer loop */
    op_flags[0] = NPY_ITER_READWRITE |
                  NPY_ITER_NO_BROADCAST |
                  NPY_ITER_ALLOCATE |
                  NPY_ITER_NO_SUBTYPE;
    op_flags[1] = NPY_ITER_READONLY;

    op[0] = out;
    op[1] = arr;

    need_outer_iterator = (ndim > 1);
    /* We can't buffer, so must do UPDATEIFCOPY */
    if (!PyArray_ISALIGNED(arr) || (out && !PyArray_ISALIGNED(out)) ||
            !PyArray_EquivTypes(op_dtypes[0], PyArray_DESCR(arr)) ||
            (out &&
             !PyArray_EquivTypes(op_dtypes[0], PyArray_DESCR(out)))) {
        need_outer_iterator = 1;
    }

    if (need_outer_iterator) {
        int ndim_iter = 0;
        npy_uint32 flags = NPY_ITER_ZEROSIZE_OK|
                           NPY_ITER_REFS_OK;
        PyArray_Descr **op_dtypes_param = NULL;

        /*
         * The way accumulate is set up, we can't do buffering,
         * so make a copy instead when necessary.
         */
        ndim_iter = ndim;
        flags |= NPY_ITER_MULTI_INDEX;
        /* Add some more flags */
        op_flags[0] |= NPY_ITER_UPDATEIFCOPY|NPY_ITER_ALIGNED;
        op_flags[1] |= NPY_ITER_COPY|NPY_ITER_ALIGNED;
        op_dtypes_param = op_dtypes;
        op_dtypes[1] = op_dtypes[0];
        NPY_UF_DBG_PRINT("Allocating outer iterator\n");
        iter = NpyIter_AdvancedNew(2, op, flags,
                                   NPY_KEEPORDER, NPY_UNSAFE_CASTING,
                                   op_flags,
                                   op_dtypes_param,
                                   ndim_iter, op_axes, NULL, 0);
        if (iter == NULL) {
            goto fail;
        }

        /* In case COPY or UPDATEIFCOPY occurred */
        op[0] = NpyIter_GetOperandArray(iter)[0];
        op[1] = NpyIter_GetOperandArray(iter)[1];

        if (PyArray_SIZE(op[0]) == 0) {
            if (out == NULL) {
                out = op[0];
                Py_INCREF(out);
            }
            goto finish;
        }

        if (NpyIter_RemoveAxis(iter, axis) != NPY_SUCCEED) {
            goto fail;
        }
        if (NpyIter_RemoveMultiIndex(iter) != NPY_SUCCEED) {
            goto fail;
        }
    }

    /* Get the output */
    if (out == NULL) {
        if (iter) {
            op[0] = out = NpyIter_GetOperandArray(iter)[0];
            Py_INCREF(out);
        }
        else {
            PyArray_Descr *dtype = op_dtypes[0];
            Py_INCREF(dtype);
            op[0] = out = (PyArrayObject *)PyArray_NewFromDescr(
                                    &PyArray_Type, dtype,
                                    ndim, PyArray_DIMS(op[1]), NULL, NULL,
                                    0, NULL);
            if (out == NULL) {
                goto fail;
            }

        }
    }

    /*
     * If the reduction axis has size zero, either return the reduction
     * unit for UFUNC_REDUCE, or return the zero-sized output array
     * for UFUNC_ACCUMULATE.
     */
    if (PyArray_DIM(op[1], axis) == 0) {
        goto finish;
    }
    else if (PyArray_SIZE(op[0]) == 0) {
        goto finish;
    }

    if (iter && NpyIter_GetIterSize(iter) != 0) {
        char *dataptr_copy[3];
        npy_intp stride_copy[3];
        npy_intp count_m1, stride0, stride1;

        NpyIter_IterNextFunc *iternext;
        char **dataptr;

        int itemsize = op_dtypes[0]->elsize;

        /* Get the variables needed for the loop */
        iternext = NpyIter_GetIterNext(iter, NULL);
        if (iternext == NULL) {
            goto fail;
        }
        dataptr = NpyIter_GetDataPtrArray(iter);


        /* Execute the loop with just the outer iterator */
        count_m1 = PyArray_DIM(op[1], axis)-1;
        stride0 = 0, stride1 = PyArray_STRIDE(op[1], axis);

        NPY_UF_DBG_PRINT("UFunc: Reduce loop with just outer iterator\n");

        stride0 = PyArray_STRIDE(op[0], axis);

        stride_copy[0] = stride0;
        stride_copy[1] = stride1;
        stride_copy[2] = stride0;

        needs_api = NpyIter_IterationNeedsAPI(iter);

        NPY_BEGIN_THREADS_NDITER(iter);

        do {
            dataptr_copy[0] = dataptr[0];
            dataptr_copy[1] = dataptr[1];
            dataptr_copy[2] = dataptr[0];

            /*
             * Copy the first element to start the reduction.
             *
             * Output (dataptr[0]) and input (dataptr[1]) may point to
             * the same memory, e.g. np.add.accumulate(a, out=a).
             */
            if (otype == NPY_OBJECT) {
                /*
                 * Incref before decref to avoid the possibility of the
                 * reference count being zero temporarily.
                 */
                Py_XINCREF(*(PyObject **)dataptr_copy[1]);
                Py_XDECREF(*(PyObject **)dataptr_copy[0]);
                *(PyObject **)dataptr_copy[0] =
                                    *(PyObject **)dataptr_copy[1];
            }
            else {
                memmove(dataptr_copy[0], dataptr_copy[1], itemsize);
            }

            if (count_m1 > 0) {
                /* Turn the two items into three for the inner loop */
                dataptr_copy[1] += stride1;
                dataptr_copy[2] += stride0;
                NPY_UF_DBG_PRINT1("iterator loop count %d\n",
                                                (int)count_m1);
                innerloop(dataptr_copy, &count_m1,
                            stride_copy, innerloopdata);
            }
        } while (iternext(iter));

        NPY_END_THREADS;
    }
    else if (iter == NULL) {
        char *dataptr_copy[3];
        npy_intp stride_copy[3];

        int itemsize = op_dtypes[0]->elsize;

        /* Execute the loop with no iterators */
        npy_intp count = PyArray_DIM(op[1], axis);
        npy_intp stride0 = 0, stride1 = PyArray_STRIDE(op[1], axis);

        NPY_UF_DBG_PRINT("UFunc: Reduce loop with no iterators\n");

        if (PyArray_NDIM(op[0]) != PyArray_NDIM(op[1]) ||
                !PyArray_CompareLists(PyArray_DIMS(op[0]),
                                      PyArray_DIMS(op[1]),
                                      PyArray_NDIM(op[0]))) {
            PyErr_SetString(PyExc_ValueError,
                    "provided out is the wrong size "
                    "for the reduction");
            goto fail;
        }
        stride0 = PyArray_STRIDE(op[0], axis);

        stride_copy[0] = stride0;
        stride_copy[1] = stride1;
        stride_copy[2] = stride0;

        /* Turn the two items into three for the inner loop */
        dataptr_copy[0] = PyArray_BYTES(op[0]);
        dataptr_copy[1] = PyArray_BYTES(op[1]);
        dataptr_copy[2] = PyArray_BYTES(op[0]);

        /*
         * Copy the first element to start the reduction.
         *
         * Output (dataptr[0]) and input (dataptr[1]) may point to the
         * same memory, e.g. np.add.accumulate(a, out=a).
         */
        if (otype == NPY_OBJECT) {
            /*
             * Incref before decref to avoid the possibility of the
             * reference count being zero temporarily.
             */
            Py_XINCREF(*(PyObject **)dataptr_copy[1]);
            Py_XDECREF(*(PyObject **)dataptr_copy[0]);
            *(PyObject **)dataptr_copy[0] =
                                *(PyObject **)dataptr_copy[1];
        }
        else {
            memmove(dataptr_copy[0], dataptr_copy[1], itemsize);
        }

        if (count > 1) {
            --count;
            dataptr_copy[1] += stride1;
            dataptr_copy[2] += stride0;

            NPY_UF_DBG_PRINT1("iterator loop count %d\n", (int)count);

            needs_api = PyDataType_REFCHK(op_dtypes[0]);

            if (!needs_api) {
                NPY_BEGIN_THREADS_THRESHOLDED(count);
            }

            innerloop(dataptr_copy, &count,
                        stride_copy, innerloopdata);

            NPY_END_THREADS;
        }
    }

finish:
    Py_XDECREF(op_dtypes[0]);
    NpyIter_Deallocate(iter);
    NpyIter_Deallocate(iter_inner);

    return (PyObject *)out;

fail:
    Py_XDECREF(out);
    Py_XDECREF(op_dtypes[0]);

    NpyIter_Deallocate(iter);
    NpyIter_Deallocate(iter_inner);

    return NULL;
}
Ejemplo n.º 2
0
static int
_descriptor_from_pep3118_format_fast(char *s, PyObject **result)
{
    PyArray_Descr *descr;

    int is_standard_size = 0;
    char byte_order = '=';
    int is_complex = 0;

    int type_num = NPY_BYTE;
    int item_seen = 0;

    for (; *s != '\0'; ++s) {
        is_complex = 0;
        switch (*s) {
        case '@':
        case '^':
            /* ^ means no alignment; doesn't matter for a single element */
            byte_order = '=';
            is_standard_size = 0;
            break;
        case '<':
            byte_order = '<';
            is_standard_size = 1;
            break;
        case '>':
        case '!':
            byte_order = '>';
            is_standard_size = 1;
            break;
        case '=':
            byte_order = '=';
            is_standard_size = 1;
            break;
        case 'Z':
            is_complex = 1;
            ++s;
        default:
            if (item_seen) {
                /* Not a single-element data type */
                return 0;
            }
            type_num = _pep3118_letter_to_type(*s, !is_standard_size,
                                               is_complex);
            if (type_num < 0) {
                /* Something unknown */
                return 0;
            }
            item_seen = 1;
            break;
        }
    }

    if (!item_seen) {
        return 0;
    }

    descr = PyArray_DescrFromType(type_num);
    if (byte_order == '=') {
        *result = (PyObject*)descr;
    }
    else {
        *result = (PyObject*)PyArray_DescrNewByteorder(descr, byte_order);
        Py_DECREF(descr);
    }
    
    return 1;
}
Ejemplo n.º 3
0
/*NUMPY_API
 * Clip
 */
NPY_NO_EXPORT PyObject *
PyArray_Clip(PyArrayObject *self, PyObject *min, PyObject *max, PyArrayObject *out)
{
    PyArray_FastClipFunc *func;
    int outgood = 0, ingood = 0;
    PyArrayObject *maxa = NULL;
    PyArrayObject *mina = NULL;
    PyArrayObject *newout = NULL, *newin = NULL;
    PyArray_Descr *indescr = NULL, *newdescr = NULL;
    char *max_data, *min_data;
    PyObject *zero;

    /* Treat None the same as NULL */
    if (min == Py_None) {
        min = NULL;
    }
    if (max == Py_None) {
        max = NULL;
    }

    if ((max == NULL) && (min == NULL)) {
        PyErr_SetString(PyExc_ValueError,
                        "array_clip: must set either max or min");
        return NULL;
    }

    func = PyArray_DESCR(self)->f->fastclip;
    if (func == NULL
        || (min != NULL && !PyArray_CheckAnyScalar(min))
        || (max != NULL && !PyArray_CheckAnyScalar(max))
        || PyArray_ISBYTESWAPPED(self)
        || (out && PyArray_ISBYTESWAPPED(out))) {
        return _slow_array_clip(self, min, max, out);
    }
    /* Use the fast scalar clip function */

    /* First we need to figure out the correct type */
    if (min != NULL) {
        indescr = PyArray_DescrFromObject(min, NULL);
        if (indescr == NULL) {
            goto fail;
        }
    }
    if (max != NULL) {
        newdescr = PyArray_DescrFromObject(max, indescr);
        Py_XDECREF(indescr);
        indescr = NULL;
        if (newdescr == NULL) {
            goto fail;
        }
    }
    else {
        /* Steal the reference */
        newdescr = indescr;
        indescr = NULL;
    }


    /*
     * Use the scalar descriptor only if it is of a bigger
     * KIND than the input array (and then find the
     * type that matches both).
     */
    if (PyArray_ScalarKind(newdescr->type_num, NULL) >
        PyArray_ScalarKind(PyArray_DESCR(self)->type_num, NULL)) {
        indescr = PyArray_PromoteTypes(newdescr, PyArray_DESCR(self));
        if (indescr == NULL) {
            goto fail;
        }
        func = indescr->f->fastclip;
        if (func == NULL) {
            Py_DECREF(indescr);
            return _slow_array_clip(self, min, max, out);
        }
    }
    else {
        indescr = PyArray_DESCR(self);
        Py_INCREF(indescr);
    }
    Py_DECREF(newdescr);
    newdescr = NULL;

    if (!PyDataType_ISNOTSWAPPED(indescr)) {
        PyArray_Descr *descr2;
        descr2 = PyArray_DescrNewByteorder(indescr, '=');
        Py_DECREF(indescr);
        indescr = NULL;
        if (descr2 == NULL) {
            goto fail;
        }
        indescr = descr2;
    }

    /* Convert max to an array */
    if (max != NULL) {
        Py_INCREF(indescr);
        maxa = (PyArrayObject *)PyArray_FromAny(max, indescr, 0, 0,
                                 NPY_ARRAY_DEFAULT, NULL);
        if (maxa == NULL) {
            goto fail;
        }
    }

    /*
     * If we are unsigned, then make sure min is not < 0
     * This is to match the behavior of _slow_array_clip
     *
     * We allow min and max to go beyond the limits
     * for other data-types in which case they
     * are interpreted as their modular counterparts.
    */
    if (min != NULL) {
        if (PyArray_ISUNSIGNED(self)) {
            int cmp;
            zero = PyInt_FromLong(0);
            cmp = PyObject_RichCompareBool(min, zero, Py_LT);
            if (cmp == -1) {
                Py_DECREF(zero);
                goto fail;
            }
            if (cmp == 1) {
                min = zero;
            }
            else {
                Py_DECREF(zero);
                Py_INCREF(min);
            }
        }
        else {
            Py_INCREF(min);
        }

        /* Convert min to an array */
        Py_INCREF(indescr);
        mina = (PyArrayObject *)PyArray_FromAny(min, indescr, 0, 0,
                                 NPY_ARRAY_DEFAULT, NULL);
        Py_DECREF(min);
        if (mina == NULL) {
            goto fail;
        }
    }

    /*
     * Check to see if input is single-segment, aligned,
     * and in native byteorder
     */
    if (PyArray_ISONESEGMENT(self) &&
                            PyArray_CHKFLAGS(self, NPY_ARRAY_ALIGNED) &&
                            PyArray_ISNOTSWAPPED(self) &&
                            (PyArray_DESCR(self) == indescr)) {
        ingood = 1;
    }
    if (!ingood) {
        int flags;

        if (PyArray_ISFORTRAN(self)) {
            flags = NPY_ARRAY_FARRAY;
        }
        else {
            flags = NPY_ARRAY_CARRAY;
        }
        Py_INCREF(indescr);
        newin = (PyArrayObject *)PyArray_FromArray(self, indescr, flags);
        if (newin == NULL) {
            goto fail;
        }
    }
    else {
        newin = self;
        Py_INCREF(newin);
    }

    /*
     * At this point, newin is a single-segment, aligned, and correct
     * byte-order array of the correct type
     *
     * if ingood == 0, then it is a copy, otherwise,
     * it is the original input.
     */

    /*
     * If we have already made a copy of the data, then use
     * that as the output array
     */
    if (out == NULL && !ingood) {
        out = newin;
    }

    /*
     * Now, we know newin is a usable array for fastclip,
     * we need to make sure the output array is available
     * and usable
     */
    if (out == NULL) {
        Py_INCREF(indescr);
        out = (PyArrayObject*)PyArray_NewFromDescr(Py_TYPE(self),
                                            indescr, PyArray_NDIM(self),
                                            PyArray_DIMS(self),
                                            NULL, NULL,
                                            PyArray_ISFORTRAN(self),
                                            (PyObject *)self);
        if (out == NULL) {
            goto fail;
        }

        outgood = 1;
    }
    else Py_INCREF(out);
    /* Input is good at this point */
    if (out == newin) {
        outgood = 1;
    }


    /* make sure the shape of the output array is the same */
    if (!PyArray_SAMESHAPE(newin, out)) {
        PyErr_SetString(PyExc_ValueError, "clip: Output array must have the"
                        "same shape as the input.");
        goto fail;
    }

    if (!outgood && PyArray_EQUIVALENTLY_ITERABLE(
                            self, out, PyArray_TRIVIALLY_ITERABLE_OP_READ,
                            PyArray_TRIVIALLY_ITERABLE_OP_NOREAD) &&
                        PyArray_CHKFLAGS(out, NPY_ARRAY_ALIGNED) &&
                        PyArray_ISNOTSWAPPED(out) &&
                        PyArray_EquivTypes(PyArray_DESCR(out), indescr)) {
        outgood = 1;
    }

    /*
     * Do we still not have a suitable output array?
     * Create one, now. No matter why the array is not suitable a copy has
     * to be made. This may be just to avoid memory overlap though.
     */
    if (!outgood) {
        int oflags;
        if (PyArray_ISFORTRAN(self)) {
            oflags = NPY_ARRAY_FARRAY;
        }
        else {
            oflags = NPY_ARRAY_CARRAY;
        }
        oflags |= (NPY_ARRAY_WRITEBACKIFCOPY | NPY_ARRAY_FORCECAST |
                   NPY_ARRAY_ENSURECOPY);
        Py_INCREF(indescr);
        newout = (PyArrayObject*)PyArray_FromArray(out, indescr, oflags);
        if (newout == NULL) {
            goto fail;
        }
    }
    else {
        newout = out;
        Py_INCREF(newout);
    }

    /* Now we can call the fast-clip function */
    min_data = max_data = NULL;
    if (mina != NULL) {
        min_data = PyArray_DATA(mina);
    }
    if (maxa != NULL) {
        max_data = PyArray_DATA(maxa);
    }
    func(PyArray_DATA(newin), PyArray_SIZE(newin), min_data, max_data, PyArray_DATA(newout));

    /* Clean up temporary variables */
    Py_XDECREF(indescr);
    Py_XDECREF(newdescr);
    Py_XDECREF(mina);
    Py_XDECREF(maxa);
    Py_DECREF(newin);
    /* Copy back into out if out was not already a nice array. */
    PyArray_ResolveWritebackIfCopy(newout);
    Py_DECREF(newout);
    return (PyObject *)out;

 fail:
    Py_XDECREF(indescr);
    Py_XDECREF(newdescr);
    Py_XDECREF(maxa);
    Py_XDECREF(mina);
    Py_XDECREF(newin);
    PyArray_DiscardWritebackIfCopy(newout);
    Py_XDECREF(newout);
    return NULL;
}