Ejemplo n.º 1
0
static PyObject *Proxy_floor_divide(PyObject *o1, PyObject *o2)
{
    Proxy__WRAPPED_REPLACE_OR_RETURN_NULL(o1);
    Proxy__WRAPPED_REPLACE_OR_RETURN_NULL(o2);

    return PyNumber_FloorDivide(o1, o2);
}
Ejemplo n.º 2
0
static PyObject *
range_index(rangeobject *r, PyObject *ob)
{
    int contains;

    if (!PyLong_CheckExact(ob) && !PyBool_Check(ob)) {
        Py_ssize_t index;
        index = _PySequence_IterSearch((PyObject*)r, ob, PY_ITERSEARCH_INDEX);
        if (index == -1)
            return NULL;
        return PyLong_FromSsize_t(index);
    }

    contains = range_contains_long(r, ob);
    if (contains == -1)
        return NULL;

    if (contains) {
        PyObject *idx, *tmp = PyNumber_Subtract(ob, r->start);
        if (tmp == NULL)
            return NULL;
        /* idx = (ob - r.start) // r.step */
        idx = PyNumber_FloorDivide(tmp, r->step);
        Py_DECREF(tmp);
        return idx;
    }

    /* object is not in the range */
    PyErr_Format(PyExc_ValueError, "%R is not in range", ob);
    return NULL;
}
Ejemplo n.º 3
0
static PyObject *
range_iter(PyObject *seq)
{
    rangeobject *r = (rangeobject *)seq;
    longrangeiterobject *it;
    PyObject *tmp, *len;
    long lstart, lstop, lstep;

    assert(PyRange_Check(seq));

    /* If all three fields convert to long, use the int version */
    lstart = PyLong_AsLong(r->start);
    if (lstart != -1 || !PyErr_Occurred()) {
	lstop = PyLong_AsLong(r->stop);
	if (lstop != -1 || !PyErr_Occurred()) {
	    lstep = PyLong_AsLong(r->step);
	    if (lstep != -1 || !PyErr_Occurred())
		return int_range_iter(lstart, lstop, lstep);
	}
    }
    /* Some conversion failed, so there is an error set. Clear it,
       and try again with a long range. */
    PyErr_Clear();

    it = PyObject_New(longrangeiterobject, &PyLongRangeIter_Type);
    if (it == NULL)
        return NULL;

    /* Do all initialization here, so we can DECREF on failure. */
    it->start = r->start;
    it->step = r->step;
    Py_INCREF(it->start);
    Py_INCREF(it->step);

    it->len = it->index = NULL;

    /* Calculate length: (r->stop - r->start) / r->step */
    tmp = PyNumber_Subtract(r->stop, r->start);
    if (!tmp)
        goto create_failure;
    len = PyNumber_FloorDivide(tmp, r->step);
    Py_DECREF(tmp);
    if (!len)
        goto create_failure;
    it->len = len;
    it->index = PyLong_FromLong(0);
    if (!it->index)
        goto create_failure;

    return (PyObject *)it;

create_failure:
    Py_DECREF(it);
    return NULL;
}
Ejemplo n.º 4
0
static PyObject *
range_index(rangeobject *r, PyObject *ob)
{
    PyObject *idx, *tmp;
    int contains;
    PyObject *format_tuple, *err_string;
    static PyObject *err_format = NULL;

    if (!PyLong_CheckExact(ob) && !PyBool_Check(ob)) {
        Py_ssize_t index;
        index = _PySequence_IterSearch((PyObject*)r, ob, PY_ITERSEARCH_INDEX);
        if (index == -1)
            return NULL;
        return PyLong_FromSsize_t(index);
    }

    contains = range_contains_long(r, ob);
    if (contains == -1)
        return NULL;

    if (!contains)
        goto value_error;

    tmp = PyNumber_Subtract(ob, r->start);
    if (tmp == NULL)
        return NULL;

    /* idx = (ob - r.start) // r.step */
    idx = PyNumber_FloorDivide(tmp, r->step);
    Py_DECREF(tmp);
    return idx;

value_error:

    /* object is not in the range */
    if (err_format == NULL) {
        err_format = PyUnicode_FromString("%r is not in range");
        if (err_format == NULL)
            return NULL;
    }
    format_tuple = PyTuple_Pack(1, ob);
    if (format_tuple == NULL)
        return NULL;
    err_string = PyUnicode_Format(err_format, format_tuple);
    Py_DECREF(format_tuple);
    if (err_string == NULL)
        return NULL;
    PyErr_SetObject(PyExc_ValueError, err_string);
    Py_DECREF(err_string);
    return NULL;
}
Ejemplo n.º 5
0
/* Return number of items in range (lo, hi, step) as a PyLong object,
 * when arguments are PyLong objects.  Arguments MUST return 1 with
 * PyLong_Check().  Return NULL when there is an error.
 */
static PyObject*
compute_range_length(PyObject *start, PyObject *stop, PyObject *step)
{
    /* -------------------------------------------------------------
    Algorithm is equal to that of get_len_of_range(), but it operates
    on PyObjects (which are assumed to be PyLong objects).
    ---------------------------------------------------------------*/
    int cmp_result;
    PyObject *lo, *hi;
    PyObject *diff = NULL;
    PyObject *one = NULL;
    PyObject *tmp1 = NULL, *tmp2 = NULL, *result;
                /* holds sub-expression evaluations */

    PyObject *zero = PyLong_FromLong(0);
    if (zero == NULL)
        return NULL;
    cmp_result = PyObject_RichCompareBool(step, zero, Py_GT);
    Py_DECREF(zero);
    if (cmp_result == -1)
        return NULL;

    if (cmp_result == 1) {
        lo = start;
        hi = stop;
        Py_INCREF(step);
    } else {
        lo = stop;
        hi = start;
        step = PyNumber_Negative(step);
        if (!step)
            return NULL;
    }

    /* if (lo >= hi), return length of 0. */
    cmp_result = PyObject_RichCompareBool(lo, hi, Py_GE);
    if (cmp_result != 0) {
        Py_XDECREF(step);
        if (cmp_result < 0)
            return NULL;
        return PyLong_FromLong(0);
    }

    if ((one = PyLong_FromLong(1L)) == NULL)
        goto Fail;

    if ((tmp1 = PyNumber_Subtract(hi, lo)) == NULL)
        goto Fail;

    if ((diff = PyNumber_Subtract(tmp1, one)) == NULL)
        goto Fail;

    if ((tmp2 = PyNumber_FloorDivide(diff, step)) == NULL)
        goto Fail;

    if ((result = PyNumber_Add(tmp2, one)) == NULL)
        goto Fail;

    Py_DECREF(tmp2);
    Py_DECREF(diff);
    Py_DECREF(step);
    Py_DECREF(tmp1);
    Py_DECREF(one);
    return result;

  Fail:
    Py_XDECREF(tmp2);
    Py_XDECREF(diff);
    Py_XDECREF(step);
    Py_XDECREF(tmp1);
    Py_XDECREF(one);
    return NULL;
}
Ejemplo n.º 6
0
/* Replace LOAD_CONST c1. LOAD_CONST c2 BINOP
   with    LOAD_CONST binop(c1,c2)
   The consts table must still be in list form so that the
   new constant can be appended.
   Called with codestr pointing to the first LOAD_CONST.
   Abandons the transformation if the folding fails (i.e.  1+'a').
   If the new constant is a sequence, only folds when the size
   is below a threshold value.  That keeps pyc files from
   becoming large in the presence of code like:  (None,)*1000.
*/
static int
fold_binops_on_constants(unsigned char *codestr, PyObject *consts)
{
    PyObject *newconst, *v, *w;
    Py_ssize_t len_consts, size;
    int opcode;

    /* Pre-conditions */
    assert(PyList_CheckExact(consts));
    assert(codestr[0] == LOAD_CONST);
    assert(codestr[3] == LOAD_CONST);

    /* Create new constant */
    v = PyList_GET_ITEM(consts, GETARG(codestr, 0));
    w = PyList_GET_ITEM(consts, GETARG(codestr, 3));
    opcode = codestr[6];
    switch (opcode) {
        case BINARY_POWER:
            newconst = PyNumber_Power(v, w, Py_None);
            break;
        case BINARY_MULTIPLY:
            newconst = PyNumber_Multiply(v, w);
            break;
        case BINARY_TRUE_DIVIDE:
            newconst = PyNumber_TrueDivide(v, w);
            break;
        case BINARY_FLOOR_DIVIDE:
            newconst = PyNumber_FloorDivide(v, w);
            break;
        case BINARY_MODULO:
            newconst = PyNumber_Remainder(v, w);
            break;
        case BINARY_ADD:
            newconst = PyNumber_Add(v, w);
            break;
        case BINARY_SUBTRACT:
            newconst = PyNumber_Subtract(v, w);
            break;
        case BINARY_SUBSCR:
            /* #5057: if v is unicode, there might be differences between
               wide and narrow builds in cases like '\U00012345'[0] or
               '\U00012345abcdef'[3], so it's better to skip the optimization
               in order to produce compatible pycs.
            */
            if (PyUnicode_Check(v))
                return 0;
            newconst = PyObject_GetItem(v, w);
            break;
        case BINARY_LSHIFT:
            newconst = PyNumber_Lshift(v, w);
            break;
        case BINARY_RSHIFT:
            newconst = PyNumber_Rshift(v, w);
            break;
        case BINARY_AND:
            newconst = PyNumber_And(v, w);
            break;
        case BINARY_XOR:
            newconst = PyNumber_Xor(v, w);
            break;
        case BINARY_OR:
            newconst = PyNumber_Or(v, w);
            break;
        default:
            /* Called with an unknown opcode */
            PyErr_Format(PyExc_SystemError,
                 "unexpected binary operation %d on a constant",
                     opcode);
            return 0;
    }
    if (newconst == NULL) {
        if(!PyErr_ExceptionMatches(PyExc_KeyboardInterrupt))
            PyErr_Clear();
        return 0;
    }
    size = PyObject_Size(newconst);
    if (size == -1) {
        if (PyErr_ExceptionMatches(PyExc_KeyboardInterrupt))
            return 0;
        PyErr_Clear();
    } else if (size > 20) {
        Py_DECREF(newconst);
        return 0;
    }

    /* Append folded constant into consts table */
    len_consts = PyList_GET_SIZE(consts);
    if (PyList_Append(consts, newconst)) {
        Py_DECREF(newconst);
        return 0;
    }
    Py_DECREF(newconst);

    /* Write NOP NOP NOP NOP LOAD_CONST newconst */
    memset(codestr, NOP, 4);
    codestr[4] = LOAD_CONST;
    SETARG(codestr, 4, len_consts);
    return 1;
}
Ejemplo n.º 7
0
/* Replace LOAD_CONST c1. LOAD_CONST c2 BINOP
   with    LOAD_CONST binop(c1,c2)
   The consts table must still be in list form so that the
   new constant can be appended.
   Called with codestr pointing to the BINOP.
   Abandons the transformation if the folding fails (i.e.  1+'a').
   If the new constant is a sequence, only folds when the size
   is below a threshold value.  That keeps pyc files from
   becoming large in the presence of code like:  (None,)*1000.
*/
static int
fold_binops_on_constants(unsigned char *codestr, PyObject *consts, PyObject **objs)
{
    PyObject *newconst, *v, *w;
    Py_ssize_t len_consts, size;
    int opcode;

    /* Pre-conditions */
    assert(PyList_CheckExact(consts));

    /* Create new constant */
    v = objs[0];
    w = objs[1];
    opcode = codestr[0];
    switch (opcode) {
        case BINARY_POWER:
            newconst = PyNumber_Power(v, w, Py_None);
            break;
        case BINARY_MULTIPLY:
            newconst = PyNumber_Multiply(v, w);
            break;
        case BINARY_TRUE_DIVIDE:
            newconst = PyNumber_TrueDivide(v, w);
            break;
        case BINARY_FLOOR_DIVIDE:
            newconst = PyNumber_FloorDivide(v, w);
            break;
        case BINARY_MODULO:
            newconst = PyNumber_Remainder(v, w);
            break;
        case BINARY_ADD:
            newconst = PyNumber_Add(v, w);
            break;
        case BINARY_SUBTRACT:
            newconst = PyNumber_Subtract(v, w);
            break;
        case BINARY_SUBSCR:
            newconst = PyObject_GetItem(v, w);
            break;
        case BINARY_LSHIFT:
            newconst = PyNumber_Lshift(v, w);
            break;
        case BINARY_RSHIFT:
            newconst = PyNumber_Rshift(v, w);
            break;
        case BINARY_AND:
            newconst = PyNumber_And(v, w);
            break;
        case BINARY_XOR:
            newconst = PyNumber_Xor(v, w);
            break;
        case BINARY_OR:
            newconst = PyNumber_Or(v, w);
            break;
        default:
            /* Called with an unknown opcode */
            PyErr_Format(PyExc_SystemError,
                 "unexpected binary operation %d on a constant",
                     opcode);
            return 0;
    }
    if (newconst == NULL) {
        if(!PyErr_ExceptionMatches(PyExc_KeyboardInterrupt))
            PyErr_Clear();
        return 0;
    }
    size = PyObject_Size(newconst);
    if (size == -1) {
        if (PyErr_ExceptionMatches(PyExc_KeyboardInterrupt))
            return 0;
        PyErr_Clear();
    } else if (size > 20) {
        Py_DECREF(newconst);
        return 0;
    }

    /* Append folded constant into consts table */
    len_consts = PyList_GET_SIZE(consts);
    if (PyList_Append(consts, newconst)) {
        Py_DECREF(newconst);
        return 0;
    }
    Py_DECREF(newconst);

    /* Write NOP NOP NOP NOP LOAD_CONST newconst */
    codestr[-2] = LOAD_CONST;
    SETARG(codestr, -2, len_consts);
    return 1;
}
Ejemplo n.º 8
0
/* Replace LOAD_CONST c1. LOAD_CONST c2 BINOP
   with    LOAD_CONST binop(c1,c2)
   The consts table must still be in list form so that the
   new constant can be appended.
   Called with codestr pointing to the first LOAD_CONST.
   Abandons the transformation if the folding fails (i.e.  1+'a').
   If the new constant is a sequence, only folds when the size
   is below a threshold value.  That keeps pyc files from
   becoming large in the presence of code like:  (None,)*1000.
*/
static int
fold_binops_on_constants(unsigned char *codestr, PyObject *consts)
{
    PyObject *newconst, *v, *w;
    Py_ssize_t len_consts, size;
    int opcode;

    /* Pre-conditions */
    assert(PyList_CheckExact(consts));
    assert(codestr[0] == LOAD_CONST);
    assert(codestr[3] == LOAD_CONST);

    /* Create new constant */
    v = PyList_GET_ITEM(consts, GETARG(codestr, 0));
    w = PyList_GET_ITEM(consts, GETARG(codestr, 3));
    opcode = codestr[6];
    switch (opcode) {
        case BINARY_POWER:
            newconst = PyNumber_Power(v, w, Py_None);
            break;
        case BINARY_MULTIPLY:
            newconst = PyNumber_Multiply(v, w);
            break;
        case BINARY_DIVIDE:
            /* Cannot fold this operation statically since
               the result can depend on the run-time presence
               of the -Qnew flag */
            return 0;
        case BINARY_TRUE_DIVIDE:
            newconst = PyNumber_TrueDivide(v, w);
            break;
        case BINARY_FLOOR_DIVIDE:
            newconst = PyNumber_FloorDivide(v, w);
            break;
        case BINARY_MODULO:
            newconst = PyNumber_Remainder(v, w);
            break;
        case BINARY_ADD:
            newconst = PyNumber_Add(v, w);
            break;
        case BINARY_SUBTRACT:
            newconst = PyNumber_Subtract(v, w);
            break;
        case BINARY_SUBSCR:
            newconst = PyObject_GetItem(v, w);
            /* #5057: if v is unicode, there might be differences between
               wide and narrow builds in cases like u'\U00012345'[0].
               Wide builds will return a non-BMP char, whereas narrow builds
               will return a surrogate.  In both the cases skip the
               optimization in order to produce compatible pycs.
             */
            if (newconst != NULL &&
                PyUnicode_Check(v) && PyUnicode_Check(newconst)) {
                Py_UNICODE ch = PyUnicode_AS_UNICODE(newconst)[0];
#ifdef Py_UNICODE_WIDE
                if (ch > 0xFFFF) {
#else
                if (ch >= 0xD800 && ch <= 0xDFFF) {
#endif
                    Py_DECREF(newconst);
                    return 0;
                }
            }
            break;
        case BINARY_LSHIFT:
            newconst = PyNumber_Lshift(v, w);
            break;
        case BINARY_RSHIFT:
            newconst = PyNumber_Rshift(v, w);
            break;
        case BINARY_AND:
            newconst = PyNumber_And(v, w);
            break;
        case BINARY_XOR:
            newconst = PyNumber_Xor(v, w);
            break;
        case BINARY_OR:
            newconst = PyNumber_Or(v, w);
            break;
        default:
            /* Called with an unknown opcode */
            PyErr_Format(PyExc_SystemError,
                 "unexpected binary operation %d on a constant",
                     opcode);
            return 0;
    }
    if (newconst == NULL) {
        PyErr_Clear();
        return 0;
    }
    size = PyObject_Size(newconst);
    if (size == -1)
        PyErr_Clear();
    else if (size > 20) {
        Py_DECREF(newconst);
        return 0;
    }

    /* Append folded constant into consts table */
    len_consts = PyList_GET_SIZE(consts);
    if (PyList_Append(consts, newconst)) {
        Py_DECREF(newconst);
        return 0;
    }
    Py_DECREF(newconst);

    /* Write NOP NOP NOP NOP LOAD_CONST newconst */
    memset(codestr, NOP, 4);
    codestr[4] = LOAD_CONST;
    SETARG(codestr, 4, len_consts);
    return 1;
}

static int
fold_unaryops_on_constants(unsigned char *codestr, PyObject *consts)
{
    PyObject *newconst=NULL, *v;
    Py_ssize_t len_consts;
    int opcode;

    /* Pre-conditions */
    assert(PyList_CheckExact(consts));
    assert(codestr[0] == LOAD_CONST);

    /* Create new constant */
    v = PyList_GET_ITEM(consts, GETARG(codestr, 0));
    opcode = codestr[3];
    switch (opcode) {
        case UNARY_NEGATIVE:
            /* Preserve the sign of -0.0 */
            if (PyObject_IsTrue(v) == 1)
                newconst = PyNumber_Negative(v);
            break;
        case UNARY_CONVERT:
            newconst = PyObject_Repr(v);
            break;
        case UNARY_INVERT:
            newconst = PyNumber_Invert(v);
            break;
        default:
            /* Called with an unknown opcode */
            PyErr_Format(PyExc_SystemError,
                 "unexpected unary operation %d on a constant",
                     opcode);
            return 0;
    }
    if (newconst == NULL) {
        PyErr_Clear();
        return 0;
    }

    /* Append folded constant into consts table */
    len_consts = PyList_GET_SIZE(consts);
    if (PyList_Append(consts, newconst)) {
        Py_DECREF(newconst);
        return 0;
    }
    Py_DECREF(newconst);

    /* Write NOP LOAD_CONST newconst */
    codestr[0] = NOP;
    codestr[1] = LOAD_CONST;
    SETARG(codestr, 1, len_consts);
    return 1;
}
Ejemplo n.º 9
0
/* Replace LOAD_CONST c1. LOAD_CONST c2 BINOP
   with	   LOAD_CONST binop(c1,c2)
   The consts table must still be in list form so that the
   new constant can be appended.
   Called with codestr pointing to the first LOAD_CONST. 
   Abandons the transformation if the folding fails (i.e.  1+'a').  
   If the new constant is a sequence, only folds when the size
   is below a threshold value.	That keeps pyc files from
   becoming large in the presence of code like:	 (None,)*1000.
*/
static int
fold_binops_on_constants(unsigned char *codestr, PyObject *consts)
{
	PyObject *newconst, *v, *w;
	Py_ssize_t len_consts, size;
	int opcode;

	/* Pre-conditions */
	assert(PyList_CheckExact(consts));
	assert(codestr[0] == LOAD_CONST);
	assert(codestr[3] == LOAD_CONST);

	/* Create new constant */
	v = PyList_GET_ITEM(consts, GETARG(codestr, 0));
	w = PyList_GET_ITEM(consts, GETARG(codestr, 3));
	opcode = codestr[6];
	switch (opcode) {
		case BINARY_POWER:
			newconst = PyNumber_Power(v, w, Py_None);
			break;
		case BINARY_MULTIPLY:
			newconst = PyNumber_Multiply(v, w);
			break;
		case BINARY_DIVIDE:
			/* Cannot fold this operation statically since
                           the result can depend on the run-time presence
                           of the -Qnew flag */
			return 0;
		case BINARY_TRUE_DIVIDE:
			newconst = PyNumber_TrueDivide(v, w);
			break;
		case BINARY_FLOOR_DIVIDE:
			newconst = PyNumber_FloorDivide(v, w);
			break;
		case BINARY_MODULO:
			newconst = PyNumber_Remainder(v, w);
			break;
		case BINARY_ADD:
			newconst = PyNumber_Add(v, w);
			break;
		case BINARY_SUBTRACT:
			newconst = PyNumber_Subtract(v, w);
			break;
		case BINARY_SUBSCR:
			newconst = PyObject_GetItem(v, w);
			break;
		case BINARY_LSHIFT:
			newconst = PyNumber_Lshift(v, w);
			break;
		case BINARY_RSHIFT:
			newconst = PyNumber_Rshift(v, w);
			break;
		case BINARY_AND:
			newconst = PyNumber_And(v, w);
			break;
		case BINARY_XOR:
			newconst = PyNumber_Xor(v, w);
			break;
		case BINARY_OR:
			newconst = PyNumber_Or(v, w);
			break;
		default:
			/* Called with an unknown opcode */
			PyErr_Format(PyExc_SystemError,
			     "unexpected binary operation %d on a constant",
				     opcode);
			return 0;
	}
	if (newconst == NULL) {
		PyErr_Clear();
		return 0;
	}
	size = PyObject_Size(newconst);
	if (size == -1)
		PyErr_Clear();
	else if (size > 20) {
		Py_DECREF(newconst);
		return 0;
	}

	/* Append folded constant into consts table */
	len_consts = PyList_GET_SIZE(consts);
	if (PyList_Append(consts, newconst)) {
		Py_DECREF(newconst);
		return 0;
	}
	Py_DECREF(newconst);

	/* Write NOP NOP NOP NOP LOAD_CONST newconst */
	memset(codestr, NOP, 4);
	codestr[4] = LOAD_CONST;
	SETARG(codestr, 4, len_consts);
	return 1;
}