Ejemplo n.º 1
0
/*!
  \warning   The source raster must have only 1 band. Currently, the values in
             the source raster must be stored in one of the supported cell
             representations (CR_UINT1, CR_INT4, CR_REAL4, CR_REAL8).

  The meta data item PCRASTER_VALUESCALE will be checked to see what value
  scale to use. Otherwise a value scale is determined using
  GDALType2ValueScale(GDALDataType).

  This function always writes rasters using CR_UINT1, CR_INT4 or CR_REAL4
  cell representations.
*/
GDALDataset* PCRasterDataset::createCopy(
    char const* filename,
    GDALDataset* source,
    CPL_UNUSED int strict,
    CPL_UNUSED char** options,
    GDALProgressFunc progress,
    void* progressData)
{
  // Checks.
  int nrBands = source->GetRasterCount();
  if(nrBands != 1) {
    CPLError(CE_Failure, CPLE_NotSupported,
         "PCRaster driver: Too many bands ('%d'): must be 1 band", nrBands);
    return 0;
  }

  GDALRasterBand* raster = source->GetRasterBand(1);

  // Create PCRaster raster. Determine properties of raster to create.
  size_t nrRows = raster->GetYSize();
  size_t nrCols = raster->GetXSize();
  std::string string;

  // The in-file type of the cells.
  CSF_CR fileCellRepresentation = GDALType2CellRepresentation(
         raster->GetRasterDataType(), false);

  if(fileCellRepresentation == CR_UNDEFINED) {
    CPLError(CE_Failure, CPLE_NotSupported,
         "PCRaster driver: Cannot determine a valid cell representation");
    return 0;
  }

  // The value scale of the values.
  CSF_VS valueScale = VS_UNDEFINED;
  if(source->GetMetadataItem("PCRASTER_VALUESCALE")) {
    string = source->GetMetadataItem("PCRASTER_VALUESCALE");
  }

  valueScale = !string.empty()
         ? string2ValueScale(string)
         : GDALType2ValueScale(raster->GetRasterDataType());

  if(valueScale == VS_UNDEFINED) {
    CPLError(CE_Failure, CPLE_NotSupported,
         "PCRaster driver: Cannot determine a valid value scale");
    return 0;
  }

  CSF_PT const projection = PT_YDECT2B;
  REAL8  const angle = 0.0;
  REAL8 west = 0.0;
  REAL8 north = 0.0;
  REAL8 cellSize = 1.0;

  double transform[6];
  if(source->GetGeoTransform(transform) == CE_None) {
    if(transform[2] == 0.0 && transform[4] == 0.0) {
      west = static_cast<REAL8>(transform[0]);
      north = static_cast<REAL8>(transform[3]);
      cellSize = static_cast<REAL8>(transform[1]);
    }
  }

  // The in-memory type of the cells.
  CSF_CR appCellRepresentation = CR_UNDEFINED;
  appCellRepresentation = GDALType2CellRepresentation(
         raster->GetRasterDataType(), true);

  if(appCellRepresentation == CR_UNDEFINED) {
    CPLError(CE_Failure, CPLE_NotSupported,
         "PCRaster driver: Cannot determine a valid cell representation");
    return 0;
  }

  // Check whether value scale fits the cell representation. Adjust when
  // needed.
  valueScale = fitValueScale(valueScale, appCellRepresentation);

  // Create a raster with the in file cell representation.
  MAP* map = Rcreate(filename, nrRows, nrCols, fileCellRepresentation,
         valueScale, projection, west, north, angle, cellSize);

  if(!map) {
    CPLError(CE_Failure, CPLE_OpenFailed,
         "PCRaster driver: Unable to create raster %s", filename);
    return 0;
  }

  // Try to convert in app cell representation to the cell representation
  // of the file.
  if(RuseAs(map, appCellRepresentation)) {
    CPLError(CE_Failure, CPLE_NotSupported,
         "PCRaster driver: Cannot convert cells: %s", MstrError());
    Mclose(map);
    return 0;
  }

  int hasMissingValue;
  double missingValue = raster->GetNoDataValue(&hasMissingValue);

  // This is needed to get my (KDJ) unit tests running.
  // I am still uncertain why this is needed. If the input raster has float32
  // values and the output int32, than the missing value in the dataset object
  // is not updated like the values are.
  if(missingValue == ::missingValue(CR_REAL4) &&
         fileCellRepresentation == CR_INT4) {
    missingValue = ::missingValue(fileCellRepresentation);
  }

  // TODO conversie van INT2 naar INT4 ondersteunen. zie ruseas.c regel 503.
  // conversie op r 159.

  // Create buffer for one row of values.
  void* buffer = Rmalloc(map, nrCols);

  // Copy values from source to target.
  CPLErr errorCode = CE_None;
  for(size_t row = 0; errorCode == CE_None && row < nrRows; ++row) {

    // Get row from source.
    if(raster->RasterIO(GF_Read, 0, row, nrCols, 1, buffer, nrCols, 1,
         raster->GetRasterDataType(), 0, 0, NULL) != CE_None) {
      CPLError(CE_Failure, CPLE_FileIO,
         "PCRaster driver: Error reading from source raster");
      errorCode = CE_Failure;
      break;
    }

    // Upon reading values are converted to the
    // right data type. This includes the missing value. If the source
    // value cannot be represented in the target data type it is set to a
    // missing value.

    if(hasMissingValue) {
      alterToStdMV(buffer, nrCols, appCellRepresentation, missingValue);
    }

    if(valueScale == VS_BOOLEAN) {
      castValuesToBooleanRange(buffer, nrCols, appCellRepresentation);
    }

    // Write row in target.
    RputRow(map, row, buffer);

    if(!progress((row + 1) / (static_cast<double>(nrRows)), 0, progressData)) {
      CPLError(CE_Failure, CPLE_UserInterrupt,
         "PCRaster driver: User terminated CreateCopy()");
      errorCode = CE_Failure;
      break;
    }
  }

  Mclose(map);
  map = 0;

  free(buffer);
  buffer = 0;

  if( errorCode != CE_None )
      return NULL;

/* -------------------------------------------------------------------- */
/*      Re-open dataset, and copy any auxiliary pam information.        */
/* -------------------------------------------------------------------- */
  GDALPamDataset *poDS = (GDALPamDataset *)
        GDALOpen( filename, GA_Update );

  if( poDS )
      poDS->CloneInfo( source, GCIF_PAM_DEFAULT );

  return poDS;
}
Ejemplo n.º 2
0
GDALDataset* PCRasterDataset::create(
     const char* filename,
     int nr_cols,
     int nr_rows,
     int nrBands,
     GDALDataType gdalType,
     char** papszParmList)
{
  // Checks
  if(nrBands != 1){
    CPLError(CE_Failure, CPLE_NotSupported,
         "PCRaster driver : "
         "attempt to create dataset with too many bands (%d); "
         "must be 1 band.\n", nrBands);
    return NULL;
  }

  int row_col_max = INT4_MAX - 1;
  if(nr_cols > row_col_max){
    CPLError(CE_Failure, CPLE_NotSupported,
         "PCRaster driver : "
         "attempt to create dataset with too many columns (%d); "
         "must be smaller than %d.", nr_cols, row_col_max);
    return NULL;
  }

  if(nr_rows > row_col_max){
    CPLError(CE_Failure, CPLE_NotSupported,
         "PCRaster driver : "
         "attempt to create dataset with too many rows (%d); "
         "must be smaller than %d.", nr_rows, row_col_max);
    return NULL;
  }

  if(gdalType != GDT_Byte &&
     gdalType != GDT_Int32 &&
     gdalType != GDT_Float32){
     CPLError( CE_Failure, CPLE_AppDefined,
       "PCRaster driver: "
       "attempt to create dataset with an illegal data type (%s); "
       "use either Byte, Int32 or Float32.",
       GDALGetDataTypeName(gdalType));
    return NULL;
  }

  // value scale must be specified by the user,
  // determines cell representation
  const char *valueScale = CSLFetchNameValue(
    papszParmList,"PCRASTER_VALUESCALE");

  if(valueScale == NULL){
    CPLError(CE_Failure, CPLE_AppDefined,
         "PCRaster driver: value scale can not be determined; "
         "specify PCRASTER_VALUESCALE.");
    return NULL;
  }


  CSF_VS csf_value_scale = string2ValueScale(valueScale);

  if(csf_value_scale == VS_UNDEFINED){
    CPLError( CE_Failure, CPLE_AppDefined,
         "PCRaster driver: value scale can not be determined (%s); "
         "use either VS_BOOLEAN, VS_NOMINAL, VS_ORDINAL, VS_SCALAR, "
         "VS_DIRECTION, VS_LDD",
          valueScale);
    return NULL;
  }

  CSF_CR csf_cell_representation = GDALType2CellRepresentation(gdalType, false);

  // default values
  REAL8 west = 0.0;
  REAL8 north = 0.0;
  REAL8 length = 1.0;
  REAL8 angle = 0.0;
  CSF_PT projection = PT_YDECT2B;

  // Create a new raster
  MAP* map = Rcreate(filename, nr_rows, nr_cols, csf_cell_representation,
         csf_value_scale, projection, west, north, angle, length);

  if(!map){
    CPLError(CE_Failure, CPLE_OpenFailed,
         "PCRaster driver: Unable to create raster %s", filename);
    return NULL;
  }

  Mclose(map);
  map = NULL;

/* -------------------------------------------------------------------- */
/*      Re-open dataset, and copy any auxiliary pam information.        */
/* -------------------------------------------------------------------- */
  GDALPamDataset *poDS = (GDALPamDataset *)
        GDALOpen(filename, GA_Update);

  return poDS;
}
Ejemplo n.º 3
0
/* Function for resampling  N input maps into 1 output map.
 * Assumes a map "clone.map" and N "input.map"s present. Checks on
 * options for percentage and maximum value. 
 * Determines type and characteristics of output map.
 * Returns nothing, exits with 1 in case of error.
 */
int main(int argc,		/* number of arguments */
	char *argv[])		/* list of arguments */
{
     	MAP 	*clone, *out, *tmp, **in;
     	char 	*outputName, *cloneName;	
     	int 	c, borderval;	
     	size_t  nrMaps,i;
	REAL8 	X0, Y0, cellSize, angleIn, angleOut;
	size_t 	nrRows, nrCols;
	CSF_PT 	projection;
	CSF_CR  cellRepr;
	CSF_VS  valueScale;
	double 	percent = 0, errFactor = 2.5, resampleN = 0.0;
	BOOL	aligned = TRUE;
	BOOL    keepInputMinMax = FALSE;
	REAL8	minAllInput=0, maxAllInput=0;
	BOOL	onlyReal4 = TRUE, contract = FALSE;
	BOOL	onlyUint1 = TRUE;

	if(InstallArgs(argc, argv,"axmp$r$c#b#e$RBCk", "resample", __DATE__))
		exit(1);

     	while((c = GetOpt()) != 0)
     	{
     	    switch(c)
     	    {
     	    	case 'b': opB = TRUE;
     	    		borderval = *((int *) OptArg);
     	    		break;
     	    	case 'B': opB = TRUE;
     	    		borderval = 0;
     	    		break;
     	    	case 'C': opMV = TRUE;
     	    		borderval = 0;
     	    		break;
     	    	case 'c': opMV = TRUE;
     	    		borderval = *((int *) OptArg);
     	    		break;
     	    	case 'a':contract = TRUE;
     	    		break;
     	    	case 'x':contract = FALSE;
     	    		break;
     	    	case 'm':opMax = 1;
     	    		break;
     	    	case 'p':opPer = 1;
     	    		percent = *((double*) OptArg);
     	    		if(percent < 0 || 100 < percent)
     	    		{
     	    			Error("illegal percentage");
     	    			exit(1);
     	    		}
     	    		break;
     	    	case 'R':opR = 1;
     	    		resampleN = 1;
     	    		break;
     	    	case 'r':opR = 1;
     	    		resampleN = *((double*) OptArg);
     	    		break;
     	    	case 'e':optionAcc = 1;
     	    		errFactor = *((double*) OptArg);
     	    		break;
     	    	case 'k': keepInputMinMax = TRUE;
     	    		break;
     	    }
     	}

	argv = ArgArguments(&argc);
	if (AppArgCountCheck(argc,3,-1,USAGE))
		exit(1);

	outputName = argv[argc-1];
  	nrMaps  = argc-2;

	/* Read the desired specifics out of the clone map 
	 * or use first input as clone map
	 */
	cloneName = NO_CLONE_NEEDED ? argv[1] : NULL;
	if ( (clone = AppOpenClone(&cloneName,cloneName)) == NULL)
		exit(1);

	/* Determine the valueScale out of 1st input map */
	tmp = Mopen(argv[1], M_READ);
	if(tmp == NULL)
		MperrorExit(argv[1], 1);

	/* all input maps have same value scale */
	valueScale = RgetValueScale(tmp);
	if(valueScale == VS_LDD && !opMV)
	{
		Error("can not do this type of resampling on map '%s' with type ldd", argv[1]);
		exit(1);
	}
	/* adjust old ones */
	if(valueScale == VS_CLASSIFIED)
		valueScale = VS_ORDINAL;
	if(valueScale == VS_CONTINUOUS)
		valueScale = VS_SCALAR;

	/* get location attributes of clone or of 1st input map */
	projection = MgetProjection(clone);
	nrRows = RgetNrRows(clone);
	nrCols = RgetNrCols(clone);
	X0 = RgetX0(clone);
	Y0 = RgetY0(clone);
	cellRepr = RgetCellRepr(clone);
	angleOut = RgetAngle(clone); 

	/* resample option -> cell size(inputmap) * factor 
	 * Number of rows and columns are divided by resample
	 * factor.
	 */
	if(opR == 1)
	{
		/* setting for unit */
		if(!appUnitTrue)
		{
			cellSize = resampleN;
			resampleN /= (double) RgetCellSize(tmp);
		}
		else
			cellSize = RgetCellSize(tmp) * resampleN;
		if(contract)
		{
			nrRows = floor((double) nrRows / 
					(double) resampleN);
			nrCols = floor((double) nrCols / 
					(double) resampleN);

			/* Prevent an illegal map */
			if(nrRows == 0)
				nrRows = 1;
			if(nrCols == 0)
				nrCols = 1;
		}
		else
		{
			nrRows = ceil((double) nrRows / 
					(double) resampleN);
			nrCols = ceil((double) nrCols / 
					(double) resampleN);
		}
	}
	else
		cellSize = RgetCellSize(clone);

	/* Allocate memory for the input map pointers */
	in = (MAP **)ChkMalloc(sizeof(MAP *) * nrMaps);
	if(in == NULL)
	{
		AppEnd();
		exit(1);
	}

	/* Read all input maps with desired cell representation */
	for(i = 0; i < nrMaps; i++)
	{
		REAL8	tmpMin, tmpMax;

		tmp = Mopen(argv[1 + i], M_READ);
		angleIn = RgetAngle(tmp);
		if(angleIn != 0)
			aligned = FALSE;
		if(tmp == NULL)
			MperrorExit(argv[1 + i], 1);

		if(!RvalueScaleIs(tmp, valueScale))
		{
			Error("%s has illegal data type: '%s'\n",
				argv[1 + i], RstrValueScale(valueScale));
			exit(1);
		}

		in[i] = tmp;

		/* Determine which cell representation should be used */
		onlyReal4 = RgetCellRepr(in[i]) == CR_REAL4;
		onlyUint1 = RgetCellRepr(in[i]) == CR_UINT1;


		RuseAs(in[i], CR_REAL8);
		RgetMinVal(tmp, &tmpMin);
		RgetMaxVal(tmp, &tmpMax);
		if (i==0)
		 {minAllInput = tmpMin; maxAllInput = tmpMax; }
		minAllInput = MIN(minAllInput,tmpMin);
		maxAllInput = MAX(maxAllInput,tmpMax);

		if(AppIsClassified(valueScale))
			RuseAs(in[i], CR_INT4);
		else
			RuseAs(in[i], CR_REAL8);
	}

	if(opB == 1 || opMV == 1)
	{
		if(CheckInputMaps(in, nrMaps, projection, angleIn, cellSize))
		{
			Error("");
			FreeMaps(in, nrMaps);
			exit(1);
		}

		if(opB == 1)
		{
			if(SmallestFittingRectangle(&X0, &Y0, &nrRows,
			  &nrCols, in, borderval, nrMaps,
			  cellSize, angleIn, projection, contract))
			{
				FreeMaps(in, nrMaps);
				AppEnd();
				exit(1);
			}
		}
		else
		{
		  	if(SmallestNonMVRect(&X0, &Y0, &nrRows, &nrCols, in,
		  	borderval, nrMaps, valueScale, cellSize,
		  	angleIn, projection, contract))
			{	
				FreeMaps(in, nrMaps);
				AppEnd();
				exit(1);
			}
		}
	}

	/* Create output map with suitable cell representation */ 
	/* NOTE ! Create map with smallest representation possible */
	out = Rcreate(outputName, nrRows, nrCols, 
	               AppIsClassified(valueScale) ?
		               (onlyUint1 ? CR_UINT1 : CR_INT4) :
		               (onlyReal4 ? CR_REAL4 : CR_REAL8),
		               valueScale, projection, X0, Y0, 
		               angleOut, cellSize);
	if(out == NULL)
	{
		FreeMaps(in, nrMaps);
		Error("can not create output map '%s': %s", 
		      argv[1], MstrError());
		exit(1);
	}
	RuseAs(out, AppIsClassified(valueScale) ? CR_INT4 : CR_REAL8);

	if(angleOut != 0)
		aligned = FALSE;


	/* determine raster size according wanted accuracy */
	if(opB != 1 && opMV != 1)
	{
		if(DetRasterSize(out, in, nrMaps, errFactor))
		{
			Error("Illegal cell size\n");
			exit(1);
		}
	}
	else
		rasterSize = 1;

	if(nrMaps > 1 && percent > 0)
		AppProgress("rasterSize: %d\n", rasterSize);
	else
		AppProgress("No raster used\n");

	/* Call function */
	if(AppIsClassified(valueScale))
	{	/* Call resample function for classified maps */

		if(SampleClass(out, in, percent, nrMaps, nrRows, nrCols,
		   aligned, angleOut))
		{	
			EndResample(in, nrMaps, out);
			exit(1);	/* Memory allocation failed */
		}	
	}		
	else
	{	/* Call resample function for continuous maps */
		if(SampleCont(out, in, percent, nrMaps, nrRows, nrCols,
		   aligned, angleOut))
		{	
			EndResample(in, nrMaps, out);
			exit(1);	/* Memory allocation failed */
		}	
	}		

	/* End of call */
	if (keepInputMinMax) {
		RuseAs(out, CR_REAL8);
		RputMinVal(out, &minAllInput);
		RputMaxVal(out, &maxAllInput);
	}
	EndResample(in, nrMaps, out);
	
	exit(0);  			/* Successful exit */
	return 0; 			/* Never reached */
} /* main */