Ejemplo n.º 1
0
/** includes the cip file reader in SCIP */
SCIP_RETCODE SCIPincludeReaderCip(
   SCIP*                 scip                /**< SCIP data structure */
   )
{
   SCIP_READERDATA* readerdata;
   SCIP_READER* reader;

   /* create reader data */
   readerdata = NULL;

   /* include reader */
   SCIP_CALL( SCIPincludeReaderBasic(scip, &reader, READER_NAME, READER_DESC, READER_EXTENSION, readerdata) );

   /* set non fundamental callbacks via setter functions */
   SCIP_CALL( SCIPsetReaderCopy(scip, reader, readerCopyCip) );
   SCIP_CALL( SCIPsetReaderRead(scip, reader, readerReadCip) );
   SCIP_CALL( SCIPsetReaderWrite(scip, reader, readerWriteCip) );

   /* add cip reader parameters */
   SCIP_CALL( SCIPaddBoolParam(scip,
         "reading/"READER_NAME"/dynamicconss", "should model constraints be subject to aging?",
         NULL, FALSE, TRUE, NULL, NULL) );
   SCIP_CALL( SCIPaddBoolParam(scip,
         "reading/"READER_NAME"/dynamiccols", "should columns be added and removed dynamically to the LP?",
         NULL, FALSE, FALSE, NULL, NULL) );
   SCIP_CALL( SCIPaddBoolParam(scip,
         "reading/"READER_NAME"/dynamicrows", "should rows be added and removed dynamically to the LP?",
         NULL, FALSE, FALSE, NULL, NULL) );
   
   return SCIP_OKAY;
}
Ejemplo n.º 2
0
/** creates the redcost propagator and includes it in SCIP */
SCIP_RETCODE SCIPincludePropRedcost(
   SCIP*                 scip                /**< SCIP data structure */
   )
{
   SCIP_PROPDATA* propdata;
   SCIP_PROP* prop;

   /* create redcost propagator data */
   SCIP_CALL( SCIPallocMemory(scip, &propdata) );

   /* include propagator */
   SCIP_CALL( SCIPincludePropBasic(scip, &prop, PROP_NAME, PROP_DESC, PROP_PRIORITY, PROP_FREQ, PROP_DELAY, PROP_TIMING,
         propExecRedcost, propdata) );

   assert(prop != NULL);

   /* set optional callbacks via setter functions */
   SCIP_CALL( SCIPsetPropCopy(scip, prop, propCopyRedcost) );
   SCIP_CALL( SCIPsetPropInitsol(scip, prop, propInitsolRedcost) );
   SCIP_CALL( SCIPsetPropFree(scip, prop, propFreeRedcost) );

   /* add redcost propagator parameters */
   SCIP_CALL( SCIPaddBoolParam(scip,
         "propagating/"PROP_NAME"/continuous",
         "should reduced cost fixing be also applied to continuous variables?",
         &propdata->continuous, FALSE, DEFAULT_CONTINUOUS, NULL, NULL) );
   SCIP_CALL( SCIPaddBoolParam(scip,
         "propagating/"PROP_NAME"/useimplics",
         "should implications be used to strength the reduced cost for binary variables?",
         &propdata->useimplics, FALSE, DEFAULT_USEIMPLICS, NULL, NULL) );

   return SCIP_OKAY;
}
Ejemplo n.º 3
0
/** includes the cnf file reader in SCIP */
SCIP_RETCODE SCIPincludeReaderCnf(
   SCIP*                 scip                /**< SCIP data structure */
   )
{
   SCIP_READERDATA* readerdata;
   SCIP_READER* reader;

   /* create reader data */
   readerdata = NULL;

   /* include reader */
   SCIP_CALL( SCIPincludeReaderBasic(scip, &reader, READER_NAME, READER_DESC, READER_EXTENSION, readerdata) );

   /* set non fundamental callbacks via setter functions */
   SCIP_CALL( SCIPsetReaderCopy(scip, reader, readerCopyCnf) );
   SCIP_CALL( SCIPsetReaderRead(scip, reader, readerReadCnf) );

   /* add cnf reader parameters */
   SCIP_CALL( SCIPaddBoolParam(scip,
         "reading/cnfreader/dynamicconss", "should model constraints be subject to aging?",
         NULL, FALSE, TRUE, NULL, NULL) );
   SCIP_CALL( SCIPaddBoolParam(scip,
         "reading/cnfreader/dynamiccols", "should columns be added and removed dynamically to the LP?",
         NULL, FALSE, FALSE, NULL, NULL) );
   SCIP_CALL( SCIPaddBoolParam(scip,
         "reading/cnfreader/dynamicrows", "should rows be added and removed dynamically to the LP?",
         NULL, FALSE, FALSE, NULL, NULL) );
   SCIP_CALL( SCIPaddBoolParam(scip,
         "reading/cnfreader/useobj", "should an artificial objective, depending on the number of clauses a variable appears in, be used?",
         NULL, FALSE, FALSE, NULL, NULL) );
   
   return SCIP_OKAY;
}
Ejemplo n.º 4
0
/** creates RENS primal heuristic and includes it in SCIP */
SCIP_RETCODE SCIPincludeHeurGcgrens(
   SCIP*                 scip                /**< SCIP data structure */
   )
{
   SCIP_HEURDATA* heurdata;

   /* create heuristic data */
   SCIP_CALL( SCIPallocMemory(scip, &heurdata) );

   /* include primal heuristic */
   SCIP_CALL( SCIPincludeHeur(scip, HEUR_NAME, HEUR_DESC, HEUR_DISPCHAR, HEUR_PRIORITY, HEUR_FREQ, HEUR_FREQOFS,
         HEUR_MAXDEPTH, HEUR_TIMING, HEUR_USESSUBSCIP,
         heurCopyGcgrens,
         heurFreeGcgrens, heurInitGcgrens, heurExitGcgrens,
         heurInitsolGcgrens, heurExitsolGcgrens, heurExecGcgrens,
         heurdata) );

   /* add rens primal heuristic parameters */

   SCIP_CALL( SCIPaddRealParam(scip, "heuristics/"HEUR_NAME"/minfixingrate",
         "minimum percentage of integer variables that have to be fixable",
         &heurdata->minfixingrate, FALSE, DEFAULT_MINFIXINGRATE, 0.0, 1.0, NULL, NULL) );

   SCIP_CALL( SCIPaddLongintParam(scip, "heuristics/"HEUR_NAME"/maxnodes",
         "maximum number of nodes to regard in the subproblem",
         &heurdata->maxnodes,  TRUE,DEFAULT_MAXNODES, 0LL, SCIP_LONGINT_MAX, NULL, NULL) );

   SCIP_CALL( SCIPaddLongintParam(scip, "heuristics/"HEUR_NAME"/nodesofs",
         "number of nodes added to the contingent of the total nodes",
         &heurdata->nodesofs, FALSE, DEFAULT_NODESOFS, 0LL, SCIP_LONGINT_MAX, NULL, NULL) );

   SCIP_CALL( SCIPaddLongintParam(scip, "heuristics/"HEUR_NAME"/minnodes",
         "minimum number of nodes required to start the subproblem",
         &heurdata->minnodes, TRUE, DEFAULT_MINNODES, 0LL, SCIP_LONGINT_MAX, NULL, NULL) );

   SCIP_CALL( SCIPaddRealParam(scip, "heuristics/"HEUR_NAME"/nodesquot",
         "contingent of sub problem nodes in relation to the number of nodes of the original problem",
         &heurdata->nodesquot, FALSE, DEFAULT_NODESQUOT, 0.0, 1.0, NULL, NULL) );

   SCIP_CALL( SCIPaddRealParam(scip, "heuristics/"HEUR_NAME"/minimprove",
         "factor by which RENS should at least improve the incumbent",
         &heurdata->minimprove, TRUE, DEFAULT_MINIMPROVE, 0.0, 1.0, NULL, NULL) );

   SCIP_CALL( SCIPaddBoolParam(scip, "heuristics/"HEUR_NAME"/binarybounds",
         "should general integers get binary bounds [floor(.),ceil(.)] ?",
         &heurdata->binarybounds, TRUE, DEFAULT_BINARYBOUNDS, NULL, NULL) );

   SCIP_CALL( SCIPaddBoolParam(scip, "heuristics/"HEUR_NAME"/uselprows",
         "should subproblem be created out of the rows in the LP rows?",
         &heurdata->uselprows, TRUE, DEFAULT_USELPROWS, NULL, NULL) );
         
	SCIP_CALL( SCIPaddBoolParam(scip, "heuristics/"HEUR_NAME"/copycuts",
         "if uselprows == FALSE, should all active cuts from cutpool be copied to constraints in subproblem?",
         &heurdata->copycuts, TRUE, DEFAULT_COPYCUTS, NULL, NULL) );

   return SCIP_OKAY;
}
Ejemplo n.º 5
0
/** creates the zeroobj primal heuristic and includes it in SCIP */
SCIP_RETCODE SCIPincludeHeurZeroobj(
   SCIP*                 scip                /**< SCIP data structure */
   )
{
   SCIP_HEURDATA* heurdata;
   SCIP_HEUR* heur;

   /* create heuristic data */
   SCIP_CALL( SCIPallocMemory(scip, &heurdata) );

   /* include primal heuristic */
   heur = NULL;
   SCIP_CALL( SCIPincludeHeurBasic(scip, &heur,
         HEUR_NAME, HEUR_DESC, HEUR_DISPCHAR, HEUR_PRIORITY, HEUR_FREQ, HEUR_FREQOFS,
         HEUR_MAXDEPTH, HEUR_TIMING, HEUR_USESSUBSCIP, heurExecZeroobj, heurdata) );
   assert(heur != NULL);

   /* set non-NULL pointers to callback methods */
   SCIP_CALL( SCIPsetHeurCopy(scip, heur, heurCopyZeroobj) );
   SCIP_CALL( SCIPsetHeurFree(scip, heur, heurFreeZeroobj) );
   SCIP_CALL( SCIPsetHeurInit(scip, heur, heurInitZeroobj) );

   /* add zeroobj primal heuristic parameters */
   SCIP_CALL( SCIPaddLongintParam(scip, "heuristics/"HEUR_NAME"/maxnodes",
         "maximum number of nodes to regard in the subproblem",
         &heurdata->maxnodes, TRUE,DEFAULT_MAXNODES, 0LL, SCIP_LONGINT_MAX, NULL, NULL) );

   SCIP_CALL( SCIPaddLongintParam(scip, "heuristics/"HEUR_NAME"/nodesofs",
         "number of nodes added to the contingent of the total nodes",
         &heurdata->nodesofs, FALSE, DEFAULT_NODESOFS, 0LL, SCIP_LONGINT_MAX, NULL, NULL) );

   SCIP_CALL( SCIPaddLongintParam(scip, "heuristics/"HEUR_NAME"/minnodes",
         "minimum number of nodes required to start the subproblem",
         &heurdata->minnodes, TRUE, DEFAULT_MINNODES, 0LL, SCIP_LONGINT_MAX, NULL, NULL) );

   SCIP_CALL( SCIPaddLongintParam(scip, "heuristics/"HEUR_NAME"/maxlpiters",
         "maximum number of LP iterations to be performed in the subproblem",
         &heurdata->maxlpiters, TRUE, DEFAULT_MAXLPITERS, -1LL, SCIP_LONGINT_MAX, NULL, NULL) );

   SCIP_CALL( SCIPaddRealParam(scip, "heuristics/"HEUR_NAME"/nodesquot",
         "contingent of sub problem nodes in relation to the number of nodes of the original problem",
         &heurdata->nodesquot, FALSE, DEFAULT_NODESQUOT, 0.0, 1.0, NULL, NULL) );

   SCIP_CALL( SCIPaddRealParam(scip, "heuristics/"HEUR_NAME"/minimprove",
         "factor by which zeroobj should at least improve the incumbent",
         &heurdata->minimprove, TRUE, DEFAULT_MINIMPROVE, 0.0, 1.0, NULL, NULL) );

   SCIP_CALL( SCIPaddBoolParam(scip, "heuristics/"HEUR_NAME"/addallsols",
         "should all subproblem solutions be added to the original SCIP?",
         &heurdata->addallsols, TRUE, DEFAULT_ADDALLSOLS, NULL, NULL) );

   SCIP_CALL( SCIPaddBoolParam(scip, "heuristics/"HEUR_NAME"/onlywithoutsol",
         "should heuristic only be executed if no primal solution was found, yet?",
         &heurdata->onlywithoutsol, TRUE, DEFAULT_ONLYWITHOUTSOL, NULL, NULL) );

   return SCIP_OKAY;
}
Ejemplo n.º 6
0
/** creates the handler for stp constraints and includes it in SCIP */
SCIP_RETCODE SCIPincludeConshdlrStp(
   SCIP*                 scip                /**< SCIP data structure */
   )
{
   SCIP_CONSHDLRDATA* conshdlrdata;
   SCIP_CONSHDLR* conshdlr;

   /* create stp constraint handler data */
   SCIP_CALL( SCIPallocMemory(scip, &conshdlrdata) );

   conshdlr = NULL;
   /* include constraint handler */
   SCIP_CALL( SCIPincludeConshdlrBasic(scip, &conshdlr, CONSHDLR_NAME, CONSHDLR_DESC,
         CONSHDLR_ENFOPRIORITY, CONSHDLR_CHECKPRIORITY, CONSHDLR_EAGERFREQ, CONSHDLR_NEEDSCONS,
         consEnfolpStp, consEnfopsStp, consCheckStp, consLockStp,
         conshdlrdata) );
   assert(conshdlr != NULL);

   SCIP_CALL( SCIPsetConshdlrCopy(scip, conshdlr, conshdlrCopyStp, consCopyStp) );
   SCIP_CALL( SCIPsetConshdlrDelete(scip, conshdlr, consDeleteStp) );
   SCIP_CALL( SCIPsetConshdlrTrans(scip, conshdlr, consTransStp) );
   SCIP_CALL( SCIPsetConshdlrProp(scip, conshdlr, consPropStp, CONSHDLR_PROPFREQ, CONSHDLR_DELAYPROP,
         CONSHDLR_PROP_TIMING) );
   SCIP_CALL( SCIPsetConshdlrSepa(scip, conshdlr, consSepalpStp, NULL, CONSHDLR_SEPAFREQ,
         CONSHDLR_SEPAPRIORITY, CONSHDLR_DELAYSEPA) );
   SCIP_CALL( SCIPsetConshdlrFree(scip, conshdlr, consFreeStp) );

   SCIP_CALL( SCIPaddBoolParam(scip, "constraints/stp/backcut", "Try Back-Cuts",
         &conshdlrdata->backcut, TRUE, DEFAULT_BACKCUT, NULL, NULL) );
   SCIP_CALL( SCIPaddBoolParam(scip, "constraints/stp/creepflow", "Use Creep-Flow",
         &conshdlrdata->creepflow, TRUE, DEFAULT_CREEPFLOW, NULL, NULL) );
   SCIP_CALL( SCIPaddBoolParam(scip, "constraints/stp/disjunctcut", "Only disjunct Cuts",
         &conshdlrdata->disjunctcut, TRUE, DEFAULT_DISJUNCTCUT, NULL, NULL) );
   SCIP_CALL( SCIPaddBoolParam(scip, "constraints/stp/nestedcut", "Try Nested-Cuts",
         &conshdlrdata->nestedcut, TRUE, DEFAULT_NESTEDCUT, NULL, NULL) );
   SCIP_CALL( SCIPaddBoolParam(scip, "constraints/stp/flowsep", "Try Flow-Cuts",
         &conshdlrdata->flowsep, TRUE, DEFAULT_FLOWSEP, NULL, NULL) );
   SCIP_CALL( SCIPaddIntParam(scip,
         "constraints/"CONSHDLR_NAME"/maxrounds",
         "maximal number of separation rounds per node (-1: unlimited)",
         &conshdlrdata->maxrounds, FALSE, DEFAULT_MAXROUNDS, -1, INT_MAX, NULL, NULL) );
   SCIP_CALL( SCIPaddIntParam(scip,
         "constraints/"CONSHDLR_NAME"/maxroundsroot",
         "maximal number of separation rounds per node in the root node (-1: unlimited)",
         &conshdlrdata->maxroundsroot, FALSE, DEFAULT_MAXROUNDSROOT, -1, INT_MAX, NULL, NULL) );
   SCIP_CALL( SCIPaddIntParam(scip,
         "constraints/"CONSHDLR_NAME"/maxsepacuts",
         "maximal number of cuts separated per separation round",
         &conshdlrdata->maxsepacuts, FALSE, DEFAULT_MAXSEPACUTS, 0, INT_MAX, NULL, NULL) );
   SCIP_CALL( SCIPaddIntParam(scip,
         "constraints/"CONSHDLR_NAME"/maxsepacutsroot",
         "maximal number of cuts separated per separation round in the root node",
         &conshdlrdata->maxsepacutsroot, FALSE, DEFAULT_MAXSEPACUTSROOT, 0, INT_MAX, NULL, NULL) );


   return SCIP_OKAY;
}
Ejemplo n.º 7
0
/** creates the inference history branching rule and includes it in SCIP */
SCIP_RETCODE SCIPincludeBranchruleInference(
   SCIP*                 scip                /**< SCIP data structure */
   )
{
   SCIP_BRANCHRULEDATA* branchruledata;
   SCIP_BRANCHRULE* branchrule;

   /* create inference branching rule data */
   SCIP_CALL( SCIPallocMemory(scip, &branchruledata) );

   /* include branching rule */
   SCIP_CALL( SCIPincludeBranchruleBasic(scip, &branchrule, BRANCHRULE_NAME, BRANCHRULE_DESC, BRANCHRULE_PRIORITY,
         BRANCHRULE_MAXDEPTH, BRANCHRULE_MAXBOUNDDIST, branchruledata) );

   assert(branchrule != NULL);

   /* set non-fundamental callbacks via specific setter functions*/
   SCIP_CALL( SCIPsetBranchruleCopy(scip, branchrule, branchCopyInference) );
   SCIP_CALL( SCIPsetBranchruleFree(scip, branchrule, branchFreeInference) );
   SCIP_CALL( SCIPsetBranchruleExecLp(scip, branchrule, branchExeclpInference) );
   SCIP_CALL( SCIPsetBranchruleExecExt(scip, branchrule, branchExecextInference) );
   SCIP_CALL( SCIPsetBranchruleExecPs(scip, branchrule, branchExecpsInference) );

   /* inference branching rule parameters */
   SCIP_CALL( SCIPaddRealParam(scip,
         "branching/inference/conflictweight",
         "weight in score calculations for conflict score",
         &branchruledata->conflictweight, TRUE, DEFAULT_CONFLICTWEIGHT, 0.0, SCIP_REAL_MAX, NULL, NULL) );
   SCIP_CALL( SCIPaddRealParam(scip,
         "branching/inference/inferenceweight",
         "weight in score calculations for inference score",
         &branchruledata->inferenceweight, TRUE, DEFAULT_INFERENCEWEIGHT, SCIP_REAL_MIN, SCIP_REAL_MAX, NULL, NULL) );
   SCIP_CALL( SCIPaddRealParam(scip,
         "branching/inference/cutoffweight",
         "weight in score calculations for cutoff score",
         &branchruledata->cutoffweight, TRUE, DEFAULT_CUTOFFWEIGHT, 0.0, SCIP_REAL_MAX, NULL, NULL) );
   SCIP_CALL( SCIPaddBoolParam(scip,
         "branching/inference/fractionals",
         "should branching on LP solution be restricted to the fractional variables?",
         &branchruledata->fractionals, TRUE, DEFAULT_FRACTIONALS, NULL, NULL) );
   SCIP_CALL( SCIPaddBoolParam(scip,
         "branching/inference/useweightedsum",
         "should a weighted sum of inference, conflict and cutoff weights be used?",
         &branchruledata->useweightedsum, FALSE, DEFAULT_USEWEIGHTEDSUM, NULL, NULL) );
   /* inference branching rule parameters */
   SCIP_CALL( SCIPaddRealParam(scip,
         "branching/inference/reliablescore",
         "weight in score calculations for conflict score",
         &branchruledata->reliablescore, TRUE, DEFAULT_RELIABLESCORE, 0.0, SCIP_REAL_MAX, NULL, NULL) );

   return SCIP_OKAY;
}
Ejemplo n.º 8
0
/** includes the cip file reader in SCIP */
SCIP_RETCODE SCIPincludeReaderCip(
   SCIP*                 scip                /**< SCIP data structure */
   )
{
   SCIP_READERDATA* readerdata;
   SCIP_READER* reader;

   /* create cip reader data */
   SCIP_CALL( SCIPallocMemory(scip, &readerdata) );

   /* include reader */
   SCIP_CALL( SCIPincludeReaderBasic(scip, &reader, READER_NAME, READER_DESC, READER_EXTENSION, readerdata) );

   /* set non fundamental callbacks via setter functions */
   SCIP_CALL( SCIPsetReaderCopy(scip, reader, readerCopyCip) );
   SCIP_CALL( SCIPsetReaderFree(scip, reader, readerFreeCip) );
   SCIP_CALL( SCIPsetReaderRead(scip, reader, readerReadCip) );
   SCIP_CALL( SCIPsetReaderWrite(scip, reader, readerWriteCip) );

   /* add cip reader parameters */
   SCIP_CALL( SCIPaddBoolParam(scip,
         "reading/cipreader/writefixedvars", "should fixed and aggregated variables be printed (if not, re-parsing might fail)",
         &readerdata->writefixedvars, FALSE, DEFAULT_CIP_WRITEFIXEDVARS, NULL, NULL) );

   return SCIP_OKAY;
}
Ejemplo n.º 9
0
/** creates the impliedbounds separator and includes it in SCIP */
SCIP_RETCODE SCIPincludeSepaImpliedbounds(
   SCIP*                 scip                /**< SCIP data structure */
   )
{
   SCIP_SEPADATA* sepadata;
   SCIP_SEPA* sepa;

   /* create impliedbounds separator data */
   SCIP_CALL( SCIPallocMemory(scip, &sepadata) );
   assert(sepadata != NULL);

   /* include separator */
   SCIP_CALL( SCIPincludeSepaBasic(scip, &sepa, SEPA_NAME, SEPA_DESC, SEPA_PRIORITY, SEPA_FREQ, SEPA_MAXBOUNDDIST,
         SEPA_USESSUBSCIP, SEPA_DELAY,
         sepaExeclpImpliedbounds, sepaExecsolImpliedbounds,
         sepadata) );
   assert(sepa != NULL);

   /* set non-NULL pointers to callback methods */
   SCIP_CALL( SCIPsetSepaCopy(scip, sepa, sepaCopyImpliedbounds) );
   SCIP_CALL( SCIPsetSepaFree(scip, sepa, sepaFreeImpliedbounds) );

   /* add separator parameters */
   SCIP_CALL( SCIPaddBoolParam(scip, "separating/impliedbounds/usetwosizecliques",
         "should violated inequalities for cliques with 2 variables be separated?",
         &sepadata->usetwosizecliques, TRUE, DEFAULT_USETWOSIZECLIQUES, NULL, NULL) );

   return SCIP_OKAY;
}
Ejemplo n.º 10
0
/** creates the oneopt primal heuristic and includes it in SCIP */
SCIP_RETCODE SCIPincludeHeurOneopt(
   SCIP*                 scip                /**< SCIP data structure */
   )
{
   SCIP_HEURDATA* heurdata;
   SCIP_HEUR* heur;

   /* create Oneopt primal heuristic data */
   SCIP_CALL( SCIPallocMemory(scip, &heurdata) );

   /* include primal heuristic */
   SCIP_CALL( SCIPincludeHeurBasic(scip, &heur,
         HEUR_NAME, HEUR_DESC, HEUR_DISPCHAR, HEUR_PRIORITY, HEUR_FREQ, HEUR_FREQOFS,
         HEUR_MAXDEPTH, HEUR_TIMING, HEUR_USESSUBSCIP, heurExecOneopt, heurdata) );

   assert(heur != NULL);

   /* set non-NULL pointers to callback methods */
   SCIP_CALL( SCIPsetHeurCopy(scip, heur, heurCopyOneopt) );
   SCIP_CALL( SCIPsetHeurFree(scip, heur, heurFreeOneopt) );
   SCIP_CALL( SCIPsetHeurInitsol(scip, heur, heurInitsolOneopt) );
   SCIP_CALL( SCIPsetHeurExitsol(scip, heur, heurExitsolOneopt) );
   SCIP_CALL( SCIPsetHeurInit(scip, heur, heurInitOneopt) );

   /* add oneopt primal heuristic parameters */
   SCIP_CALL( SCIPaddBoolParam(scip, "heuristics/oneopt/weightedobj",
         "should the objective be weighted with the potential shifting value when sorting the shifting candidates?",
         &heurdata->weightedobj, TRUE, DEFAULT_WEIGHTEDOBJ, NULL, NULL) );

   SCIP_CALL( SCIPaddBoolParam(scip, "heuristics/oneopt/duringroot",
         "should the heuristic be called before and during the root node?",
         &heurdata->duringroot, TRUE, DEFAULT_DURINGROOT, NULL, NULL) );

   SCIP_CALL( SCIPaddBoolParam(scip, "heuristics/oneopt/forcelpconstruction",
         "should the construction of the LP be forced even if LP solving is deactivated?",
         &heurdata->forcelpconstruction, TRUE, DEFAULT_FORCELPCONSTRUCTION, NULL, NULL) );

   SCIP_CALL( SCIPaddBoolParam(scip, "heuristics/oneopt/beforepresol",
         "should the heuristic be called before presolving?",
         &heurdata->beforepresol, TRUE, DEFAULT_BEFOREPRESOL, NULL, NULL) );

   return SCIP_OKAY;
}
Ejemplo n.º 11
0
/** creates the guideddiving heuristic and includes it in SCIP */
SCIP_RETCODE SCIPincludeHeurGuideddiving(
   SCIP*                 scip                /**< SCIP data structure */
   )
{
   SCIP_HEURDATA* heurdata;
   SCIP_HEUR* heur;

   /* create Guideddiving primal heuristic data */
   SCIP_CALL( SCIPallocMemory(scip, &heurdata) );

   /* include primal heuristic */
   SCIP_CALL( SCIPincludeHeurBasic(scip, &heur,
         HEUR_NAME, HEUR_DESC, HEUR_DISPCHAR, HEUR_PRIORITY, HEUR_FREQ, HEUR_FREQOFS,
         HEUR_MAXDEPTH, HEUR_TIMING, HEUR_USESSUBSCIP, heurExecGuideddiving, heurdata) );

   assert(heur != NULL);

   /* set non-NULL pointers to callback methods */
   SCIP_CALL( SCIPsetHeurCopy(scip, heur, heurCopyGuideddiving) );
   SCIP_CALL( SCIPsetHeurFree(scip, heur, heurFreeGuideddiving) );
   SCIP_CALL( SCIPsetHeurInit(scip, heur, heurInitGuideddiving) );
   SCIP_CALL( SCIPsetHeurExit(scip, heur, heurExitGuideddiving) );

   /* guideddiving heuristic parameters */
   SCIP_CALL( SCIPaddRealParam(scip,
         "heuristics/guideddiving/minreldepth",
         "minimal relative depth to start diving",
         &heurdata->minreldepth, TRUE, DEFAULT_MINRELDEPTH, 0.0, 1.0, NULL, NULL) );
   SCIP_CALL( SCIPaddRealParam(scip,
         "heuristics/guideddiving/maxreldepth",
         "maximal relative depth to start diving",
         &heurdata->maxreldepth, TRUE, DEFAULT_MAXRELDEPTH, 0.0, 1.0, NULL, NULL) );
   SCIP_CALL( SCIPaddRealParam(scip,
         "heuristics/guideddiving/maxlpiterquot",
         "maximal fraction of diving LP iterations compared to node LP iterations",
         &heurdata->maxlpiterquot, FALSE, DEFAULT_MAXLPITERQUOT, 0.0, SCIP_REAL_MAX, NULL, NULL) );
   SCIP_CALL( SCIPaddIntParam(scip,
         "heuristics/guideddiving/maxlpiterofs",
         "additional number of allowed LP iterations",
         &heurdata->maxlpiterofs, FALSE, DEFAULT_MAXLPITEROFS, 0, INT_MAX, NULL, NULL) );
   SCIP_CALL( SCIPaddRealParam(scip,
         "heuristics/guideddiving/maxdiveubquot",
         "maximal quotient (curlowerbound - lowerbound)/(cutoffbound - lowerbound) where diving is performed (0.0: no limit)",
         &heurdata->maxdiveubquot, TRUE, DEFAULT_MAXDIVEUBQUOT, 0.0, 1.0, NULL, NULL) );
   SCIP_CALL( SCIPaddRealParam(scip,
         "heuristics/guideddiving/maxdiveavgquot",
         "maximal quotient (curlowerbound - lowerbound)/(avglowerbound - lowerbound) where diving is performed (0.0: no limit)",
         &heurdata->maxdiveavgquot, TRUE, DEFAULT_MAXDIVEAVGQUOT, 0.0, SCIP_REAL_MAX, NULL, NULL) );
   SCIP_CALL( SCIPaddBoolParam(scip,
         "heuristics/guideddiving/backtrack",
         "use one level of backtracking if infeasibility is encountered?",
         &heurdata->backtrack, FALSE, DEFAULT_BACKTRACK, NULL, NULL) );

   return SCIP_OKAY;
}
Ejemplo n.º 12
0
/** creates the indicator primal heuristic and includes it in SCIP */
SCIP_RETCODE SCIPincludeHeurIndicator(
   SCIP*                 scip                /**< SCIP data structure */
   )
{
   SCIP_HEURDATA* heurdata;
   SCIP_HEUR* heur;

   /* create Indicator primal heuristic data */
   SCIP_CALL( SCIPallocMemory(scip, &heurdata) );
   heurdata->nindconss = 0;
   heurdata->indconss = NULL;
   heurdata->solcand = NULL;
   heurdata->lastsol = NULL;
   heurdata->indicatorconshdlr = NULL;

   /* include primal heuristic */
   SCIP_CALL( SCIPincludeHeurBasic(scip, &heur,
         HEUR_NAME, HEUR_DESC, HEUR_DISPCHAR, HEUR_PRIORITY, HEUR_FREQ, HEUR_FREQOFS,
         HEUR_MAXDEPTH, HEUR_TIMING, HEUR_USESSUBSCIP, heurExecIndicator, heurdata) );

   assert( heur != NULL );

   /* set non-NULL pointers to callback methods */
   SCIP_CALL( SCIPsetHeurCopy(scip, heur, heurCopyIndicator) );
   SCIP_CALL( SCIPsetHeurInit(scip, heur, heurInitIndicator) );
   SCIP_CALL( SCIPsetHeurFree(scip, heur, heurFreeIndicator) );

   /* add parameters */
   SCIP_CALL( SCIPaddBoolParam(scip,
         "heuristics/" HEUR_NAME "/oneopt",
         "whether the one-opt heuristic should be started",
         &heurdata->oneopt, TRUE, DEFAULT_ONEOPT, NULL, NULL) );

   SCIP_CALL( SCIPaddBoolParam(scip,
         "heuristics/" HEUR_NAME "/improvesols",
         "Try to improve other solutions by one-opt?",
         &heurdata->improvesols, TRUE, DEFAULT_IMPROVESOLS, NULL, NULL) );

   return SCIP_OKAY;
}
Ejemplo n.º 13
0
/** includes the ppm file reader in SCIP */
SCIP_RETCODE SCIPincludeReaderPpm(
   SCIP*                 scip                /**< SCIP data structure */
   )
{
   SCIP_READERDATA* readerdata;
   SCIP_READER* reader;

   /* create ppm reader data */
   SCIP_CALL( SCIPallocMemory(scip, &readerdata) );
   initReaderdata(readerdata);

   /* include reader */
   SCIP_CALL( SCIPincludeReaderBasic(scip, &reader, READER_NAME, READER_DESC, READER_EXTENSION, readerdata) );

   assert(reader != NULL);

   /* set non fundamental callbacks via setter functions */
   SCIP_CALL( SCIPsetReaderCopy(scip, reader, readerCopyPpm) );
   SCIP_CALL( SCIPsetReaderFree(scip, reader, readerFreePpm) );
   SCIP_CALL( SCIPsetReaderWrite(scip, reader, readerWritePpm) );

   /* add ppm reader parameters */
   SCIP_CALL( SCIPaddBoolParam(scip,
         "reading/ppmreader/rgbrelativ", "should the coloring values be relativ or absolute",
         &readerdata->rgb_relativ, FALSE, DEFAULT_PPM_RGB_RELATIVE, NULL, NULL) );
   SCIP_CALL( SCIPaddBoolParam(scip,
         "reading/ppmreader/rgbascii", "should the output format be binary(P6) (otherwise plain(P3) format)",
         &readerdata->rgb_ascii, FALSE, DEFAULT_PPM_RGB_ASCII, NULL, NULL) );
   SCIP_CALL( SCIPaddIntParam(scip,
         "reading/ppmreader/coefficientlimit",
         "splitting coefficients in this number of intervals",
         &readerdata->coef_limit, FALSE, DEFAULT_PPM_COEF_LIMIT, 3, 16, NULL, NULL) );
   SCIP_CALL( SCIPaddIntParam(scip,
         "reading/ppmreader/rgblimit",
         "maximal color value",
         &readerdata->rgb_limit, FALSE, DEFAULT_PPM_RGB_LIMIT, 0, 255, NULL, NULL) );

   return SCIP_OKAY;
}
Ejemplo n.º 14
0
/** creates the Strong CG cut separator and includes it in SCIP */
SCIP_RETCODE SCIPincludeSepaStrongcg(
   SCIP*                 scip                /**< SCIP data structure */
   )
{
   SCIP_SEPADATA* sepadata;
   SCIP_SEPA* sepa;

   /* create separator data */
   SCIP_CALL( SCIPallocMemory(scip, &sepadata) );
   sepadata->lastncutsfound = 0;

   /* include separator */
   SCIP_CALL( SCIPincludeSepaBasic(scip, &sepa, SEPA_NAME, SEPA_DESC, SEPA_PRIORITY, SEPA_FREQ, SEPA_MAXBOUNDDIST,
         SEPA_USESSUBSCIP, SEPA_DELAY,
         sepaExeclpStrongcg, NULL,
         sepadata) );

   assert(sepa != NULL);

   /* set non-NULL pointers to callback methods */
   SCIP_CALL( SCIPsetSepaCopy(scip, sepa, sepaCopyStrongcg) );
   SCIP_CALL( SCIPsetSepaFree(scip, sepa, sepaFreeStrongcg) );

   /* add separator parameters */
   SCIP_CALL( SCIPaddIntParam(scip,
         "separating/strongcg/maxrounds",
         "maximal number of strong CG separation rounds per node (-1: unlimited)",
         &sepadata->maxrounds, FALSE, DEFAULT_MAXROUNDS, -1, INT_MAX, NULL, NULL) );
   SCIP_CALL( SCIPaddIntParam(scip,
         "separating/strongcg/maxroundsroot",
         "maximal number of strong CG separation rounds in the root node (-1: unlimited)",
         &sepadata->maxroundsroot, FALSE, DEFAULT_MAXROUNDSROOT, -1, INT_MAX, NULL, NULL) );
   SCIP_CALL( SCIPaddIntParam(scip,
         "separating/strongcg/maxsepacuts",
         "maximal number of strong CG cuts separated per separation round",
         &sepadata->maxsepacuts, FALSE, DEFAULT_MAXSEPACUTS, 0, INT_MAX, NULL, NULL) );
   SCIP_CALL( SCIPaddIntParam(scip,
         "separating/strongcg/maxsepacutsroot",
         "maximal number of strong CG cuts separated per separation round in the root node",
         &sepadata->maxsepacutsroot, FALSE, DEFAULT_MAXSEPACUTSROOT, 0, INT_MAX, NULL, NULL) );
   SCIP_CALL( SCIPaddRealParam(scip,
         "separating/strongcg/maxweightrange",
         "maximal valid range max(|weights|)/min(|weights|) of row weights",
         &sepadata->maxweightrange, TRUE, DEFAULT_MAXWEIGHTRANGE, 1.0, SCIP_REAL_MAX, NULL, NULL) );
   SCIP_CALL( SCIPaddBoolParam(scip,
         "separating/strongcg/dynamiccuts",
         "should generated cuts be removed from the LP if they are no longer tight?",
         &sepadata->dynamiccuts, FALSE, DEFAULT_DYNAMICCUTS, NULL, NULL) );

   return SCIP_OKAY;
}
Ejemplo n.º 15
0
/** creates the rand rounding heuristic and includes it in SCIP */
SCIP_RETCODE SCIPincludeHeurRandrounding(
   SCIP*                 scip                /**< SCIP data structure */
   )
{
   SCIP_HEURDATA* heurdata;
   SCIP_HEUR* heur;

   /* create heuristic data */
   SCIP_CALL( SCIPallocMemory(scip, &heurdata) );

   /* include primal heuristic */
   SCIP_CALL( SCIPincludeHeurBasic(scip, &heur,
         HEUR_NAME, HEUR_DESC, HEUR_DISPCHAR, HEUR_PRIORITY, HEUR_FREQ, HEUR_FREQOFS,
         HEUR_MAXDEPTH, HEUR_TIMING, HEUR_USESSUBSCIP, heurExecRandrounding, heurdata) );
   assert(heur != NULL);

   /* set non-NULL pointers to callback methods */
   SCIP_CALL( SCIPsetHeurCopy(scip, heur, heurCopyRandrounding) );
   SCIP_CALL( SCIPsetHeurInit(scip, heur, heurInitRandrounding) );
   SCIP_CALL( SCIPsetHeurExit(scip, heur, heurExitRandrounding) );
   SCIP_CALL( SCIPsetHeurInitsol(scip, heur, heurInitsolRandrounding) );
   SCIP_CALL( SCIPsetHeurExitsol(scip, heur, heurExitsolRandrounding) );
   SCIP_CALL( SCIPsetHeurFree(scip, heur, heurFreeRandrounding) );

   SCIP_CALL( SCIPaddBoolParam(scip, "heuristics/" HEUR_NAME "/oncepernode",
         "should the heuristic only be called once per node?",
         &heurdata->oncepernode, TRUE, DEFAULT_ONCEPERNODE, NULL, NULL) );
   SCIP_CALL( SCIPaddBoolParam(scip, "heuristics/" HEUR_NAME "/usesimplerounding", "should the heuristic apply the variable lock strategy of simple rounding, if possible?",
         &heurdata->usesimplerounding, TRUE, DEFAULT_USESIMPLEROUNDING, NULL, NULL) );
   SCIP_CALL( SCIPaddBoolParam(scip, "heuristics/" HEUR_NAME "/propagateonlyroot",
         "should the probing part of the heuristic be applied exclusively at the root node?",
         &heurdata->propagateonlyroot, TRUE, DEFAULT_PROPAGATEONLYROOT, NULL, NULL) );
   SCIP_CALL( SCIPaddIntParam(scip, "heuristics/" HEUR_NAME "/maxproprounds",
         "limit of rounds for each propagation call",
         &heurdata->maxproprounds, TRUE, DEFAULT_MAXPROPROUNDS,
         -1, INT_MAX, NULL, NULL) );
   return SCIP_OKAY;
}
Ejemplo n.º 16
0
/** creates the boundshift presolver and includes it in SCIP */
SCIP_RETCODE SCIPincludePresolBoundshift(
   SCIP*                 scip                /**< SCIP data structure */
   )
{
   SCIP_PRESOLDATA* presoldata;
   SCIP_PRESOL* presolptr;

   /* create boundshift presolver data */
   SCIP_CALL( SCIPallocMemory(scip, &presoldata) );
   initPresoldata(presoldata);

   /* include presolver */
   SCIP_CALL( SCIPincludePresolBasic(scip, &presolptr, PRESOL_NAME, PRESOL_DESC, PRESOL_PRIORITY, PRESOL_MAXROUNDS, PRESOL_DELAY,
         presolExecBoundshift,
         presoldata) );

   assert(presolptr != NULL);

   SCIP_CALL( SCIPsetPresolCopy(scip, presolptr, presolCopyBoundshift) );
   SCIP_CALL( SCIPsetPresolFree(scip, presolptr, presolFreeBoundshift) );

   /* add probing presolver parameters */
   SCIP_CALL( SCIPaddLongintParam(scip,
         "presolving/boundshift/maxshift", 
         "absolute value of maximum shift",
         &presoldata->maxshift, TRUE, DEFAULT_MAXSHIFT, 0LL, SCIP_LONGINT_MAX, NULL, NULL) );
   SCIP_CALL( SCIPaddBoolParam(scip,
         "presolving/boundshift/flipping", 
         "is flipping allowed (multiplying with -1)?",
         &presoldata->flipping, TRUE, DEFAULT_FLIPPING, NULL, NULL) );
   SCIP_CALL( SCIPaddBoolParam(scip,
         "presolving/boundshift/integer", 
         "shift only integer ranges?",
         &presoldata->integer, TRUE, DEFAULT_INTEGER, NULL, NULL) );
   
   return SCIP_OKAY;
}
Ejemplo n.º 17
0
/** creates the zirounding primal heuristic and includes it in SCIP */
SCIP_RETCODE SCIPincludeHeurZirounding(
   SCIP*                 scip                /**< SCIP data structure */
   )
{
   SCIP_HEURDATA* heurdata;
   SCIP_HEUR* heur;

   /* create zirounding primal heuristic data */
   SCIP_CALL( SCIPallocMemory(scip, &heurdata) );

   /* include primal heuristic */
   SCIP_CALL( SCIPincludeHeurBasic(scip, &heur,
         HEUR_NAME, HEUR_DESC, HEUR_DISPCHAR, HEUR_PRIORITY, HEUR_FREQ, HEUR_FREQOFS,
         HEUR_MAXDEPTH, HEUR_TIMING, HEUR_USESSUBSCIP, heurExecZirounding, heurdata) );

   assert(heur != NULL);

   /* set non-NULL pointers to callback methods */
   SCIP_CALL( SCIPsetHeurCopy(scip, heur, heurCopyZirounding) );
   SCIP_CALL( SCIPsetHeurFree(scip, heur, heurFreeZirounding) );
   SCIP_CALL( SCIPsetHeurInit(scip, heur, heurInitZirounding) );
   SCIP_CALL( SCIPsetHeurExit(scip, heur, heurExitZirounding) );
   SCIP_CALL( SCIPsetHeurInitsol(scip, heur, heurInitsolZirounding) );

   /* add zirounding primal heuristic parameters */
   SCIP_CALL( SCIPaddIntParam(scip, "heuristics/zirounding/maxroundingloops",
         "determines maximum number of rounding loops",
         &heurdata->maxroundingloops, TRUE, DEFAULT_MAXROUNDINGLOOPS, -1, INT_MAX, NULL, NULL) );
   SCIP_CALL( SCIPaddBoolParam(scip, "heuristics/zirounding/stopziround",
         "flag to determine if Zirounding is deactivated after a certain percentage of unsuccessful calls",
         &heurdata->stopziround, TRUE, DEFAULT_STOPZIROUND, NULL, NULL) );
   SCIP_CALL( SCIPaddRealParam(scip,"heuristics/zirounding/stoppercentage",
         "if percentage of found solutions falls below this parameter, Zirounding will be deactivated",
         &heurdata->stoppercentage, TRUE, DEFAULT_STOPPERCENTAGE, 0.0, 1.0, NULL, NULL) );
   SCIP_CALL( SCIPaddIntParam(scip, "heuristics/zirounding/minstopncalls",
         "determines the minimum number of calls before percentage-based deactivation of Zirounding is applied",
         &heurdata->minstopncalls, TRUE, DEFAULT_MINSTOPNCALLS, 1, INT_MAX, NULL, NULL) );

   return SCIP_OKAY;
}
/** creates the rounding heuristic with infeasibility recovering and includes it in SCIP */
SCIP_RETCODE SCIPincludeHeurRounding(
   SCIP*                 scip                /**< SCIP data structure */,
   SCIP_HEUR** heu
   )
{
   SCIP_HEURDATA* heurdata;
   SCIP_HEUR* heur;

   /* create Rounding primal heuristic data */
   SCIP_CALL( SCIPallocMemory(scip, &heurdata) );

   /* include primal heuristic */
   SCIP_CALL( SCIPincludeHeurBasic(scip, &heur,
         HEUR_NAME, HEUR_DESC, HEUR_DISPCHAR, HEUR_PRIORITY, HEUR_FREQ, HEUR_FREQOFS,
         HEUR_MAXDEPTH, HEUR_TIMING, HEUR_USESSUBSCIP, heurExecRounding, heurdata) );

   assert(heur != NULL);

   /* set non-NULL pointers to callback methods */
/*   SCIP_CALL( SCIPsetHeurCopy(scip, heur, heurCopyRounding) );
   SCIP_CALL( SCIPsetHeurFree(scip, heur, heurFreeRounding) );
   SCIP_CALL( SCIPsetHeurInit(scip, heur, heurInitRounding) );
   SCIP_CALL( SCIPsetHeurExit(scip, heur, heurExitRounding) );
   SCIP_CALL( SCIPsetHeurInitsol(scip, heur, heurInitsolRounding) );
   SCIP_CALL( SCIPsetHeurExitsol(scip, heur, heurExitsolRounding) ); */

   /* add rounding primal heuristic parameters */
   SCIP_CALL( SCIPaddIntParam(scip, "heuristics/""special_rounding""/successfactor",
         "number of calls per found solution that are considered as standard success, a higher factor causes the heuristic to be called more often",
         &heurdata->successfactor, TRUE, DEFAULT_SUCCESSFACTOR, -1, INT_MAX, NULL, NULL) );

   SCIP_CALL( SCIPaddBoolParam(scip, "heuristics/""special_rounding""/oncepernode",
         "should the heuristic only be called once per node?",
         &heurdata->oncepernode, TRUE, DEFAULT_ONCEPERNODE, NULL, NULL) );

   *heu = heur;

   return SCIP_OKAY;
}
Ejemplo n.º 19
0
/** includes event handler for writing primal- and dualbound for all open nodes */
SCIP_RETCODE SCIPincludeEventHdlrBoundwriting(
   SCIP*                 scip                /**< SCIP data structure */
   )
{
   SCIP_EVENTHDLRDATA* eventhdlrdata;
   SCIP_EVENTHDLR* eventhdlr;

   /* create bounds reader data */
   SCIP_CALL( SCIPallocMemory(scip, &eventhdlrdata) );
   initEventhdlrdata(eventhdlrdata);

   eventhdlr = NULL;
   /* create event handler for events on watched variables */
   SCIP_CALL( SCIPincludeEventhdlrBasic(scip, &eventhdlr, EVENTHDLR_NAME, EVENTHDLR_DESC,
         eventExecBoundwriting, eventhdlrdata) );
   assert(eventhdlr != NULL);

   SCIP_CALL( SCIPsetEventhdlrCopy(scip, eventhdlr, eventCopyBoundwriting) );
   SCIP_CALL( SCIPsetEventhdlrFree(scip, eventhdlr, eventFreeBoundwriting) );
   SCIP_CALL( SCIPsetEventhdlrInit(scip, eventhdlr, eventInitBoundwriting) );
   SCIP_CALL( SCIPsetEventhdlrExit(scip, eventhdlr, eventExitBoundwriting) );

   /* add boundwriting parameters */
   SCIP_CALL( SCIPaddLongintParam(scip,
         "eventhdlr/"EVENTHDLR_NAME"/freq",
         "in which frequency should all bounds be written(0: never)",
         &eventhdlrdata->freq, FALSE, DEFAULT_FREQ, 0LL, SCIP_LONGINT_MAX, NULL, NULL) );
   SCIP_CALL( SCIPaddStringParam(scip,
         "eventhdlr/"EVENTHDLR_NAME"/filename",
         "filename to write all bounds to",
         &eventhdlrdata->filename, FALSE, DEFAULT_FILENAME, NULL, NULL) );
   SCIP_CALL( SCIPaddBoolParam(scip,
         "eventhdlr/"EVENTHDLR_NAME"/writesubmipdualbound",
         "should the dualbound of the submip-root which was created out of an open node be printed",
         &eventhdlrdata->writesubmipdualbound, FALSE, DEFAULT_WRITESUBMIPDUALBOUND, NULL, NULL) );

   return SCIP_OKAY;
}
Ejemplo n.º 20
0
/** includes the sch file reader in SCIP */
SCIP_RETCODE SCIPincludeReaderSm(
   SCIP*                 scip                /**< SCIP data structure */
   )
{
   SCIP_READERDATA* readerdata;
   SCIP_READER* reader;

   /* create sch reader data */
   readerdata = NULL;

   /* include sch reader */
   SCIP_CALL( SCIPincludeReaderBasic(scip, &reader, READER_NAME, READER_DESC, READER_EXTENSION, readerdata) );
   assert(reader != NULL);

   SCIP_CALL( SCIPsetReaderCopy(scip, reader, readerCopySm) );
   SCIP_CALL( SCIPsetReaderRead(scip, reader, readerReadSm) );

   /* add reader parameters */
   SCIP_CALL( SCIPaddBoolParam(scip,
         "reading/"READER_NAME"/mipmodel", "create MIP model?",
         NULL, FALSE, FALSE, NULL, NULL) );

   return SCIP_OKAY;
}
Ejemplo n.º 21
0
/** creates the crossover primal heuristic and includes it in SCIP */
SCIP_RETCODE SCIPincludeHeurCrossover(
   SCIP*                 scip                /**< SCIP data structure */
   )
{
   SCIP_HEURDATA* heurdata;
   SCIP_HEUR* heur;

   /* create Crossover primal heuristic data */
   SCIP_CALL( SCIPallocMemory(scip, &heurdata) );

   /* include primal heuristic */
   SCIP_CALL( SCIPincludeHeurBasic(scip, &heur,
         HEUR_NAME, HEUR_DESC, HEUR_DISPCHAR, HEUR_PRIORITY, HEUR_FREQ, HEUR_FREQOFS,
         HEUR_MAXDEPTH, HEUR_TIMING, HEUR_USESSUBSCIP, heurExecCrossover, heurdata) );

   assert(heur != NULL);

   /* set non-NULL pointers to callback methods */
   SCIP_CALL( SCIPsetHeurCopy(scip, heur, heurCopyCrossover) );
   SCIP_CALL( SCIPsetHeurFree(scip, heur, heurFreeCrossover) );
   SCIP_CALL( SCIPsetHeurInit(scip, heur, heurInitCrossover) );
   SCIP_CALL( SCIPsetHeurExit(scip, heur, heurExitCrossover) );

   /* add crossover primal heuristic parameters */

   SCIP_CALL( SCIPaddLongintParam(scip, "heuristics/"HEUR_NAME"/nodesofs",
         "number of nodes added to the contingent of the total nodes",
         &heurdata->nodesofs, FALSE, DEFAULT_NODESOFS, 0LL, SCIP_LONGINT_MAX, NULL, NULL) );

   SCIP_CALL( SCIPaddLongintParam(scip, "heuristics/"HEUR_NAME"/maxnodes",
         "maximum number of nodes to regard in the subproblem",
         &heurdata->maxnodes, TRUE, DEFAULT_MAXNODES, 0LL, SCIP_LONGINT_MAX, NULL, NULL) );

   SCIP_CALL( SCIPaddLongintParam(scip, "heuristics/"HEUR_NAME"/minnodes",
         "minimum number of nodes required to start the subproblem",
         &heurdata->minnodes, TRUE, DEFAULT_MINNODES, 0LL, SCIP_LONGINT_MAX, NULL, NULL) );

   SCIP_CALL( SCIPaddIntParam(scip, "heuristics/"HEUR_NAME"/nusedsols",
         "number of solutions to be taken into account",
         &heurdata->nusedsols, FALSE, DEFAULT_NUSEDSOLS, 2, INT_MAX, NULL, NULL) );

   SCIP_CALL( SCIPaddLongintParam(scip, "heuristics/"HEUR_NAME"/nwaitingnodes",
         "number of nodes without incumbent change that heuristic should wait",
         &heurdata->nwaitingnodes, TRUE, DEFAULT_NWAITINGNODES, 0LL, SCIP_LONGINT_MAX, NULL, NULL) );

   SCIP_CALL( SCIPaddRealParam(scip, "heuristics/"HEUR_NAME"/nodesquot",
         "contingent of sub problem nodes in relation to the number of nodes of the original problem",
         &heurdata->nodesquot, FALSE, DEFAULT_NODESQUOT, 0.0, 1.0, NULL, NULL) );

   SCIP_CALL( SCIPaddRealParam(scip, "heuristics/"HEUR_NAME"/minfixingrate",
         "minimum percentage of integer variables that have to be fixed",
         &heurdata->minfixingrate, FALSE, DEFAULT_MINFIXINGRATE, 0.0, 1.0, NULL, NULL) );

   SCIP_CALL( SCIPaddRealParam(scip, "heuristics/"HEUR_NAME"/minimprove",
         "factor by which Crossover should at least improve the incumbent",
         &heurdata->minimprove, TRUE, DEFAULT_MINIMPROVE, 0.0, 1.0, NULL, NULL) );

   SCIP_CALL( SCIPaddBoolParam(scip, "heuristics/"HEUR_NAME"/randomization",
         "should the choice which sols to take be randomized?",
         &heurdata->randomization, TRUE, DEFAULT_RANDOMIZATION, NULL, NULL) );

   SCIP_CALL( SCIPaddBoolParam(scip, "heuristics/"HEUR_NAME"/dontwaitatroot",
         "should the nwaitingnodes parameter be ignored at the root node?",
         &heurdata->dontwaitatroot, TRUE, DEFAULT_DONTWAITATROOT, NULL, NULL) );

   SCIP_CALL( SCIPaddBoolParam(scip, "heuristics/"HEUR_NAME"/uselprows",
         "should subproblem be created out of the rows in the LP rows?",
         &heurdata->uselprows, TRUE, DEFAULT_USELPROWS, NULL, NULL) );

   SCIP_CALL( SCIPaddBoolParam(scip, "heuristics/"HEUR_NAME"/copycuts",
         "if uselprows == FALSE, should all active cuts from cutpool be copied to constraints in subproblem?",
         &heurdata->copycuts, TRUE, DEFAULT_COPYCUTS, NULL, NULL) );

   SCIP_CALL( SCIPaddBoolParam(scip, "heuristics/"HEUR_NAME"/permute",
         "should the subproblem be permuted to increase diversification?",
         &heurdata->permute, TRUE, DEFAULT_PERMUTE, NULL, NULL) );

   return SCIP_OKAY;
}
Ejemplo n.º 22
0
/** creates the Gomory MIR cut separator and includes it in SCIP */
SCIP_RETCODE SCIPincludeSepaGomory(
   SCIP*                 scip                /**< SCIP data structure */
   )
{
   SCIP_SEPADATA* sepadata;
   SCIP_SEPA* sepa;

   /* create separator data */
   SCIP_CALL( SCIPallocMemory(scip, &sepadata) );
   sepadata->lastncutsfound = 0;

   /* include separator */
   SCIP_CALL( SCIPincludeSepaBasic(scip, &sepa, SEPA_NAME, SEPA_DESC, SEPA_PRIORITY, SEPA_FREQ, SEPA_MAXBOUNDDIST,
         SEPA_USESSUBSCIP, SEPA_DELAY,
         sepaExeclpGomory, NULL,
         sepadata) );

   assert(sepa != NULL);

   /* set non-NULL pointers to callback methods */
   SCIP_CALL( SCIPsetSepaCopy(scip, sepa, sepaCopyGomory) );
   SCIP_CALL( SCIPsetSepaFree(scip, sepa, sepaFreeGomory) );

   /* add separator parameters */
   SCIP_CALL( SCIPaddIntParam(scip,
         "separating/gomory/maxrounds",
         "maximal number of gomory separation rounds per node (-1: unlimited)",
         &sepadata->maxrounds, FALSE, DEFAULT_MAXROUNDS, -1, INT_MAX, NULL, NULL) );
   SCIP_CALL( SCIPaddIntParam(scip,
         "separating/gomory/maxroundsroot",
         "maximal number of gomory separation rounds in the root node (-1: unlimited)",
         &sepadata->maxroundsroot, FALSE, DEFAULT_MAXROUNDSROOT, -1, INT_MAX, NULL, NULL) );
   SCIP_CALL( SCIPaddIntParam(scip,
         "separating/gomory/maxsepacuts",
         "maximal number of gomory cuts separated per separation round",
         &sepadata->maxsepacuts, FALSE, DEFAULT_MAXSEPACUTS, 0, INT_MAX, NULL, NULL) );
   SCIP_CALL( SCIPaddIntParam(scip,
         "separating/gomory/maxsepacutsroot",
         "maximal number of gomory cuts separated per separation round in the root node",
         &sepadata->maxsepacutsroot, FALSE, DEFAULT_MAXSEPACUTSROOT, 0, INT_MAX, NULL, NULL) );
   SCIP_CALL( SCIPaddRealParam(scip,
         "separating/gomory/away",
         "minimal integrality violation of a basis variable in order to try Gomory cut",
         &sepadata->away, FALSE, DEFAULT_AWAY, 0.0, 0.5, NULL, NULL) );
   SCIP_CALL( SCIPaddRealParam(scip,
         "separating/gomory/maxweightrange",
         "maximal valid range max(|weights|)/min(|weights|) of row weights",
         &sepadata->maxweightrange, TRUE, DEFAULT_MAXWEIGHTRANGE, 1.0, SCIP_REAL_MAX, NULL, NULL) );
   SCIP_CALL( SCIPaddBoolParam(scip,
         "separating/gomory/dynamiccuts",
         "should generated cuts be removed from the LP if they are no longer tight?",
         &sepadata->dynamiccuts, FALSE, DEFAULT_DYNAMICCUTS, NULL, NULL) );
   SCIP_CALL( SCIPaddBoolParam(scip,
         "separating/gomory/makeintegral",
         "try to scale cuts to integral coefficients",
         &sepadata->makeintegral, TRUE, DEFAULT_MAKEINTEGRAL, NULL, NULL) );
   SCIP_CALL( SCIPaddBoolParam(scip,
         "separating/gomory/forcecuts",
         "if conversion to integral coefficients failed still use the cut",
         &sepadata->forcecuts, TRUE, DEFAULT_FORCECUTS, NULL, NULL) );
   SCIP_CALL( SCIPaddBoolParam(scip,
         "separating/gomory/separaterows",
         "separate rows with integral slack",
         &sepadata->separaterows, TRUE, DEFAULT_SEPARATEROWS, NULL, NULL) );
   SCIP_CALL( SCIPaddBoolParam(scip,
         "separating/gomory/delayedcuts",
         "should cuts be added to the delayed cut pool?",
         &sepadata->delayedcuts, TRUE, DEFAULT_DELAYEDCUTS, NULL, NULL) );

   return SCIP_OKAY;
}
Ejemplo n.º 23
0
/** creates the rapidlearning separator and includes it in SCIP */
SCIP_RETCODE SCIPincludeSepaRapidlearning(
   SCIP*                 scip                /**< SCIP data structure */
   )
{
   SCIP_SEPADATA* sepadata;

   /* create rapidlearning separator data */
   SCIP_CALL( SCIPallocMemory(scip, &sepadata) );

   /* include separator */
   SCIP_CALL( SCIPincludeSepa(scip, SEPA_NAME, SEPA_DESC, SEPA_PRIORITY, SEPA_FREQ, SEPA_MAXBOUNDDIST,
         SEPA_USESSUBSCIP, SEPA_DELAY,
         sepaCopyRapidlearning, sepaFreeRapidlearning, sepaInitRapidlearning, sepaExitRapidlearning, 
         sepaInitsolRapidlearning, sepaExitsolRapidlearning,
         sepaExeclpRapidlearning, sepaExecsolRapidlearning,
         sepadata) );

   /* add rapidlearning separator parameters */
   SCIP_CALL( SCIPaddBoolParam(scip, "separating/"SEPA_NAME"/applyconflicts",
         "should the found conflicts be applied in the original SCIP?",
         &sepadata->applyconflicts, TRUE, DEFAULT_APPLYCONFLICTS, NULL, NULL) );
  
   SCIP_CALL( SCIPaddBoolParam(scip, "separating/"SEPA_NAME"/applybdchgs",
         "should the found global bound deductions be applied in the original SCIP?",
         &sepadata->applybdchgs, TRUE, DEFAULT_APPLYBDCHGS, NULL, NULL) );
  
   SCIP_CALL( SCIPaddBoolParam(scip, "separating/"SEPA_NAME"/applyinfervals",
         "should the inference values be used as initialization in the original SCIP?",
         &sepadata->applyinfervals, TRUE, DEFAULT_APPLYINFERVALS, NULL, NULL) );

   SCIP_CALL( SCIPaddBoolParam(scip, "separating/"SEPA_NAME"/reducedinfer",
         "should the inference values only be used when "SEPA_NAME" found other reductions?",
         &sepadata->reducedinfer, TRUE, DEFAULT_REDUCEDINFER, NULL, NULL) );
  
   SCIP_CALL( SCIPaddBoolParam(scip, "separating/"SEPA_NAME"/applyprimalsol",
         "should the incumbent solution be copied to the original SCIP?",
         &sepadata->applyprimalsol, TRUE, DEFAULT_APPLYPRIMALSOL, NULL, NULL) );
  
   SCIP_CALL( SCIPaddBoolParam(scip, "separating/"SEPA_NAME"/applysolved",
         "should a solved status be copied to the original SCIP?",
         &sepadata->applysolved, TRUE, DEFAULT_APPLYSOLVED, NULL, NULL) );

   SCIP_CALL( SCIPaddBoolParam(scip, "separating/"SEPA_NAME"/contvars",
         "should rapid learning be applied when there are continuous variables?",
         &sepadata->contvars, TRUE, DEFAULT_CONTVARS, NULL, NULL) );

   SCIP_CALL( SCIPaddRealParam(scip, "separating/"SEPA_NAME"/contvarsquot",
         "maximal portion of continuous variables to apply rapid learning",
         &sepadata->contvarsquot, TRUE, DEFAULT_CONTVARSQUOT, 0.0, 1.0, NULL, NULL) );

   SCIP_CALL( SCIPaddRealParam(scip, "separating/"SEPA_NAME"/lpiterquot",
         "maximal fraction of LP iterations compared to node LP iterations",
         &sepadata->lpiterquot, TRUE, DEFAULT_LPITERQUOT, 0.0, SCIP_REAL_MAX, NULL, NULL) );
 
   SCIP_CALL( SCIPaddIntParam(scip, "separating/"SEPA_NAME"/maxnvars",
         "maximum problem size (variables) for which rapid learning will be called",
         &sepadata->maxnvars, TRUE, DEFAULT_MAXNVARS, 0, INT_MAX, NULL, NULL) );
   
   SCIP_CALL( SCIPaddIntParam(scip, "separating/"SEPA_NAME"/maxnconss",
         "maximum problem size (constraints) for which rapid learning will be called",
         &sepadata->maxnconss, TRUE, DEFAULT_MAXNCONSS, 0, INT_MAX, NULL, NULL) );

   SCIP_CALL( SCIPaddIntParam(scip, "separating/"SEPA_NAME"/maxnodes",
         "maximum number of nodes considered in rapid learning run",
         &sepadata->maxnodes, TRUE, DEFAULT_MAXNODES, 0, INT_MAX, NULL, NULL) );

   SCIP_CALL( SCIPaddIntParam(scip, "separating/"SEPA_NAME"/minnodes",
         "minimum number of nodes considered in rapid learning run",
         &sepadata->minnodes, TRUE, DEFAULT_MINNODES, 0, INT_MAX, NULL, NULL) );

   SCIP_CALL( SCIPaddBoolParam(scip, "separating/"SEPA_NAME"/copycuts",
         "should all active cuts from cutpool be copied to constraints in subproblem?",
         &sepadata->copycuts, TRUE, DEFAULT_COPYCUTS, NULL, NULL) );
   
   return SCIP_OKAY;
}
Ejemplo n.º 24
0
/** creates the disjunctive cut separator and includes it in SCIP */
SCIP_RETCODE SCIPincludeSepaDisjunctive(
   SCIP*                 scip                /**< SCIP data structure */
   )
{
   SCIP_SEPADATA* sepadata = NULL;
   SCIP_SEPA* sepa = NULL;

   /* create separator data */
   SCIP_CALL( SCIPallocMemory(scip, &sepadata) );
   sepadata->conshdlr = NULL;
   sepadata->lastncutsfound = 0;

   /* include separator */
   SCIP_CALL( SCIPincludeSepaBasic(scip, &sepa, SEPA_NAME, SEPA_DESC, SEPA_PRIORITY, SEPA_FREQ, SEPA_MAXBOUNDDIST,
         SEPA_USESSUBSCIP, SEPA_DELAY, sepaExeclpDisjunctive, NULL, sepadata) );

   assert( sepa != NULL );

   /* set non fundamental callbacks via setter functions */
   SCIP_CALL( SCIPsetSepaCopy(scip, sepa, sepaCopyDisjunctive) );
   SCIP_CALL( SCIPsetSepaFree(scip, sepa, sepaFreeDisjunctive) );
   SCIP_CALL( SCIPsetSepaInitsol(scip, sepa, sepaInitsolDisjunctive) );

   /* add separator parameters */
   SCIP_CALL( SCIPaddBoolParam(scip, "separating/"SEPA_NAME"/strengthen",
         "strengthen cut if integer variables are present.",
         &sepadata->strengthen, TRUE, DEFAULT_STRENGTHEN, NULL, NULL) );

   SCIP_CALL( SCIPaddIntParam(scip, "separating/" SEPA_NAME "/maxdepth",
         "node depth of separating bipartite disjunctive cuts (-1: no limit)",
         &sepadata->maxdepth, TRUE, DEFAULT_MAXDEPTH, -1, INT_MAX, NULL, NULL) );

   SCIP_CALL( SCIPaddIntParam(scip, "separating/" SEPA_NAME "/maxrounds",
         "maximal number of separation rounds per iteration in a branching node (-1: no limit)",
         &sepadata->maxrounds, TRUE, DEFAULT_MAXROUNDS, -1, INT_MAX, NULL, NULL) );

   SCIP_CALL( SCIPaddIntParam(scip, "separating/" SEPA_NAME "/maxroundsroot",
         "maximal number of separation rounds in the root node (-1: no limit)",
         &sepadata->maxroundsroot, TRUE, DEFAULT_MAXROUNDSROOT, -1, INT_MAX, NULL, NULL) );

   SCIP_CALL( SCIPaddIntParam(scip, "separating/" SEPA_NAME "/maxinvcuts",
         "maximal number of cuts investigated per iteration in a branching node",
         &sepadata->maxinvcuts, TRUE, DEFAULT_MAXINVCUTS, 0, INT_MAX, NULL, NULL) );

   SCIP_CALL( SCIPaddIntParam(scip, "separating/" SEPA_NAME "/maxinvcutsroot",
         "maximal number of cuts investigated per iteration in the root node",
         &sepadata->maxinvcutsroot, TRUE, DEFAULT_MAXINVCUTSROOT, 0, INT_MAX, NULL, NULL) );

   SCIP_CALL( SCIPaddIntParam(scip, "separating/" SEPA_NAME "/maxconfsdelay",
         "delay separation if number of conflict graph edges is larger than predefined value (-1: no limit)",
         &sepadata->maxconfsdelay, TRUE, DEFAULT_MAXCONFSDELAY, -1, INT_MAX, NULL, NULL) );

   SCIP_CALL( SCIPaddIntParam(scip, "separating/" SEPA_NAME "/maxrank",
         "maximal rank of a disj. cut that could not be scaled to integral coefficients (-1: unlimited)",
         &sepadata->maxrank, FALSE, DEFAULT_MAXRANK, -1, INT_MAX, NULL, NULL) );

   SCIP_CALL( SCIPaddIntParam(scip, "separating/" SEPA_NAME "/maxrankintegral",
         "maximal rank of a disj. cut that could be scaled to integral coefficients (-1: unlimited)",
         &sepadata->maxrankintegral, FALSE, DEFAULT_MAXRANKINTEGRAL, -1, INT_MAX, NULL, NULL) );

   SCIP_CALL( SCIPaddRealParam(scip, "separating/" SEPA_NAME "/maxweightrange",
         "maximal valid range max(|weights|)/min(|weights|) of row weights",
         &sepadata->maxweightrange, TRUE, DEFAULT_MAXWEIGHTRANGE, 1.0, SCIP_REAL_MAX, NULL, NULL) );

   return SCIP_OKAY;
}
Ejemplo n.º 25
0
static
SCIP_RETCODE run(
   const char*                nlfile,        /**< name of AMPL .nl file */
   const char*                setfile,       /**< SCIP settings file, or NULL to try default scip.set */
   SCIP_Bool                  interactive    /**< whether to start SCIP interactive shell instead of solving command */
)
{
   SCIP* scip;
   char buffer[SCIP_MAXSTRLEN];
   SCIP_Bool printstat;

   assert(nlfile != NULL);

   /* setup SCIP and print version information */
   SCIP_CALL( SCIPcreate(&scip) );

   SCIPprintVersion(scip, NULL);
   SCIPinfoMessage(scip, NULL, "\n");

   SCIP_CALL( SCIPincludeDefaultPlugins(scip) );
   SCIP_CALL( SCIPincludeReaderNl(scip) );

   SCIP_CALL( SCIPaddBoolParam(scip, "display/statistics",
      "whether to print statistics on a solve",
      NULL, FALSE, FALSE, NULL, NULL) );

   SCIPprintExternalCodes(scip, NULL);
   SCIPinfoMessage(scip, NULL, "\n");

   /* read setting file */
   if( setfile != NULL )
   {
      SCIP_CALL( SCIPreadParams(scip, setfile) );
   }

   SCIP_CALL( SCIPgetBoolParam(scip, "display/statistics", &printstat) );

   /* setup commands to be executed by SCIP */

   SCIP_CALL( SCIPaddDialogInputLine(scip, "display param") );

   /* add .nl extension, if not given */
   (void) SCIPsnprintf(buffer, SCIP_MAXSTRLEN, "read %s%s", nlfile, (strlen(nlfile) < 3 || strcmp(nlfile+(strlen(nlfile)-3), ".nl") != 0) ? ".nl" : "");
   SCIP_CALL( SCIPaddDialogInputLine(scip, buffer) );

   if( !interactive )
   {
      /* SCIP_CALL( SCIPaddDialogInputLine(scip, "display problem") ); */

      SCIP_CALL( SCIPaddDialogInputLine(scip, "optimize") );

      SCIP_CALL( SCIPaddDialogInputLine(scip, "write amplsol") );

      if( printstat )
      {
         SCIP_CALL( SCIPaddDialogInputLine(scip, "display statistics") );
      }

      SCIP_CALL( SCIPaddDialogInputLine(scip, "quit") );
   }

   /* run SCIP */
   SCIP_CALL( SCIPstartInteraction(scip) );

   SCIP_CALL( SCIPfree(&scip) );

   return SCIP_OKAY;
}
Ejemplo n.º 26
0
/** creates the closecuts separator and includes it in SCIP */
SCIP_RETCODE SCIPincludeSepaClosecuts(
   SCIP*                 scip                /**< SCIP data structure */
   )
{
   SCIP_SEPADATA* sepadata;

   /* create closecuts separator data */
   SCIP_CALL( SCIPallocMemory(scip, &sepadata) );
   sepadata->sepasol = NULL;
   sepadata->discardnode = -1;
   sepadata->nunsuccessful = 0;

   /* include separator */
   SCIP_CALL( SCIPincludeSepa(scip, SEPA_NAME, SEPA_DESC, SEPA_PRIORITY, SEPA_FREQ, SEPA_MAXBOUNDDIST, SEPA_USESSUBSCIP, SEPA_DELAY,
         sepaCopyClosecuts, sepaFreeClosecuts, sepaInitClosecuts, sepaExitClosecuts,
         sepaInitsolClosecuts, sepaExitsolClosecuts, sepaExeclpClosecuts, sepaExecsolClosecuts,
         sepadata) );

   /* add closecuts separator parameters */
   SCIP_CALL( SCIPaddBoolParam(scip,
         "separating/closecuts/separelint",
         "generate close cuts w.r.t. relative interior point (best solution otherwise)?",
         &sepadata->separelint, TRUE, SCIP_DEFAULT_SEPARELINT, NULL, NULL) );

   SCIP_CALL( SCIPaddRealParam(scip,
         "separating/closecuts/sepacombvalue",
         "convex combination value for close cuts",
         &sepadata->sepacombvalue, TRUE, SCIP_DEFAULT_SEPACOMBVALUE, 0.0, 1.0,
         NULL, NULL) );

   SCIP_CALL( SCIPaddBoolParam(scip,
         "separating/closecuts/separootonly",
         "generate close cuts in the root only?",
         &sepadata->separootonly, TRUE, SCIP_DEFAULT_SEPAROOTONLY, NULL, NULL) );

   SCIP_CALL( SCIPaddIntParam(scip,
         "separating/closecuts/closethres",
         "threshold on number of generated cuts below which the ordinary separation is started",
         &sepadata->sepathreshold, TRUE, SCIP_DEFAULT_SEPATHRESHOLD, -1, INT_MAX, NULL, NULL) );

   SCIP_CALL( SCIPaddBoolParam(scip,
         "separating/closecuts/inclobjcutoff",
         "include an objective cutoff when computing the relative interior?",
         &sepadata->inclobjcutoff, TRUE, SCIP_DEFAULT_INCLOBJCUTOFF, NULL, NULL) );

   SCIP_CALL( SCIPaddBoolParam(scip,
         "separating/closecuts/recomputerelint",
         "recompute relative interior point in each separation call?",
         &sepadata->recomputerelint, TRUE, SCIP_DEFAULT_RECOMPUTERELINT, NULL, NULL) );

   SCIP_CALL( SCIPaddCharParam(scip,
         "separating/closecuts/relintnormtype",
         "type of norm to use when computing relative interior: 'o'ne norm, 's'upremum norm",
         &sepadata->relintnormtype, TRUE, SCIP_DEFAULT_RELINTNORMTYPE, "os", NULL, NULL) );

   SCIP_CALL( SCIPaddIntParam(scip,
         "separating/closecuts/maxunsuccessful",
         "turn off separation in current node after unsuccessful calls (-1 never turn off)",
         &sepadata->maxunsuccessful, TRUE, SCIP_DEFAULT_MAXUNSUCCESSFUL, -1, INT_MAX, NULL, NULL) );

   return SCIP_OKAY;
}
Ejemplo n.º 27
0
/** creates the mutation primal heuristic and includes it in SCIP */
SCIP_RETCODE SCIPincludeHeurMutation(
   SCIP*                 scip                /**< SCIP data structure */
   )
{
   SCIP_HEURDATA* heurdata;
   SCIP_HEUR* heur;

   /* create Mutation primal heuristic data */
   SCIP_CALL( SCIPallocMemory(scip, &heurdata) );

   /* include primal heuristic */
   SCIP_CALL( SCIPincludeHeurBasic(scip, &heur,
         HEUR_NAME, HEUR_DESC, HEUR_DISPCHAR, HEUR_PRIORITY, HEUR_FREQ, HEUR_FREQOFS,
         HEUR_MAXDEPTH, HEUR_TIMING, HEUR_USESSUBSCIP, heurExecMutation, heurdata) );

   assert(heur != NULL);

   /* set non-NULL pointers to callback methods */
   SCIP_CALL( SCIPsetHeurCopy(scip, heur, heurCopyMutation) );
   SCIP_CALL( SCIPsetHeurFree(scip, heur, heurFreeMutation) );
   SCIP_CALL( SCIPsetHeurInit(scip, heur, heurInitMutation) );

   /* add mutation primal heuristic parameters */
   SCIP_CALL( SCIPaddIntParam(scip, "heuristics/"HEUR_NAME"/nodesofs",
         "number of nodes added to the contingent of the total nodes",
         &heurdata->nodesofs, FALSE, DEFAULT_NODESOFS, 0, INT_MAX, NULL, NULL) );

   SCIP_CALL( SCIPaddIntParam(scip, "heuristics/"HEUR_NAME"/maxnodes",
         "maximum number of nodes to regard in the subproblem",
         &heurdata->maxnodes, TRUE, DEFAULT_MAXNODES, 0, INT_MAX, NULL, NULL) );

   SCIP_CALL( SCIPaddIntParam(scip, "heuristics/"HEUR_NAME"/minnodes",
         "minimum number of nodes required to start the subproblem",
         &heurdata->minnodes, TRUE, DEFAULT_MINNODES, 0, INT_MAX, NULL, NULL) );

   SCIP_CALL( SCIPaddIntParam(scip, "heuristics/"HEUR_NAME"/nwaitingnodes",
         "number of nodes without incumbent change that heuristic should wait",
         &heurdata->nwaitingnodes, TRUE, DEFAULT_NWAITINGNODES, 0, INT_MAX, NULL, NULL) );

   SCIP_CALL( SCIPaddRealParam(scip, "heuristics/"HEUR_NAME"/nodesquot",
         "contingent of sub problem nodes in relation to the number of nodes of the original problem",
         &heurdata->nodesquot, FALSE, DEFAULT_NODESQUOT, 0.0, 1.0, NULL, NULL) );

   SCIP_CALL( SCIPaddRealParam(scip, "heuristics/"HEUR_NAME"/minfixingrate",
         "percentage of integer variables that have to be fixed",
         &heurdata->minfixingrate, FALSE, DEFAULT_MINFIXINGRATE, SCIPsumepsilon(scip), 1.0-SCIPsumepsilon(scip), NULL, NULL) );

   SCIP_CALL( SCIPaddRealParam(scip, "heuristics/"HEUR_NAME"/minimprove",
         "factor by which "HEUR_NAME" should at least improve the incumbent",
         &heurdata->minimprove, TRUE, DEFAULT_MINIMPROVE, 0.0, 1.0, NULL, NULL) );

   SCIP_CALL( SCIPaddBoolParam(scip, "heuristics/"HEUR_NAME"/uselprows",
         "should subproblem be created out of the rows in the LP rows?",
         &heurdata->uselprows, TRUE, DEFAULT_USELPROWS, NULL, NULL) );

   SCIP_CALL( SCIPaddBoolParam(scip, "heuristics/"HEUR_NAME"/copycuts",
         "if uselprows == FALSE, should all active cuts from cutpool be copied to constraints in subproblem?",
         &heurdata->copycuts, TRUE, DEFAULT_COPYCUTS, NULL, NULL) );

   return SCIP_OKAY;
}
Ejemplo n.º 28
0
SCIP_RETCODE GamsScip::setupSCIP()
{
/*
#ifdef COIN_HAS_OSICPX
   // change default LP solver to CPLEX, if license available
   if( gmo != NULL && checkCplexLicense(gmo, pal) )
   {
      SCIP_CALL( SCIPlpiSwitchSetSolver(SCIP_LPISW_CPLEX) );
   }
#endif
*/

   if( scip == NULL )
   {
      // if called first time, create a new SCIP instance and include all plugins that we need and setup interface parameters
      SCIP_MESSAGEHDLR* messagehdlr;
      SCIP_NLPI* nlpiipopt;

      SCIP_CALL( SCIPcreate(&scip) );

      // create and install our message handler
      SCIP_CALL( SCIPmessagehdlrCreate(&messagehdlr, FALSE, NULL, FALSE,
         GamsScipPrintLogStat, GamsScipPrintLog, GamsScipPrintLog, NULL,
         (SCIP_MESSAGEHDLRDATA*)gev) );
      SCIP_CALL( SCIPsetMessagehdlr(scip, messagehdlr) );
      SCIP_CALL( SCIPmessagehdlrRelease(&messagehdlr) );

      SCIP_CALL( SCIPincludeDefaultPlugins(scip) );
      SCIP_CALL( SCIPincludeReaderGmo(scip) );
      SCIP_CALL( SCIPincludeEventHdlrSolveTrace(scip, gmo) );
      /* SCIP_CALL( SCIPincludePropDefaultBounds(scip) ); */

      if( ipoptlicensed )
      {
         nlpiipopt = SCIPfindNlpi(scip, "ipopt");
         if( nlpiipopt != NULL )
         {
            SCIPsetModifiedDefaultSettingsIpopt(nlpiipopt, "linear_solver ma27\nlinear_system_scaling mc19\n");
            SCIP_CALL( SCIPincludeExternalCodeInformation(scip, "HSL MA27 and MC19", "Harwell Subroutine Libraries (www.hsl.rl.ac.uk) from commercially supported Ipopt") );
         }
      }
/*
      else
      {
         nlpiipopt = SCIPfindNlpi(scip, "ipopt");
         if( nlpiipopt != NULL )
         {
            SCIPsetModifiedDefaultSettingsIpopt(nlpiipopt, "linear_solver mumps\n");
         }
      }
*/

      /* SCIP_CALL( SCIPaddBoolParam(scip, "gams/solvefinal",
       * "whether the problem should be solved with fixed discrete variables to get dual values",
       * NULL, FALSE, TRUE,  NULL, NULL) );
       */
      SCIP_CALL( SCIPaddBoolParam(scip, "display/statistics",
         "whether to print statistics on a solve",
         NULL, FALSE, FALSE, NULL, NULL) );
      SCIP_CALL( SCIPaddStringParam(scip, "gams/interactive",
         "command to be issued to the SCIP shell instead of issuing a solve command",
         NULL, FALSE, "", NULL, NULL) );
#if 0
      SCIP_CALL( SCIPaddStringParam(scip, "constraints/attrfile",
         "name of file that specifies constraint attributes",
         NULL, FALSE, "", NULL, NULL) );
#endif
/*
      SCIP_CALL( SCIPaddStringParam(scip, "lp/solver",
         "LP solver to use (clp, cplex, mosek, soplex, gurobi, xpress)",
         NULL, FALSE, SCIP_LPISW_SOLVERNAMES[SCIPlpiSwitchGetCurrentSolver()], GamsScipParamChgdLpSolver, NULL) );
*/
   }
   else
   {
      // if called before, only clear up problem and reset parameters
      SCIP_CALL( SCIPfreeProb(scip) );
      SCIP_CALL( SCIPresetParams(scip) );
   }

   /** pass current GMO into GMO reader, so it does not read instance from file */
   SCIPsetGMOReaderGmo(scip, gmo);

   return SCIP_OKAY;
}
Ejemplo n.º 29
0
/** creates the octane primal heuristic and includes it in SCIP */
SCIP_RETCODE SCIPincludeHeurOctane(
   SCIP*                 scip                /**< SCIP data structure */
   )
{
   SCIP_HEURDATA* heurdata;
   SCIP_HEUR* heur;

   /* create Octane primal heuristic data */
   SCIP_CALL( SCIPallocMemory(scip, &heurdata) );

   /* include primal heuristic */
   SCIP_CALL( SCIPincludeHeurBasic(scip, &heur,
         HEUR_NAME, HEUR_DESC, HEUR_DISPCHAR, HEUR_PRIORITY, HEUR_FREQ, HEUR_FREQOFS,
         HEUR_MAXDEPTH, HEUR_TIMING, HEUR_USESSUBSCIP, heurExecOctane, heurdata) );

   assert(heur != NULL);

   /* set non-NULL pointers to callback methods */
   SCIP_CALL( SCIPsetHeurCopy(scip, heur, heurCopyOctane) );
   SCIP_CALL( SCIPsetHeurFree(scip, heur, heurFreeOctane) );
   SCIP_CALL( SCIPsetHeurInit(scip, heur, heurInitOctane) );
   SCIP_CALL( SCIPsetHeurExit(scip, heur, heurExitOctane) );

   /* add octane primal heuristic parameters */
   SCIP_CALL( SCIPaddIntParam(scip,
         "heuristics/octane/fmax",
         "number of 0-1-points to be tested as possible solutions by OCTANE",
         &heurdata->f_max, TRUE, DEFAULT_FMAX, 1, INT_MAX, NULL, NULL) );

   SCIP_CALL( SCIPaddIntParam(scip,
         "heuristics/octane/ffirst",
         "number of 0-1-points to be tested at first whether they violate a common row",
         &heurdata->f_first, TRUE, DEFAULT_FFIRST, 1, INT_MAX, NULL, NULL) );

   SCIP_CALL( SCIPaddBoolParam(scip,
         "heuristics/octane/usefracspace",
         "execute OCTANE only in the space of fractional variables (TRUE) or in the full space?",
         &heurdata->usefracspace, TRUE, DEFAULT_USEFRACSPACE, NULL, NULL) );

   SCIP_CALL( SCIPaddBoolParam(scip,
         "heuristics/octane/useobjray",
         "should the inner normal of the objective be used as one ray direction?",
         &heurdata->useobjray, TRUE, TRUE, NULL, NULL) );

   SCIP_CALL( SCIPaddBoolParam(scip,
         "heuristics/octane/useavgray",
         "should the average of the basic cone be used as one ray direction?",
         &heurdata->useavgray, TRUE, TRUE, NULL, NULL) );

   SCIP_CALL( SCIPaddBoolParam(scip,
         "heuristics/octane/usediffray",
         "should the difference between the root solution and the current LP solution be used as one ray direction?",
         &heurdata->usediffray, TRUE, FALSE, NULL, NULL) );

   SCIP_CALL( SCIPaddBoolParam(scip,
         "heuristics/octane/useavgwgtray",
         "should the weighted average of the basic cone be used as one ray direction?",
         &heurdata->useavgwgtray, TRUE, TRUE, NULL, NULL) );

   SCIP_CALL( SCIPaddBoolParam(scip,
         "heuristics/octane/useavgnbray",
         "should the weighted average of the nonbasic cone be used as one ray direction?",
         &heurdata->useavgnbray, TRUE, TRUE, NULL, NULL) );

   return SCIP_OKAY;
}
Ejemplo n.º 30
0
/** creates the localbranching primal heuristic and includes it in SCIP */
SCIP_RETCODE SCIPincludeHeurLocalbranching(
   SCIP*                 scip                /**< SCIP data structure */
   )
{
   SCIP_HEURDATA* heurdata;

   SCIP_HEUR* heur;

   /* create Localbranching primal heuristic data */
   SCIP_CALL( SCIPallocMemory(scip, &heurdata) );

   /* include primal heuristic */
   SCIP_CALL( SCIPincludeHeurBasic(scip, &heur,
         HEUR_NAME, HEUR_DESC, HEUR_DISPCHAR, HEUR_PRIORITY, HEUR_FREQ, HEUR_FREQOFS,
         HEUR_MAXDEPTH, HEUR_TIMING, HEUR_USESSUBSCIP, heurExecLocalbranching, heurdata) );

   assert(heur != NULL);

   /* set non-NULL pointers to callback methods */
   SCIP_CALL( SCIPsetHeurCopy(scip, heur, heurCopyLocalbranching) );
   SCIP_CALL( SCIPsetHeurFree(scip, heur, heurFreeLocalbranching) );
   SCIP_CALL( SCIPsetHeurInit(scip, heur, heurInitLocalbranching) );

   /* add localbranching primal heuristic parameters */
   SCIP_CALL( SCIPaddIntParam(scip, "heuristics/"HEUR_NAME"/nodesofs",
         "number of nodes added to the contingent of the total nodes",
         &heurdata->nodesofs, FALSE, DEFAULT_NODESOFS, 0, INT_MAX, NULL, NULL) );

   SCIP_CALL( SCIPaddIntParam(scip, "heuristics/"HEUR_NAME"/neighborhoodsize",
         "radius (using Manhattan metric) of the incumbent's neighborhood to be searched",
         &heurdata->neighborhoodsize, FALSE, DEFAULT_NEIGHBORHOODSIZE, 1, INT_MAX, NULL, NULL) );

   SCIP_CALL( SCIPaddRealParam(scip, "heuristics/"HEUR_NAME"/nodesquot",
         "contingent of sub problem nodes in relation to the number of nodes of the original problem",
         &heurdata->nodesquot, FALSE, DEFAULT_NODESQUOT, 0.0, 1.0, NULL, NULL) );

   SCIP_CALL( SCIPaddRealParam(scip, "heuristics/"HEUR_NAME"/lplimfac",
         "factor by which the limit on the number of LP depends on the node limit",
         &heurdata->lplimfac, TRUE, DEFAULT_LPLIMFAC, 1.0, SCIP_REAL_MAX, NULL, NULL) );

   SCIP_CALL( SCIPaddIntParam(scip, "heuristics/"HEUR_NAME"/minnodes",
         "minimum number of nodes required to start the subproblem",
         &heurdata->minnodes, TRUE, DEFAULT_MINNODES, 0, INT_MAX, NULL, NULL) );

   SCIP_CALL( SCIPaddIntParam(scip, "heuristics/"HEUR_NAME"/maxnodes",
         "maximum number of nodes to regard in the subproblem",
         &heurdata->maxnodes, TRUE, DEFAULT_MAXNODES, 0, INT_MAX, NULL, NULL) );

   SCIP_CALL( SCIPaddIntParam(scip, "heuristics/"HEUR_NAME"/nwaitingnodes",
         "number of nodes without incumbent change that heuristic should wait",
         &heurdata->nwaitingnodes, TRUE, DEFAULT_NWAITINGNODES, 0, INT_MAX, NULL, NULL) );

   SCIP_CALL( SCIPaddRealParam(scip, "heuristics/"HEUR_NAME"/minimprove",
         "factor by which localbranching should at least improve the incumbent",
         &heurdata->minimprove, TRUE, DEFAULT_MINIMPROVE, 0.0, 1.0, NULL, NULL) );

   SCIP_CALL( SCIPaddBoolParam(scip, "heuristics/"HEUR_NAME"/uselprows",
         "should subproblem be created out of the rows in the LP rows?",
         &heurdata->uselprows, TRUE, DEFAULT_USELPROWS, NULL, NULL) );

   SCIP_CALL( SCIPaddBoolParam(scip, "heuristics/"HEUR_NAME"/copycuts",
         "if uselprows == FALSE, should all active cuts from cutpool be copied to constraints in subproblem?",
         &heurdata->copycuts, TRUE, DEFAULT_COPYCUTS, NULL, NULL) );

   return SCIP_OKAY;
}