Ejemplo n.º 1
0
/** performs the all fullstrong branching */
static
SCIP_RETCODE branch(
   SCIP*                 scip,               /**< SCIP data structure */
   SCIP_BRANCHRULE*      branchrule,         /**< branching rule */
   SCIP_Bool             allowaddcons,       /**< should adding constraints be allowed to avoid a branching? */
   SCIP_RESULT*          result              /**< pointer to store the result of the callback method */
   )
{
   SCIP_BRANCHRULEDATA* branchruledata;
   SCIP_VAR** pseudocands;
   SCIP_Real bestdown;
   SCIP_Real bestup;
   SCIP_Real bestscore;
   SCIP_Real provedbound;
   SCIP_Bool exactsolve;
   SCIP_Bool allcolsinlp;
   SCIP_Bool bestdownvalid;
   SCIP_Bool bestupvalid;
   int npseudocands;
   int npriopseudocands;
   int bestpseudocand;
#ifndef NDEBUG
   SCIP_Real cutoffbound;
   cutoffbound = SCIPgetCutoffbound(scip);
#endif

   assert(branchrule != NULL);
   assert(strcmp(SCIPbranchruleGetName(branchrule), BRANCHRULE_NAME) == 0);
   assert(scip != NULL);
   assert(result != NULL);

   /* check, if all existing columns are in LP, and thus the strong branching results give lower bounds */
   allcolsinlp = SCIPallColsInLP(scip);

   /* check, if we want to solve the problem exactly, meaning that strong branching information is not useful
    * for cutting off sub problems and improving lower bounds of children
    */
   exactsolve = SCIPisExactSolve(scip);

   /* get branching rule data */
   branchruledata = SCIPbranchruleGetData(branchrule);
   assert(branchruledata != NULL);

   if( branchruledata->skipdown == NULL )
   {
      int nvars;
      nvars = SCIPgetNVars(scip);

      assert(branchruledata->skipup == NULL);

      SCIP_CALL( SCIPallocMemoryArray(scip, &branchruledata->skipdown, nvars) );
      SCIP_CALL( SCIPallocMemoryArray(scip, &branchruledata->skipup, nvars) );
      BMSclearMemoryArray(branchruledata->skipdown, nvars);
      BMSclearMemoryArray(branchruledata->skipup, nvars);
   }

   /* get all non-fixed variables (not only the fractional ones) */
   SCIP_CALL( SCIPgetPseudoBranchCands(scip, &pseudocands, &npseudocands, &npriopseudocands) );
   assert(npseudocands > 0);
   assert(npriopseudocands > 0);

   SCIP_CALL( SCIPselectVarPseudoStrongBranching(scip, pseudocands, branchruledata->skipdown, branchruledata->skipup, npseudocands, npriopseudocands,
      allowaddcons, &bestpseudocand, &bestdown, &bestup, &bestscore, &bestdownvalid, &bestupvalid, &provedbound, result) );

   if( *result != SCIP_CUTOFF && *result != SCIP_REDUCEDDOM && *result != SCIP_CONSADDED )
   {
      SCIP_NODE* downchild;
      SCIP_NODE* eqchild;
      SCIP_NODE* upchild;
      SCIP_VAR* var;

      assert(*result == SCIP_DIDNOTRUN);
      assert(0 <= bestpseudocand && bestpseudocand < npseudocands);
      assert(SCIPisLT(scip, provedbound, cutoffbound));

      var = pseudocands[bestpseudocand];

      /* perform the branching */
      SCIPdebugMessage(" -> %d candidates, selected candidate %d: variable <%s>[%g,%g] (solval=%g, down=%g, up=%g, score=%g)\n",
         npseudocands, bestpseudocand, SCIPvarGetName(var), SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var), SCIPvarGetLPSol(var),
         bestdown, bestup, bestscore);
      SCIP_CALL( SCIPbranchVarVal(scip, var, SCIPvarGetLPSol(var), &downchild, &eqchild, &upchild) );

      /* update the lower bounds in the children */
      if( allcolsinlp && !exactsolve )
      {
         if( downchild != NULL )
         {
            SCIP_CALL( SCIPupdateNodeLowerbound(scip, downchild, bestdownvalid ? MAX(bestdown, provedbound) : provedbound) );
            SCIPdebugMessage(" -> down child's lowerbound: %g\n", SCIPnodeGetLowerbound(downchild));
         }
         if( eqchild != NULL )
         {
            SCIP_CALL( SCIPupdateNodeLowerbound(scip, eqchild, provedbound) );
            SCIPdebugMessage(" -> eq child's lowerbound:   %g\n", SCIPnodeGetLowerbound(eqchild));
         }
         if( upchild != NULL )
         {
            SCIP_CALL( SCIPupdateNodeLowerbound(scip, upchild, bestupvalid ? MAX(bestup, provedbound) : provedbound) );
            SCIPdebugMessage(" -> up child's lowerbound:   %g\n", SCIPnodeGetLowerbound(upchild));
         }
      }

      *result = SCIP_BRANCHED;
   }

   return SCIP_OKAY;
}
Ejemplo n.º 2
0
/** perform randomized rounding of the given solution. Domain propagation is optionally applied after every rounding
 *  step
 */
static
SCIP_RETCODE performRandRounding(
   SCIP*                 scip,               /**< SCIP main data structure */
   SCIP_HEURDATA*        heurdata,           /**< heuristic data */
   SCIP_SOL*             sol,                /**< solution to round */
   SCIP_VAR**            cands,              /**< candidate variables */
   int                   ncands,             /**< number of candidates */
   SCIP_Bool             propagate,          /**< should the rounding be propagated? */
   SCIP_RESULT*          result              /**< pointer to store the result of the heuristic call */
   )
{
   int c;
   SCIP_Bool stored;
   SCIP_VAR** permutedcands;
   SCIP_Bool cutoff;

   assert(heurdata != NULL);

   /* start probing tree before rounding begins */
   if( propagate )
   {
      SCIP_CALL( SCIPstartProbing(scip) );
      SCIPenableVarHistory(scip);
   }

   /* copy and permute the candidate array */
   SCIP_CALL( SCIPduplicateBufferArray(scip, &permutedcands, cands, ncands) );

   assert(permutedcands != NULL);

   SCIPpermuteArray((void **)permutedcands, 0, ncands, &heurdata->randseed);
   cutoff = FALSE;

   /* loop over candidates and perform randomized rounding and optionally probing. */
   for (c = 0; c < ncands && !cutoff; ++c)
   {
      SCIP_VAR* var;
      SCIP_Real oldsolval;
      SCIP_Real newsolval;
      SCIP_Bool mayrounddown;
      SCIP_Bool mayroundup;
      SCIP_Longint ndomreds;
      SCIP_Real lb;
      SCIP_Real ub;
      SCIP_Real ceilval;
      SCIP_Real floorval;

      /* get next variable from permuted candidate array */
      var = permutedcands[c];
      oldsolval = SCIPgetSolVal(scip, sol, var);
      lb = SCIPvarGetLbLocal(var);
      ub = SCIPvarGetUbLocal(var);

      assert( ! SCIPisFeasIntegral(scip, oldsolval) );
      assert( SCIPvarGetStatus(var) == SCIP_VARSTATUS_COLUMN );

      mayrounddown = SCIPvarMayRoundDown(var);
      mayroundup = SCIPvarMayRoundUp(var);
      ceilval = SCIPfeasCeil(scip, oldsolval);
      floorval = SCIPfeasFloor(scip, oldsolval);

      SCIPdebugMessage("rand rounding heuristic: var <%s>, val=%g, rounddown=%u, roundup=%u\n",
         SCIPvarGetName(var), oldsolval, mayrounddown, mayroundup);

      /* abort if rounded ceil and floor value lie outside the variable domain. Otherwise, check if
       * bounds allow only one rounding direction, anyway */
      if( lb > ceilval + 0.5 || ub < floorval - 0.5 )
      {
         cutoff = TRUE;
         break;
      }
      else if( SCIPisFeasEQ(scip, lb, ceilval) )
      {
         /* only rounding up possible */
         assert(SCIPisFeasGE(scip, ub, ceilval));
         newsolval = ceilval;
      }
      else if( SCIPisFeasEQ(scip, ub, floorval) )
      {
         /* only rounding down possible */
         assert(SCIPisFeasLE(scip,lb, floorval));
         newsolval = floorval;
      }
      else if( !heurdata->usesimplerounding || !(mayroundup || mayrounddown) )
      {
         /* the standard randomized rounding */
         SCIP_Real randnumber;

         randnumber = SCIPgetRandomReal(0.0, 1.0, &heurdata->randseed);
         if( randnumber <= oldsolval - floorval )
            newsolval = ceilval;
         else
            newsolval = floorval;
      }
      /* choose rounding direction, if possible, or use the only direction guaranteed to be feasible */
      else if( mayrounddown && mayroundup )
      {
         /* we can round in both directions: round in objective function direction */
         if ( SCIPvarGetObj(var) >= 0.0 )
            newsolval = floorval;
         else
            newsolval = ceilval;
      }
      else if( mayrounddown )
         newsolval = floorval;
      else
      {
         assert(mayroundup);
         newsolval = ceilval;
      }

      assert(SCIPisFeasLE(scip, lb, newsolval));
      assert(SCIPisFeasGE(scip, ub, newsolval));

      /* if propagation is enabled, fix the candidate variable to its rounded value and propagate the solution */
      if( propagate )
      {
         SCIP_Bool lbadjust;
         SCIP_Bool ubadjust;

         lbadjust = SCIPisGT(scip, newsolval, lb);
         ubadjust = SCIPisLT(scip, newsolval, ub);

         assert( lbadjust || ubadjust || SCIPisFeasEQ(scip, lb, ub));

         /* enter a new probing node if the variable was not already fixed before */
         if( lbadjust || ubadjust )
         {
            SCIP_RETCODE retcode;

            if( SCIPisStopped(scip) )
               break;

            retcode = SCIPnewProbingNode(scip);
            if( retcode == SCIP_MAXDEPTHLEVEL )
               break;

            SCIP_CALL( retcode );

            /* tighten the bounds to fix the variable for the probing node */
            if( lbadjust )
            {
               SCIP_CALL( SCIPchgVarLbProbing(scip, var, newsolval) );
            }
            if( ubadjust )
            {
               SCIP_CALL( SCIPchgVarUbProbing(scip, var, newsolval) );
            }

            /* call propagation routines for the reduced problem */
            SCIP_CALL( SCIPpropagateProbing(scip, heurdata->maxproprounds, &cutoff, &ndomreds) );
         }
      }
      /* store new solution value */
      SCIP_CALL( SCIPsetSolVal(scip, sol, var, newsolval) );
   }

   /* if no cutoff was detected, the solution is a candidate to be checked for feasibility */
   if( !cutoff && ! SCIPisStopped(scip) )
   {
      if( SCIPallColsInLP(scip) )
      {
         /* check solution for feasibility, and add it to solution store if possible
          * neither integrality nor feasibility of LP rows has to be checked, because all fractional
          * variables were already moved in feasible direction to the next integer
          */
         SCIP_CALL( SCIPtrySol(scip, sol, FALSE, FALSE, FALSE, TRUE, &stored) );
      }
      else
      {
         /* if there are variables which are not present in the LP, e.g., for
          * column generation, we need to check their bounds
          */
         SCIP_CALL( SCIPtrySol(scip, sol, FALSE, TRUE, FALSE, TRUE, &stored) );
      }

      if( stored )
      {
#ifdef SCIP_DEBUG
         SCIPdebugMessage("found feasible rounded solution:\n");
         SCIP_CALL( SCIPprintSol(scip, sol, NULL, FALSE) );
#endif
         *result = SCIP_FOUNDSOL;
      }
   }

   assert( !propagate || SCIPinProbing(scip) );

   /* exit probing mode and free locally allocated memory */
   if( propagate )
   {
      SCIP_CALL( SCIPendProbing(scip) );
   }

   SCIPfreeBufferArray(scip, &permutedcands);

   return SCIP_OKAY;
}
Ejemplo n.º 3
0
/**
 * Selects a variable from a set of candidates by strong branching
 *
 *  @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
 *          SCIP_Retcode "SCIP_RETCODE" for a complete list of error codes.
 *
 * @note The variables in the lpcands array must have a fractional value in the current LP solution
 */
SCIP_RETCODE SCIPselectVarPseudoStrongBranching(
   SCIP*                 scip,               /**< original SCIP data structure                        */
   SCIP_VAR**            pseudocands,        /**< branching candidates                                */
   SCIP_Bool*            skipdown,           /**< should down branchings be skipped? */
   SCIP_Bool*            skipup,             /**< should up branchings be skipped? */
   int                   npseudocands,       /**< number of branching candidates                      */
   int                   npriopseudocands,   /**< number of priority branching candidates             */
   SCIP_Bool             allowaddcons,       /**< is the branching rule allowed to add constraints?   */
   int*                  bestpseudocand,     /**< best candidate for branching                        */
   SCIP_Real*            bestdown,           /**< objective value of the down branch for bestcand     */
   SCIP_Real*            bestup,             /**< objective value of the up branch for bestcand       */
   SCIP_Real*            bestscore,          /**< score for bestcand                                  */
   SCIP_Bool*            bestdownvalid,      /**< is bestdown a valid dual bound for the down branch? */
   SCIP_Bool*            bestupvalid,        /**< is bestup a valid dual bound for the up branch?     */
   SCIP_Real*            provedbound,        /**< proved dual bound for current subtree               */
   SCIP_RESULT*          result              /**< result pointer                                      */
   )
{
   SCIP_Real lpobjval;
   SCIP_Bool allcolsinlp;
   SCIP_Bool exactsolve;
#ifndef NDEBUG
   SCIP_Real cutoffbound;
   cutoffbound = SCIPgetCutoffbound(scip);
#endif


   assert(scip != NULL);
   assert(pseudocands != NULL);
   assert(bestpseudocand != NULL);
   assert(skipdown != NULL);
   assert(skipup != NULL);
   assert(bestdown != NULL);
   assert(bestup != NULL);
   assert(bestscore != NULL);
   assert(bestdownvalid != NULL);
   assert(bestupvalid != NULL);
   assert(provedbound != NULL);
   assert(result != NULL);
   assert(SCIPgetLPSolstat(scip) == SCIP_LPSOLSTAT_OPTIMAL);

   /* get current LP objective bound of the local sub problem and global cutoff bound */
   lpobjval = SCIPgetLPObjval(scip);

   /* check, if we want to solve the problem exactly, meaning that strong branching information is not useful
    * for cutting off sub problems and improving lower bounds of children
    */
   exactsolve = SCIPisExactSolve(scip);

   /* check, if all existing columns are in LP, and thus the strong branching results give lower bounds */
   allcolsinlp = SCIPallColsInLP(scip);

   /* if only one candidate exists, choose this one without applying strong branching */
   *bestpseudocand = 0;
   *bestdown = lpobjval;
   *bestup = lpobjval;
   *bestdownvalid = TRUE;
   *bestupvalid = TRUE;
   *bestscore = -SCIPinfinity(scip);
   *provedbound = lpobjval;
   if( npseudocands > 1 )
   {
      SCIP_BRANCHRULE* branchrule;
      SCIP_BRANCHRULEDATA* branchruledata;

      SCIP_Real solval;
      SCIP_Real down;
      SCIP_Real up;
      SCIP_Real downgain;
      SCIP_Real upgain;
      SCIP_Real score;
      SCIP_Bool integral;
      SCIP_Bool lperror;
      SCIP_Bool downvalid;
      SCIP_Bool upvalid;
      SCIP_Bool downinf;
      SCIP_Bool upinf;
      SCIP_Bool downconflict;
      SCIP_Bool upconflict;
      int nsbcalls;
      int i;
      int c;

      branchrule = SCIPfindBranchrule(scip, BRANCHRULE_NAME);
      assert(branchrule != NULL);

      /* get branching rule data */
      branchruledata = SCIPbranchruleGetData(branchrule);
      assert(branchruledata != NULL);


      /* initialize strong branching */
      SCIP_CALL( SCIPstartStrongbranch(scip, FALSE) );

      /* search the full strong candidate:
       * cycle through the candidates, starting with the position evaluated in the last run
       */
      nsbcalls = 0;
      for( i = 0, c = branchruledata->lastcand; i < npseudocands; ++i, ++c )
      {
         c = c % npseudocands;
         assert(pseudocands[c] != NULL);

         /* we can only apply strong branching on COLUMN variables that are in the current LP */
         if( !SCIPvarIsInLP(pseudocands[c]) )
            continue;

         solval = SCIPvarGetLPSol(pseudocands[c]);
         integral = SCIPisFeasIntegral(scip, solval);

         SCIPdebugMessage("applying strong branching on %s variable <%s>[%g,%g] with solution %g\n",
            integral ? "integral" : "fractional", SCIPvarGetName(pseudocands[c]), SCIPvarGetLbLocal(pseudocands[c]),
            SCIPvarGetUbLocal(pseudocands[c]), solval);

         up = -SCIPinfinity(scip);
         down = -SCIPinfinity(scip);

         if( integral )
         {
            SCIP_CALL( SCIPgetVarStrongbranchInt(scip, pseudocands[c], INT_MAX,
                  skipdown[c] ? NULL : &down, skipup[c] ? NULL : &up, &downvalid, &upvalid, &downinf, &upinf, &downconflict, &upconflict, &lperror) );
         }
         else
         {
            SCIP_CALL( SCIPgetVarStrongbranchFrac(scip, pseudocands[c], INT_MAX,
                  skipdown[c] ? NULL : &down, skipup[c] ? NULL : &up, &downvalid, &upvalid, &downinf, &upinf, &downconflict, &upconflict, &lperror) );
         }
         nsbcalls++;

         /* display node information line in root node */
         if( SCIPgetDepth(scip) == 0 && nsbcalls % 100 == 0 )
         {
            SCIP_CALL( SCIPprintDisplayLine(scip, NULL, SCIP_VERBLEVEL_HIGH, TRUE) );
         }

         /* check for an error in strong branching */
         if( lperror )
         {
            SCIPverbMessage(scip, SCIP_VERBLEVEL_HIGH, NULL,
               "(node %"SCIP_LONGINT_FORMAT") error in strong branching call for variable <%s> with solution %g\n",
               SCIPgetNNodes(scip), SCIPvarGetName(pseudocands[c]), solval);
            break;
         }

         /* evaluate strong branching */
         down = MAX(down, lpobjval);
         up = MAX(up, lpobjval);
         downgain = down - lpobjval;
         upgain = up - lpobjval;
         assert(!allcolsinlp || exactsolve || !downvalid || downinf == SCIPisGE(scip, down, cutoffbound));
         assert(!allcolsinlp || exactsolve || !upvalid || upinf == SCIPisGE(scip, up, cutoffbound));
         assert(downinf || !downconflict);
         assert(upinf || !upconflict);

         /* check if there are infeasible roundings */
         if( downinf || upinf )
         {
            assert(allcolsinlp);
            assert(!exactsolve);

            /* if for both infeasibilities, a conflict constraint was created, we don't need to fix the variable by hand,
             * but better wait for the next propagation round to fix them as an inference, and potentially produce a
             * cutoff that can be analyzed
             */
            if( allowaddcons && downinf == downconflict && upinf == upconflict )
            {
               *result = SCIP_CONSADDED;
               break; /* terminate initialization loop, because constraint was added */
            }
            else if( downinf && upinf )
            {
               if( integral )
               {
                  SCIP_Bool infeasible;
                  SCIP_Bool fixed;

                  /* both bound changes are infeasible: variable can be fixed to its current value */
                  SCIP_CALL( SCIPfixVar(scip, pseudocands[c], solval, &infeasible, &fixed) );
                  assert(!infeasible);
                  assert(fixed);
                  *result = SCIP_REDUCEDDOM;
                  SCIPdebugMessage(" -> integral variable <%s> is infeasible in both directions\n",
                     SCIPvarGetName(pseudocands[c]));
                  break; /* terminate initialization loop, because LP was changed */
               }
               else
               {
                  /* both roundings are infeasible: the node is infeasible */
                  *result = SCIP_CUTOFF;
                  SCIPdebugMessage(" -> fractional variable <%s> is infeasible in both directions\n",
                     SCIPvarGetName(pseudocands[c]));
                  break; /* terminate initialization loop, because node is infeasible */
               }
            }
            else if( downinf )
            {
               SCIP_Real newlb;

               /* downwards rounding is infeasible -> change lower bound of variable to upward rounding */
               newlb = SCIPfeasCeil(scip, solval);
               if( SCIPvarGetLbLocal(pseudocands[c]) < newlb - 0.5 )
               {
                  SCIP_CALL( SCIPchgVarLb(scip, pseudocands[c], newlb) );
                  *result = SCIP_REDUCEDDOM;
                  SCIPdebugMessage(" -> variable <%s> is infeasible in downward branch\n", SCIPvarGetName(pseudocands[c]));
                  break; /* terminate initialization loop, because LP was changed */
               }
            }
            else
            {
               SCIP_Real newub;

               /* upwards rounding is infeasible -> change upper bound of variable to downward rounding */
               assert(upinf);
               newub = SCIPfeasFloor(scip, solval);
               if( SCIPvarGetUbLocal(pseudocands[c]) > newub + 0.5 )
               {
                  SCIP_CALL( SCIPchgVarUb(scip, pseudocands[c], newub) );
                  *result = SCIP_REDUCEDDOM;
                  SCIPdebugMessage(" -> variable <%s> is infeasible in upward branch\n", SCIPvarGetName(pseudocands[c]));
                  break; /* terminate initialization loop, because LP was changed */
               }
            }
         }
         else if( allcolsinlp && !exactsolve && downvalid && upvalid )
         {
            SCIP_Real minbound;

            /* the minimal lower bound of both children is a proved lower bound of the current subtree */
            minbound = MIN(down, up);
            *provedbound = MAX(*provedbound, minbound);
         }

         /* check for a better score, if we are within the maximum priority candidates */
         if( c < npriopseudocands )
         {
            if( integral )
            {

               if( skipdown[c] )
               {
                  downgain = 0.0;
                  score = SCIPgetBranchScore(scip, pseudocands[c], downgain, upgain);
               }
               else if( skipup[c] )
               {
                  upgain = 0.0;
                  score = SCIPgetBranchScore(scip, pseudocands[c], downgain, upgain);
               }
               else
               {
                  SCIP_Real gains[3];

                  gains[0] = downgain;
                  gains[1] = 0.0;
                  gains[2] = upgain;
                  score = SCIPgetBranchScoreMultiple(scip, pseudocands[c], 3, gains);
               }
            }
            else
               score = SCIPgetBranchScore(scip, pseudocands[c], downgain, upgain);

            if( score > *bestscore )
            {
               *bestpseudocand = c;
               *bestdown = down;
               *bestup = up;
               *bestdownvalid = downvalid;
               *bestupvalid = upvalid;
               *bestscore = score;
            }
         }
         else
            score = 0.0;

         /* update pseudo cost values */
         if( !downinf )
         {
            SCIP_CALL( SCIPupdateVarPseudocost(scip, pseudocands[c],
                  solval-SCIPfeasCeil(scip, solval-1.0), downgain, 1.0) );
         }
         if( !upinf )
         {
            SCIP_CALL( SCIPupdateVarPseudocost(scip, pseudocands[c],
                  solval-SCIPfeasFloor(scip, solval+1.0), upgain, 1.0) );
         }

         SCIPdebugMessage(" -> var <%s> (solval=%g, downgain=%g, upgain=%g, score=%g) -- best: <%s> (%g)\n",
            SCIPvarGetName(pseudocands[c]), solval, downgain, upgain, score,
            SCIPvarGetName(pseudocands[*bestpseudocand]), *bestscore);
      }

      /* remember last evaluated candidate */
      branchruledata->lastcand = c;

      /* end strong branching */
      SCIP_CALL( SCIPendStrongbranch(scip) );
   }

   return SCIP_OKAY;
}