/** calculates the color value for a given coefficient */ static void calcColorValue( SCIP* scip, /**< SCIP data structure */ SCIP_READERDATA* readerdata, /**< information for reader */ SCIP_Real coef, /**< Coefficient to scale */ int* red, /**< red part */ int* green, /**< green part */ int* blue, /**< blue part */ SCIP_Real scale /**< maximal coefficient */ ) { SCIP_Real coeflog; assert(scip != NULL); assert(readerdata != NULL); assert(readerdata->rgb_limit >= 0); assert(coef > 0); coeflog = SCIPfloor(scip, log10(coef)); if(!(readerdata->rgb_relativ)) { (*red) = 255; (*blue) = ((readerdata->rgb_limit) - (unsigned short) (coef/scale*(readerdata->rgb_limit))); (*green) = *blue; } else { if( coeflog >= 0 ) { (*red) = 255; if( coeflog >= (readerdata->coef_limit) ) { (*blue) = 0; (*green) = 0; } else { (*blue) = (readerdata->rgb_limit) - (unsigned short) ((readerdata->rgb_limit)*coeflog/(readerdata->coef_limit)); (*green) = *blue; } } else { (*blue) = 255; coeflog = -1.0*coeflog; if( coeflog >= (readerdata->coef_limit) ) { (*red) = 0; (*green) = 0; } else { (*red) = (readerdata->rgb_limit) - (unsigned short) ((readerdata->rgb_limit)*coeflog/(readerdata->coef_limit)); (*green) = *red; } } } }
/** perform dual presolving */ static SCIP_RETCODE performDualfix( SCIP* scip, /**< SCIP data structure */ int* nfixedvars, /**< pointer to store number of fixed variables */ SCIP_Bool* unbounded, /**< pointer to store if an unboundness was detected */ SCIP_Bool* cutoff /**< pointer to store if a cutoff was detected */ ) { SCIP_VAR** vars; int nvars; int v; /* get active problem variables */ vars = SCIPgetVars(scip); nvars = SCIPgetNVars(scip); /* look for fixable variables * loop backwards, since a variable fixing can change the current and the subsequent slots in the vars array */ for( v = nvars - 1; v >= 0; --v ) { SCIP_VAR* var; SCIP_Real bound; SCIP_Real obj; SCIP_Bool infeasible; SCIP_Bool fixed; var = vars[v]; assert(var != NULL); /* don't perform dual presolving operations on deleted variables */ if( SCIPvarIsDeleted(var) ) continue; /* ignore already fixed variables (use feasibility tolerance since this is used in SCIPfixVar() */ if( SCIPisFeasEQ(scip, SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var)) ) continue; obj = SCIPvarGetObj(var); /* if the objective coefficient of the variable is 0 and it may be rounded both * up and down, then fix it to the closest feasible value to 0 */ if( SCIPisZero(scip, obj) && SCIPvarMayRoundDown(var) && SCIPvarMayRoundUp(var) ) { SCIP_Real roundbound; bound = SCIPvarGetLbGlobal(var); if( SCIPisLT(scip, bound, 0.0) ) { if( SCIPisLE(scip, 0.0, SCIPvarGetUbGlobal(var)) ) bound = 0.0; else { /* try to take an integer value, only for polishing */ roundbound = SCIPfloor(scip, SCIPvarGetUbGlobal(var)); if( roundbound < bound ) bound = SCIPvarGetUbGlobal(var); else bound = roundbound; } } else { /* try to take an integer value, only for polishing */ roundbound = SCIPceil(scip, bound); if( roundbound < SCIPvarGetUbGlobal(var) ) bound = roundbound; } SCIPdebugMessage("fixing variable <%s> with objective 0 to %g\n", SCIPvarGetName(var), bound); } else { /* if it is always possible to round variable in direction of objective value, fix it to its proper bound */ if( SCIPvarMayRoundDown(var) && !SCIPisNegative(scip, obj) ) { bound = SCIPvarGetLbGlobal(var); if ( SCIPisInfinity(scip, -bound) ) { /* variable can be fixed to -infinity */ if ( SCIPgetStage(scip) > SCIP_STAGE_PRESOLVING ) { /* Fixing variables to infinity is not allowed after presolving, since LP-solvers cannot handle this * consistently. We thus have to ignore this (should better be handled in presolving). */ continue; } if ( SCIPisZero(scip, obj) && SCIPvarGetNLocksUp(var) == 1 ) { /* Variable is only contained in one constraint: we hope that the corresponding constraint handler is * clever enough to set/aggregate the variable to something more useful than -infinity and do nothing * here. */ continue; } } SCIPdebugMessage("fixing variable <%s> with objective %g and %d uplocks to lower bound %g\n", SCIPvarGetName(var), SCIPvarGetObj(var), SCIPvarGetNLocksUp(var), bound); } else if( SCIPvarMayRoundUp(var) && !SCIPisPositive(scip, obj) ) { bound = SCIPvarGetUbGlobal(var); if ( SCIPisInfinity(scip, bound) ) { /* variable can be fixed to infinity */ if ( SCIPgetStage(scip) > SCIP_STAGE_PRESOLVING ) { /* Fixing variables to infinity is not allowed after presolving, since LP-solvers cannot handle this * consistently. We thus have to ignore this (should better be handled in presolving). */ continue; } if ( SCIPisZero(scip, obj) && SCIPvarGetNLocksDown(var) == 1 ) { /* Variable is only contained in one constraint: we hope that the corresponding constraint handler is * clever enough to set/aggregate the variable to something more useful than +infinity and do nothing * here */ continue; } } SCIPdebugMessage("fixing variable <%s> with objective %g and %d downlocks to upper bound %g\n", SCIPvarGetName(var), SCIPvarGetObj(var), SCIPvarGetNLocksDown(var), bound); } else continue; } if( SCIPisInfinity(scip, REALABS(bound)) && !SCIPisZero(scip, obj) ) { SCIPdebugMessage(" -> unbounded fixing\n"); SCIPverbMessage(scip, SCIP_VERBLEVEL_NORMAL, NULL, "problem infeasible or unbounded: variable <%s> with objective %.15g can be made infinitely %s\n", SCIPvarGetName(var), SCIPvarGetObj(var), bound < 0.0 ? "small" : "large"); *unbounded = TRUE; return SCIP_OKAY; } /* apply the fixing */ SCIPdebugMessage("apply fixing of variable %s to %g\n", SCIPvarGetName(var), bound); SCIP_CALL( SCIPfixVar(scip, var, bound, &infeasible, &fixed) ); if( infeasible ) { SCIPdebugMessage(" -> infeasible fixing\n"); *cutoff = TRUE; return SCIP_OKAY; } assert(fixed || (SCIPgetStage(scip) == SCIP_STAGE_SOLVING && SCIPisFeasEQ(scip, bound, SCIPvarGetLbLocal(var)) && SCIPisFeasEQ(scip, bound, SCIPvarGetUbLocal(var)))); (*nfixedvars)++; } return SCIP_OKAY; }
/** creates a subproblem for subscip by fixing a number of variables */ static SCIP_RETCODE createSubproblem( SCIP* scip, /**< original SCIP data structure */ SCIP* subscip, /**< SCIP data structure for the subproblem */ SCIP_VAR** subvars, /**< the variables of the subproblem */ SCIP_Real minfixingrate, /**< percentage of integer variables that have to be fixed */ unsigned int* randseed, /**< a seed value for the random number generator */ SCIP_Bool uselprows /**< should subproblem be created out of the rows in the LP rows? */ ) { SCIP_VAR** vars; /* original scip variables */ SCIP_SOL* sol; /* pool of solutions */ SCIP_Bool* marked; /* array of markers, which variables to fixed */ SCIP_Bool fixingmarker; /* which flag should label a fixed variable? */ int nvars; int nbinvars; int nintvars; int i; int j; int nmarkers; /* get required data of the original problem */ SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, &nbinvars, &nintvars, NULL, NULL) ); sol = SCIPgetBestSol(scip); assert(sol != NULL); SCIP_CALL( SCIPallocBufferArray(scip, &marked, nbinvars+nintvars) ); if( minfixingrate > 0.5 ) { nmarkers = nbinvars + nintvars - (int) SCIPfloor(scip, minfixingrate*(nbinvars+nintvars)); fixingmarker = FALSE; } else { nmarkers = (int) SCIPceil(scip, minfixingrate*(nbinvars+nintvars)); fixingmarker = TRUE; } assert( 0 <= nmarkers && nmarkers <= SCIPceil(scip,(nbinvars+nintvars)/2.0 ) ); j = 0; BMSclearMemoryArray(marked, nbinvars+nintvars); while( j < nmarkers ) { do { i = SCIPgetRandomInt(0, nbinvars+nintvars-1, randseed); } while( marked[i] ); marked[i] = TRUE; j++; } assert( j == nmarkers ); /* change bounds of variables of the subproblem */ for( i = 0; i < nbinvars + nintvars; i++ ) { /* fix all randomly marked variables */ if( marked[i] == fixingmarker ) { SCIP_Real solval; SCIP_Real lb; SCIP_Real ub; solval = SCIPgetSolVal(scip, sol, vars[i]); lb = SCIPvarGetLbGlobal(subvars[i]); ub = SCIPvarGetUbGlobal(subvars[i]); assert(SCIPisLE(scip, lb, ub)); /* due to dual reductions, it may happen that the solution value is not in the variable's domain anymore */ if( SCIPisLT(scip, solval, lb) ) solval = lb; else if( SCIPisGT(scip, solval, ub) ) solval = ub; /* perform the bound change */ if( !SCIPisInfinity(scip, solval) && !SCIPisInfinity(scip, -solval) ) { SCIP_CALL( SCIPchgVarLbGlobal(subscip, subvars[i], solval) ); SCIP_CALL( SCIPchgVarUbGlobal(subscip, subvars[i], solval) ); } } } if( uselprows ) { SCIP_ROW** rows; /* original scip rows */ int nrows; /* get the rows and their number */ SCIP_CALL( SCIPgetLPRowsData(scip, &rows, &nrows) ); /* copy all rows to linear constraints */ for( i = 0; i < nrows; i++ ) { SCIP_CONS* cons; SCIP_VAR** consvars; SCIP_COL** cols; SCIP_Real constant; SCIP_Real lhs; SCIP_Real rhs; SCIP_Real* vals; int nnonz; /* ignore rows that are only locally valid */ if( SCIProwIsLocal(rows[i]) ) continue; /* get the row's data */ constant = SCIProwGetConstant(rows[i]); lhs = SCIProwGetLhs(rows[i]) - constant; rhs = SCIProwGetRhs(rows[i]) - constant; vals = SCIProwGetVals(rows[i]); nnonz = SCIProwGetNNonz(rows[i]); cols = SCIProwGetCols(rows[i]); assert( lhs <= rhs ); /* allocate memory array to be filled with the corresponding subproblem variables */ SCIP_CALL( SCIPallocBufferArray(scip, &consvars, nnonz) ); for( j = 0; j < nnonz; j++ ) consvars[j] = subvars[SCIPvarGetProbindex(SCIPcolGetVar(cols[j]))]; /* create a new linear constraint and add it to the subproblem */ SCIP_CALL( SCIPcreateConsLinear(subscip, &cons, SCIProwGetName(rows[i]), nnonz, consvars, vals, lhs, rhs, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, TRUE, TRUE, FALSE) ); SCIP_CALL( SCIPaddCons(subscip, cons) ); SCIP_CALL( SCIPreleaseCons(subscip, &cons) ); /* free temporary memory */ SCIPfreeBufferArray(scip, &consvars); } } SCIPfreeBufferArray(scip, &marked); return SCIP_OKAY; }
/** execution method of primal heuristic */ static SCIP_DECL_HEUREXEC(heurExecIntdiving) /*lint --e{715}*/ { /*lint --e{715}*/ SCIP_HEURDATA* heurdata; SCIP_LPSOLSTAT lpsolstat; SCIP_VAR** pseudocands; SCIP_VAR** fixcands; SCIP_Real* fixcandscores; SCIP_Real searchubbound; SCIP_Real searchavgbound; SCIP_Real searchbound; SCIP_Real objval; SCIP_Bool lperror; SCIP_Bool cutoff; SCIP_Bool backtracked; SCIP_Longint ncalls; SCIP_Longint nsolsfound; SCIP_Longint nlpiterations; SCIP_Longint maxnlpiterations; int nfixcands; int nbinfixcands; int depth; int maxdepth; int maxdivedepth; int divedepth; int nextcand; int c; assert(heur != NULL); assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0); assert(scip != NULL); assert(result != NULL); assert(SCIPhasCurrentNodeLP(scip)); *result = SCIP_DELAYED; /* do not call heuristic of node was already detected to be infeasible */ if( nodeinfeasible ) return SCIP_OKAY; /* only call heuristic, if an optimal LP solution is at hand */ if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL ) return SCIP_OKAY; /* only call heuristic, if the LP objective value is smaller than the cutoff bound */ if( SCIPisGE(scip, SCIPgetLPObjval(scip), SCIPgetCutoffbound(scip)) ) return SCIP_OKAY; /* only call heuristic, if the LP solution is basic (which allows fast resolve in diving) */ if( !SCIPisLPSolBasic(scip) ) return SCIP_OKAY; /* don't dive two times at the same node */ if( SCIPgetLastDivenode(scip) == SCIPgetNNodes(scip) && SCIPgetDepth(scip) > 0 ) return SCIP_OKAY; *result = SCIP_DIDNOTRUN; /* get heuristic's data */ heurdata = SCIPheurGetData(heur); assert(heurdata != NULL); /* only try to dive, if we are in the correct part of the tree, given by minreldepth and maxreldepth */ depth = SCIPgetDepth(scip); maxdepth = SCIPgetMaxDepth(scip); maxdepth = MAX(maxdepth, 100); if( depth < heurdata->minreldepth*maxdepth || depth > heurdata->maxreldepth*maxdepth ) return SCIP_OKAY; /* calculate the maximal number of LP iterations until heuristic is aborted */ nlpiterations = SCIPgetNNodeLPIterations(scip); ncalls = SCIPheurGetNCalls(heur); nsolsfound = 10*SCIPheurGetNBestSolsFound(heur) + heurdata->nsuccess; maxnlpiterations = (SCIP_Longint)((1.0 + 10.0*(nsolsfound+1.0)/(ncalls+1.0)) * heurdata->maxlpiterquot * nlpiterations); maxnlpiterations += heurdata->maxlpiterofs; /* don't try to dive, if we took too many LP iterations during diving */ if( heurdata->nlpiterations >= maxnlpiterations ) return SCIP_OKAY; /* allow at least a certain number of LP iterations in this dive */ maxnlpiterations = MAX(maxnlpiterations, heurdata->nlpiterations + MINLPITER); /* get unfixed integer variables */ SCIP_CALL( SCIPgetPseudoBranchCands(scip, &pseudocands, &nfixcands, NULL) ); /* don't try to dive, if there are no fractional variables */ if( nfixcands == 0 ) return SCIP_OKAY; /* calculate the objective search bound */ if( SCIPgetNSolsFound(scip) == 0 ) { if( heurdata->maxdiveubquotnosol > 0.0 ) searchubbound = SCIPgetLowerbound(scip) + heurdata->maxdiveubquotnosol * (SCIPgetCutoffbound(scip) - SCIPgetLowerbound(scip)); else searchubbound = SCIPinfinity(scip); if( heurdata->maxdiveavgquotnosol > 0.0 ) searchavgbound = SCIPgetLowerbound(scip) + heurdata->maxdiveavgquotnosol * (SCIPgetAvgLowerbound(scip) - SCIPgetLowerbound(scip)); else searchavgbound = SCIPinfinity(scip); } else { if( heurdata->maxdiveubquot > 0.0 ) searchubbound = SCIPgetLowerbound(scip) + heurdata->maxdiveubquot * (SCIPgetCutoffbound(scip) - SCIPgetLowerbound(scip)); else searchubbound = SCIPinfinity(scip); if( heurdata->maxdiveavgquot > 0.0 ) searchavgbound = SCIPgetLowerbound(scip) + heurdata->maxdiveavgquot * (SCIPgetAvgLowerbound(scip) - SCIPgetLowerbound(scip)); else searchavgbound = SCIPinfinity(scip); } searchbound = MIN(searchubbound, searchavgbound); if( SCIPisObjIntegral(scip) ) searchbound = SCIPceil(scip, searchbound); /* calculate the maximal diving depth: 10 * min{number of integer variables, max depth} */ maxdivedepth = SCIPgetNBinVars(scip) + SCIPgetNIntVars(scip); maxdivedepth = MIN(maxdivedepth, maxdepth); maxdivedepth *= 10; *result = SCIP_DIDNOTFIND; /* start diving */ SCIP_CALL( SCIPstartProbing(scip) ); /* enables collection of variable statistics during probing */ SCIPenableVarHistory(scip); SCIPdebugMessage("(node %" SCIP_LONGINT_FORMAT ") executing intdiving heuristic: depth=%d, %d non-fixed, dualbound=%g, searchbound=%g\n", SCIPgetNNodes(scip), SCIPgetDepth(scip), nfixcands, SCIPgetDualbound(scip), SCIPretransformObj(scip, searchbound)); /* copy the pseudo candidates into own array, because we want to reorder them */ SCIP_CALL( SCIPduplicateBufferArray(scip, &fixcands, pseudocands, nfixcands) ); /* sort non-fixed variables by non-increasing inference score, but prefer binaries over integers in any case */ SCIP_CALL( SCIPallocBufferArray(scip, &fixcandscores, nfixcands) ); nbinfixcands = 0; for( c = 0; c < nfixcands; ++c ) { SCIP_VAR* var; SCIP_Real score; int colveclen; int left; int right; int i; assert(c >= nbinfixcands); var = fixcands[c]; assert(SCIPvarIsIntegral(var)); colveclen = (SCIPvarGetStatus(var) == SCIP_VARSTATUS_COLUMN ? SCIPcolGetNNonz(SCIPvarGetCol(var)) : 0); if( SCIPvarIsBinary(var) ) { score = 500.0 * SCIPvarGetNCliques(var, TRUE) + 100.0 * SCIPvarGetNImpls(var, TRUE) + SCIPgetVarAvgInferenceScore(scip, var) + (SCIP_Real)colveclen/100.0; /* shift the non-binary variables one slot to the right */ for( i = c; i > nbinfixcands; --i ) { fixcands[i] = fixcands[i-1]; fixcandscores[i] = fixcandscores[i-1]; } /* put the new candidate into the first nbinfixcands slot */ left = 0; right = nbinfixcands; nbinfixcands++; } else { score = 5.0 * (SCIPvarGetNCliques(var, FALSE) + SCIPvarGetNCliques(var, TRUE)) + SCIPvarGetNImpls(var, FALSE) + SCIPvarGetNImpls(var, TRUE) + SCIPgetVarAvgInferenceScore(scip, var) + (SCIP_Real)colveclen/10000.0; /* put the new candidate in the slots after the binary candidates */ left = nbinfixcands; right = c; } for( i = right; i > left && score > fixcandscores[i-1]; --i ) { fixcands[i] = fixcands[i-1]; fixcandscores[i] = fixcandscores[i-1]; } fixcands[i] = var; fixcandscores[i] = score; SCIPdebugMessage(" <%s>: ncliques=%d/%d, nimpls=%d/%d, inferencescore=%g, colveclen=%d -> score=%g\n", SCIPvarGetName(var), SCIPvarGetNCliques(var, FALSE), SCIPvarGetNCliques(var, TRUE), SCIPvarGetNImpls(var, FALSE), SCIPvarGetNImpls(var, TRUE), SCIPgetVarAvgInferenceScore(scip, var), colveclen, score); } SCIPfreeBufferArray(scip, &fixcandscores); /* get LP objective value */ lpsolstat = SCIP_LPSOLSTAT_OPTIMAL; objval = SCIPgetLPObjval(scip); /* dive as long we are in the given objective, depth and iteration limits, but if possible, we dive at least with * the depth 10 */ lperror = FALSE; cutoff = FALSE; divedepth = 0; nextcand = 0; while( !lperror && !cutoff && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL && (divedepth < 10 || (divedepth < maxdivedepth && heurdata->nlpiterations < maxnlpiterations && objval < searchbound)) && !SCIPisStopped(scip) ) { SCIP_VAR* var; SCIP_Real bestsolval; SCIP_Real bestfixval; int bestcand; SCIP_Longint nnewlpiterations; SCIP_Longint nnewdomreds; /* open a new probing node if this will not exceed the maximal tree depth, otherwise stop here */ if( SCIPgetDepth(scip) < SCIPgetDepthLimit(scip) ) { SCIP_CALL( SCIPnewProbingNode(scip) ); divedepth++; } else break; nnewlpiterations = 0; nnewdomreds = 0; /* fix binary variable that is closest to 1 in the LP solution to 1; * if all binary variables are fixed, fix integer variable with least fractionality in LP solution */ bestcand = -1; bestsolval = -1.0; bestfixval = 1.0; /* look in the binary variables for fixing candidates */ for( c = nextcand; c < nbinfixcands; ++c ) { SCIP_Real solval; var = fixcands[c]; /* ignore already fixed variables */ if( var == NULL ) continue; if( SCIPvarGetLbLocal(var) > 0.5 || SCIPvarGetUbLocal(var) < 0.5 ) { fixcands[c] = NULL; continue; } /* get the LP solution value */ solval = SCIPvarGetLPSol(var); if( solval > bestsolval ) { bestcand = c; bestfixval = 1.0; bestsolval = solval; if( SCIPisGE(scip, bestsolval, 1.0) ) { /* we found an unfixed binary variable with LP solution value of 1.0 - there cannot be a better candidate */ break; } else if( SCIPisLE(scip, bestsolval, 0.0) ) { /* the variable is currently at 0.0 - this is the only situation where we want to fix it to 0.0 */ bestfixval = 0.0; } } } /* if all binary variables are fixed, look in the integer variables for a fixing candidate */ if( bestcand == -1 ) { SCIP_Real bestfrac; bestfrac = SCIP_INVALID; for( c = MAX(nextcand, nbinfixcands); c < nfixcands; ++c ) { SCIP_Real solval; SCIP_Real frac; var = fixcands[c]; /* ignore already fixed variables */ if( var == NULL ) continue; if( SCIPvarGetUbLocal(var) - SCIPvarGetLbLocal(var) < 0.5 ) { fixcands[c] = NULL; continue; } /* get the LP solution value */ solval = SCIPvarGetLPSol(var); frac = SCIPfrac(scip, solval); /* ignore integer variables that are currently integral */ if( SCIPisFeasFracIntegral(scip, frac) ) continue; if( frac < bestfrac ) { bestcand = c; bestsolval = solval; bestfrac = frac; bestfixval = SCIPfloor(scip, bestsolval + 0.5); if( SCIPisZero(scip, bestfrac) ) { /* we found an unfixed integer variable with integral LP solution value */ break; } } } } assert(-1 <= bestcand && bestcand < nfixcands); /* if there is no unfixed candidate left, we are done */ if( bestcand == -1 ) break; var = fixcands[bestcand]; assert(var != NULL); assert(SCIPvarIsIntegral(var)); assert(SCIPvarGetUbLocal(var) - SCIPvarGetLbLocal(var) > 0.5); assert(SCIPisGE(scip, bestfixval, SCIPvarGetLbLocal(var))); assert(SCIPisLE(scip, bestfixval, SCIPvarGetUbLocal(var))); backtracked = FALSE; do { /* if the variable is already fixed or if the solution value is outside the domain, numerical troubles may have * occured or variable was fixed by propagation while backtracking => Abort diving! */ if( SCIPvarGetLbLocal(var) >= SCIPvarGetUbLocal(var) - 0.5 ) { SCIPdebugMessage("Selected variable <%s> already fixed to [%g,%g], diving aborted \n", SCIPvarGetName(var), SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var)); cutoff = TRUE; break; } if( SCIPisFeasLT(scip, bestfixval, SCIPvarGetLbLocal(var)) || SCIPisFeasGT(scip, bestfixval, SCIPvarGetUbLocal(var)) ) { SCIPdebugMessage("selected variable's <%s> solution value is outside the domain [%g,%g] (solval: %.9f), diving aborted\n", SCIPvarGetName(var), SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var), bestfixval); assert(backtracked); break; } /* apply fixing of best candidate */ SCIPdebugMessage(" dive %d/%d, LP iter %" SCIP_LONGINT_FORMAT "/%" SCIP_LONGINT_FORMAT ", %d unfixed: var <%s>, sol=%g, oldbounds=[%g,%g], fixed to %g\n", divedepth, maxdivedepth, heurdata->nlpiterations, maxnlpiterations, SCIPgetNPseudoBranchCands(scip), SCIPvarGetName(var), bestsolval, SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var), bestfixval); SCIP_CALL( SCIPfixVarProbing(scip, var, bestfixval) ); /* apply domain propagation */ SCIP_CALL( SCIPpropagateProbing(scip, 0, &cutoff, &nnewdomreds) ); if( !cutoff ) { /* if the best candidate was just fixed to its LP value and no domain reduction was found, the LP solution * stays valid, and the LP does not need to be resolved */ if( nnewdomreds > 0 || !SCIPisEQ(scip, bestsolval, bestfixval) ) { /* resolve the diving LP */ /* Errors in the LP solver should not kill the overall solving process, if the LP is just needed for a heuristic. * Hence in optimized mode, the return code is caught and a warning is printed, only in debug mode, SCIP will stop. */ #ifdef NDEBUG SCIP_RETCODE retstat; nlpiterations = SCIPgetNLPIterations(scip); retstat = SCIPsolveProbingLP(scip, MAX((int)(maxnlpiterations - heurdata->nlpiterations), MINLPITER), &lperror, &cutoff); if( retstat != SCIP_OKAY ) { SCIPwarningMessage(scip, "Error while solving LP in Intdiving heuristic; LP solve terminated with code <%d>\n",retstat); } #else nlpiterations = SCIPgetNLPIterations(scip); SCIP_CALL( SCIPsolveProbingLP(scip, MAX((int)(maxnlpiterations - heurdata->nlpiterations), MINLPITER), &lperror, &cutoff) ); #endif if( lperror ) break; /* update iteration count */ nnewlpiterations = SCIPgetNLPIterations(scip) - nlpiterations; heurdata->nlpiterations += nnewlpiterations; /* get LP solution status */ lpsolstat = SCIPgetLPSolstat(scip); assert(cutoff || (lpsolstat != SCIP_LPSOLSTAT_OBJLIMIT && lpsolstat != SCIP_LPSOLSTAT_INFEASIBLE && (lpsolstat != SCIP_LPSOLSTAT_OPTIMAL || SCIPisLT(scip, SCIPgetLPObjval(scip), SCIPgetCutoffbound(scip))))); } } /* perform backtracking if a cutoff was detected */ if( cutoff && !backtracked && heurdata->backtrack ) { SCIPdebugMessage(" *** cutoff detected at level %d - backtracking\n", SCIPgetProbingDepth(scip)); SCIP_CALL( SCIPbacktrackProbing(scip, SCIPgetProbingDepth(scip)-1) ); /* after backtracking there has to be at least one open node without exceeding the maximal tree depth */ assert(SCIPgetDepthLimit(scip) > SCIPgetDepth(scip)); SCIP_CALL( SCIPnewProbingNode(scip) ); bestfixval = SCIPvarIsBinary(var) ? 1.0 - bestfixval : (SCIPisGT(scip, bestsolval, bestfixval) && SCIPisFeasLE(scip, bestfixval + 1, SCIPvarGetUbLocal(var)) ? bestfixval + 1 : bestfixval - 1); backtracked = TRUE; } else backtracked = FALSE; } while( backtracked ); if( !lperror && !cutoff && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL ) { SCIP_Bool success; /* get new objective value */ objval = SCIPgetLPObjval(scip); if( nnewlpiterations > 0 || !SCIPisEQ(scip, bestsolval, bestfixval) ) { /* we must start again with the first candidate, since the LP solution changed */ nextcand = 0; /* create solution from diving LP and try to round it */ SCIP_CALL( SCIPlinkLPSol(scip, heurdata->sol) ); SCIP_CALL( SCIProundSol(scip, heurdata->sol, &success) ); if( success ) { SCIPdebugMessage("intdiving found roundable primal solution: obj=%g\n", SCIPgetSolOrigObj(scip, heurdata->sol)); /* try to add solution to SCIP */ SCIP_CALL( SCIPtrySol(scip, heurdata->sol, FALSE, FALSE, FALSE, FALSE, &success) ); /* check, if solution was feasible and good enough */ if( success ) { SCIPdebugMessage(" -> solution was feasible and good enough\n"); *result = SCIP_FOUNDSOL; } } } else nextcand = bestcand+1; /* continue with the next candidate in the following loop */ } SCIPdebugMessage(" -> lpsolstat=%d, objval=%g/%g\n", lpsolstat, objval, searchbound); } /* free temporary memory */ SCIPfreeBufferArray(scip, &fixcands); /* end diving */ SCIP_CALL( SCIPendProbing(scip) ); if( *result == SCIP_FOUNDSOL ) heurdata->nsuccess++; SCIPdebugMessage("intdiving heuristic finished\n"); return SCIP_OKAY; }
/** creates the objective value inequality and the objective value variable, if not yet existing */ static SCIP_RETCODE createObjRow( SCIP* scip, /**< SCIP data structure */ SCIP_SEPA* sepa, /**< separator */ SCIP_SEPADATA* sepadata /**< separator data */ ) { assert(sepadata != NULL); if( sepadata->objrow == NULL ) { SCIP_VAR** vars; SCIP_Real obj; SCIP_Real intobjval; int nvars; int v; SCIP_Bool attendobjvarbound; attendobjvarbound = FALSE; /* create and add objective value variable */ if( sepadata->objvar == NULL ) { SCIP_CALL( SCIPcreateVar(scip, &sepadata->objvar, "objvar", -SCIPinfinity(scip), SCIPinfinity(scip), 0.0, SCIP_VARTYPE_IMPLINT, FALSE, TRUE, NULL, NULL, NULL, NULL, NULL) ); SCIP_CALL( SCIPaddVar(scip, sepadata->objvar) ); SCIP_CALL( SCIPaddVarLocks(scip, sepadata->objvar, +1, +1) ); } else attendobjvarbound = TRUE; /* get problem variables */ vars = SCIPgetOrigVars(scip); nvars = SCIPgetNOrigVars(scip); /* create objective value inequality */ if( SCIPgetObjsense(scip) == SCIP_OBJSENSE_MINIMIZE ) { if( attendobjvarbound ) intobjval = SCIPceil(scip, SCIPgetDualbound(scip)) - SCIPvarGetLbGlobal(sepadata->objvar); else intobjval = SCIPceil(scip, SCIPgetDualbound(scip)); SCIP_CALL( SCIPcreateEmptyRowSepa(scip, &sepadata->objrow, sepa, "objrow", intobjval, SCIPinfinity(scip), FALSE, !SCIPallVarsInProb(scip), TRUE) ); sepadata->setoff = intobjval; } else { if( attendobjvarbound ) intobjval = SCIPceil(scip, SCIPgetDualbound(scip)) - SCIPvarGetUbGlobal(sepadata->objvar); else intobjval = SCIPfloor(scip, SCIPgetDualbound(scip)); SCIP_CALL( SCIPcreateEmptyRowSepa(scip, &sepadata->objrow, sepa, "objrow", -SCIPinfinity(scip), intobjval, FALSE, !SCIPallVarsInProb(scip), TRUE) ); sepadata->setoff = intobjval; } SCIP_CALL( SCIPcacheRowExtensions(scip, sepadata->objrow) ); for( v = 0; v < nvars; ++v ) { obj = SCIPvarGetObj(vars[v]); if( !SCIPisZero(scip, obj) ) { SCIP_CALL( SCIPaddVarToRow(scip, sepadata->objrow, vars[v], obj) ); } } SCIP_CALL( SCIPaddVarToRow(scip, sepadata->objrow, sepadata->objvar, -1.0) ); SCIP_CALL( SCIPflushRowExtensions(scip, sepadata->objrow) ); SCIPdebugMessage("created objective value row: "); SCIPdebug( SCIP_CALL( SCIPprintRow(scip, sepadata->objrow, NULL) ) ); } return SCIP_OKAY; }
/** searches and adds integral objective cuts that separate the given primal solution */ static SCIP_RETCODE separateCuts( SCIP* scip, /**< SCIP data structure */ SCIP_SEPA* sepa, /**< the intobj separator */ SCIP_SOL* sol, /**< the solution that should be separated, or NULL for LP solution */ SCIP_RESULT* result /**< pointer to store the result */ ) { SCIP_SEPADATA* sepadata; SCIP_Real objval; SCIP_Real intbound; SCIP_Bool infeasible; SCIP_Bool tightened; assert(result != NULL); assert(*result == SCIP_DIDNOTRUN); /* if the objective value may be fractional, we cannot do anything */ if( !SCIPisObjIntegral(scip) ) return SCIP_OKAY; *result = SCIP_DIDNOTFIND; /* if the current objective value is integral, there is no integral objective value cut */ if( sol == NULL ) objval = SCIPretransformObj(scip, SCIPgetLPObjval(scip)); else objval = SCIPgetSolOrigObj(scip, sol); if( SCIPisFeasIntegral(scip, objval) ) return SCIP_OKAY; sepadata = SCIPsepaGetData(sepa); assert(sepadata != NULL); /* the objective value is fractional: create the objective value inequality, if not yet existing */ SCIP_CALL( createObjRow(scip, sepa, sepadata) ); /* adjust the bounds of the objective value variable */ if( SCIPgetObjsense(scip) == SCIP_OBJSENSE_MINIMIZE ) { intbound = SCIPceil(scip, objval) - sepadata->setoff; SCIP_CALL( SCIPtightenVarLb(scip, sepadata->objvar, intbound, FALSE, &infeasible, &tightened) ); SCIPdebugMessage("new objective variable lower bound: <%s>[%g,%g]\n", SCIPvarGetName(sepadata->objvar), SCIPvarGetLbLocal(sepadata->objvar), SCIPvarGetUbLocal(sepadata->objvar)); } else { intbound = SCIPfloor(scip, objval) - sepadata->setoff; SCIP_CALL( SCIPtightenVarUb(scip, sepadata->objvar, intbound, FALSE, &infeasible, &tightened) ); SCIPdebugMessage("new objective variable upper bound: <%s>[%g,%g]\n", SCIPvarGetName(sepadata->objvar), SCIPvarGetLbLocal(sepadata->objvar), SCIPvarGetUbLocal(sepadata->objvar)); } /* add the objective value inequality as a cut to the LP */ if( infeasible ) *result = SCIP_CUTOFF; else { if( !SCIProwIsInLP(sepadata->objrow) ) { SCIP_CALL( SCIPaddCut(scip, sol, sepadata->objrow, FALSE, &infeasible) ); } if ( infeasible ) *result = SCIP_CUTOFF; else if ( tightened ) *result = SCIP_REDUCEDDOM; else *result = SCIP_SEPARATED; } return SCIP_OKAY; }
/** execution method of presolver */ static SCIP_DECL_PRESOLEXEC(presolExecDualfix) { /*lint --e{715}*/ SCIP_VAR** vars; SCIP_Real bound; SCIP_Real roundbound; SCIP_Real obj; SCIP_Bool infeasible; SCIP_Bool fixed; int nvars; int v; assert(presol != NULL); assert(strcmp(SCIPpresolGetName(presol), PRESOL_NAME) == 0); assert(result != NULL); *result = SCIP_DIDNOTFIND; /* get active problem variables */ vars = SCIPgetVars(scip); nvars = SCIPgetNVars(scip); /* look for fixable variables * loop backwards, since a variable fixing can change the current and the subsequent slots in the vars array */ for( v = nvars - 1; v >= 0; --v ) { /* don't perform dual presolving operations on deleted variables */ if( SCIPvarIsDeleted(vars[v]) ) continue; obj = SCIPvarGetObj(vars[v]); /* if the objective coefficient of the variable is 0 and it may be rounded both * up and down, then fix it to the closest feasible value to 0 */ if( SCIPisZero(scip, obj) && SCIPvarMayRoundDown(vars[v]) && SCIPvarMayRoundUp(vars[v]) ) { bound = SCIPvarGetLbGlobal(vars[v]); if( SCIPisLT(scip, bound, 0.0) ) { if( SCIPisLE(scip, 0.0, SCIPvarGetUbGlobal(vars[v])) ) bound = 0.0; else { /* try to take an integer value, only for polishing */ roundbound = SCIPfloor(scip, SCIPvarGetUbGlobal(vars[v])); if( roundbound < bound ) bound = SCIPvarGetUbGlobal(vars[v]); else bound = roundbound; } } else { /* try to take an integer value, only for polishing */ roundbound = SCIPceil(scip, bound); if( roundbound < SCIPvarGetUbGlobal(vars[v]) ) bound = roundbound; } SCIPdebugMessage("variable <%s> with objective 0 fixed to %g\n", SCIPvarGetName(vars[v]), bound); } else { /* if it is always possible to round variable in direction of objective value, * fix it to its proper bound */ if( SCIPvarMayRoundDown(vars[v]) && !SCIPisNegative(scip, obj) ) { bound = SCIPvarGetLbGlobal(vars[v]); if( SCIPisZero(scip, obj) && SCIPvarGetNLocksUp(vars[v]) == 1 && SCIPisInfinity(scip, -bound) ) { /* variable can be set to -infinity, and it is only contained in one constraint: * we hope that the corresponding constraint handler is clever enough to set/aggregate the variable * to something more useful than -infinity and do nothing here */ continue; } SCIPdebugMessage("variable <%s> with objective %g and %d uplocks fixed to lower bound %g\n", SCIPvarGetName(vars[v]), SCIPvarGetObj(vars[v]), SCIPvarGetNLocksUp(vars[v]), bound); } else if( SCIPvarMayRoundUp(vars[v]) && !SCIPisPositive(scip, obj) ) { bound = SCIPvarGetUbGlobal(vars[v]); if( SCIPisZero(scip, obj) && SCIPvarGetNLocksDown(vars[v]) == 1 && SCIPisInfinity(scip, bound) ) { /* variable can be set to +infinity, and it is only contained in one constraint: * we hope that the corresponding constraint handler is clever enough to set/aggregate the variable * to something more useful than +infinity and do nothing here */ continue; } SCIPdebugMessage("variable <%s> with objective %g and %d downlocks fixed to upper bound %g\n", SCIPvarGetName(vars[v]), SCIPvarGetObj(vars[v]), SCIPvarGetNLocksDown(vars[v]), bound); } else continue; } /* apply the fixing */ if( SCIPisInfinity(scip, REALABS(bound)) && !SCIPisZero(scip, obj) ) { SCIPdebugMessage(" -> unbounded fixing\n"); SCIPverbMessage(scip, SCIP_VERBLEVEL_NORMAL, NULL, "problem infeasible or unbounded: variable <%s> with objective %.15g can be made infinitely %s\n", SCIPvarGetName(vars[v]), SCIPvarGetObj(vars[v]), bound < 0.0 ? "small" : "large"); *result = SCIP_UNBOUNDED; return SCIP_OKAY; } SCIP_CALL( SCIPfixVar(scip, vars[v], bound, &infeasible, &fixed) ); if( infeasible ) { SCIPdebugMessage(" -> infeasible fixing\n"); *result = SCIP_CUTOFF; return SCIP_OKAY; } assert(fixed); (*nfixedvars)++; *result = SCIP_SUCCESS; } return SCIP_OKAY; }
/** execution method of primal heuristic */ static SCIP_DECL_HEUREXEC(heurExecTrivial) { /*lint --e{715}*/ SCIP_VAR** vars; SCIP_SOL* lbsol; /* solution where all variables are set to their lower bounds */ SCIP_SOL* ubsol; /* solution where all variables are set to their upper bounds */ SCIP_SOL* zerosol; /* solution where all variables are set to zero */ SCIP_SOL* locksol; /* solution where all variables are set to the bound with the fewer locks */ SCIP_Real large; int nvars; int nbinvars; int i; SCIP_Bool success; SCIP_Bool zerovalid; *result = SCIP_DIDNOTRUN; if( SCIPgetNRuns(scip) > 1 ) return SCIP_OKAY; *result = SCIP_DIDNOTFIND; success = FALSE; /* initialize data structure */ SCIP_CALL( SCIPcreateSol(scip, &lbsol, heur) ); SCIP_CALL( SCIPcreateSol(scip, &ubsol, heur) ); SCIP_CALL( SCIPcreateSol(scip, &zerosol, heur) ); SCIP_CALL( SCIPcreateSol(scip, &locksol, heur) ); /* determine large value to set variables to */ large = SCIPinfinity(scip); if( !SCIPisInfinity(scip, 0.1 / SCIPfeastol(scip)) ) large = 0.1 / SCIPfeastol(scip); SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, &nbinvars, NULL, NULL, NULL) ); /* if the problem is binary, we do not have to check the zero solution, since it is equal to the lower bound * solution */ zerovalid = (nvars != nbinvars); assert(vars != NULL || nvars == 0); for( i = 0; i < nvars; i++ ) { SCIP_Real lb; SCIP_Real ub; assert(vars != NULL); /* this assert is needed for flexelint */ lb = SCIPvarGetLbLocal(vars[i]); ub = SCIPvarGetUbLocal(vars[i]); /* if problem is obviously infeasible due to empty domain, stop */ if( SCIPisGT(scip, lb, ub) ) goto TERMINATE; /* set bounds to sufficient large value */ if( SCIPisInfinity(scip, -lb) ) lb = MIN(-large, ub); if( SCIPisInfinity(scip, ub) ) { SCIP_Real tmp; tmp = SCIPvarGetLbLocal(vars[i]); ub = MAX(tmp, large); } SCIP_CALL( SCIPsetSolVal(scip, lbsol, vars[i], lb) ); SCIP_CALL( SCIPsetSolVal(scip, ubsol, vars[i], ub) ); /* try the zero vector, if it is in the bounds region */ if( zerovalid ) { if( SCIPisLE(scip, lb, 0.0) && SCIPisLE(scip, 0.0, ub) ) { SCIP_CALL( SCIPsetSolVal(scip, zerosol, vars[i], 0.0) ); } else zerovalid = FALSE; } /* set variables to the bound with fewer locks, if tie choose an average value */ if( SCIPvarGetNLocksDown(vars[i]) > SCIPvarGetNLocksUp(vars[i]) ) { SCIP_CALL( SCIPsetSolVal(scip, locksol, vars[i], ub) ); } else if( SCIPvarGetNLocksDown(vars[i]) < SCIPvarGetNLocksUp(vars[i]) ) { SCIP_CALL( SCIPsetSolVal(scip, locksol, vars[i], lb) ); } else { SCIP_Real solval; solval = (lb+ub)/2.0; /* if a tie occurs, roughly every third integer variable will be rounded up */ if( SCIPvarGetType(vars[i]) != SCIP_VARTYPE_CONTINUOUS ) solval = i % 3 == 0 ? SCIPceil(scip,solval) : SCIPfloor(scip,solval); assert(SCIPisFeasLE(scip,SCIPvarGetLbLocal(vars[i]),solval) && SCIPisFeasLE(scip,solval,SCIPvarGetUbLocal(vars[i]))); SCIP_CALL( SCIPsetSolVal(scip, locksol, vars[i], solval) ); } } /* try lower bound solution */ SCIPdebugMessage("try lower bound solution\n"); SCIP_CALL( SCIPtrySol(scip, lbsol, FALSE, FALSE, TRUE, TRUE, &success) ); if( success ) { SCIPdebugMessage("found feasible lower bound solution:\n"); SCIPdebug( SCIP_CALL( SCIPprintSol(scip, lbsol, NULL, FALSE) ) ); *result = SCIP_FOUNDSOL; } /* try upper bound solution */ SCIPdebugMessage("try upper bound solution\n"); SCIP_CALL( SCIPtrySol(scip, ubsol, FALSE, FALSE, TRUE, TRUE, &success) ); if( success ) { SCIPdebugMessage("found feasible upper bound solution:\n"); SCIPdebug( SCIP_CALL( SCIPprintSol(scip, ubsol, NULL, FALSE) ) ); *result = SCIP_FOUNDSOL; } /* try zero solution */ if( zerovalid ) { SCIPdebugMessage("try zero solution\n"); SCIP_CALL( SCIPtrySol(scip, zerosol, FALSE, FALSE, TRUE, TRUE, &success) ); if( success ) { SCIPdebugMessage("found feasible zero solution:\n"); SCIPdebug( SCIP_CALL( SCIPprintSol(scip, zerosol, NULL, FALSE) ) ); *result = SCIP_FOUNDSOL; } } /* try lock solution */ SCIPdebugMessage("try lock solution\n"); SCIP_CALL( SCIPtrySol(scip, locksol, FALSE, FALSE, TRUE, TRUE, &success) ); if( success ) { SCIPdebugMessage("found feasible lock solution:\n"); SCIPdebug( SCIP_CALL( SCIPprintSol(scip, locksol, NULL, FALSE) ) ); *result = SCIP_FOUNDSOL; } TERMINATE: /* free solutions */ SCIP_CALL( SCIPfreeSol(scip, &lbsol) ); SCIP_CALL( SCIPfreeSol(scip, &ubsol) ); SCIP_CALL( SCIPfreeSol(scip, &zerosol) ); SCIP_CALL( SCIPfreeSol(scip, &locksol) ); return SCIP_OKAY; }
/** creates a subproblem for subscip by fixing a number of variables */ static SCIP_RETCODE createSubproblem( SCIP* scip, /**< original SCIP data structure */ SCIP* subscip, /**< SCIP data structure for the subproblem */ SCIP_VAR** subvars, /**< the variables of the subproblem */ SCIP_Real minfixingrate, /**< percentage of integer variables that have to be fixed */ SCIP_Bool binarybounds, /**< should general integers get binary bounds [floor(.),ceil(.)] ? */ SCIP_Bool uselprows, /**< should subproblem be created out of the rows in the LP rows? */ SCIP_Bool* success /**< pointer to store whether the problem was created successfully */ ) { SCIP_VAR** vars; /* original SCIP variables */ SCIP_Real fixingrate; int nvars; int nbinvars; int nintvars; int i; int fixingcounter; assert(scip != NULL); assert(subscip != NULL); assert(subvars != NULL); assert(0.0 <= minfixingrate && minfixingrate <= 1.0); /* get required variable data */ SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, &nbinvars, &nintvars, NULL, NULL) ); fixingcounter = 0; /* change bounds of variables of the subproblem */ for( i = 0; i < nbinvars + nintvars; i++ ) { SCIP_Real lpsolval; SCIP_Real lb; SCIP_Real ub; /* get the current LP solution for each variable */ lpsolval = SCIPgetRelaxSolVal(scip, vars[i]); if( SCIPisFeasIntegral(scip, lpsolval) ) { /* fix variables to current LP solution if it is integral, * use exact integral value, if the variable is only integral within numerical tolerances */ lb = SCIPfloor(scip, lpsolval+0.5); ub = lb; fixingcounter++; } else if( binarybounds ) { /* if the sub problem should be a binary problem, change the bounds to nearest integers */ lb = SCIPfeasFloor(scip,lpsolval); ub = SCIPfeasCeil(scip,lpsolval); } else { /* otherwise just copy bounds */ lb = SCIPvarGetLbGlobal(vars[i]); ub = SCIPvarGetUbGlobal(vars[i]); } /* perform the bound change */ SCIP_CALL( SCIPchgVarLbGlobal(subscip, subvars[i], lb) ); SCIP_CALL( SCIPchgVarUbGlobal(subscip, subvars[i], ub) ); } /* abort, if all integer variables were fixed (which should not happen for MIP) */ if( fixingcounter == nbinvars + nintvars ) { *success = FALSE; return SCIP_OKAY; } else fixingrate = fixingcounter / (SCIP_Real)(MAX(nbinvars + nintvars, 1)); SCIPdebugMessage("fixing rate: %g = %d of %d\n", fixingrate, fixingcounter, nbinvars + nintvars); /* abort, if the amount of fixed variables is insufficient */ if( fixingrate < minfixingrate ) { *success = FALSE; return SCIP_OKAY; } if( uselprows ) { SCIP_ROW** rows; /* original scip rows */ int nrows; /* get the rows and their number */ SCIP_CALL( SCIPgetLPRowsData(scip, &rows, &nrows) ); /* copy all rows to linear constraints */ for( i = 0; i < nrows; i++ ) { SCIP_CONS* cons; SCIP_VAR** consvars; SCIP_COL** cols; SCIP_Real constant; SCIP_Real lhs; SCIP_Real rhs; SCIP_Real* vals; int nnonz; int j; /* ignore rows that are only locally valid */ if( SCIProwIsLocal(rows[i]) ) continue; /* get the row's data */ constant = SCIProwGetConstant(rows[i]); lhs = SCIProwGetLhs(rows[i]) - constant; rhs = SCIProwGetRhs(rows[i]) - constant; vals = SCIProwGetVals(rows[i]); nnonz = SCIProwGetNNonz(rows[i]); cols = SCIProwGetCols(rows[i]); assert( lhs <= rhs ); /* allocate memory array to be filled with the corresponding subproblem variables */ SCIP_CALL( SCIPallocBufferArray(subscip, &consvars, nnonz) ); for( j = 0; j < nnonz; j++ ) consvars[j] = subvars[SCIPvarGetProbindex(SCIPcolGetVar(cols[j]))]; /* create a new linear constraint and add it to the subproblem */ SCIP_CALL( SCIPcreateConsLinear(subscip, &cons, SCIProwGetName(rows[i]), nnonz, consvars, vals, lhs, rhs, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, TRUE, TRUE, FALSE) ); SCIP_CALL( SCIPaddCons(subscip, cons) ); SCIP_CALL( SCIPreleaseCons(subscip, &cons) ); /* free temporary memory */ SCIPfreeBufferArray(subscip, &consvars); } } *success = TRUE; return SCIP_OKAY; }
/** computes a disjunctive cut inequality based on two simplex taubleau rows */ static SCIP_RETCODE generateDisjCutSOS1( SCIP* scip, /**< SCIP pointer */ SCIP_SEPA* sepa, /**< separator */ SCIP_ROW** rows, /**< LP rows */ int nrows, /**< number of LP rows */ SCIP_COL** cols, /**< LP columns */ int ncols, /**< number of LP columns */ int ndisjcuts, /**< number of disjunctive cuts found so far */ SCIP_Bool scale, /**< should cut be scaled */ SCIP_Bool strengthen, /**< should cut be strengthened if integer variables are present */ SCIP_Real cutlhs1, /**< left hand side of the first simplex row */ SCIP_Real cutlhs2, /**< left hand side of the second simplex row */ SCIP_Real bound1, /**< bound of first simplex row */ SCIP_Real bound2, /**< bound of second simplex row */ SCIP_Real* simplexcoefs1, /**< simplex coefficients of first row */ SCIP_Real* simplexcoefs2, /**< simplex coefficients of second row */ SCIP_Real* cutcoefs, /**< pointer to store cut coefficients (length: nscipvars) */ SCIP_ROW** row, /**< pointer to store disjunctive cut inequality */ SCIP_Bool* madeintegral /**< pointer to store whether cut has been scaled to integral values */ ) { char cutname[SCIP_MAXSTRLEN]; SCIP_COL** rowcols; SCIP_COL* col; SCIP_Real* rowvals; SCIP_Real lhsrow; SCIP_Real rhsrow; SCIP_Real cutlhs; SCIP_Real sgn; SCIP_Real lb; SCIP_Real ub; int nonbasicnumber = 0; int rownnonz; int ind; int r; int c; assert( scip != NULL ); assert( row != NULL ); assert( rows != NULL ); assert( cols != NULL ); assert( simplexcoefs1 != NULL ); assert( simplexcoefs2 != NULL ); assert( cutcoefs != NULL ); assert( sepa != NULL ); assert( madeintegral != NULL ); *madeintegral = FALSE; /* check signs */ if ( SCIPisFeasPositive(scip, cutlhs1) == SCIPisFeasPositive(scip, cutlhs2) ) sgn = 1.0; else sgn = -1.0; /* check bounds */ if ( SCIPisInfinity(scip, REALABS(bound1)) || SCIPisInfinity(scip, REALABS(bound2)) ) strengthen = FALSE; /* compute left hand side of row (a later update is possible, see below) */ cutlhs = sgn * cutlhs1 * cutlhs2; /* add cut-coefficients of the non-basic non-slack variables */ for (c = 0; c < ncols; ++c) { col = cols[c]; assert( col != NULL ); ind = SCIPcolGetLPPos(col); assert( ind >= 0 ); if ( SCIPcolGetBasisStatus(col) == SCIP_BASESTAT_LOWER ) { lb = SCIPcolGetLb(col); /* for integer variables we may obtain stronger coefficients */ if ( strengthen && SCIPcolIsIntegral(col) ) { SCIP_Real mval; SCIP_Real mvalfloor; SCIP_Real mvalceil; mval = (cutlhs2 * simplexcoefs1[nonbasicnumber] - cutlhs1 * simplexcoefs2[nonbasicnumber]) / (cutlhs2 * bound1 + cutlhs1 * bound2); mvalfloor = SCIPfloor(scip, mval); mvalceil = SCIPceil(scip, mval); cutcoefs[ind] = MIN(sgn * cutlhs2 * (simplexcoefs1[nonbasicnumber] - mvalfloor * bound1), sgn * cutlhs1 * (simplexcoefs2[nonbasicnumber] + mvalceil * bound2)); assert( SCIPisFeasLE(scip, cutcoefs[ind], MAX(sgn * cutlhs2 * simplexcoefs1[nonbasicnumber], sgn * cutlhs1 * simplexcoefs2[nonbasicnumber])) ); } else cutcoefs[ind] = MAX(sgn * cutlhs2 * simplexcoefs1[nonbasicnumber], sgn * cutlhs1 * simplexcoefs2[nonbasicnumber]); cutlhs += cutcoefs[ind] * lb; ++nonbasicnumber; } else if ( SCIPcolGetBasisStatus(col) == SCIP_BASESTAT_UPPER ) { ub = SCIPcolGetUb(col); /* for integer variables we may obtain stronger coefficients */ if ( strengthen && SCIPcolIsIntegral(col) ) { SCIP_Real mval; SCIP_Real mvalfloor; SCIP_Real mvalceil; mval = (cutlhs2 * simplexcoefs1[nonbasicnumber] - cutlhs1 * simplexcoefs2[nonbasicnumber]) / (cutlhs2 * bound1 + cutlhs1 * bound2); mvalfloor = SCIPfloor(scip, -mval); mvalceil = SCIPceil(scip, -mval); cutcoefs[ind] = MAX(sgn * cutlhs2 * (simplexcoefs1[nonbasicnumber] + mvalfloor * bound1), sgn * cutlhs1 * (simplexcoefs2[nonbasicnumber] - mvalceil * bound2)); assert( SCIPisFeasLE(scip, -cutcoefs[ind], -MIN(sgn * cutlhs2 * simplexcoefs1[nonbasicnumber], sgn * cutlhs1 * simplexcoefs2[nonbasicnumber])) ); } else cutcoefs[ind] = MIN(sgn * cutlhs2 * simplexcoefs1[nonbasicnumber], sgn * cutlhs1 * simplexcoefs2[nonbasicnumber]); cutlhs += cutcoefs[ind] * ub; ++nonbasicnumber; } else { assert( SCIPcolGetBasisStatus(col) != SCIP_BASESTAT_ZERO ); cutcoefs[ind] = 0.0; } } /* add cut-coefficients of the non-basic slack variables */ for (r = 0; r < nrows; ++r) { rhsrow = SCIProwGetRhs(rows[r]) - SCIProwGetConstant(rows[r]); lhsrow = SCIProwGetLhs(rows[r]) - SCIProwGetConstant(rows[r]); assert( SCIProwGetBasisStatus(rows[r]) != SCIP_BASESTAT_ZERO ); assert( SCIPisFeasZero(scip, lhsrow - rhsrow) || SCIPisNegative(scip, lhsrow - rhsrow) ); assert( SCIProwIsInLP(rows[r]) ); if ( SCIProwGetBasisStatus(rows[r]) != SCIP_BASESTAT_BASIC ) { SCIP_Real cutcoef; if ( SCIProwGetBasisStatus(rows[r]) == SCIP_BASESTAT_UPPER ) { assert( SCIPisFeasZero(scip, SCIPgetRowLPActivity(scip, rows[r]) - SCIProwGetRhs(rows[r])) ); cutcoef = MAX(sgn * cutlhs2 * simplexcoefs1[nonbasicnumber], sgn * cutlhs1 * simplexcoefs2[nonbasicnumber]); cutlhs -= cutcoef * rhsrow; ++nonbasicnumber; } else /* SCIProwGetBasisStatus(rows[r]) == SCIP_BASESTAT_LOWER */ { assert( SCIProwGetBasisStatus(rows[r]) == SCIP_BASESTAT_LOWER ); assert( SCIPisFeasZero(scip, SCIPgetRowLPActivity(scip, rows[r]) - SCIProwGetLhs(rows[r])) ); cutcoef = MIN(sgn * cutlhs2 * simplexcoefs1[nonbasicnumber], sgn * cutlhs1 * simplexcoefs2[nonbasicnumber]); cutlhs -= cutcoef * lhsrow; ++nonbasicnumber; } rownnonz = SCIProwGetNNonz(rows[r]); rowvals = SCIProwGetVals(rows[r]); rowcols = SCIProwGetCols(rows[r]); for (c = 0; c < rownnonz; ++c) { ind = SCIPcolGetLPPos(rowcols[c]); /* if column is not in LP, then return without generating cut */ if ( ind < 0 ) { *row = NULL; return SCIP_OKAY; } cutcoefs[ind] -= cutcoef * rowvals[c]; } } } /* create cut */ (void) SCIPsnprintf(cutname, SCIP_MAXSTRLEN, "%s_%d_%d", SCIPsepaGetName(sepa), SCIPgetNLPs(scip), ndisjcuts); if ( SCIPgetDepth(scip) == 0 ) SCIP_CALL( SCIPcreateEmptyRowSepa(scip, row, sepa, cutname, cutlhs, SCIPinfinity(scip), FALSE, FALSE, TRUE) ); else SCIP_CALL( SCIPcreateEmptyRowSepa(scip, row, sepa, cutname, cutlhs, SCIPinfinity(scip), TRUE, FALSE, TRUE) ); SCIP_CALL( SCIPcacheRowExtensions(scip, *row) ); for (c = 0; c < ncols; ++c) { ind = SCIPcolGetLPPos(cols[c]); assert( ind >= 0 ); if ( ! SCIPisFeasZero(scip, cutcoefs[ind]) ) { SCIP_CALL( SCIPaddVarToRow(scip, *row, SCIPcolGetVar(cols[c]), cutcoefs[ind] ) ); } } SCIP_CALL( SCIPflushRowExtensions(scip, *row) ); /* try to scale the cut to integral values * @todo find better but still stable disjunctive cut settings */ if ( scale ) { int maxdepth; int depth; SCIP_Longint maxdnom; SCIP_Real maxscale; depth = SCIPgetDepth(scip); assert( depth >= 0 ); maxdepth = SCIPgetMaxDepth(scip); if ( depth == 0 ) { maxdnom = 1000; maxscale = 1000.0; } else if ( depth <= maxdepth/4 ) { maxdnom = 1000; maxscale = 1000.0; } else if ( depth <= maxdepth/2 ) { maxdnom = 100; maxscale = 100.0; } else { maxdnom = 10; maxscale = 10.0; } SCIP_CALL( SCIPmakeRowIntegral(scip, *row, -SCIPepsilon(scip), SCIPsumepsilon(scip), maxdnom, maxscale, TRUE, madeintegral) ); } return SCIP_OKAY; }
/** selects a variable and fixes it to its current pseudo solution value */ static SCIP_RETCODE fixVariable( SCIP* scip, /**< SCIP data structure */ SCIP_VAR** pseudocands, /**< array of unfixed variables */ int npseudocands, /**< number of unfixed variables */ SCIP_Real large /**< large value to be used instead of infinity */ ) { SCIP_VAR* var; SCIP_Real bestscore; SCIP_Real score; SCIP_Real solval; int bestcand; int ncands; int c; assert(pseudocands != NULL); assert(npseudocands > 0); /* if existing, choose one of the highest priority binary variables; if no high priority binary variables * exist, choose a variable among all unfixed integral variables */ ncands = SCIPgetNPrioPseudoBranchBins(scip); if( ncands == 0 ) ncands = npseudocands; /* select variable to tighten the domain for */ bestscore = -SCIPinfinity(scip); bestcand = -1; for( c = 0; c < ncands; ++c ) { score = SCIPgetVarAvgInferenceScore(scip, pseudocands[c]); if( score > bestscore ) { bestscore = score; bestcand = c; } } assert(bestcand != -1); /* fix variable to its current pseudo solution value */ var = pseudocands[bestcand]; solval = SCIPgetVarSol(scip, var); /* adapt solution value if it is infinite */ if( SCIPisInfinity(scip, solval) ) { SCIP_Real lb; assert(SCIPisInfinity(scip, SCIPvarGetUbLocal(var))); lb = SCIPvarGetLbLocal(var); /* adapt fixing value by changing it to a large value */ if( SCIPisInfinity(scip, -lb) ) solval = SCIPceil(scip, large); else if( !SCIPisInfinity(scip, SCIPceil(scip, lb+large)) ) solval = SCIPceil(scip, lb+large); } else if( SCIPisInfinity(scip, -solval) ) { SCIP_Real ub; assert(SCIPisInfinity(scip, -SCIPvarGetLbLocal(var))); ub = SCIPvarGetUbLocal(var); /* adapt fixing value by changing it to a large negative value */ if( SCIPisInfinity(scip, ub) ) solval = SCIPfloor(scip, -large); else if( !SCIPisInfinity(scip, -SCIPfloor(scip, ub-large)) ) solval = SCIPfloor(scip, ub-large); } assert(SCIPisFeasIntegral(scip, solval)); /* in probing, we always have the pseudo solution */ SCIPdebugMessage(" -> fixed variable <%s>[%g,%g] = %g (%d candidates left)\n", SCIPvarGetName(var), SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var), solval, npseudocands - 1); SCIP_CALL( SCIPfixVarProbing(scip, var, solval) ); return SCIP_OKAY; }
/** execution method of primal heuristic */ static SCIP_DECL_HEUREXEC(heurExecRootsoldiving) /*lint --e{715}*/ { /*lint --e{715}*/ SCIP_HEURDATA* heurdata; SCIP_VAR** vars; SCIP_Real* rootsol; SCIP_Real* objchgvals; int* softroundings; int* intvalrounds; int nvars; int nbinvars; int nintvars; int nlpcands; SCIP_LPSOLSTAT lpsolstat; SCIP_Real absstartobjval; SCIP_Real objstep; SCIP_Real alpha; SCIP_Real oldobj; SCIP_Real newobj; SCIP_Bool lperror; SCIP_Bool lpsolchanged; SCIP_Longint nsolsfound; SCIP_Longint ncalls; SCIP_Longint nlpiterations; SCIP_Longint maxnlpiterations; int depth; int maxdepth; int maxdivedepth; int divedepth; int startnlpcands; int ncycles; int i; assert(heur != NULL); assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0); assert(scip != NULL); assert(result != NULL); assert(SCIPhasCurrentNodeLP(scip)); *result = SCIP_DELAYED; /* only call heuristic, if an optimal LP solution is at hand */ if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL ) return SCIP_OKAY; /* only call heuristic, if the LP solution is basic (which allows fast resolve in diving) */ if( !SCIPisLPSolBasic(scip) ) return SCIP_OKAY; /* don't dive two times at the same node */ if( SCIPgetLastDivenode(scip) == SCIPgetNNodes(scip) && SCIPgetDepth(scip) > 0 ) return SCIP_OKAY; *result = SCIP_DIDNOTRUN; /* get heuristic's data */ heurdata = SCIPheurGetData(heur); assert(heurdata != NULL); /* only apply heuristic, if only a few solutions have been found */ if( heurdata->maxsols >= 0 && SCIPgetNSolsFound(scip) >= heurdata->maxsols ) return SCIP_OKAY; /* only try to dive, if we are in the correct part of the tree, given by minreldepth and maxreldepth */ depth = SCIPgetDepth(scip); maxdepth = SCIPgetMaxDepth(scip); maxdepth = MAX(maxdepth, 30); if( depth < heurdata->minreldepth*maxdepth || depth > heurdata->maxreldepth*maxdepth ) return SCIP_OKAY; /* calculate the maximal number of LP iterations until heuristic is aborted */ nlpiterations = SCIPgetNNodeLPIterations(scip); ncalls = SCIPheurGetNCalls(heur); nsolsfound = 10*SCIPheurGetNBestSolsFound(heur) + heurdata->nsuccess; maxnlpiterations = (SCIP_Longint)((1.0 + 10.0*(nsolsfound+1.0)/(ncalls+1.0)) * heurdata->maxlpiterquot * nlpiterations); maxnlpiterations += heurdata->maxlpiterofs; /* don't try to dive, if we took too many LP iterations during diving */ if( heurdata->nlpiterations >= maxnlpiterations ) return SCIP_OKAY; /* allow at least a certain number of LP iterations in this dive */ maxnlpiterations = MAX(maxnlpiterations, heurdata->nlpiterations + MINLPITER); /* get number of fractional variables, that should be integral */ nlpcands = SCIPgetNLPBranchCands(scip); /* don't try to dive, if there are no fractional variables */ if( nlpcands == 0 ) return SCIP_OKAY; /* calculate the maximal diving depth */ nvars = SCIPgetNBinVars(scip) + SCIPgetNIntVars(scip); if( SCIPgetNSolsFound(scip) == 0 ) maxdivedepth = (int)(heurdata->depthfacnosol * nvars); else maxdivedepth = (int)(heurdata->depthfac * nvars); maxdivedepth = MAX(maxdivedepth, 10); *result = SCIP_DIDNOTFIND; /* get all variables of LP */ SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, &nbinvars, &nintvars, NULL, NULL) ); /* get root solution value of all binary and integer variables */ SCIP_CALL( SCIPallocBufferArray(scip, &rootsol, nbinvars + nintvars) ); for( i = 0; i < nbinvars + nintvars; i++ ) rootsol[i] = SCIPvarGetRootSol(vars[i]); /* get current LP objective value, and calculate length of a single step in an objective coefficient */ absstartobjval = SCIPgetLPObjval(scip); absstartobjval = ABS(absstartobjval); absstartobjval = MAX(absstartobjval, 1.0); objstep = absstartobjval / 10.0; /* initialize array storing the preferred soft rounding directions and counting the integral value rounds */ SCIP_CALL( SCIPallocBufferArray(scip, &softroundings, nbinvars + nintvars) ); BMSclearMemoryArray(softroundings, nbinvars + nintvars); SCIP_CALL( SCIPallocBufferArray(scip, &intvalrounds, nbinvars + nintvars) ); BMSclearMemoryArray(intvalrounds, nbinvars + nintvars); /* allocate temporary memory for buffering objective changes */ SCIP_CALL( SCIPallocBufferArray(scip, &objchgvals, nbinvars + nintvars) ); /* start diving */ SCIP_CALL( SCIPstartDive(scip) ); SCIPdebugMessage("(node %"SCIP_LONGINT_FORMAT") executing rootsoldiving heuristic: depth=%d, %d fractionals, dualbound=%g, maxnlpiterations=%"SCIP_LONGINT_FORMAT", maxdivedepth=%d, LPobj=%g, objstep=%g\n", SCIPgetNNodes(scip), SCIPgetDepth(scip), nlpcands, SCIPgetDualbound(scip), maxnlpiterations, maxdivedepth, SCIPgetLPObjval(scip), objstep); lperror = FALSE; divedepth = 0; lpsolstat = SCIP_LPSOLSTAT_OPTIMAL; alpha = heurdata->alpha; ncycles = 0; lpsolchanged = TRUE; startnlpcands = nlpcands; while( !lperror && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL && nlpcands > 0 && ncycles < 10 && (divedepth < 10 || nlpcands <= startnlpcands - divedepth/2 || (divedepth < maxdivedepth && heurdata->nlpiterations < maxnlpiterations)) && !SCIPisStopped(scip) ) { SCIP_Bool success; int hardroundingidx; int hardroundingdir; SCIP_Real hardroundingoldbd; SCIP_Real hardroundingnewbd; SCIP_Bool boundschanged; SCIP_RETCODE retcode; /* create solution from diving LP and try to round it */ SCIP_CALL( SCIPlinkLPSol(scip, heurdata->sol) ); SCIP_CALL( SCIProundSol(scip, heurdata->sol, &success) ); if( success ) { SCIPdebugMessage("rootsoldiving found roundable primal solution: obj=%g\n", SCIPgetSolOrigObj(scip, heurdata->sol)); /* try to add solution to SCIP */ SCIP_CALL( SCIPtrySol(scip, heurdata->sol, FALSE, FALSE, FALSE, FALSE, &success) ); /* check, if solution was feasible and good enough */ if( success ) { SCIPdebugMessage(" -> solution was feasible and good enough\n"); *result = SCIP_FOUNDSOL; } } divedepth++; hardroundingidx = -1; hardroundingdir = 0; hardroundingoldbd = 0.0; hardroundingnewbd = 0.0; boundschanged = FALSE; SCIPdebugMessage("dive %d/%d, LP iter %"SCIP_LONGINT_FORMAT"/%"SCIP_LONGINT_FORMAT":\n", divedepth, maxdivedepth, heurdata->nlpiterations, maxnlpiterations); /* round solution x* from diving LP: * - x~_j = down(x*_j) if x*_j is integer or binary variable and x*_j <= root solution_j * - x~_j = up(x*_j) if x*_j is integer or binary variable and x*_j > root solution_j * - x~_j = x*_j if x*_j is continuous variable * change objective function in diving LP: * - if x*_j is integral, or j is a continuous variable, set obj'_j = alpha * obj_j * - otherwise, set obj'_j = alpha * obj_j + sign(x*_j - x~_j) */ for( i = 0; i < nbinvars + nintvars; i++ ) { SCIP_VAR* var; SCIP_Real solval; var = vars[i]; oldobj = SCIPgetVarObjDive(scip, var); newobj = oldobj; solval = SCIPvarGetLPSol(var); if( SCIPisFeasIntegral(scip, solval) ) { /* if the variable became integral after a soft rounding, count the rounds; after a while, fix it to its * current integral value; * otherwise, fade out the objective value */ if( softroundings[i] != 0 && lpsolchanged ) { intvalrounds[i]++; if( intvalrounds[i] == 5 && SCIPgetVarLbDive(scip, var) < SCIPgetVarUbDive(scip, var) - 0.5 ) { /* use exact integral value, if the variable is only integral within numerical tolerances */ solval = SCIPfloor(scip, solval+0.5); SCIPdebugMessage(" -> fixing <%s> = %g\n", SCIPvarGetName(var), solval); SCIP_CALL( SCIPchgVarLbDive(scip, var, solval) ); SCIP_CALL( SCIPchgVarUbDive(scip, var, solval) ); boundschanged = TRUE; } } else newobj = alpha * oldobj; } else if( solval <= rootsol[i] ) { /* if the variable was soft rounded most of the time downwards, round it downwards by changing the bounds; * otherwise, apply soft rounding by changing the objective value */ softroundings[i]--; if( softroundings[i] <= -10 && hardroundingidx == -1 ) { SCIPdebugMessage(" -> hard rounding <%s>[%g] <= %g\n", SCIPvarGetName(var), solval, SCIPfeasFloor(scip, solval)); hardroundingidx = i; hardroundingdir = -1; hardroundingoldbd = SCIPgetVarUbDive(scip, var); hardroundingnewbd = SCIPfeasFloor(scip, solval); SCIP_CALL( SCIPchgVarUbDive(scip, var, hardroundingnewbd) ); boundschanged = TRUE; } else newobj = alpha * oldobj + objstep; } else { /* if the variable was soft rounded most of the time upwards, round it upwards by changing the bounds; * otherwise, apply soft rounding by changing the objective value */ softroundings[i]++; if( softroundings[i] >= +10 && hardroundingidx == -1 ) { SCIPdebugMessage(" -> hard rounding <%s>[%g] >= %g\n", SCIPvarGetName(var), solval, SCIPfeasCeil(scip, solval)); hardroundingidx = i; hardroundingdir = +1; hardroundingoldbd = SCIPgetVarLbDive(scip, var); hardroundingnewbd = SCIPfeasCeil(scip, solval); SCIP_CALL( SCIPchgVarLbDive(scip, var, hardroundingnewbd) ); boundschanged = TRUE; } else newobj = alpha * oldobj - objstep; } /* remember the objective change */ objchgvals[i] = newobj; } /* apply objective changes if there was no bound change */ if( !boundschanged ) { /* apply cached changes on integer variables */ for( i = 0; i < nbinvars + nintvars; ++i ) { SCIP_VAR* var; var = vars[i]; SCIPdebugMessage(" -> i=%d var <%s>, solval=%g, rootsol=%g, oldobj=%g, newobj=%g\n", i, SCIPvarGetName(var), SCIPvarGetLPSol(var), rootsol[i], SCIPgetVarObjDive(scip, var), objchgvals[i]); SCIP_CALL( SCIPchgVarObjDive(scip, var, objchgvals[i]) ); } /* fade out the objective values of the continuous variables */ for( i = nbinvars + nintvars; i < nvars; i++ ) { SCIP_VAR* var; var = vars[i]; oldobj = SCIPgetVarObjDive(scip, var); newobj = alpha * oldobj; SCIPdebugMessage(" -> i=%d var <%s>, solval=%g, oldobj=%g, newobj=%g\n", i, SCIPvarGetName(var), SCIPvarGetLPSol(var), oldobj, newobj); SCIP_CALL( SCIPchgVarObjDive(scip, var, newobj) ); } } SOLVEAGAIN: /* resolve the diving LP */ nlpiterations = SCIPgetNLPIterations(scip); retcode = SCIPsolveDiveLP(scip, MAX((int)(maxnlpiterations - heurdata->nlpiterations), MINLPITER), &lperror); lpsolstat = SCIPgetLPSolstat(scip); /* Errors in the LP solver should not kill the overall solving process, if the LP is just needed for a heuristic. * Hence in optimized mode, the return code is caught and a warning is printed, only in debug mode, SCIP will stop. */ if( retcode != SCIP_OKAY ) { #ifndef NDEBUG if( lpsolstat != SCIP_LPSOLSTAT_UNBOUNDEDRAY ) { SCIP_CALL( retcode ); } #endif SCIPwarningMessage(scip, "Error while solving LP in Rootsoldiving heuristic; LP solve terminated with code <%d>\n", retcode); SCIPwarningMessage(scip, "This does not affect the remaining solution procedure --> continue\n"); } if( lperror ) break; /* update iteration count */ heurdata->nlpiterations += SCIPgetNLPIterations(scip) - nlpiterations; /* if no LP iterations were performed, we stayed at the same solution -> count this cycling */ lpsolchanged = (SCIPgetNLPIterations(scip) != nlpiterations); if( lpsolchanged ) ncycles = 0; else if( !boundschanged ) /* do not count if integral variables have been fixed */ ncycles++; /* get LP solution status and number of fractional variables, that should be integral */ if( lpsolstat == SCIP_LPSOLSTAT_INFEASIBLE && hardroundingidx != -1 ) { SCIP_VAR* var; var = vars[hardroundingidx]; /* round the hard rounded variable to the opposite direction and resolve the LP */ if( hardroundingdir == -1 ) { SCIPdebugMessage(" -> opposite hard rounding <%s> >= %g\n", SCIPvarGetName(var), hardroundingnewbd + 1.0); SCIP_CALL( SCIPchgVarUbDive(scip, var, hardroundingoldbd) ); SCIP_CALL( SCIPchgVarLbDive(scip, var, hardroundingnewbd + 1.0) ); } else { SCIPdebugMessage(" -> opposite hard rounding <%s> <= %g\n", SCIPvarGetName(var), hardroundingnewbd - 1.0); SCIP_CALL( SCIPchgVarLbDive(scip, var, hardroundingoldbd) ); SCIP_CALL( SCIPchgVarUbDive(scip, var, hardroundingnewbd - 1.0) ); } hardroundingidx = -1; goto SOLVEAGAIN; } if( lpsolstat == SCIP_LPSOLSTAT_OPTIMAL ) nlpcands = SCIPgetNLPBranchCands(scip); SCIPdebugMessage(" -> lpsolstat=%d, nfrac=%d\n", lpsolstat, nlpcands); } SCIPdebugMessage("---> diving finished: lpsolstat = %d, depth %d/%d, LP iter %"SCIP_LONGINT_FORMAT"/%"SCIP_LONGINT_FORMAT"\n", lpsolstat, divedepth, maxdivedepth, heurdata->nlpiterations, maxnlpiterations); /* check if a solution has been found */ if( nlpcands == 0 && !lperror && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL ) { SCIP_Bool success; /* create solution from diving LP */ SCIP_CALL( SCIPlinkLPSol(scip, heurdata->sol) ); SCIPdebugMessage("rootsoldiving found primal solution: obj=%g\n", SCIPgetSolOrigObj(scip, heurdata->sol)); /* try to add solution to SCIP */ SCIP_CALL( SCIPtrySol(scip, heurdata->sol, FALSE, FALSE, FALSE, FALSE, &success) ); /* check, if solution was feasible and good enough */ if( success ) { SCIPdebugMessage(" -> solution was feasible and good enough\n"); *result = SCIP_FOUNDSOL; } } /* end diving */ SCIP_CALL( SCIPendDive(scip) ); if( *result == SCIP_FOUNDSOL ) heurdata->nsuccess++; /* free temporary memory */ SCIPfreeBufferArray(scip, &objchgvals); SCIPfreeBufferArray(scip, &intvalrounds); SCIPfreeBufferArray(scip, &softroundings); SCIPfreeBufferArray(scip, &rootsol); SCIPdebugMessage("rootsoldiving heuristic finished\n"); return SCIP_OKAY; }