Ejemplo n.º 1
0
/** output method of display column to output file stream 'file' */
static
SCIP_DECL_DISPOUTPUT(SCIPdispOutputGap)
{  /*lint --e{715}*/
   SCIP_Real gap;

   assert(disp != NULL);
   assert(strcmp(SCIPdispGetName(disp), DISP_NAME_GAP) == 0);
   assert(scip != NULL);

   gap = SCIPgetGap(scip);

   if( SCIPisInfinity(scip, gap) )
      SCIPinfoMessage(scip, file, "    Inf ");
   else if( gap >= 100.00 )
      SCIPinfoMessage(scip, file, "  Large ");
   else
      SCIPinfoMessage(scip, file, "%7.2f%%", 100.0*gap);

   if( SCIPgetNNodesLeft(scip) > 0
      || SCIPisZero(scip, gap) )
   {
      SCIP_CALL( SCIPsetIntParam(scip, "display/verblevel", 0) );
   }

   return SCIP_OKAY;
}
Ejemplo n.º 2
0
/** problem writing method of reader */
static
SCIP_DECL_READERWRITE(readerWriteCip)
{  /*lint --e{715}*/
   int i;

   SCIPinfoMessage(scip, file, "STATISTICS\n");
   SCIPinfoMessage(scip, file, "  Problem name     : %s\n", name);
   SCIPinfoMessage(scip, file, "  Variables        : %d (%d binary, %d integer, %d implicit integer, %d continuous)\n",
      nvars, nbinvars, nintvars, nimplvars, ncontvars);
   SCIPinfoMessage(scip, file, "  Constraints      : %d initial, %d maximal\n", startnconss, maxnconss);

   SCIPinfoMessage(scip, file, "OBJECTIVE\n");
   SCIPinfoMessage(scip, file, "  Sense            : %s\n", objsense == SCIP_OBJSENSE_MINIMIZE ? "minimize" : "maximize");
   if( !SCIPisZero(scip, objoffset) )
      SCIPinfoMessage(scip, file, "  Offset           : %+.15g\n", objoffset);
   if( !SCIPisEQ(scip, objscale, 1.0) )
      SCIPinfoMessage(scip, file, "  Scale            : %.15g\n", objscale);

   if( nvars > 0 )
   {
      SCIPinfoMessage(scip, file, "VARIABLES\n");
      for( i = 0; i < nvars; ++i )
      {
         SCIP_CALL( SCIPprintVar(scip, vars[i], file) );
      }
   }

   if( nfixedvars > 0 )
   {
      SCIPinfoMessage(scip, file, "FIXED\n");
      for( i = 0; i < nfixedvars; ++i )
      {
         SCIP_CALL( SCIPprintVar(scip, fixedvars[i], file) );
      }
   }

   if( nconss > 0 )
   {
      SCIPinfoMessage(scip, file, "CONSTRAINTS\n");

      for( i = 0; i < nconss; ++i )
      {
         /* in case the transformed is written only constraint are posted which are enabled in the current node */
         assert(!transformed || SCIPconsIsEnabled(conss[i]));

         SCIP_CALL( SCIPprintCons(scip, conss[i], file) );
         SCIPinfoMessage(scip, file, ";\n");
      }
   }

   *result = SCIP_SUCCESS;

   SCIPinfoMessage(scip, file, "END\n");
   return SCIP_OKAY;
}
Ejemplo n.º 3
0
/** generate point for close cut separation
 *
 *  The constructed point is the convex combination of the point stored in set->closesol and the
 *  current LP solution. The convexity parameter is set->sepa_closecombvalue. If this parameter is
 *  0, the point coincides with the LP solution.
 */
static
SCIP_RETCODE generateCloseCutPoint(
   SCIP*                 scip,               /**< SCIP data structure */
   SCIP_SEPADATA*        sepadata,           /**< separator data */
   SCIP_SOL**            point               /**< point to be generated (or NULL if unsuccessful) */
   )
{
   SCIP_VAR** vars;
   SCIP_VAR* var;
   SCIP_Real val;
   SCIP_Real alpha;
   SCIP_Real onealpha;
   int nvars;
   int i;

   assert( scip != NULL );
   assert( point != NULL );

   *point = NULL;
   if ( sepadata->sepasol == NULL )
      return SCIP_OKAY;

   alpha = sepadata->sepacombvalue;
   if ( alpha < 0.001 )
      return SCIP_OKAY;
   onealpha = 1.0 - alpha;

   /* create solution */
   SCIP_CALL( SCIPcreateSol(scip, point, NULL) );

   /* generate convex combination */
   vars = SCIPgetVars(scip);
   nvars = SCIPgetNVars(scip);
   for (i = 0; i < nvars; ++i)
   {
      var = vars[i];
      val = alpha * SCIPgetSolVal(scip, sepadata->sepasol, var) + onealpha * SCIPvarGetLPSol(var);

      if ( ! SCIPisZero(scip, val) )
      {
         SCIP_CALL( SCIPsetSolVal(scip, *point, var, val) );
      }
   }

   return SCIP_OKAY;
}
Ejemplo n.º 4
0
/** execution method of objective change event handler */
static
SCIP_DECL_EVENTEXEC(eventExecIntobj)
{  /*lint --e{715}*/
   SCIP_EVENTHDLRDATA* eventhdlrdata;
   SCIP_SEPADATA* sepadata;
   SCIP_VAR* var;
   SCIP_Real objdelta;

   eventhdlrdata = SCIPeventhdlrGetData(eventhdlr);
   sepadata = (SCIP_SEPADATA*)eventhdlrdata;
   assert(sepadata != NULL);

   /* we don't have anything to do, if the objective value inequality doesn't yet exist */
   if( sepadata->objrow == NULL )
      return SCIP_OKAY;

   var = SCIPeventGetVar(event);

   switch( SCIPeventGetType(event) )
   {
   case SCIP_EVENTTYPE_VARADDED:
      SCIPdebugMessage("variable <%s> with obj=%g was added to the problem\n", SCIPvarGetName(var), SCIPvarGetObj(var));
      objdelta = SCIPvarGetObj(var);
      if( !SCIPisZero(scip, objdelta) )
      {
         SCIP_CALL( SCIPaddVarToRow(scip, sepadata->objrow, var, SCIPvarGetObj(var)) );
      }
      break;

   case SCIP_EVENTTYPE_OBJCHANGED:
      SCIPdebugMessage("variable <%s> changed objective value from %g to %g\n", 
         SCIPvarGetName(var), SCIPeventGetOldobj(event), SCIPeventGetNewobj(event));
      objdelta = SCIPeventGetNewobj(event) - SCIPeventGetOldobj(event);
      SCIP_CALL( SCIPaddVarToRow(scip, sepadata->objrow, var, objdelta) );
      break;

   default:
      SCIPerrorMessage("invalid event type %x\n", SCIPeventGetType(event));
      return SCIP_INVALIDDATA;
   }

   return SCIP_OKAY;
}
Ejemplo n.º 5
0
/** perform dual presolving */
static
SCIP_RETCODE performDualfix(
   SCIP*                 scip,               /**< SCIP data structure */
   int*                  nfixedvars,         /**< pointer to store number of fixed variables */
   SCIP_Bool*            unbounded,          /**< pointer to store if an unboundness was detected */
   SCIP_Bool*            cutoff              /**< pointer to store if a cutoff was detected */
   )
{
   SCIP_VAR** vars;
   int nvars;
   int v;

   /* get active problem variables */
   vars = SCIPgetVars(scip);
   nvars = SCIPgetNVars(scip);

   /* look for fixable variables
    * loop backwards, since a variable fixing can change the current and the subsequent slots in the vars array
    */
   for( v = nvars - 1; v >= 0; --v )
   {
      SCIP_VAR* var;
      SCIP_Real bound;
      SCIP_Real obj;
      SCIP_Bool infeasible;
      SCIP_Bool fixed;

      var = vars[v];
      assert(var != NULL);

      /* don't perform dual presolving operations on deleted variables */
      if( SCIPvarIsDeleted(var) )
         continue;

      /* ignore already fixed variables (use feasibility tolerance since this is used in SCIPfixVar() */
      if( SCIPisFeasEQ(scip, SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var)) )
         continue;

      obj = SCIPvarGetObj(var);

      /* if the objective coefficient of the variable is 0 and it may be rounded both
       * up and down, then fix it to the closest feasible value to 0 */
      if( SCIPisZero(scip, obj) && SCIPvarMayRoundDown(var) && SCIPvarMayRoundUp(var) )
      {
         SCIP_Real roundbound;

         bound = SCIPvarGetLbGlobal(var);
         if( SCIPisLT(scip, bound, 0.0) )
         {
            if( SCIPisLE(scip, 0.0, SCIPvarGetUbGlobal(var)) )
               bound = 0.0;
            else
            {
               /* try to take an integer value, only for polishing */
               roundbound = SCIPfloor(scip, SCIPvarGetUbGlobal(var));

               if( roundbound < bound )
                  bound = SCIPvarGetUbGlobal(var);
               else
                  bound = roundbound;
            }
         }
         else
         {
            /* try to take an integer value, only for polishing */
            roundbound = SCIPceil(scip, bound);

            if( roundbound < SCIPvarGetUbGlobal(var) )
               bound = roundbound;
         }
         SCIPdebugMessage("fixing variable <%s> with objective 0 to %g\n", SCIPvarGetName(var), bound);
      }
      else
      {
         /* if it is always possible to round variable in direction of objective value, fix it to its proper bound */
         if( SCIPvarMayRoundDown(var) && !SCIPisNegative(scip, obj) )
         {
            bound = SCIPvarGetLbGlobal(var);
            if ( SCIPisInfinity(scip, -bound) )
            {
               /* variable can be fixed to -infinity */
               if ( SCIPgetStage(scip) > SCIP_STAGE_PRESOLVING )
               {
                  /* Fixing variables to infinity is not allowed after presolving, since LP-solvers cannot handle this
                   * consistently. We thus have to ignore this (should better be handled in presolving). */
                  continue;
               }
               if ( SCIPisZero(scip, obj) && SCIPvarGetNLocksUp(var) == 1 )
               {
                  /* Variable is only contained in one constraint: we hope that the corresponding constraint handler is
                   * clever enough to set/aggregate the variable to something more useful than -infinity and do nothing
                   * here. */
                  continue;
               }
            }
            SCIPdebugMessage("fixing variable <%s> with objective %g and %d uplocks to lower bound %g\n",
               SCIPvarGetName(var), SCIPvarGetObj(var), SCIPvarGetNLocksUp(var), bound);
         }
         else if( SCIPvarMayRoundUp(var) && !SCIPisPositive(scip, obj) )
         {
            bound = SCIPvarGetUbGlobal(var);
            if ( SCIPisInfinity(scip, bound) )
            {
               /* variable can be fixed to infinity */
               if ( SCIPgetStage(scip) > SCIP_STAGE_PRESOLVING )
               {
                  /* Fixing variables to infinity is not allowed after presolving, since LP-solvers cannot handle this
                   * consistently. We thus have to ignore this (should better be handled in presolving). */
                  continue;
               }
               if ( SCIPisZero(scip, obj) && SCIPvarGetNLocksDown(var) == 1 )
               {
                  /* Variable is only contained in one constraint: we hope that the corresponding constraint handler is
                   * clever enough to set/aggregate the variable to something more useful than +infinity and do nothing
                   * here */
                  continue;
               }
            }
            SCIPdebugMessage("fixing variable <%s> with objective %g and %d downlocks to upper bound %g\n",
               SCIPvarGetName(var), SCIPvarGetObj(var), SCIPvarGetNLocksDown(var), bound);
         }
         else
            continue;
      }

      if( SCIPisInfinity(scip, REALABS(bound)) && !SCIPisZero(scip, obj) )
      {
         SCIPdebugMessage(" -> unbounded fixing\n");
         SCIPverbMessage(scip, SCIP_VERBLEVEL_NORMAL, NULL,
            "problem infeasible or unbounded: variable <%s> with objective %.15g can be made infinitely %s\n",
            SCIPvarGetName(var), SCIPvarGetObj(var), bound < 0.0 ? "small" : "large");
         *unbounded = TRUE;
         return SCIP_OKAY;
      }

      /* apply the fixing */
      SCIPdebugMessage("apply fixing of variable %s to %g\n", SCIPvarGetName(var), bound);
      SCIP_CALL( SCIPfixVar(scip, var, bound, &infeasible, &fixed) );

      if( infeasible )
      {
         SCIPdebugMessage(" -> infeasible fixing\n");
         *cutoff = TRUE;
         return SCIP_OKAY;
      }

      assert(fixed || (SCIPgetStage(scip) == SCIP_STAGE_SOLVING && SCIPisFeasEQ(scip, bound, SCIPvarGetLbLocal(var))
            && SCIPisFeasEQ(scip, bound, SCIPvarGetUbLocal(var))));
      (*nfixedvars)++;
   }

   return SCIP_OKAY;
}
Ejemplo n.º 6
0
/** execution method of primal heuristic */
static
SCIP_DECL_HEUREXEC(heurExecIntdiving) /*lint --e{715}*/
{  /*lint --e{715}*/
   SCIP_HEURDATA* heurdata;
   SCIP_LPSOLSTAT lpsolstat;
   SCIP_VAR** pseudocands;
   SCIP_VAR** fixcands;
   SCIP_Real* fixcandscores;
   SCIP_Real searchubbound;
   SCIP_Real searchavgbound;
   SCIP_Real searchbound;
   SCIP_Real objval;
   SCIP_Bool lperror;
   SCIP_Bool cutoff;
   SCIP_Bool backtracked;
   SCIP_Longint ncalls;
   SCIP_Longint nsolsfound;
   SCIP_Longint nlpiterations;
   SCIP_Longint maxnlpiterations;
   int nfixcands;
   int nbinfixcands;
   int depth;
   int maxdepth;
   int maxdivedepth;
   int divedepth;
   int nextcand;
   int c;

   assert(heur != NULL);
   assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0);
   assert(scip != NULL);
   assert(result != NULL);
   assert(SCIPhasCurrentNodeLP(scip));

   *result = SCIP_DELAYED;

   /* do not call heuristic of node was already detected to be infeasible */
   if( nodeinfeasible )
      return SCIP_OKAY;

   /* only call heuristic, if an optimal LP solution is at hand */
   if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL )
      return SCIP_OKAY;

   /* only call heuristic, if the LP objective value is smaller than the cutoff bound */
   if( SCIPisGE(scip, SCIPgetLPObjval(scip), SCIPgetCutoffbound(scip)) )
      return SCIP_OKAY;

   /* only call heuristic, if the LP solution is basic (which allows fast resolve in diving) */
   if( !SCIPisLPSolBasic(scip) )
      return SCIP_OKAY;

   /* don't dive two times at the same node */
   if( SCIPgetLastDivenode(scip) == SCIPgetNNodes(scip) && SCIPgetDepth(scip) > 0 )
      return SCIP_OKAY;

   *result = SCIP_DIDNOTRUN;

   /* get heuristic's data */
   heurdata = SCIPheurGetData(heur);
   assert(heurdata != NULL);

   /* only try to dive, if we are in the correct part of the tree, given by minreldepth and maxreldepth */
   depth = SCIPgetDepth(scip);
   maxdepth = SCIPgetMaxDepth(scip);
   maxdepth = MAX(maxdepth, 100);
   if( depth < heurdata->minreldepth*maxdepth || depth > heurdata->maxreldepth*maxdepth )
      return SCIP_OKAY;

   /* calculate the maximal number of LP iterations until heuristic is aborted */
   nlpiterations = SCIPgetNNodeLPIterations(scip);
   ncalls = SCIPheurGetNCalls(heur);
   nsolsfound = 10*SCIPheurGetNBestSolsFound(heur) + heurdata->nsuccess;
   maxnlpiterations = (SCIP_Longint)((1.0 + 10.0*(nsolsfound+1.0)/(ncalls+1.0)) * heurdata->maxlpiterquot * nlpiterations);
   maxnlpiterations += heurdata->maxlpiterofs;

   /* don't try to dive, if we took too many LP iterations during diving */
   if( heurdata->nlpiterations >= maxnlpiterations )
      return SCIP_OKAY;

   /* allow at least a certain number of LP iterations in this dive */
   maxnlpiterations = MAX(maxnlpiterations, heurdata->nlpiterations + MINLPITER);

   /* get unfixed integer variables */
   SCIP_CALL( SCIPgetPseudoBranchCands(scip, &pseudocands, &nfixcands, NULL) );

   /* don't try to dive, if there are no fractional variables */
   if( nfixcands == 0 )
      return SCIP_OKAY;

   /* calculate the objective search bound */
   if( SCIPgetNSolsFound(scip) == 0 )
   {
      if( heurdata->maxdiveubquotnosol > 0.0 )
         searchubbound = SCIPgetLowerbound(scip)
            + heurdata->maxdiveubquotnosol * (SCIPgetCutoffbound(scip) - SCIPgetLowerbound(scip));
      else
         searchubbound = SCIPinfinity(scip);
      if( heurdata->maxdiveavgquotnosol > 0.0 )
         searchavgbound = SCIPgetLowerbound(scip)
            + heurdata->maxdiveavgquotnosol * (SCIPgetAvgLowerbound(scip) - SCIPgetLowerbound(scip));
      else
         searchavgbound = SCIPinfinity(scip);
   }
   else
   {
      if( heurdata->maxdiveubquot > 0.0 )
         searchubbound = SCIPgetLowerbound(scip)
            + heurdata->maxdiveubquot * (SCIPgetCutoffbound(scip) - SCIPgetLowerbound(scip));
      else
         searchubbound = SCIPinfinity(scip);
      if( heurdata->maxdiveavgquot > 0.0 )
         searchavgbound = SCIPgetLowerbound(scip)
            + heurdata->maxdiveavgquot * (SCIPgetAvgLowerbound(scip) - SCIPgetLowerbound(scip));
      else
         searchavgbound = SCIPinfinity(scip);
   }
   searchbound = MIN(searchubbound, searchavgbound);
   if( SCIPisObjIntegral(scip) )
      searchbound = SCIPceil(scip, searchbound);

   /* calculate the maximal diving depth: 10 * min{number of integer variables, max depth} */
   maxdivedepth = SCIPgetNBinVars(scip) + SCIPgetNIntVars(scip);
   maxdivedepth = MIN(maxdivedepth, maxdepth);
   maxdivedepth *= 10;

   *result = SCIP_DIDNOTFIND;

   /* start diving */
   SCIP_CALL( SCIPstartProbing(scip) );

   /* enables collection of variable statistics during probing */
   SCIPenableVarHistory(scip);

   SCIPdebugMessage("(node %" SCIP_LONGINT_FORMAT ") executing intdiving heuristic: depth=%d, %d non-fixed, dualbound=%g, searchbound=%g\n",
      SCIPgetNNodes(scip), SCIPgetDepth(scip), nfixcands, SCIPgetDualbound(scip), SCIPretransformObj(scip, searchbound));

   /* copy the pseudo candidates into own array, because we want to reorder them */
   SCIP_CALL( SCIPduplicateBufferArray(scip, &fixcands, pseudocands, nfixcands) );

   /* sort non-fixed variables by non-increasing inference score, but prefer binaries over integers in any case */
   SCIP_CALL( SCIPallocBufferArray(scip, &fixcandscores, nfixcands) );
   nbinfixcands = 0;
   for( c = 0; c < nfixcands; ++c )
   {
      SCIP_VAR* var;
      SCIP_Real score;
      int colveclen;
      int left;
      int right;
      int i;

      assert(c >= nbinfixcands);
      var = fixcands[c];
      assert(SCIPvarIsIntegral(var));
      colveclen = (SCIPvarGetStatus(var) == SCIP_VARSTATUS_COLUMN ? SCIPcolGetNNonz(SCIPvarGetCol(var)) : 0);
      if( SCIPvarIsBinary(var) )
      {
         score = 500.0 * SCIPvarGetNCliques(var, TRUE) + 100.0 * SCIPvarGetNImpls(var, TRUE)
            + SCIPgetVarAvgInferenceScore(scip, var) + (SCIP_Real)colveclen/100.0;

         /* shift the non-binary variables one slot to the right */
         for( i = c; i > nbinfixcands; --i )
         {
            fixcands[i] = fixcands[i-1];
            fixcandscores[i] = fixcandscores[i-1];
         }
         /* put the new candidate into the first nbinfixcands slot */
         left = 0;
         right = nbinfixcands;
         nbinfixcands++;
      }
      else
      {
         score = 5.0 * (SCIPvarGetNCliques(var, FALSE) + SCIPvarGetNCliques(var, TRUE))
            + SCIPvarGetNImpls(var, FALSE) + SCIPvarGetNImpls(var, TRUE) + SCIPgetVarAvgInferenceScore(scip, var)
            + (SCIP_Real)colveclen/10000.0;

         /* put the new candidate in the slots after the binary candidates */
         left = nbinfixcands;
         right = c;
      }
      for( i = right; i > left && score > fixcandscores[i-1]; --i )
      {
         fixcands[i] = fixcands[i-1];
         fixcandscores[i] = fixcandscores[i-1];
      }
      fixcands[i] = var;
      fixcandscores[i] = score;
      SCIPdebugMessage("  <%s>: ncliques=%d/%d, nimpls=%d/%d, inferencescore=%g, colveclen=%d  ->  score=%g\n",
         SCIPvarGetName(var), SCIPvarGetNCliques(var, FALSE), SCIPvarGetNCliques(var, TRUE),
         SCIPvarGetNImpls(var, FALSE), SCIPvarGetNImpls(var, TRUE), SCIPgetVarAvgInferenceScore(scip, var),
         colveclen, score);
   }
   SCIPfreeBufferArray(scip, &fixcandscores);

   /* get LP objective value */
   lpsolstat = SCIP_LPSOLSTAT_OPTIMAL;
   objval = SCIPgetLPObjval(scip);

   /* dive as long we are in the given objective, depth and iteration limits, but if possible, we dive at least with
    * the depth 10
    */
   lperror = FALSE;
   cutoff = FALSE;
   divedepth = 0;
   nextcand = 0;
   while( !lperror && !cutoff && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL
      && (divedepth < 10
         || (divedepth < maxdivedepth && heurdata->nlpiterations < maxnlpiterations && objval < searchbound))
      && !SCIPisStopped(scip) )
   {
      SCIP_VAR* var;
      SCIP_Real bestsolval;
      SCIP_Real bestfixval;
      int bestcand;
      SCIP_Longint nnewlpiterations;
      SCIP_Longint nnewdomreds;

      /* open a new probing node if this will not exceed the maximal tree depth, otherwise stop here */
      if( SCIPgetDepth(scip) < SCIPgetDepthLimit(scip) )
      {
         SCIP_CALL( SCIPnewProbingNode(scip) );
         divedepth++;
      }
      else
         break;

      nnewlpiterations = 0;
      nnewdomreds = 0;

      /* fix binary variable that is closest to 1 in the LP solution to 1;
       * if all binary variables are fixed, fix integer variable with least fractionality in LP solution
       */
      bestcand = -1;
      bestsolval = -1.0;
      bestfixval = 1.0;

      /* look in the binary variables for fixing candidates */
      for( c = nextcand; c < nbinfixcands; ++c )
      {
         SCIP_Real solval;

         var = fixcands[c];

         /* ignore already fixed variables */
         if( var == NULL )
            continue;
         if( SCIPvarGetLbLocal(var) > 0.5 || SCIPvarGetUbLocal(var) < 0.5 )
         {
            fixcands[c] = NULL;
            continue;
         }

         /* get the LP solution value */
         solval = SCIPvarGetLPSol(var);

         if( solval > bestsolval )
         {
            bestcand = c;
            bestfixval = 1.0;
            bestsolval = solval;
            if( SCIPisGE(scip, bestsolval, 1.0) )
            {
               /* we found an unfixed binary variable with LP solution value of 1.0 - there cannot be a better candidate */
               break;
            }
            else if( SCIPisLE(scip, bestsolval, 0.0) )
            {
               /* the variable is currently at 0.0 - this is the only situation where we want to fix it to 0.0 */
               bestfixval = 0.0;
            }
         }
      }

      /* if all binary variables are fixed, look in the integer variables for a fixing candidate */
      if( bestcand == -1 )
      {
         SCIP_Real bestfrac;

         bestfrac = SCIP_INVALID;
         for( c = MAX(nextcand, nbinfixcands); c < nfixcands; ++c )
         {
            SCIP_Real solval;
            SCIP_Real frac;

            var = fixcands[c];

            /* ignore already fixed variables */
            if( var == NULL )
               continue;
            if( SCIPvarGetUbLocal(var) - SCIPvarGetLbLocal(var) < 0.5 )
            {
               fixcands[c] = NULL;
               continue;
            }

            /* get the LP solution value */
            solval = SCIPvarGetLPSol(var);
            frac = SCIPfrac(scip, solval);

            /* ignore integer variables that are currently integral */
            if( SCIPisFeasFracIntegral(scip, frac) )
               continue;

            if( frac < bestfrac )
            {
               bestcand = c;
               bestsolval = solval;
               bestfrac = frac;
               bestfixval = SCIPfloor(scip, bestsolval + 0.5);
               if( SCIPisZero(scip, bestfrac) )
               {
                  /* we found an unfixed integer variable with integral LP solution value */
                  break;
               }
            }
         }
      }
      assert(-1 <= bestcand && bestcand < nfixcands);

      /* if there is no unfixed candidate left, we are done */
      if( bestcand == -1 )
         break;

      var = fixcands[bestcand];
      assert(var != NULL);
      assert(SCIPvarIsIntegral(var));
      assert(SCIPvarGetUbLocal(var) - SCIPvarGetLbLocal(var) > 0.5);
      assert(SCIPisGE(scip, bestfixval, SCIPvarGetLbLocal(var)));
      assert(SCIPisLE(scip, bestfixval, SCIPvarGetUbLocal(var)));

      backtracked = FALSE;
      do
      {
         /* if the variable is already fixed or if the solution value is outside the domain, numerical troubles may have
          * occured or variable was fixed by propagation while backtracking => Abort diving!
          */
         if( SCIPvarGetLbLocal(var) >= SCIPvarGetUbLocal(var) - 0.5 )
         {
            SCIPdebugMessage("Selected variable <%s> already fixed to [%g,%g], diving aborted \n",
               SCIPvarGetName(var), SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var));
            cutoff = TRUE;
            break;
         }
         if( SCIPisFeasLT(scip, bestfixval, SCIPvarGetLbLocal(var)) || SCIPisFeasGT(scip, bestfixval, SCIPvarGetUbLocal(var)) )
         {
            SCIPdebugMessage("selected variable's <%s> solution value is outside the domain [%g,%g] (solval: %.9f), diving aborted\n",
               SCIPvarGetName(var), SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var), bestfixval);
            assert(backtracked);
            break;
         }

         /* apply fixing of best candidate */
         SCIPdebugMessage("  dive %d/%d, LP iter %" SCIP_LONGINT_FORMAT "/%" SCIP_LONGINT_FORMAT ", %d unfixed: var <%s>, sol=%g, oldbounds=[%g,%g], fixed to %g\n",
            divedepth, maxdivedepth, heurdata->nlpiterations, maxnlpiterations, SCIPgetNPseudoBranchCands(scip),
            SCIPvarGetName(var), bestsolval, SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var), bestfixval);
         SCIP_CALL( SCIPfixVarProbing(scip, var, bestfixval) );

         /* apply domain propagation */
         SCIP_CALL( SCIPpropagateProbing(scip, 0, &cutoff, &nnewdomreds) );
         if( !cutoff )
         {
            /* if the best candidate was just fixed to its LP value and no domain reduction was found, the LP solution
             * stays valid, and the LP does not need to be resolved
             */
            if( nnewdomreds > 0 || !SCIPisEQ(scip, bestsolval, bestfixval) )
            {
            /* resolve the diving LP */
               /* Errors in the LP solver should not kill the overall solving process, if the LP is just needed for a heuristic.
                * Hence in optimized mode, the return code is caught and a warning is printed, only in debug mode, SCIP will stop.
                */
#ifdef NDEBUG
               SCIP_RETCODE retstat;
               nlpiterations = SCIPgetNLPIterations(scip);
               retstat = SCIPsolveProbingLP(scip, MAX((int)(maxnlpiterations - heurdata->nlpiterations), MINLPITER), &lperror, &cutoff);
               if( retstat != SCIP_OKAY )
               {
                  SCIPwarningMessage(scip, "Error while solving LP in Intdiving heuristic; LP solve terminated with code <%d>\n",retstat);
               }
#else
               nlpiterations = SCIPgetNLPIterations(scip);
               SCIP_CALL( SCIPsolveProbingLP(scip, MAX((int)(maxnlpiterations - heurdata->nlpiterations), MINLPITER), &lperror, &cutoff) );
#endif

               if( lperror )
                  break;

               /* update iteration count */
               nnewlpiterations = SCIPgetNLPIterations(scip) - nlpiterations;
               heurdata->nlpiterations += nnewlpiterations;

               /* get LP solution status */
               lpsolstat = SCIPgetLPSolstat(scip);
               assert(cutoff || (lpsolstat != SCIP_LPSOLSTAT_OBJLIMIT && lpsolstat != SCIP_LPSOLSTAT_INFEASIBLE &&
                     (lpsolstat != SCIP_LPSOLSTAT_OPTIMAL || SCIPisLT(scip, SCIPgetLPObjval(scip), SCIPgetCutoffbound(scip)))));
            }
         }

         /* perform backtracking if a cutoff was detected */
         if( cutoff && !backtracked && heurdata->backtrack )
         {
            SCIPdebugMessage("  *** cutoff detected at level %d - backtracking\n", SCIPgetProbingDepth(scip));
            SCIP_CALL( SCIPbacktrackProbing(scip, SCIPgetProbingDepth(scip)-1) );

            /* after backtracking there has to be at least one open node without exceeding the maximal tree depth */
            assert(SCIPgetDepthLimit(scip) > SCIPgetDepth(scip));

            SCIP_CALL( SCIPnewProbingNode(scip) );

            bestfixval = SCIPvarIsBinary(var)
               ? 1.0 - bestfixval
               : (SCIPisGT(scip, bestsolval, bestfixval) && SCIPisFeasLE(scip, bestfixval + 1, SCIPvarGetUbLocal(var)) ? bestfixval + 1 : bestfixval - 1);

            backtracked = TRUE;
         }
         else
            backtracked = FALSE;
      }
      while( backtracked );

      if( !lperror && !cutoff && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL )
      {
         SCIP_Bool success;

         /* get new objective value */
         objval = SCIPgetLPObjval(scip);

         if( nnewlpiterations > 0 || !SCIPisEQ(scip, bestsolval, bestfixval) )
         {
            /* we must start again with the first candidate, since the LP solution changed */
            nextcand = 0;

            /* create solution from diving LP and try to round it */
            SCIP_CALL( SCIPlinkLPSol(scip, heurdata->sol) );
            SCIP_CALL( SCIProundSol(scip, heurdata->sol, &success) );
            if( success )
            {
               SCIPdebugMessage("intdiving found roundable primal solution: obj=%g\n",
                  SCIPgetSolOrigObj(scip, heurdata->sol));

               /* try to add solution to SCIP */
               SCIP_CALL( SCIPtrySol(scip, heurdata->sol, FALSE, FALSE, FALSE, FALSE, &success) );

               /* check, if solution was feasible and good enough */
               if( success )
               {
                  SCIPdebugMessage(" -> solution was feasible and good enough\n");
                  *result = SCIP_FOUNDSOL;
               }
            }
         }
         else
            nextcand = bestcand+1; /* continue with the next candidate in the following loop */
      }
      SCIPdebugMessage("   -> lpsolstat=%d, objval=%g/%g\n", lpsolstat, objval, searchbound);
   }

   /* free temporary memory */
   SCIPfreeBufferArray(scip, &fixcands);

   /* end diving */
   SCIP_CALL( SCIPendProbing(scip) );

   if( *result == SCIP_FOUNDSOL )
      heurdata->nsuccess++;

   SCIPdebugMessage("intdiving heuristic finished\n");

   return SCIP_OKAY;
}
Ejemplo n.º 7
0
/** creates the objective value inequality and the objective value variable, if not yet existing */
static
SCIP_RETCODE createObjRow(
   SCIP*                 scip,               /**< SCIP data structure */
   SCIP_SEPA*            sepa,               /**< separator */
   SCIP_SEPADATA*        sepadata            /**< separator data */
   )
{
   assert(sepadata != NULL);

   if( sepadata->objrow == NULL )
   {
      SCIP_VAR** vars;
      SCIP_Real obj;
      SCIP_Real intobjval;
      int nvars;
      int v;
      SCIP_Bool attendobjvarbound;

      attendobjvarbound = FALSE;
      /* create and add objective value variable */
      if( sepadata->objvar == NULL )
      {
         SCIP_CALL( SCIPcreateVar(scip, &sepadata->objvar, "objvar", -SCIPinfinity(scip), SCIPinfinity(scip), 0.0,
               SCIP_VARTYPE_IMPLINT, FALSE, TRUE, NULL, NULL, NULL, NULL, NULL) );
         SCIP_CALL( SCIPaddVar(scip, sepadata->objvar) );
         SCIP_CALL( SCIPaddVarLocks(scip, sepadata->objvar, +1, +1) );
      }
      else
         attendobjvarbound = TRUE;

      /* get problem variables */
      vars = SCIPgetOrigVars(scip);
      nvars = SCIPgetNOrigVars(scip);

      /* create objective value inequality */
      if( SCIPgetObjsense(scip) == SCIP_OBJSENSE_MINIMIZE )
      {
         if( attendobjvarbound )
            intobjval = SCIPceil(scip, SCIPgetDualbound(scip)) - SCIPvarGetLbGlobal(sepadata->objvar);
         else
            intobjval = SCIPceil(scip, SCIPgetDualbound(scip));
         SCIP_CALL( SCIPcreateEmptyRowSepa(scip, &sepadata->objrow, sepa, "objrow", intobjval, SCIPinfinity(scip),
               FALSE, !SCIPallVarsInProb(scip), TRUE) );
         sepadata->setoff = intobjval;
      }
      else
      {
         if( attendobjvarbound )
            intobjval = SCIPceil(scip, SCIPgetDualbound(scip)) - SCIPvarGetUbGlobal(sepadata->objvar);
         else
            intobjval = SCIPfloor(scip, SCIPgetDualbound(scip));
         SCIP_CALL( SCIPcreateEmptyRowSepa(scip, &sepadata->objrow, sepa, "objrow", -SCIPinfinity(scip), intobjval,
               FALSE, !SCIPallVarsInProb(scip), TRUE) );
         sepadata->setoff = intobjval;
      }

      SCIP_CALL( SCIPcacheRowExtensions(scip, sepadata->objrow) );
      for( v = 0; v < nvars; ++v )
      {
         obj = SCIPvarGetObj(vars[v]);
         if( !SCIPisZero(scip, obj) )
         {
            SCIP_CALL( SCIPaddVarToRow(scip, sepadata->objrow, vars[v], obj) );
         }
      }
      SCIP_CALL( SCIPaddVarToRow(scip, sepadata->objrow, sepadata->objvar, -1.0) );
      SCIP_CALL( SCIPflushRowExtensions(scip, sepadata->objrow) );

      SCIPdebugMessage("created objective value row: ");
      SCIPdebug( SCIP_CALL( SCIPprintRow(scip, sepadata->objrow, NULL) ) );
   }

   return SCIP_OKAY;
}
Ejemplo n.º 8
0
/** execution method of presolver */
static
SCIP_DECL_PRESOLEXEC(presolExecDualfix)
{  /*lint --e{715}*/
   SCIP_VAR** vars;
   SCIP_Real bound;
   SCIP_Real roundbound;
   SCIP_Real obj;
   SCIP_Bool infeasible;
   SCIP_Bool fixed;
   int nvars;
   int v;

   assert(presol != NULL);
   assert(strcmp(SCIPpresolGetName(presol), PRESOL_NAME) == 0);
   assert(result != NULL);

   *result = SCIP_DIDNOTFIND;

   /* get active problem variables */
   vars = SCIPgetVars(scip);
   nvars = SCIPgetNVars(scip);

   /* look for fixable variables
    * loop backwards, since a variable fixing can change the current and the subsequent slots in the vars array
    */
   for( v = nvars - 1; v >= 0; --v )
   {
      /* don't perform dual presolving operations on deleted variables */
      if( SCIPvarIsDeleted(vars[v]) )
         continue;

      obj = SCIPvarGetObj(vars[v]);

      /* if the objective coefficient of the variable is 0 and it may be rounded both
       * up and down, then fix it to the closest feasible value to 0 */
      if( SCIPisZero(scip, obj) && SCIPvarMayRoundDown(vars[v]) && SCIPvarMayRoundUp(vars[v]) )
      {
         bound = SCIPvarGetLbGlobal(vars[v]);
         if( SCIPisLT(scip, bound, 0.0) )
         {
            if( SCIPisLE(scip, 0.0, SCIPvarGetUbGlobal(vars[v])) )
               bound = 0.0;
            else
            {
               /* try to take an integer value, only for polishing */
               roundbound = SCIPfloor(scip, SCIPvarGetUbGlobal(vars[v]));
               
               if( roundbound < bound )
                  bound = SCIPvarGetUbGlobal(vars[v]);
               else
                  bound = roundbound;
            }
         }
         else
         {
            /* try to take an integer value, only for polishing */
            roundbound = SCIPceil(scip, bound);

            if( roundbound < SCIPvarGetUbGlobal(vars[v]) )
               bound = roundbound;
         }
         SCIPdebugMessage("variable <%s> with objective 0 fixed to %g\n",
            SCIPvarGetName(vars[v]), bound);
      }
      else
      {
         /* if it is always possible to round variable in direction of objective value,
          * fix it to its proper bound
          */
         if( SCIPvarMayRoundDown(vars[v]) && !SCIPisNegative(scip, obj) )
         {
            bound = SCIPvarGetLbGlobal(vars[v]);
            if( SCIPisZero(scip, obj) && SCIPvarGetNLocksUp(vars[v]) == 1 && SCIPisInfinity(scip, -bound) )
            {
               /* variable can be set to -infinity, and it is only contained in one constraint:
                * we hope that the corresponding constraint handler is clever enough to set/aggregate the variable
                * to something more useful than -infinity and do nothing here
                */
               continue;
            }
            SCIPdebugMessage("variable <%s> with objective %g and %d uplocks fixed to lower bound %g\n",
               SCIPvarGetName(vars[v]), SCIPvarGetObj(vars[v]), SCIPvarGetNLocksUp(vars[v]), bound);
         }
         else if( SCIPvarMayRoundUp(vars[v]) && !SCIPisPositive(scip, obj) )
         {
            bound = SCIPvarGetUbGlobal(vars[v]);
            if( SCIPisZero(scip, obj) && SCIPvarGetNLocksDown(vars[v]) == 1 && SCIPisInfinity(scip, bound) )
            {
               /* variable can be set to +infinity, and it is only contained in one constraint:
                * we hope that the corresponding constraint handler is clever enough to set/aggregate the variable
                * to something more useful than +infinity and do nothing here
                */
               continue;
            }
            SCIPdebugMessage("variable <%s> with objective %g and %d downlocks fixed to upper bound %g\n",
               SCIPvarGetName(vars[v]), SCIPvarGetObj(vars[v]), SCIPvarGetNLocksDown(vars[v]), bound);
         }
         else
            continue;
      }

      /* apply the fixing */
      if( SCIPisInfinity(scip, REALABS(bound)) && !SCIPisZero(scip, obj) )
      {
         SCIPdebugMessage(" -> unbounded fixing\n");
         SCIPverbMessage(scip, SCIP_VERBLEVEL_NORMAL, NULL,
            "problem infeasible or unbounded: variable <%s> with objective %.15g can be made infinitely %s\n",
            SCIPvarGetName(vars[v]), SCIPvarGetObj(vars[v]), bound < 0.0 ? "small" : "large");
         *result = SCIP_UNBOUNDED;
         return SCIP_OKAY;
      }
      SCIP_CALL( SCIPfixVar(scip, vars[v], bound, &infeasible, &fixed) );
      if( infeasible )
      {
         SCIPdebugMessage(" -> infeasible fixing\n");
         *result = SCIP_CUTOFF;
         return SCIP_OKAY;
      }
      assert(fixed);
      (*nfixedvars)++;
      *result = SCIP_SUCCESS;
   }

   return SCIP_OKAY;
}
Ejemplo n.º 9
0
/** transforms given solution of the master problem into solution of the original problem
 *  @todo think about types of epsilons used in this method
 */
SCIP_RETCODE GCGrelaxTransformMastersolToOrigsol(
   SCIP*                 scip,               /**< SCIP data structure */
   SCIP_SOL*             mastersol,          /**< solution of the master problem, or NULL for current LP solution */
   SCIP_SOL**            origsol             /**< pointer to store the new created original problem's solution */
   )
{
   SCIP* masterprob;
   int npricingprobs;
   int* blocknrs;
   SCIP_Real* blockvalue;
   SCIP_Real increaseval;
   SCIP_VAR** mastervars;
   SCIP_Real* mastervals;
   int nmastervars;
   SCIP_VAR** vars;
   int nvars;
   SCIP_Real feastol;
   int i;
   int j;

   assert(scip != NULL);
   assert(origsol != NULL);

   masterprob = GCGrelaxGetMasterprob(scip);
   npricingprobs = GCGrelaxGetNPricingprobs(scip);

   assert( !SCIPisInfinity(scip, SCIPgetSolOrigObj(masterprob, mastersol)) );
   
   SCIP_CALL( SCIPcreateSol(scip, origsol, GCGrelaxGetProbingheur(scip)) );

   SCIP_CALL( SCIPallocBufferArray(scip, &blockvalue, npricingprobs) );
   SCIP_CALL( SCIPallocBufferArray(scip, &blocknrs, npricingprobs) );

   /* get variables of the master problem and their solution values */
   SCIP_CALL( SCIPgetVarsData(masterprob, &mastervars, &nmastervars, NULL, NULL, NULL, NULL) );
   assert(mastervars != NULL);
   assert(nmastervars >= 0);

   SCIP_CALL( SCIPallocBufferArray(scip, &mastervals, nmastervars) );
   SCIP_CALL( SCIPgetSolVals(masterprob, mastersol, nmastervars, mastervars, mastervals) );

   /* initialize the block values for the pricing problems */
   for( i = 0; i < npricingprobs; i++ )
   {
      blockvalue[i] = 0.0;
      blocknrs[i] = 0;
   }

   /* loop over all given master variables */
   for( i = 0; i < nmastervars; i++ )
   {
      SCIP_VAR** origvars;
      int norigvars;
      SCIP_Real* origvals;
      SCIP_Bool isray;
      int blocknr;

      origvars = GCGmasterVarGetOrigvars(mastervars[i]);
      norigvars = GCGmasterVarGetNOrigvars(mastervars[i]);
      origvals = GCGmasterVarGetOrigvals(mastervars[i]);
      blocknr = GCGvarGetBlock(mastervars[i]);
      isray = GCGmasterVarIsRay(mastervars[i]);

      assert(GCGvarIsMaster(mastervars[i]));
      assert(!SCIPisFeasNegative(scip, mastervals[i]));

      /** @todo handle infinite master solution values */
      assert(!SCIPisInfinity(scip, mastervals[i]));

      /* first of all, handle variables representing rays */
      if( isray )
      {
         assert(blocknr >= 0);
         /* we also want to take into account variables representing rays, that have a small value (between normal and feas eps),
          * so we do no feas comparison here */
         if( SCIPisPositive(scip, mastervals[i]) )
         {
            /* loop over all original variables contained in the current master variable */
            for( j = 0; j < norigvars; j++ )
            {
               if( SCIPisZero(scip, origvals[j]) )
                  break;

               assert(!SCIPisZero(scip, origvals[j]));

               /* the original variable is a linking variable: just transfer the solution value of the direct copy (this is done later) */
               if( GCGvarIsLinking(origvars[j]) )
                  continue;

               SCIPdebugMessage("Increasing value of %s by %f because of %s\n", SCIPvarGetName(origvars[j]), origvals[j] * mastervals[i], SCIPvarGetName(mastervars[i]));
               /* increase the corresponding value */
               SCIP_CALL( SCIPincSolVal(scip, *origsol, origvars[j], origvals[j] * mastervals[i]) );
            }
         }
         mastervals[i] = 0.0;
         continue;
      }

      /* handle the variables with value >= 1 to get integral values in original solution */
      while( SCIPisFeasGE(scip, mastervals[i], 1.0) )
      {
         /* variable was directly transferred to the master problem (only in linking conss or linking variable) */
         /** @todo this may be the wrong place for this case, handle it before the while loop
          * and remove the similar case in the next while loop */
         if( blocknr == -1 )
         {
            assert(norigvars == 1);
            assert(origvals[0] == 1.0);

            /* increase the corresponding value */
            SCIPdebugMessage("Increasing value of %s by %f because of %s\n", SCIPvarGetName(origvars[0]), origvals[0] * mastervals[i],  SCIPvarGetName(mastervars[i]));
            SCIP_CALL( SCIPincSolVal(scip, *origsol, origvars[0], origvals[0] * mastervals[i]) );
            mastervals[i] = 0.0;
         }
         else
         {
            assert(blocknr >= 0);
            /* loop over all original variables contained in the current master variable */
            for( j = 0; j < norigvars; j++ )
            {
               SCIP_VAR* pricingvar;
               int norigpricingvars;
               SCIP_VAR** origpricingvars;
               if( SCIPisZero(scip, origvals[j]) )
                  break;
               assert(!SCIPisZero(scip, origvals[j]));

               /* the original variable is a linking variable: just transfer the solution value of the direct copy (this is done above) */
               if( GCGvarIsLinking(origvars[j]) )
                  continue;

               pricingvar = GCGoriginalVarGetPricingVar(origvars[j]);
               assert(GCGvarIsPricing(pricingvar));

               norigpricingvars = GCGpricingVarGetNOrigvars(pricingvar);
               origpricingvars = GCGpricingVarGetOrigvars(pricingvar);

               /* just in case a variable has a value higher than the number of blocks, it represents */
               if( norigpricingvars <= blocknrs[blocknr] )
               {
                  SCIPdebugMessage("Increasing value of %s by %f because of %s\n", SCIPvarGetName(origpricingvars[norigpricingvars-1]), mastervals[i] * origvals[j], SCIPvarGetName(mastervars[i]));
                  /* increase the corresponding value */
                  SCIP_CALL( SCIPincSolVal(scip, *origsol, origpricingvars[norigpricingvars-1], mastervals[i] * origvals[j]) );
                  mastervals[i] = 1.0;
               }
               /* this should be default */
               else
               {
                  SCIPdebugMessage("Increasing value of %s by %f because of %s\n", SCIPvarGetName(origpricingvars[blocknrs[blocknr]]), origvals[j], SCIPvarGetName(mastervars[i]) );
                  /* increase the corresponding value */
                  SCIP_CALL( SCIPincSolVal(scip, *origsol, origpricingvars[blocknrs[blocknr]], origvals[j]) );
               }
            }
            mastervals[i] = mastervals[i] - 1.0;
            blocknrs[blocknr]++;
         }
      }
   }

   /* loop over all given master variables */
   for( i = 0; i < nmastervars; i++ )
   {
      SCIP_VAR** origvars;
      int norigvars;
      SCIP_Real* origvals;
      int blocknr;

      origvars = GCGmasterVarGetOrigvars(mastervars[i]);
      norigvars = GCGmasterVarGetNOrigvars(mastervars[i]);
      origvals = GCGmasterVarGetOrigvals(mastervars[i]);
      blocknr = GCGvarGetBlock(mastervars[i]);

      if( SCIPisFeasZero(scip, mastervals[i]) )
      {
         continue;
      }
      assert(SCIPisFeasGE(scip, mastervals[i], 0.0) && SCIPisFeasLT(scip, mastervals[i], 1.0));

      while( SCIPisFeasPositive(scip, mastervals[i]) )
      {
         assert(GCGvarIsMaster(mastervars[i]));
         assert(!GCGmasterVarIsRay(mastervars[i]));

         if( blocknr == -1 )
         {
            assert(norigvars == 1);
            assert(origvals[0] == 1.0);

            SCIPdebugMessage("Increasing value of %s by %f because of %s\n", SCIPvarGetName(origvars[0]), origvals[0] * mastervals[i], SCIPvarGetName(mastervars[i]) );
            /* increase the corresponding value */
            SCIP_CALL( SCIPincSolVal(scip, *origsol, origvars[0], origvals[0] * mastervals[i]) );
            mastervals[i] = 0.0;
         }
         else
         {
            increaseval = MIN(mastervals[i], 1.0 - blockvalue[blocknr]);
            /* loop over all original variables contained in the current master variable */
            for( j = 0; j < norigvars; j++ )
            {
               SCIP_VAR* pricingvar;
               int norigpricingvars;
               SCIP_VAR** origpricingvars;

               if( SCIPisZero(scip, origvals[j]) )
                  continue;

               /* the original variable is a linking variable: just transfer the solution value of the direct copy (this is done above) */
               if( GCGvarIsLinking(origvars[j]) )
                  continue;

               pricingvar = GCGoriginalVarGetPricingVar(origvars[j]);
               assert(GCGvarIsPricing(pricingvar));

               norigpricingvars = GCGpricingVarGetNOrigvars(pricingvar);
               origpricingvars = GCGpricingVarGetOrigvars(pricingvar);

               if( norigpricingvars <= blocknrs[blocknr] )
               {
                  increaseval = mastervals[i];

                  SCIPdebugMessage("Increasing value of %s by %f because of %s\n", SCIPvarGetName(origpricingvars[norigpricingvars-1]), origvals[j] * increaseval, SCIPvarGetName(mastervars[i]) );
                  /* increase the corresponding value */
                  SCIP_CALL( SCIPincSolVal(scip, *origsol, origpricingvars[norigpricingvars-1], origvals[j] * increaseval) );
               }
               else
               {
                  /* increase the corresponding value */
                  SCIPdebugMessage("Increasing value of %s by %f because of %s\n", SCIPvarGetName(origpricingvars[blocknrs[blocknr]]), origvals[j] * increaseval, SCIPvarGetName(mastervars[i]) );
                  SCIP_CALL( SCIPincSolVal(scip, *origsol, origpricingvars[blocknrs[blocknr]], origvals[j] * increaseval) );
               }
            }

            mastervals[i] = mastervals[i] - increaseval;
            if( SCIPisFeasZero(scip, mastervals[i]) )
            {
               mastervals[i] = 0.0;
            }
            blockvalue[blocknr] += increaseval;

            /* if the value assigned to the block is equal to 1, this block is full and we take the next block */
            if( SCIPisFeasGE(scip, blockvalue[blocknr], 1.0) )
            {
               blockvalue[blocknr] = 0.0;
               blocknrs[blocknr]++;
            }
         }
      }
   }

   SCIPfreeBufferArray(scip, &mastervals);
   SCIPfreeBufferArray(scip, &blocknrs);
   SCIPfreeBufferArray(scip, &blockvalue);

   /* if the solution violates one of its bounds by more than feastol
    * and less than 10*feastol, round it and print a warning
    */
   SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, NULL, NULL, NULL, NULL) );
   SCIP_CALL( SCIPgetRealParam(scip, "numerics/feastol", &feastol) );
   for( i = 0; i < nvars; ++i )
   {
      SCIP_Real solval;
      SCIP_Real lb;
      SCIP_Real ub;

      solval = SCIPgetSolVal(scip, *origsol, vars[i]);
      lb = SCIPvarGetLbLocal(vars[i]);
      ub = SCIPvarGetUbLocal(vars[i]);

      if( SCIPisFeasGT(scip, solval, ub) && EPSEQ(solval, ub, 10 * feastol) )
      {
         SCIP_CALL( SCIPsetSolVal(scip, *origsol, vars[i], ub) );
         SCIPwarningMessage(scip, "Variable %s rounded from %g to %g in relaxation solution\n",
            SCIPvarGetName(vars[i]), solval, ub);
      }
      else if( SCIPisFeasLT(scip, solval, lb) && EPSEQ(solval, lb, 10 * feastol) )
      {
         SCIP_CALL( SCIPsetSolVal(scip, *origsol, vars[i], lb) );
         SCIPwarningMessage(scip, "Variable %s rounded from %g to %g in relaxation solution\n",
            SCIPvarGetName(vars[i]), solval, lb);
      }
   }

   return SCIP_OKAY;
}
Ejemplo n.º 10
0
/** problem writing method of reader */
static
SCIP_DECL_READERWRITE(readerWriteCip)
{  /*lint --e{715}*/
   SCIP_HASHTABLE* varhash = NULL;
   SCIP_READERDATA* readerdata;
   int i;

   assert(reader != NULL);
   assert(strcmp(SCIPreaderGetName(reader), READER_NAME) == 0);

   SCIPinfoMessage(scip, file, "STATISTICS\n");
   SCIPinfoMessage(scip, file, "  Problem name     : %s\n", name);
   SCIPinfoMessage(scip, file, "  Variables        : %d (%d binary, %d integer, %d implicit integer, %d continuous)\n",
      nvars, nbinvars, nintvars, nimplvars, ncontvars);
   SCIPinfoMessage(scip, file, "  Constraints      : %d initial, %d maximal\n", startnconss, maxnconss);

   SCIPinfoMessage(scip, file, "OBJECTIVE\n");
   SCIPinfoMessage(scip, file, "  Sense            : %s\n", objsense == SCIP_OBJSENSE_MINIMIZE ? "minimize" : "maximize");
   if( !SCIPisZero(scip, objoffset) )
      SCIPinfoMessage(scip, file, "  Offset           : %+.15g\n", objoffset);
   if( !SCIPisEQ(scip, objscale, 1.0) )
      SCIPinfoMessage(scip, file, "  Scale            : %.15g\n", objscale);

   if ( nfixedvars > 0 )
   {
      /* set up hash table for variables that have been written property (used for writing out fixed vars in the right order) */
      SCIP_CALL( SCIPhashtableCreate(&varhash, SCIPblkmem(scip), SCIPcalcHashtableSize(10 * (nvars + nfixedvars)), hashGetKeyVar, hashKeyEqVar, hashKeyValVar, NULL) );
   }

   if ( nvars + nfixedvars > 0 )
   {
      SCIPinfoMessage(scip, file, "VARIABLES\n");
   }

   if( nvars > 0 )
   {
      for( i = 0; i < nvars; ++i )
      {
         SCIP_VAR* var;

         var = vars[i];
         assert( var != NULL );
         SCIP_CALL( SCIPprintVar(scip, var, file) );
         if ( varhash != NULL )
         {
            /* add free variable to hashtable */
            if ( ! SCIPhashtableExists(varhash, (void*) var) )
            {
               SCIP_CALL( SCIPhashtableInsert(varhash, (void*) var) );
            }
         }
      }
   }

   readerdata = SCIPreaderGetData(reader);
   assert(readerdata != NULL);

   if( readerdata->writefixedvars && nfixedvars > 0 )
   {
      int nwritten = 0;

      SCIPinfoMessage(scip, file, "FIXED\n");

      /* loop through variables until each has been written after the variables that it depends on have been written; this
       * requires several runs over the variables, but the depth (= number of loops) is usually small. */
      while ( nwritten < nfixedvars )
      {
         SCIPdebugMessage("written %d of %d fixed variables.\n", nwritten, nfixedvars);
         for (i = 0; i < nfixedvars; ++i)
         {
            SCIP_VAR* var;
            SCIP_VAR* tmpvar;

            var = fixedvars[i];
            assert( var != NULL );

            /* skip variables already written */
            if ( SCIPhashtableExists(varhash, (void*) var) )
               continue;

            switch ( SCIPvarGetStatus(var) )
            {
            case SCIP_VARSTATUS_FIXED:

               /* fixed variables can simply be output and added to the hashtable */
               SCIP_CALL( SCIPprintVar(scip, var, file) );
               assert( ! SCIPhashtableExists(varhash, (void*) var) );
               SCIP_CALL( SCIPhashtableInsert(varhash, (void*) var) );
               ++nwritten;

               break;

            case SCIP_VARSTATUS_NEGATED:

               tmpvar = SCIPvarGetNegationVar(var);
               assert( tmpvar != NULL );
               assert( var == SCIPvarGetNegatedVar(tmpvar) );

               /* if the negated variable has been written, we can write the current variable */
               if ( SCIPhashtableExists(varhash, (void*) tmpvar) )
               {
                  SCIP_CALL( SCIPprintVar(scip, var, file) );
                  assert( ! SCIPhashtableExists(varhash, (void*) var) );
                  SCIP_CALL( SCIPhashtableInsert(varhash, (void*) var) );
                  ++nwritten;
               }
               break;

            case SCIP_VARSTATUS_AGGREGATED:

               tmpvar = SCIPvarGetAggrVar(var);
               assert( tmpvar != NULL );

               /* if the aggregating variable has been written, we can write the current variable */
               if ( SCIPhashtableExists(varhash, (void*) tmpvar) )
               {
                  SCIP_CALL( SCIPprintVar(scip, var, file) );
                  assert( ! SCIPhashtableExists(varhash, (void*) var) );
                  SCIP_CALL( SCIPhashtableInsert(varhash, (void*) var) );
                  ++nwritten;
               }
               break;

            case SCIP_VARSTATUS_MULTAGGR:
            {
               SCIP_VAR** aggrvars;
               int naggrvars;
               int j;

               /* get the active representation */
               SCIP_CALL( SCIPflattenVarAggregationGraph(scip, var) );

               naggrvars = SCIPvarGetMultaggrNVars(var);
               aggrvars = SCIPvarGetMultaggrVars(var);
               assert(aggrvars != NULL || naggrvars == 0);

               for (j = 0; j < naggrvars; ++j)
               {
                  if( !SCIPhashtableExists(varhash, (void*) aggrvars[j]) ) /*lint !e613*/
                     break;
               }

               /* if all multi-aggregating variables have been written, we can write the current variable */
               if ( j >= naggrvars )
               {
                  SCIP_CALL( SCIPprintVar(scip, var, file) );
                  assert( ! SCIPhashtableExists(varhash, (void*) var) );
                  SCIP_CALL( SCIPhashtableInsert(varhash, (void*) var) );
                  ++nwritten;
               }
               break;
            }

            case SCIP_VARSTATUS_ORIGINAL:
            case SCIP_VARSTATUS_LOOSE:
            case SCIP_VARSTATUS_COLUMN:
               SCIPerrorMessage("Only fixed variables are allowed to be present in fixedvars list.\n");
               SCIPABORT();
               return SCIP_ERROR; /*lint !e527*/
            }
         }
      }
   }

   if( nconss > 0 )
   {
      SCIPinfoMessage(scip, file, "CONSTRAINTS\n");

      for( i = 0; i < nconss; ++i )
      {
         SCIP_CALL( SCIPprintCons(scip, conss[i], file) );
         SCIPinfoMessage(scip, file, ";\n");
      }
   }
   SCIPinfoMessage(scip, file, "END\n");

   *result = SCIP_SUCCESS;

   if( nfixedvars > 0 )
      SCIPhashtableFree(&varhash);
   else
      assert(varhash == NULL);

   return SCIP_OKAY;
}
Ejemplo n.º 11
0
/** problem reading method of reader */
static
SCIP_DECL_READERREAD(readerReadCip)
{  /*lint --e{715}*/

   CIPINPUT cipinput;
   SCIP_Real objscale;
   SCIP_Real objoffset;
   SCIP_Bool initialconss;
   SCIP_Bool dynamicconss;
   SCIP_Bool dynamiccols;
   SCIP_Bool dynamicrows;
   SCIP_Bool initialvar;
   SCIP_Bool removablevar;
   SCIP_RETCODE retcode;

   if( NULL == (cipinput.file = SCIPfopen(filename, "r")) )
   {
      SCIPerrorMessage("cannot open file <%s> for reading\n", filename);
      SCIPprintSysError(filename);
      return SCIP_NOFILE;
   }

   cipinput.len = 131071;
   SCIP_CALL( SCIPallocBufferArray(scip, &(cipinput.strbuf), cipinput.len) );

   cipinput.linenumber = 0;
   cipinput.section = CIP_START;
   cipinput.haserror = FALSE;
   cipinput.endfile = FALSE;
   cipinput.readingsize = 65535;

   SCIP_CALL( SCIPcreateProb(scip, filename, NULL, NULL, NULL, NULL, NULL, NULL, NULL) );

   SCIP_CALL( SCIPgetBoolParam(scip, "reading/initialconss", &initialconss) );
   SCIP_CALL( SCIPgetBoolParam(scip, "reading/dynamiccols", &dynamiccols) );
   SCIP_CALL( SCIPgetBoolParam(scip, "reading/dynamicconss", &dynamicconss) );
   SCIP_CALL( SCIPgetBoolParam(scip, "reading/dynamicrows", &dynamicrows) );

   initialvar = !dynamiccols;
   removablevar = dynamiccols;

   objscale = 1.0;
   objoffset = 0.0;

   while( cipinput.section != CIP_END && !cipinput.haserror )
   {
      /* get next input string */
      SCIP_CALL( getInputString(scip, &cipinput) );

      if( cipinput.endfile )
         break;

      switch( cipinput.section )
      {
      case CIP_START:
         getStart(scip, &cipinput);
         break;
      case CIP_STATISTIC:
         SCIP_CALL( getStatistics(scip, &cipinput) );
         break;
      case CIP_OBJECTIVE:
         SCIP_CALL( getObjective(scip, &cipinput, &objscale, &objoffset) );
         break;
      case CIP_VARS:
         retcode = getVariable(scip, &cipinput, initialvar, removablevar, objscale);

         if( retcode == SCIP_READERROR )
         {
            cipinput.haserror = TRUE;
            goto TERMINATE;
         }
         SCIP_CALL(retcode);

         break;
      case CIP_FIXEDVARS:
         retcode = getFixedVariable(scip, &cipinput);

         if( retcode == SCIP_READERROR )
         {
            cipinput.haserror = TRUE;
            goto TERMINATE;
         }
         SCIP_CALL(retcode);

         break;
      case CIP_CONSTRAINTS:
         retcode = getConstraint(scip, &cipinput, initialconss, dynamicconss, dynamicrows);

         if( retcode == SCIP_READERROR )
         {
            cipinput.haserror = TRUE;
            goto TERMINATE;
         }
         SCIP_CALL(retcode);

         break;
      default:
         SCIPerrorMessage("invalid CIP state\n");
         SCIPABORT();
         return SCIP_INVALIDDATA;  /*lint !e527*/
      } /*lint !e788*/ 
   }

   if( !SCIPisZero(scip, objoffset) && !cipinput.haserror )
   {
      SCIP_VAR* objoffsetvar;

      objoffset *= objscale;
      SCIP_CALL( SCIPcreateVar(scip, &objoffsetvar, "objoffset", objoffset, objoffset, 1.0, SCIP_VARTYPE_CONTINUOUS,
         TRUE, TRUE, NULL, NULL, NULL, NULL, NULL) );
      SCIP_CALL( SCIPaddVar(scip, objoffsetvar) );
      SCIP_CALL( SCIPreleaseVar(scip, &objoffsetvar) );
      SCIPdebugMessage("added variables <objoffset> for objective offset of <%g>\n", objoffset);
   }

   if( cipinput.section != CIP_END && !cipinput.haserror )
   {
      SCIPerrorMessage("unexpected EOF\n");
   }

 TERMINATE:
   /* close file stream */
   SCIPfclose(cipinput.file);

   SCIPfreeBufferArray(scip, &cipinput.strbuf);

   if( cipinput.haserror )
      return SCIP_READERROR;

   /* successfully parsed cip format */
   *result = SCIP_SUCCESS;
   return SCIP_OKAY;
}
Ejemplo n.º 12
0
/** LP solution separation method of separator */
static
SCIP_DECL_SEPAEXECLP(sepaExeclpGomory)
{  /*lint --e{715}*/
   SCIP_SEPADATA* sepadata;
   SCIP_VAR** vars;
   SCIP_COL** cols;
   SCIP_ROW** rows;
   SCIP_Real* binvrow;
   SCIP_Real* cutcoefs;
   SCIP_Real maxscale;
   SCIP_Real minfrac;
   SCIP_Real maxfrac;
   SCIP_Longint maxdnom;
   SCIP_Bool cutoff;
   int* basisind;
   int naddedcuts;
   int nvars;
   int ncols;
   int nrows;
   int ncalls;
   int depth;
   int maxdepth;
   int maxsepacuts;
   int c;
   int i;

   assert(sepa != NULL);
   assert(strcmp(SCIPsepaGetName(sepa), SEPA_NAME) == 0);
   assert(scip != NULL);
   assert(result != NULL);

   *result = SCIP_DIDNOTRUN;

   sepadata = SCIPsepaGetData(sepa);
   assert(sepadata != NULL);

   depth = SCIPgetDepth(scip);
   ncalls = SCIPsepaGetNCallsAtNode(sepa);

   minfrac = sepadata->away;
   maxfrac = 1.0 - sepadata->away;

   /* only call separator, if we are not close to terminating */
   if( SCIPisStopped(scip) )
      return SCIP_OKAY;

   /* only call the gomory cut separator a given number of times at each node */
   if( (depth == 0 && sepadata->maxroundsroot >= 0 && ncalls >= sepadata->maxroundsroot)
      || (depth > 0 && sepadata->maxrounds >= 0 && ncalls >= sepadata->maxrounds) )
      return SCIP_OKAY;

   /* only call separator, if an optimal LP solution is at hand */
   if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL )
      return SCIP_OKAY;

   /* only call separator, if the LP solution is basic */
   if( !SCIPisLPSolBasic(scip) )
      return SCIP_OKAY;

   /* only call separator, if there are fractional variables */
   if( SCIPgetNLPBranchCands(scip) == 0 )
      return SCIP_OKAY;

   /* get variables data */
   SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, NULL, NULL, NULL, NULL) );

   /* get LP data */
   SCIP_CALL( SCIPgetLPColsData(scip, &cols, &ncols) );
   SCIP_CALL( SCIPgetLPRowsData(scip, &rows, &nrows) );
   if( ncols == 0 || nrows == 0 )
      return SCIP_OKAY;

#if 0 /* if too many columns, separator is usually very slow: delay it until no other cuts have been found */
   if( ncols >= 50*nrows )
      return SCIP_OKAY;

   if( ncols >= 5*nrows )
   {
      int ncutsfound;

      ncutsfound = SCIPgetNCutsFound(scip);
      if( ncutsfound > sepadata->lastncutsfound || !SCIPsepaWasLPDelayed(sepa) )
      {
         sepadata->lastncutsfound = ncutsfound;
         *result = SCIP_DELAYED;
         return SCIP_OKAY;
      }
   }
#endif

   /* set the maximal denominator in rational representation of gomory cut and the maximal scale factor to
    * scale resulting cut to integral values to avoid numerical instabilities
    */
   /**@todo find better but still stable gomory cut settings: look at dcmulti, gesa3, khb0525, misc06, p2756 */
   maxdepth = SCIPgetMaxDepth(scip);
   if( depth == 0 )
   {
      maxdnom = 1000;
      maxscale = 1000.0;
   }
   else if( depth <= maxdepth/4 )
   {
      maxdnom = 1000;
      maxscale = 1000.0;
   }
   else if( depth <= maxdepth/2 )
   {
      maxdnom = 100;
      maxscale = 100.0;
   }
   else
   {
      maxdnom = 10;
      maxscale = 10.0;
   }

   /* allocate temporary memory */
   SCIP_CALL( SCIPallocBufferArray(scip, &cutcoefs, nvars) );
   SCIP_CALL( SCIPallocBufferArray(scip, &basisind, nrows) );
   SCIP_CALL( SCIPallocBufferArray(scip, &binvrow, nrows) );

   /* get basis indices */
   SCIP_CALL( SCIPgetLPBasisInd(scip, basisind) );

   /* get the maximal number of cuts allowed in a separation round */
   if( depth == 0 )
      maxsepacuts = sepadata->maxsepacutsroot;
   else
      maxsepacuts = sepadata->maxsepacuts;

   SCIPdebugMessage("searching gomory cuts: %d cols, %d rows, maxdnom=%"SCIP_LONGINT_FORMAT", maxscale=%g, maxcuts=%d\n",
      ncols, nrows, maxdnom, maxscale, maxsepacuts);

   cutoff = FALSE;
   naddedcuts = 0;

   /* for all basic columns belonging to integer variables, try to generate a gomory cut */
   for( i = 0; i < nrows && naddedcuts < maxsepacuts && !SCIPisStopped(scip) && !cutoff; ++i )
   {
      SCIP_Bool tryrow;

      tryrow = FALSE;
      c = basisind[i];
      if( c >= 0 )
      {
         SCIP_VAR* var;

         assert(c < ncols);
         var = SCIPcolGetVar(cols[c]);
         if( SCIPvarGetType(var) != SCIP_VARTYPE_CONTINUOUS )
         {
            SCIP_Real primsol;

            primsol = SCIPcolGetPrimsol(cols[c]);
            assert(SCIPgetVarSol(scip, var) == primsol); /*lint !e777*/

            if( SCIPfeasFrac(scip, primsol) >= minfrac )
            {
               SCIPdebugMessage("trying gomory cut for col <%s> [%g]\n", SCIPvarGetName(var), primsol);
               tryrow = TRUE;
            }
         }
      }
      else if( sepadata->separaterows )
      {
         SCIP_ROW* row;

         assert(0 <= -c-1 && -c-1 < nrows);
         row = rows[-c-1];
         if( SCIProwIsIntegral(row) && !SCIProwIsModifiable(row) )
         {
            SCIP_Real primsol;

            primsol = SCIPgetRowActivity(scip, row);
            if( SCIPfeasFrac(scip, primsol) >= minfrac )
            {
               SCIPdebugMessage("trying gomory cut for row <%s> [%g]\n", SCIProwGetName(row), primsol);
               tryrow = TRUE;
            }
         }
      }

      if( tryrow )
      {
         SCIP_Real cutrhs;
         SCIP_Real cutact;
         SCIP_Bool success;
         SCIP_Bool cutislocal;

         /* get the row of B^-1 for this basic integer variable with fractional solution value */
         SCIP_CALL( SCIPgetLPBInvRow(scip, i, binvrow) );

         cutact = 0.0;
         cutrhs = SCIPinfinity(scip);

         /* create a MIR cut out of the weighted LP rows using the B^-1 row as weights */
         SCIP_CALL( SCIPcalcMIR(scip, NULL, BOUNDSWITCH, USEVBDS, ALLOWLOCAL, FIXINTEGRALRHS, NULL, NULL,
               (int) MAXAGGRLEN(nvars), sepadata->maxweightrange, minfrac, maxfrac,
               binvrow, 1.0, NULL, NULL, cutcoefs, &cutrhs, &cutact, &success, &cutislocal) );
         assert(ALLOWLOCAL || !cutislocal);

         /* @todo Currently we are using the SCIPcalcMIR() function to compute the coefficients of the Gomory
          *       cut. Alternatively, we could use the direct version (see thesis of Achterberg formula (8.4)) which
          *       leads to cut a of the form \sum a_i x_i \geq 1. Rumor has it that these cuts are better.
          */

         SCIPdebugMessage(" -> success=%u: %g <= %g\n", success, cutact, cutrhs);

         /* if successful, convert dense cut into sparse row, and add the row as a cut */
         if( success && SCIPisFeasGT(scip, cutact, cutrhs) )
         {
            SCIP_ROW* cut;
            char cutname[SCIP_MAXSTRLEN];
            int v;

            /* construct cut name */
            if( c >= 0 )
               (void) SCIPsnprintf(cutname, SCIP_MAXSTRLEN, "gom%d_x%d", SCIPgetNLPs(scip), c);
            else
               (void) SCIPsnprintf(cutname, SCIP_MAXSTRLEN, "gom%d_s%d", SCIPgetNLPs(scip), -c-1);

            /* create empty cut */
            SCIP_CALL( SCIPcreateEmptyRowSepa(scip, &cut, sepa, cutname, -SCIPinfinity(scip), cutrhs,
                  cutislocal, FALSE, sepadata->dynamiccuts) );

            /* cache the row extension and only flush them if the cut gets added */
            SCIP_CALL( SCIPcacheRowExtensions(scip, cut) );

            /* collect all non-zero coefficients */
            for( v = 0; v < nvars; ++v )
            {
               if( !SCIPisZero(scip, cutcoefs[v]) )
               {
                  SCIP_CALL( SCIPaddVarToRow(scip, cut, vars[v], cutcoefs[v]) );
               }
            }

            if( SCIProwGetNNonz(cut) == 0 )
            {
               assert(SCIPisFeasNegative(scip, cutrhs));
               SCIPdebugMessage(" -> gomory cut detected infeasibility with cut 0 <= %f\n", cutrhs);
               cutoff = TRUE;
            }
            else if( SCIProwGetNNonz(cut) == 1 )
            {
               /* add the bound change as cut to avoid that the LP gets modified. that would mean the LP is not flushed
                * and the method SCIPgetLPBInvRow() fails; SCIP internally will apply that bound change automatically
                */
               SCIP_CALL( SCIPaddCut(scip, NULL, cut, TRUE) );
               naddedcuts++;
            }
            else
            {
               /* Only take efficacious cuts, except for cuts with one non-zero coefficients (= bound
                * changes); the latter cuts will be handeled internally in sepastore.
                */
               if( SCIPisCutEfficacious(scip, NULL, cut) )
               {
                  assert(success == TRUE);

                  SCIPdebugMessage(" -> gomory cut for <%s>: act=%f, rhs=%f, eff=%f\n",
                     c >= 0 ? SCIPvarGetName(SCIPcolGetVar(cols[c])) : SCIProwGetName(rows[-c-1]),
                     cutact, cutrhs, SCIPgetCutEfficacy(scip, NULL, cut));

                  if( sepadata->makeintegral )
                  {
                     /* try to scale the cut to integral values */
                     SCIP_CALL( SCIPmakeRowIntegral(scip, cut, -SCIPepsilon(scip), SCIPsumepsilon(scip),
                           maxdnom, maxscale, MAKECONTINTEGRAL, &success) );

                     if( sepadata->forcecuts )
                        success = TRUE;

                     /* in case the left hand side in minus infinity and the right hand side is plus infinity the cut is
                      * useless so we are not taking it at all
                      */
                     if( (SCIPisInfinity(scip, -SCIProwGetLhs(cut)) && SCIPisInfinity(scip, SCIProwGetRhs(cut))) )
                        success = FALSE;

                     /* @todo Trying to make the Gomory cut integral might fail. Due to numerical reasons/arguments we
                      *       currently ignore such cuts. If the cut, however, has small support (let's say smaller or equal to
                      *       5), we might want to add that cut (even it does not have integral coefficients). To be able to
                      *       do that we need to add a rank to the data structure of a row. The rank of original rows are
                      *       zero and for aggregated rows it is the maximum over all used rows plus one.
                      */
                  }

                  if( success )
                  {
                     SCIPdebugMessage(" -> found gomory cut <%s>: act=%f, rhs=%f, norm=%f, eff=%f, min=%f, max=%f (range=%f)\n",
                        cutname, SCIPgetRowLPActivity(scip, cut), SCIProwGetRhs(cut), SCIProwGetNorm(cut),
                        SCIPgetCutEfficacy(scip, NULL, cut),
                        SCIPgetRowMinCoef(scip, cut), SCIPgetRowMaxCoef(scip, cut),
                        SCIPgetRowMaxCoef(scip, cut)/SCIPgetRowMinCoef(scip, cut));

                     /* flush all changes before adding the cut */
                     SCIP_CALL( SCIPflushRowExtensions(scip, cut) );

                     /* add global cuts which are not implicit bound changes to the cut pool */
                     if( !cutislocal )
                     {
                        if( sepadata->delayedcuts )
                        {
                           SCIP_CALL( SCIPaddDelayedPoolCut(scip, cut) );
                        }
                        else
                        {
                           SCIP_CALL( SCIPaddPoolCut(scip, cut) );
                        }
                     }
                     else
                     {
                        /* local cuts we add to the sepastore */
                        SCIP_CALL( SCIPaddCut(scip, NULL, cut, FALSE) );
                     }

                     naddedcuts++;
                  }
               }
            }

            /* release the row */
            SCIP_CALL( SCIPreleaseRow(scip, &cut) );
         }
      }
   }

   /* free temporary memory */
   SCIPfreeBufferArray(scip, &binvrow);
   SCIPfreeBufferArray(scip, &basisind);
   SCIPfreeBufferArray(scip, &cutcoefs);

   SCIPdebugMessage("end searching gomory cuts: found %d cuts\n", naddedcuts);

   sepadata->lastncutsfound = SCIPgetNCutsFound(scip);

   /* evalute the result of the separation */
   if( cutoff )
      *result = SCIP_CUTOFF;
   else if ( naddedcuts > 0 )
      *result = SCIP_SEPARATED;
   else
      *result = SCIP_DIDNOTFIND;

   return SCIP_OKAY;
}
Ejemplo n.º 13
0
/** stores nonzero elements of dense coefficient vector as sparse vector, and calculates activity and norm */
static
SCIP_RETCODE storeCutInArrays(
   SCIP*                 scip,               /**< SCIP data structure */
   int                   nvars,              /**< number of problem variables */
   SCIP_VAR**            vars,               /**< problem variables */
   SCIP_Real*            cutcoefs,           /**< dense coefficient vector */
   SCIP_Real*            varsolvals,         /**< dense variable LP solution vector */
   char                  normtype,           /**< type of norm to use for efficacy norm calculation */
   SCIP_VAR**            cutvars,            /**< array to store variables of sparse cut vector */
   SCIP_Real*            cutvals,            /**< array to store coefficients of sparse cut vector */
   int*                  cutlen,             /**< pointer to store number of nonzero entries in cut */
   SCIP_Real*            cutact,             /**< pointer to store activity of cut */
   SCIP_Real*            cutnorm             /**< pointer to store norm of cut vector */
   )
{
   SCIP_Real val;
   SCIP_Real absval;
   SCIP_Real cutsqrnorm;
   SCIP_Real act;
   SCIP_Real norm;
   int len;
   int v;

   assert(nvars == 0 || cutcoefs != NULL);
   assert(nvars == 0 || varsolvals != NULL);
   assert(cutvars != NULL);
   assert(cutvals != NULL);
   assert(cutlen != NULL);
   assert(cutact != NULL);
   assert(cutnorm != NULL);

   len = 0;
   act = 0.0;
   norm = 0.0;
   switch( normtype )
   {
   case 'e':
      cutsqrnorm = 0.0;
      for( v = 0; v < nvars; ++v )
      {
         val = cutcoefs[v];
         if( !SCIPisZero(scip, val) )
         {
            act += val * varsolvals[v];
            cutsqrnorm += SQR(val);
            cutvars[len] = vars[v];
            cutvals[len] = val;
            len++;
         }
      }
      norm = SQRT(cutsqrnorm);
      break;
   case 'm':
      for( v = 0; v < nvars; ++v )
      {
         val = cutcoefs[v];
         if( !SCIPisZero(scip, val) )
         {
            act += val * varsolvals[v];
            absval = ABS(val);
            norm = MAX(norm, absval);
            cutvars[len] = vars[v];
            cutvals[len] = val;
            len++;
         }
      }
      break;
   case 's':
      for( v = 0; v < nvars; ++v )
      {
         val = cutcoefs[v];
         if( !SCIPisZero(scip, val) )
         {
            act += val * varsolvals[v];
            norm += ABS(val);
            cutvars[len] = vars[v];
            cutvals[len] = val;
            len++;
         }
      }
      break;
   case 'd':
      for( v = 0; v < nvars; ++v )
      {
         val = cutcoefs[v];
         if( !SCIPisZero(scip, val) )
         {
            act += val * varsolvals[v];
            norm = 1.0;
            cutvars[len] = vars[v];
            cutvals[len] = val;
            len++;
         }
      }
      break;
   default:
      SCIPerrorMessage("invalid efficacy norm parameter '%c'\n", normtype);
      return SCIP_INVALIDDATA;
   }

   *cutlen = len;
   *cutact = act;
   *cutnorm = norm;

   return SCIP_OKAY;
}
Ejemplo n.º 14
0
/** returns a variable, that pushes activity of the row in the given direction with minimal negative impact on other rows;
 *  if variables have equal impact, chooses the one with best objective value improvement in corresponding direction;
 *  prefer fractional integers over other variables in order to become integral during the process;
 *  shifting in a direction is forbidden, if this forces the objective value over the upper bound, or if the variable
 *  was already shifted in the opposite direction
 */
static
SCIP_RETCODE selectShifting(
    SCIP*                 scip,               /**< SCIP data structure */
    SCIP_SOL*             sol,                /**< primal solution */
    SCIP_ROW*             row,                /**< LP row */
    SCIP_Real             rowactivity,        /**< activity of LP row */
    int                   direction,          /**< should the activity be increased (+1) or decreased (-1)? */
    SCIP_Real*            nincreases,         /**< array with weighted number of increasings per variables */
    SCIP_Real*            ndecreases,         /**< array with weighted number of decreasings per variables */
    SCIP_Real             increaseweight,     /**< current weight of increase/decrease updates */
    SCIP_VAR**            shiftvar,           /**< pointer to store the shifting variable, returns NULL if impossible */
    SCIP_Real*            oldsolval,          /**< pointer to store old solution value of shifting variable */
    SCIP_Real*            newsolval           /**< pointer to store new (shifted) solution value of shifting variable */
)
{
    SCIP_COL** rowcols;
    SCIP_Real* rowvals;
    int nrowcols;
    SCIP_Real activitydelta;
    SCIP_Real bestshiftscore;
    SCIP_Real bestdeltaobj;
    int c;

    assert(direction == +1 || direction == -1);
    assert(nincreases != NULL);
    assert(ndecreases != NULL);
    assert(shiftvar != NULL);
    assert(oldsolval != NULL);
    assert(newsolval != NULL);

    /* get row entries */
    rowcols = SCIProwGetCols(row);
    rowvals = SCIProwGetVals(row);
    nrowcols = SCIProwGetNLPNonz(row);

    /* calculate how much the activity must be shifted in order to become feasible */
    activitydelta = (direction == +1 ? SCIProwGetLhs(row) - rowactivity : SCIProwGetRhs(row) - rowactivity);
    assert((direction == +1 && SCIPisPositive(scip, activitydelta))
           || (direction == -1 && SCIPisNegative(scip, activitydelta)));

    /* select shifting variable */
    bestshiftscore = SCIP_REAL_MAX;
    bestdeltaobj = SCIPinfinity(scip);
    *shiftvar = NULL;
    *newsolval = 0.0;
    *oldsolval = 0.0;
    for( c = 0; c < nrowcols; ++c )
    {
        SCIP_COL* col;
        SCIP_VAR* var;
        SCIP_Real val;
        SCIP_Real solval;
        SCIP_Real shiftval;
        SCIP_Real shiftscore;
        SCIP_Bool isinteger;
        SCIP_Bool isfrac;
        SCIP_Bool increase;

        col = rowcols[c];
        var = SCIPcolGetVar(col);
        val = rowvals[c];
        assert(!SCIPisZero(scip, val));
        solval = SCIPgetSolVal(scip, sol, var);

        isinteger = (SCIPvarGetType(var) == SCIP_VARTYPE_BINARY || SCIPvarGetType(var) == SCIP_VARTYPE_INTEGER);
        isfrac = isinteger && !SCIPisFeasIntegral(scip, solval);
        increase = (direction * val > 0.0);

        /* calculate the score of the shifting (prefer smaller values) */
        if( isfrac )
            shiftscore = increase ? -1.0 / (SCIPvarGetNLocksUp(var) + 1.0) :
                         -1.0 / (SCIPvarGetNLocksDown(var) + 1.0);
        else
        {
            int probindex;
            probindex = SCIPvarGetProbindex(var);

            if( increase )
                shiftscore = ndecreases[probindex]/increaseweight;
            else
                shiftscore = nincreases[probindex]/increaseweight;
            if( isinteger )
                shiftscore += 1.0;
        }

        if( shiftscore <= bestshiftscore )
        {
            SCIP_Real deltaobj;

            if( !increase )
            {
                /* shifting down */
                assert(direction * val < 0.0);
                if( isfrac )
                    shiftval = SCIPfeasFloor(scip, solval);
                else
                {
                    SCIP_Real lb;

                    assert(activitydelta/val < 0.0);
                    shiftval = solval + activitydelta/val;
                    assert(shiftval <= solval); /* may be equal due to numerical digit erasement in the subtraction */
                    if( SCIPvarIsIntegral(var) )
                        shiftval = SCIPfeasFloor(scip, shiftval);
                    lb = SCIPvarGetLbGlobal(var);
                    shiftval = MAX(shiftval, lb);
                }
            }
            else
            {
                /* shifting up */
                assert(direction * val > 0.0);
                if( isfrac )
                    shiftval = SCIPfeasCeil(scip, solval);
                else
                {
                    SCIP_Real ub;

                    assert(activitydelta/val > 0.0);
                    shiftval = solval + activitydelta/val;
                    assert(shiftval >= solval); /* may be equal due to numerical digit erasement in the subtraction */
                    if( SCIPvarIsIntegral(var) )
                        shiftval = SCIPfeasCeil(scip, shiftval);
                    ub = SCIPvarGetUbGlobal(var);
                    shiftval = MIN(shiftval, ub);
                }
            }

            if( SCIPisEQ(scip, shiftval, solval) )
                continue;

            deltaobj = SCIPvarGetObj(var) * (shiftval - solval);
            if( shiftscore < bestshiftscore || deltaobj < bestdeltaobj )
            {
                bestshiftscore = shiftscore;
                bestdeltaobj = deltaobj;
                *shiftvar = var;
                *oldsolval = solval;
                *newsolval = shiftval;
            }
        }
    }

    return SCIP_OKAY;
}
Ejemplo n.º 15
0
/** reads an objective or constraint with name and coefficients */
static
SCIP_RETCODE readCoefficients(
   SCIP*                 scip,               /**< SCIP data structure */
   LPINPUT*              lpinput,            /**< LP reading data */
   SCIP_Bool             isobjective,        /**< indicates whether we are currently reading the coefficients of the objective */
   char*                 name,               /**< pointer to store the name of the line; must be at least of size
                                              *   LP_MAX_LINELEN */
   SCIP_VAR***           vars,               /**< pointer to store the array with variables (must be freed by caller) */
   SCIP_Real**           coefs,              /**< pointer to store the array with coefficients (must be freed by caller) */
   int*                  ncoefs,             /**< pointer to store the number of coefficients */
   SCIP_Bool*            newsection          /**< pointer to store whether a new section was encountered */
   )
{
   SCIP_Bool havesign;
   SCIP_Bool havevalue;
   SCIP_Real coef;
   int coefsign;
   int coefssize;

   assert(lpinput != NULL);
   assert(name != NULL);
   assert(vars != NULL);
   assert(coefs != NULL);
   assert(ncoefs != NULL);
   assert(newsection != NULL);

   *vars = NULL;
   *coefs = NULL;
   *name = '\0';
   *ncoefs = 0;
   *newsection = FALSE;

   /* read the first token, which may be the name of the line */
   if( getNextToken(scip, lpinput) )
   {
      /* check if we reached a new section */
      if( isNewSection(scip, lpinput) )
      {
         *newsection = TRUE;
         return SCIP_OKAY;
      }

      /* remember the token in the token buffer */
      swapTokenBuffer(lpinput);

      /* get the next token and check, whether it is a colon */
      if( getNextToken(scip, lpinput) )
      {
         if( strcmp(lpinput->token, ":") == 0 )
         {
            /* the second token was a colon: the first token is the line name */
            (void)SCIPmemccpy(name, lpinput->tokenbuf, '\0', LP_MAX_LINELEN);

            name[LP_MAX_LINELEN - 1] = '\0';
            SCIPdebugMessage("(line %d) read constraint name: '%s'\n", lpinput->linenumber, name);
         }
         else
         {
            /* the second token was no colon: push the tokens back onto the token stack and parse them as coefficients */
            pushToken(lpinput);
            pushBufferToken(lpinput);
         }
      }
      else
      {
         /* there was only one token left: push it back onto the token stack and parse it as coefficient */
         pushBufferToken(lpinput);
      }
   }

   /* initialize buffers for storing the coefficients */
   coefssize = LP_INIT_COEFSSIZE;
   SCIP_CALL( SCIPallocMemoryArray(scip, vars, coefssize) );
   SCIP_CALL( SCIPallocMemoryArray(scip, coefs, coefssize) );

   /* read the coefficients */
   coefsign = +1;
   coef = 1.0;
   havesign = FALSE;
   havevalue = FALSE;
   *ncoefs = 0;
   while( getNextToken(scip, lpinput) )
   {
      SCIP_VAR* var;

      /* check if we read a sign */
      if( isSign(lpinput, &coefsign) )
      {
         SCIPdebugMessage("(line %d) read coefficient sign: %+d\n", lpinput->linenumber, coefsign);
         havesign = TRUE;
         continue;
      }

      /* check if we read a value */
      if( isValue(scip, lpinput, &coef) )
      {
         SCIPdebugMessage("(line %d) read coefficient value: %g with sign %+d\n", lpinput->linenumber, coef, coefsign);
         if( havevalue )
         {
            syntaxError(scip, lpinput, "two consecutive values.");
            return SCIP_OKAY;
         }
         havevalue = TRUE;
         continue;
      }

      /* check if we reached an equation sense */
      if( isSense(lpinput, NULL) )
      {
         if( isobjective )
         {
            syntaxError(scip, lpinput, "no sense allowed in objective");
            return SCIP_OKAY;
         }

         /* put the sense back onto the token stack */
         pushToken(lpinput);
         break;
      }

      /* check if we reached a new section, that will be only allowed when having no current sign and value and if we
       * are not in the quadratic part
       */
      if( (isobjective || (!havevalue && !havesign)) && isNewSection(scip, lpinput) )
      {
         if( havesign && !havevalue )
         {
            SCIPwarningMessage(scip, "skipped single sign %c without value or variable in objective\n", coefsign == 1 ? '+' : '-');
         }
         else if( isobjective && havevalue && !SCIPisZero(scip, coef) )
         {
            SCIPwarningMessage(scip, "constant term %+g in objective is skipped\n", coef * coefsign);
         }

         *newsection = TRUE;
         return SCIP_OKAY;
      }

      /* check if we start a quadratic part */
      if( *lpinput->token ==  '[' )
      {
         syntaxError(scip, lpinput, "diff reader does not support quadratic objective function.");
         return SCIP_READERROR;
      }

      /* all but the first coefficient need a sign */
      if( *ncoefs > 0 && !havesign )
      {
         syntaxError(scip, lpinput, "expected sign ('+' or '-') or sense ('<' or '>').");
         return SCIP_OKAY;
      }

      /* check if the last variable should be squared */
      if( *lpinput->token == '^' )
      {
         syntaxError(scip, lpinput, "diff reader does not support quadratic objective function.");
         return SCIP_READERROR;
      }
      else
      {
         /* the token is a variable name: get the corresponding variable */
         SCIP_CALL( getVariable(scip, lpinput->token, &var) );
      }

      /* insert the linear coefficient */
      SCIPdebugMessage("(line %d) read linear coefficient: %+g<%s>\n", lpinput->linenumber, coefsign * coef, SCIPvarGetName(var));
      if( !SCIPisZero(scip, coef) )
      {
         /* resize the vars and coefs array if needed */
         if( *ncoefs >= coefssize )
         {
            coefssize *= 2;
            coefssize = MAX(coefssize, (*ncoefs)+1);
            SCIP_CALL( SCIPreallocMemoryArray(scip, vars, coefssize) );
            SCIP_CALL( SCIPreallocMemoryArray(scip, coefs, coefssize) );
         }
         assert(*ncoefs < coefssize);

         /* add coefficient */
         (*vars)[*ncoefs] = var;
         (*coefs)[*ncoefs] = coefsign * coef;
         (*ncoefs)++;
      }

      /* reset the flags and coefficient value for the next coefficient */
      coefsign = +1;
      coef = 1.0;
      havesign = FALSE;
      havevalue = FALSE;
   }

   return SCIP_OKAY;
}