Ejemplo n.º 1
0
/** finds a continuous slack variable for an equation row, NULL if none exists */
static
void rowFindSlackVar(
   SCIP*                 scip,               /**< pointer to current SCIP data structure */
   SCIP_ROW*             row,                /**< the row for which a slack variable is searched */
   SCIP_VAR**            varpointer,         /**< pointer to store the slack variable */
   SCIP_Real*            coeffpointer        /**< pointer to store the coefficient of the slack variable */
)
{
   int v;
   SCIP_COL** rowcols;
   SCIP_Real* rowvals;
   int nrowvals;

   assert(row != NULL);
   assert(varpointer != NULL);
   assert(coeffpointer != NULL);

   rowcols = SCIProwGetCols(row);
   rowvals = SCIProwGetVals(row);
   nrowvals = SCIProwGetNNonz(row);

   assert(nrowvals == 0 || rowvals != NULL);
   assert(nrowvals == 0 || rowcols != NULL);

   /* iterate over the row variables. Stop after the first unfixed continuous variable was found. */
   for( v = nrowvals - 1; v >= 0; --v )
   {
      SCIP_VAR* colvar;

      assert(rowcols[v] != NULL);
      if( SCIPcolGetLPPos(rowcols[v]) == -1 )
         continue;

      colvar = SCIPcolGetVar(rowcols[v]);

      if( SCIPvarGetType(colvar) == SCIP_VARTYPE_CONTINUOUS
         && !SCIPisFeasEQ(scip, SCIPvarGetLbGlobal(colvar), SCIPvarGetUbGlobal(colvar))
         && SCIPcolGetNLPNonz(rowcols[v]) == 1 )
      {
         SCIPdebugMessage("  slack variable for row %s found: %s\n", SCIProwGetName(row), SCIPvarGetName(colvar));

         *coeffpointer = rowvals[v];
         *varpointer = colvar;

         return;
      }
   }

   *varpointer = NULL;
   *coeffpointer = 0.0;

   SCIPdebugMessage("No slack variable for row %s found. \n", SCIProwGetName(row));
}
Ejemplo n.º 2
0
/** updates the orthogonalities and scores of the non-forced cuts after the given cut was added to the LP */
static
SCIP_RETCODE sepastoreUpdateOrthogonalities(
   SCIP_SEPASTORE*       sepastore,          /**< separation storage */
   BMS_BLKMEM*           blkmem,             /**< block memory */
   SCIP_SET*             set,                /**< global SCIP settings */
   SCIP_EVENTQUEUE*      eventqueue,         /**< event queue */
   SCIP_EVENTFILTER*     eventfilter,        /**< event filter for global events */
   SCIP_LP*              lp,                 /**< LP data */
   SCIP_ROW*             cut,                /**< cut that was applied */
   SCIP_Real             mincutorthogonality /**< minimal orthogonality of cuts to apply to LP */
   )
{
   int pos;

   assert(sepastore != NULL);

   pos = sepastore->nforcedcuts;
   while( pos < sepastore->ncuts )
   {
      SCIP_Real thisortho;
      
      /* update orthogonality */
      thisortho = SCIProwGetOrthogonality(cut, sepastore->cuts[pos], set->sepa_orthofunc);
      if( thisortho < sepastore->orthogonalities[pos] )
      {
         if( thisortho < mincutorthogonality )
         {
            /* cut is too parallel: release the row and delete the cut */
            SCIPdebugMessage("    -> deleting parallel cut <%s> after adding <%s> (pos=%d, len=%d, orthogonality=%g, score=%g)\n",
               SCIProwGetName(sepastore->cuts[pos]), SCIProwGetName(cut), pos, SCIProwGetNNonz(cut), thisortho, sepastore->scores[pos]);
            SCIP_CALL( sepastoreDelCut(sepastore, blkmem, set, eventqueue, eventfilter, lp, pos) );
            continue;
         }
         else
         {
            /* recalculate score */
            sepastore->orthogonalities[pos] = thisortho;
            assert( sepastore->objparallelisms[pos] != SCIP_INVALID ); /*lint !e777*/
            assert( sepastore->scores[pos] != SCIP_INVALID ); /*lint !e777*/
            assert( sepastore->efficacies[pos] != SCIP_INVALID ); /*lint !e777*/
            sepastore->scores[pos] = sepastore->efficacies[pos]
               + set->sepa_objparalfac * sepastore->objparallelisms[pos]
               + set->sepa_orthofac * thisortho;
         }
      }
      pos++;
   }

   return SCIP_OKAY;
}
Ejemplo n.º 3
0
/** checks cut for redundancy due to activity bounds */
static
SCIP_Bool sepastoreIsCutRedundant(
   SCIP_SEPASTORE*       sepastore,          /**< separation storage */
   SCIP_SET*             set,                /**< global SCIP settings */
   SCIP_STAT*            stat,               /**< problem statistics data */
   SCIP_ROW*             cut                 /**< separated cut */
   )
{
   SCIP_Real minactivity;
   SCIP_Real maxactivity;
   SCIP_Real lhs;
   SCIP_Real rhs;

   assert(sepastore != NULL);
   assert(cut != NULL);

   /* modifiable cuts cannot be declared redundant, since we don't know all coefficients */
   if( SCIProwIsModifiable(cut) )
      return FALSE;

   /* check for activity redundancy */
   lhs = SCIProwGetLhs(cut);
   rhs = SCIProwGetRhs(cut);
   minactivity = SCIProwGetMinActivity(cut, set, stat);
   maxactivity = SCIProwGetMaxActivity(cut, set, stat);
   if( SCIPsetIsLE(set, lhs, minactivity) && SCIPsetIsLE(set, maxactivity, rhs) )
   {
      SCIPdebugMessage("ignoring activity redundant cut <%s> (sides=[%g,%g], act=[%g,%g]\n",
         SCIProwGetName(cut), lhs, rhs, minactivity, maxactivity);
      /*SCIPdebug(SCIProwPrint(cut, NULL));*/
      return TRUE;
   }

   return FALSE;
}
Ejemplo n.º 4
0
/** creates the rows of the subproblem */
static
SCIP_RETCODE createRows(
   SCIP*                 scip,               /**< original SCIP data structure */
   SCIP*                 subscip,            /**< SCIP data structure for the subproblem */
   SCIP_VAR**            subvars             /**< the variables of the subproblem */
   )
{
   SCIP_ROW** rows;                          /* original scip rows                       */
   SCIP_CONS* cons;                          /* new constraint                           */
   SCIP_VAR** consvars;                      /* new constraint's variables               */
   SCIP_COL** cols;                          /* original row's columns                   */

   SCIP_Real constant;                       /* constant added to the row                */
   SCIP_Real lhs;                            /* left hand side of the row                */
   SCIP_Real rhs;                            /* left right side of the row               */
   SCIP_Real* vals;                          /* variables' coefficient values of the row */

   int nrows;
   int nnonz;
   int i;
   int j;

   /* get the rows and their number */
   SCIP_CALL( SCIPgetLPRowsData(scip, &rows, &nrows) );

   /* copy all rows to linear constraints */
   for( i = 0; i < nrows; i++ )
   {
      /* ignore rows that are only locally valid */
      if( SCIProwIsLocal(rows[i]) )
         continue;

      /* get the row's data */
      constant = SCIProwGetConstant(rows[i]);
      lhs = SCIProwGetLhs(rows[i]) - constant;
      rhs = SCIProwGetRhs(rows[i]) - constant;
      vals = SCIProwGetVals(rows[i]);
      nnonz = SCIProwGetNNonz(rows[i]);
      cols = SCIProwGetCols(rows[i]);

      assert(lhs <= rhs);

      /* allocate memory array to be filled with the corresponding subproblem variables */
      SCIP_CALL( SCIPallocBufferArray(scip, &consvars, nnonz) );
      for( j = 0; j < nnonz; j++ )
         consvars[j] = subvars[SCIPvarGetProbindex(SCIPcolGetVar(cols[j]))];

      /* create a new linear constraint and add it to the subproblem */
      SCIP_CALL( SCIPcreateConsLinear(subscip, &cons, SCIProwGetName(rows[i]), nnonz, consvars, vals, lhs, rhs,
            TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, TRUE, TRUE, FALSE) );
      SCIP_CALL( SCIPaddCons(subscip, cons) );
      SCIP_CALL( SCIPreleaseCons(subscip, &cons) );

      /* free temporary memory */
      SCIPfreeBufferArray(scip, &consvars);
   }

   return SCIP_OKAY;
}
Ejemplo n.º 5
0
/** adds cut stored as LP row to separation storage and captures it;
 *  if the cut should be forced to be used, an infinite score has to be used
 */
static
SCIP_RETCODE sepastoreAddCut(
   SCIP_SEPASTORE*       sepastore,          /**< separation storage */
   BMS_BLKMEM*           blkmem,             /**< block memory */
   SCIP_SET*             set,                /**< global SCIP settings */
   SCIP_STAT*            stat,               /**< problem statistics data */
   SCIP_EVENTQUEUE*      eventqueue,         /**< event queue */
   SCIP_EVENTFILTER*     eventfilter,        /**< event filter for global events */
   SCIP_LP*              lp,                 /**< LP data */
   SCIP_SOL*             sol,                /**< primal solution that was separated, or NULL for LP solution */
   SCIP_ROW*             cut,                /**< separated cut */
   SCIP_Bool             forcecut,           /**< should the cut be forced to enter the LP? */
   SCIP_Bool             root                /**< are we at the root node? */
   )
{
   SCIP_Real cutefficacy;
   SCIP_Real cutobjparallelism;
   SCIP_Real cutscore;
   int pos;

   assert(sepastore != NULL);
   assert(sepastore->nforcedcuts <= sepastore->ncuts);
   assert(set != NULL);
   assert(cut != NULL);
   assert(sol != NULL || !SCIProwIsInLP(cut));
   assert(!SCIPsetIsInfinity(set, -SCIProwGetLhs(cut)) || !SCIPsetIsInfinity(set, SCIProwGetRhs(cut)));
   assert(eventqueue != NULL);
   assert(eventfilter != NULL);

   /* in the root node, every local cut is a global cut, and global cuts are nicer in many ways...*/
   if( root && SCIProwIsLocal(cut) )
   {
      SCIPdebugMessage("change local flag of cut <%s> to FALSE due to addition in root node\n", SCIProwGetName(cut));

      SCIP_CALL( SCIProwChgLocal(cut, FALSE) );

      assert(!SCIProwIsLocal(cut));
   }

   /* check cut for redundancy
    * in each separation round, make sure that at least one (even redundant) cut enters the LP to avoid cycling
    */
   if( !forcecut && sepastore->ncuts > 0 && sepastoreIsCutRedundant(sepastore, set, stat, cut) )
      return SCIP_OKAY;

   /* if only one cut is currently present in the cut store, it could be redundant; in this case, it can now be removed
    * again, because now a non redundant cut enters the store
    */
   if( sepastore->ncuts == 1 && sepastoreIsCutRedundant(sepastore, set, stat, sepastore->cuts[0]) )
   {
      /* check, if the row deletions from separation storage events are tracked
       * if so, issue ROWDELETEDSEPA event
       */
      if( eventfilter->len > 0 && (eventfilter->eventmask & SCIP_EVENTTYPE_ROWDELETEDSEPA) != 0 )
      {
         SCIP_EVENT* event;

         SCIP_CALL( SCIPeventCreateRowDeletedSepa(&event, blkmem, sepastore->cuts[0]) );
         SCIP_CALL( SCIPeventqueueAdd(eventqueue, blkmem, set, NULL, NULL, NULL, eventfilter, &event) );
      }
      
      SCIP_CALL( SCIProwRelease(&sepastore->cuts[0], blkmem, set, lp) );
      sepastore->ncuts = 0;
      sepastore->nforcedcuts = 0;
   }

   /* a cut is forced to enter the LP if
    *  - we construct the initial LP, or
    *  - it has infinite score factor, or
    *  - it is a bound change
    * if it is a non-forced cut and no cuts should be added, abort
    */
   forcecut = forcecut || sepastore->initiallp || sepastore->forcecuts
      || (!SCIProwIsModifiable(cut) && SCIProwGetNNonz(cut) == 1);
   if( !forcecut && SCIPsetGetSepaMaxcuts(set, root) == 0 )
      return SCIP_OKAY;

   /* get enough memory to store the cut */
   SCIP_CALL( sepastoreEnsureCutsMem(sepastore, set, sepastore->ncuts+1) );
   assert(sepastore->ncuts < sepastore->cutssize);

   if( forcecut )
   {
      cutefficacy = SCIPsetInfinity(set);
      cutscore = SCIPsetInfinity(set);
      cutobjparallelism = 1.0;
   }
   else
   {
      /* initialize values to invalid (will be initialized during cut filtering) */
      cutefficacy = SCIP_INVALID;
      cutscore = SCIP_INVALID;

      /* initialize parallelism to objective (constant throughout filtering) */
      if( set->sepa_objparalfac > 0.0 )
         cutobjparallelism = SCIProwGetObjParallelism(cut, set, lp);
      else
         cutobjparallelism = 0.0; /* no need to calculate it */
   }

   SCIPdebugMessage("adding cut <%s> to separation storage of size %d (forcecut=%u, len=%d)\n",
      SCIProwGetName(cut), sepastore->ncuts, forcecut, SCIProwGetNNonz(cut));
   /*SCIPdebug(SCIProwPrint(cut, NULL));*/

   /* capture the cut */
   SCIProwCapture(cut);

   /* add cut to arrays */
   if( forcecut )
   {
      /* make room at the beginning of the array for forced cut */
      pos = sepastore->nforcedcuts;
      sepastore->cuts[sepastore->ncuts] = sepastore->cuts[pos];
      sepastore->efficacies[sepastore->ncuts] = sepastore->efficacies[pos];
      sepastore->objparallelisms[sepastore->ncuts] = sepastore->objparallelisms[pos];
      sepastore->orthogonalities[sepastore->ncuts] = sepastore->orthogonalities[pos];
      sepastore->scores[sepastore->ncuts] = sepastore->scores[pos];
      sepastore->nforcedcuts++;
   }
   else
      pos = sepastore->ncuts;

   sepastore->cuts[pos] = cut;
   sepastore->efficacies[pos] = cutefficacy;
   sepastore->objparallelisms[pos] = cutobjparallelism;
   sepastore->orthogonalities[pos] = 1.0;
   sepastore->scores[pos] = cutscore;
   sepastore->ncuts++;

   /* check, if the row addition to separation storage events are tracked
    * if so, issue ROWADDEDSEPA event
    */
   if( eventfilter->len > 0 && (eventfilter->eventmask & SCIP_EVENTTYPE_ROWADDEDSEPA) != 0 )
   {
      SCIP_EVENT* event;

      SCIP_CALL( SCIPeventCreateRowAddedSepa(&event, blkmem, cut) );
      SCIP_CALL( SCIPeventqueueAdd(eventqueue, blkmem, set, NULL, NULL, NULL, eventfilter, &event) );
   }

   return SCIP_OKAY;
}
Ejemplo n.º 6
0
/** execution method of primal heuristic */
static
SCIP_DECL_HEUREXEC(heurExecOneopt)
{  /*lint --e{715}*/

   SCIP_HEURDATA* heurdata;
   SCIP_SOL* bestsol;                        /* incumbent solution */
   SCIP_SOL* worksol;                        /* heuristic's working solution */
   SCIP_VAR** vars;                          /* SCIP variables                */
   SCIP_VAR** shiftcands;                    /* shiftable variables           */
   SCIP_ROW** lprows;                        /* SCIP LP rows                  */
   SCIP_Real* activities;                    /* row activities for working solution */
   SCIP_Real* shiftvals;

   SCIP_Real lb;
   SCIP_Real ub;
   SCIP_Bool localrows;
   SCIP_Bool valid;
   int nchgbound;
   int nbinvars;
   int nintvars;
   int nvars;
   int nlprows;
   int i;
   int nshiftcands;
   int shiftcandssize;
   SCIP_RETCODE retcode;

   assert(heur != NULL);
   assert(scip != NULL);
   assert(result != NULL);

   /* get heuristic's data */
   heurdata = SCIPheurGetData(heur);
   assert(heurdata != NULL);

   *result = SCIP_DELAYED;

   /* we only want to process each solution once */
   bestsol = SCIPgetBestSol(scip);
   if( bestsol == NULL || heurdata->lastsolindex == SCIPsolGetIndex(bestsol) )
      return SCIP_OKAY;

   /* reset the timing mask to its default value (at the root node it could be different) */
   if( SCIPgetNNodes(scip) > 1 )
      SCIPheurSetTimingmask(heur, HEUR_TIMING);

   /* get problem variables */
   SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, &nbinvars, &nintvars, NULL, NULL) );
   nintvars += nbinvars;

   /* do not run if there are no discrete variables */
   if( nintvars == 0 )
   {
      *result = SCIP_DIDNOTRUN;
      return SCIP_OKAY;
   }

   if( heurtiming == SCIP_HEURTIMING_BEFOREPRESOL )
   {
      SCIP*                 subscip;            /* the subproblem created by zeroobj              */
      SCIP_HASHMAP*         varmapfw;           /* mapping of SCIP variables to sub-SCIP variables */
      SCIP_VAR**            subvars;            /* subproblem's variables                          */
      SCIP_Real* subsolvals;                    /* solution values of the subproblem               */

      SCIP_Real timelimit;                      /* time limit for zeroobj subproblem              */
      SCIP_Real memorylimit;                    /* memory limit for zeroobj subproblem            */

      SCIP_SOL* startsol;
      SCIP_SOL** subsols;
      int nsubsols;

      if( !heurdata->beforepresol )
         return SCIP_OKAY;

      /* check whether there is enough time and memory left */
      timelimit = 0.0;
      memorylimit = 0.0;
      SCIP_CALL( SCIPgetRealParam(scip, "limits/time", &timelimit) );
      if( !SCIPisInfinity(scip, timelimit) )
         timelimit -= SCIPgetSolvingTime(scip);
      SCIP_CALL( SCIPgetRealParam(scip, "limits/memory", &memorylimit) );

      /* substract the memory already used by the main SCIP and the estimated memory usage of external software */
      if( !SCIPisInfinity(scip, memorylimit) )
      {
         memorylimit -= SCIPgetMemUsed(scip)/1048576.0;
         memorylimit -= SCIPgetMemExternEstim(scip)/1048576.0;
      }

      /* abort if no time is left or not enough memory to create a copy of SCIP, including external memory usage */
      if( timelimit <= 0.0 || memorylimit <= 2.0*SCIPgetMemExternEstim(scip)/1048576.0 )
         return SCIP_OKAY;

      /* initialize the subproblem */
      SCIP_CALL( SCIPcreate(&subscip) );

      /* create the variable mapping hash map */
      SCIP_CALL( SCIPhashmapCreate(&varmapfw, SCIPblkmem(subscip), SCIPcalcHashtableSize(5 * nvars)) );
      SCIP_CALL( SCIPallocBufferArray(scip, &subvars, nvars) );

      /* copy complete SCIP instance */
      valid = FALSE;
      SCIP_CALL( SCIPcopy(scip, subscip, varmapfw, NULL, "oneopt", TRUE, FALSE, TRUE, &valid) );
      SCIP_CALL( SCIPtransformProb(subscip) );

      /* get variable image */
      for( i = 0; i < nvars; i++ )
         subvars[i] = (SCIP_VAR*) SCIPhashmapGetImage(varmapfw, vars[i]);

      /* copy the solution */
      SCIP_CALL( SCIPallocBufferArray(scip, &subsolvals, nvars) );
      SCIP_CALL( SCIPgetSolVals(scip, bestsol, nvars, vars, subsolvals) );

      /* create start solution for the subproblem */
      SCIP_CALL( SCIPcreateOrigSol(subscip, &startsol, NULL) );
      SCIP_CALL( SCIPsetSolVals(subscip, startsol, nvars, subvars, subsolvals) );

      /* try to add new solution to sub-SCIP and free it immediately */
      valid = FALSE;
      SCIP_CALL( SCIPtrySolFree(subscip, &startsol, FALSE, FALSE, FALSE, FALSE, &valid) );
      SCIPfreeBufferArray(scip, &subsolvals);
      SCIPhashmapFree(&varmapfw);

      /* disable statistic timing inside sub SCIP */
      SCIP_CALL( SCIPsetBoolParam(subscip, "timing/statistictiming", FALSE) );

      /* deactivate basically everything except oneopt in the sub-SCIP */
      SCIP_CALL( SCIPsetPresolving(subscip, SCIP_PARAMSETTING_OFF, TRUE) );
      SCIP_CALL( SCIPsetHeuristics(subscip, SCIP_PARAMSETTING_OFF, TRUE) );
      SCIP_CALL( SCIPsetSeparating(subscip, SCIP_PARAMSETTING_OFF, TRUE) );
      SCIP_CALL( SCIPsetLongintParam(subscip, "limits/nodes", 1LL) );
      SCIP_CALL( SCIPsetRealParam(subscip, "limits/time", timelimit) );
      SCIP_CALL( SCIPsetRealParam(subscip, "limits/memory", memorylimit) );
      SCIP_CALL( SCIPsetBoolParam(subscip, "misc/catchctrlc", FALSE) );
      SCIP_CALL( SCIPsetIntParam(subscip, "display/verblevel", 0) );

      /* if necessary, some of the parameters have to be unfixed first */
      if( SCIPisParamFixed(subscip, "lp/solvefreq") )
      {
         SCIPwarningMessage(scip, "unfixing parameter lp/solvefreq in subscip of oneopt heuristic\n");
         SCIP_CALL( SCIPunfixParam(subscip, "lp/solvefreq") );
      }
      SCIP_CALL( SCIPsetIntParam(subscip, "lp/solvefreq", -1) );

      if( SCIPisParamFixed(subscip, "heuristics/oneopt/freq") )
      {
         SCIPwarningMessage(scip, "unfixing parameter heuristics/oneopt/freq in subscip of oneopt heuristic\n");
         SCIP_CALL( SCIPunfixParam(subscip, "heuristics/oneopt/freq") );
      }
      SCIP_CALL( SCIPsetIntParam(subscip, "heuristics/oneopt/freq", 1) );

      if( SCIPisParamFixed(subscip, "heuristics/oneopt/forcelpconstruction") )
      {
         SCIPwarningMessage(scip, "unfixing parameter heuristics/oneopt/forcelpconstruction in subscip of oneopt heuristic\n");
         SCIP_CALL( SCIPunfixParam(subscip, "heuristics/oneopt/forcelpconstruction") );
      }
      SCIP_CALL( SCIPsetBoolParam(subscip, "heuristics/oneopt/forcelpconstruction", TRUE) );

      /* avoid recursive call, which would lead to an endless loop */
      if( SCIPisParamFixed(subscip, "heuristics/oneopt/beforepresol") )
      {
         SCIPwarningMessage(scip, "unfixing parameter heuristics/oneopt/beforepresol in subscip of oneopt heuristic\n");
         SCIP_CALL( SCIPunfixParam(subscip, "heuristics/oneopt/beforepresol") );
      }
      SCIP_CALL( SCIPsetBoolParam(subscip, "heuristics/oneopt/beforepresol", FALSE) );

      if( valid )
      {
         retcode = SCIPsolve(subscip);

         /* errors in solving the subproblem should not kill the overall solving process;
          * hence, the return code is caught and a warning is printed, only in debug mode, SCIP will stop.
          */
         if( retcode != SCIP_OKAY )
         {
#ifndef NDEBUG
            SCIP_CALL( retcode );
#endif
            SCIPwarningMessage(scip, "Error while solving subproblem in zeroobj heuristic; sub-SCIP terminated with code <%d>\n",retcode);
         }

#ifdef SCIP_DEBUG
         SCIP_CALL( SCIPprintStatistics(subscip, NULL) );
#endif
      }

      /* check, whether a solution was found;
       * due to numerics, it might happen that not all solutions are feasible -> try all solutions until one was accepted
       */
      nsubsols = SCIPgetNSols(subscip);
      subsols = SCIPgetSols(subscip);
      valid = FALSE;
      for( i = 0; i < nsubsols && !valid; ++i )
      {
         SCIP_CALL( createNewSol(scip, subscip, subvars, heur, subsols[i], &valid) );
         if( valid )
            *result = SCIP_FOUNDSOL;
      }

      /* free subproblem */
      SCIPfreeBufferArray(scip, &subvars);
      SCIP_CALL( SCIPfree(&subscip) );

      return SCIP_OKAY;
   }

   /* we can only work on solutions valid in the transformed space */
   if( SCIPsolIsOriginal(bestsol) )
      return SCIP_OKAY;

   if( heurtiming == SCIP_HEURTIMING_BEFORENODE && (SCIPhasCurrentNodeLP(scip) || heurdata->forcelpconstruction) )
   {
      SCIP_Bool cutoff;
      cutoff = FALSE;
      SCIP_CALL( SCIPconstructLP(scip, &cutoff) );
      SCIP_CALL( SCIPflushLP(scip) );

      /* get problem variables again, SCIPconstructLP() might have added new variables */
      SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, &nbinvars, &nintvars, NULL, NULL) );
      nintvars += nbinvars;
   }

   /* we need an LP */
   if( SCIPgetNLPRows(scip) == 0 )
      return SCIP_OKAY;

   *result = SCIP_DIDNOTFIND;

   nchgbound = 0;

   /* initialize data */
   nshiftcands = 0;
   shiftcandssize = 8;
   heurdata->lastsolindex = SCIPsolGetIndex(bestsol);
   SCIP_CALL( SCIPcreateSolCopy(scip, &worksol, bestsol) );
   SCIPsolSetHeur(worksol,heur);

   SCIPdebugMessage("Starting bound adjustment in 1-opt heuristic\n");

   /* maybe change solution values due to global bound changes first */
   for( i = nvars - 1; i >= 0; --i )
   {
      SCIP_VAR* var;
      SCIP_Real solval;

      var = vars[i];
      lb = SCIPvarGetLbGlobal(var);
      ub = SCIPvarGetUbGlobal(var);

      solval = SCIPgetSolVal(scip, bestsol,var);
      /* old solution value is smaller than the actual lower bound */
      if( SCIPisFeasLT(scip, solval, lb) )
      {
         /* set the solution value to the global lower bound */
         SCIP_CALL( SCIPsetSolVal(scip, worksol, var, lb) );
         ++nchgbound;
         SCIPdebugMessage("var <%s> type %d, old solval %g now fixed to lb %g\n", SCIPvarGetName(var), SCIPvarGetType(var), solval, lb);
      }
      /* old solution value is greater than the actual upper bound */
      else if( SCIPisFeasGT(scip, solval, SCIPvarGetUbGlobal(var)) )
      {
         /* set the solution value to the global upper bound */
         SCIP_CALL( SCIPsetSolVal(scip, worksol, var, ub) );
         ++nchgbound;
         SCIPdebugMessage("var <%s> type %d, old solval %g now fixed to ub %g\n", SCIPvarGetName(var), SCIPvarGetType(var), solval, ub);
      }
   }

   SCIPdebugMessage("number of bound changes (due to global bounds) = %d\n", nchgbound);
   SCIP_CALL( SCIPgetLPRowsData(scip, &lprows, &nlprows) );
   SCIP_CALL( SCIPallocBufferArray(scip, &activities, nlprows) );

   localrows = FALSE;
   valid = TRUE;

   /* initialize activities */
   for( i = 0; i < nlprows; ++i )
   {
      SCIP_ROW* row;

      row = lprows[i];
      assert(SCIProwGetLPPos(row) == i);

      if( !SCIProwIsLocal(row) )
      {
         activities[i] = SCIPgetRowSolActivity(scip, row, worksol);
         SCIPdebugMessage("Row <%s> has activity %g\n", SCIProwGetName(row), activities[i]);
         if( SCIPisFeasLT(scip, activities[i], SCIProwGetLhs(row)) || SCIPisFeasGT(scip, activities[i], SCIProwGetRhs(row)) )
         {
            valid = FALSE;
            SCIPdebug( SCIP_CALL( SCIPprintRow(scip, row, NULL) ) );
            SCIPdebugMessage("row <%s> activity %g violates bounds, lhs = %g, rhs = %g\n", SCIProwGetName(row), activities[i], SCIProwGetLhs(row), SCIProwGetRhs(row));
            break;
         }
      }
      else
         localrows = TRUE;
   }

   if( !valid )
   {
      /** @todo try to correct lp rows */
      SCIPdebugMessage("Some global bound changes were not valid in lp rows.\n");
      goto TERMINATE;
   }

   SCIP_CALL( SCIPallocBufferArray(scip, &shiftcands, shiftcandssize) );
   SCIP_CALL( SCIPallocBufferArray(scip, &shiftvals, shiftcandssize) );


   SCIPdebugMessage("Starting 1-opt heuristic\n");

   /* enumerate all integer variables and find out which of them are shiftable */
   for( i = 0; i < nintvars; i++ )
   {
      if( SCIPvarGetStatus(vars[i]) == SCIP_VARSTATUS_COLUMN )
      {
         SCIP_Real shiftval;
         SCIP_Real solval;

         /* find out whether the variable can be shifted */
         solval = SCIPgetSolVal(scip, worksol, vars[i]);
         shiftval = calcShiftVal(scip, vars[i], solval, activities);

         /* insert the variable into the list of shifting candidates */
         if( !SCIPisFeasZero(scip, shiftval) )
         {
            SCIPdebugMessage(" -> Variable <%s> can be shifted by <%1.1f> \n", SCIPvarGetName(vars[i]), shiftval);

            if( nshiftcands == shiftcandssize)
            {
               shiftcandssize *= 8;
               SCIP_CALL( SCIPreallocBufferArray(scip, &shiftcands, shiftcandssize) );
               SCIP_CALL( SCIPreallocBufferArray(scip, &shiftvals, shiftcandssize) );
            }
            shiftcands[nshiftcands] = vars[i];
            shiftvals[nshiftcands] = shiftval;
            nshiftcands++;
         }
      }
   }

   /* if at least one variable can be shifted, shift variables sorted by their objective */
   if( nshiftcands > 0 )
   {
      SCIP_Real shiftval;
      SCIP_Real solval;
      SCIP_VAR* var;

      /* the case that exactly one variable can be shifted is slightly easier */
      if( nshiftcands == 1 )
      {
         var = shiftcands[0];
         assert(var != NULL);
         solval = SCIPgetSolVal(scip, worksol, var);
         shiftval = shiftvals[0];
         assert(!SCIPisFeasZero(scip,shiftval));
         SCIPdebugMessage(" Only one shiftcand found, var <%s>, which is now shifted by<%1.1f> \n",
            SCIPvarGetName(var), shiftval);
         SCIP_CALL( SCIPsetSolVal(scip, worksol, var, solval+shiftval) );
      }
      else
      {
         SCIP_Real* objcoeffs;

         SCIP_CALL( SCIPallocBufferArray(scip, &objcoeffs, nshiftcands) );

         SCIPdebugMessage(" %d shiftcands found \n", nshiftcands);

         /* sort the variables by their objective, optionally weighted with the shiftval */
         if( heurdata->weightedobj )
         {
            for( i = 0; i < nshiftcands; ++i )
               objcoeffs[i] = SCIPvarGetObj(shiftcands[i])*shiftvals[i];
         }
         else
         {
            for( i = 0; i < nshiftcands; ++i )
               objcoeffs[i] = SCIPvarGetObj(shiftcands[i]);
         }

         /* sort arrays with respect to the first one */
         SCIPsortRealPtr(objcoeffs, (void**)shiftcands, nshiftcands);

         /* try to shift each variable -> Activities have to be updated */
         for( i = 0; i < nshiftcands; ++i )
         {
            var = shiftcands[i];
            assert(var != NULL);
            solval = SCIPgetSolVal(scip, worksol, var);
            shiftval = calcShiftVal(scip, var, solval, activities);
            SCIPdebugMessage(" -> Variable <%s> is now shifted by <%1.1f> \n", SCIPvarGetName(vars[i]), shiftval);
            assert(i > 0 || !SCIPisFeasZero(scip, shiftval));
            assert(SCIPisFeasGE(scip, solval+shiftval, SCIPvarGetLbGlobal(var)) && SCIPisFeasLE(scip, solval+shiftval, SCIPvarGetUbGlobal(var)));
            SCIP_CALL( SCIPsetSolVal(scip, worksol, var, solval+shiftval) );
            SCIP_CALL( updateRowActivities(scip, activities, var, shiftval) );
         }

         SCIPfreeBufferArray(scip, &objcoeffs);
      }

      /* if the problem is a pure IP, try to install the solution, if it is a MIP, solve LP again to set the continuous
       * variables to the best possible value
       */
      if( nvars == nintvars || !SCIPhasCurrentNodeLP(scip) || SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL )
      {
         SCIP_Bool success;

         /* since we ignore local rows, we cannot guarantee their feasibility and have to set the checklprows flag to
          * TRUE if local rows are present
          */
         SCIP_CALL( SCIPtrySol(scip, worksol, FALSE, FALSE, FALSE, localrows, &success) );

         if( success )
         {
            SCIPdebugMessage("found feasible shifted solution:\n");
            SCIPdebug( SCIP_CALL( SCIPprintSol(scip, worksol, NULL, FALSE) ) );
            heurdata->lastsolindex = SCIPsolGetIndex(bestsol);
            *result = SCIP_FOUNDSOL;
         }
      }
      else
      {
         SCIP_Bool lperror;
#ifdef NDEBUG
         SCIP_RETCODE retstat;
#endif

         SCIPdebugMessage("shifted solution should be feasible -> solve LP to fix continuous variables to best values\n");

         /* start diving to calculate the LP relaxation */
         SCIP_CALL( SCIPstartDive(scip) );

         /* set the bounds of the variables: fixed for integers, global bounds for continuous */
         for( i = 0; i < nvars; ++i )
         {
            if( SCIPvarGetStatus(vars[i]) == SCIP_VARSTATUS_COLUMN )
            {
               SCIP_CALL( SCIPchgVarLbDive(scip, vars[i], SCIPvarGetLbGlobal(vars[i])) );
               SCIP_CALL( SCIPchgVarUbDive(scip, vars[i], SCIPvarGetUbGlobal(vars[i])) );
            }
         }
         /* apply this after global bounds to not cause an error with intermediate empty domains */
         for( i = 0; i < nintvars; ++i )
         {
            if( SCIPvarGetStatus(vars[i]) == SCIP_VARSTATUS_COLUMN )
            {
               solval = SCIPgetSolVal(scip, worksol, vars[i]);
               SCIP_CALL( SCIPchgVarLbDive(scip, vars[i], solval) );
               SCIP_CALL( SCIPchgVarUbDive(scip, vars[i], solval) );
            }
         }

         /* solve LP */
         SCIPdebugMessage(" -> old LP iterations: %" SCIP_LONGINT_FORMAT "\n", SCIPgetNLPIterations(scip));

         /**@todo in case of an MINLP, if SCIPisNLPConstructed() is TRUE, say, rather solve the NLP instead of the LP */
         /* Errors in the LP solver should not kill the overall solving process, if the LP is just needed for a heuristic.
          * Hence in optimized mode, the return code is caught and a warning is printed, only in debug mode, SCIP will stop.
          */
#ifdef NDEBUG
         retstat = SCIPsolveDiveLP(scip, -1, &lperror, NULL);
         if( retstat != SCIP_OKAY )
         { 
            SCIPwarningMessage(scip, "Error while solving LP in Oneopt heuristic; LP solve terminated with code <%d>\n",retstat);
         }
#else
         SCIP_CALL( SCIPsolveDiveLP(scip, -1, &lperror, NULL) );
#endif

         SCIPdebugMessage(" -> new LP iterations: %" SCIP_LONGINT_FORMAT "\n", SCIPgetNLPIterations(scip));
         SCIPdebugMessage(" -> error=%u, status=%d\n", lperror, SCIPgetLPSolstat(scip));

         /* check if this is a feasible solution */
         if( !lperror && SCIPgetLPSolstat(scip) == SCIP_LPSOLSTAT_OPTIMAL )
         {
            SCIP_Bool success;

            /* copy the current LP solution to the working solution */
            SCIP_CALL( SCIPlinkLPSol(scip, worksol) );
            SCIP_CALL( SCIPtrySol(scip, worksol, FALSE, FALSE, FALSE, FALSE, &success) );

            /* check solution for feasibility */
            if( success )
            {
               SCIPdebugMessage("found feasible shifted solution:\n");
               SCIPdebug( SCIP_CALL( SCIPprintSol(scip, worksol, NULL, FALSE) ) );
               heurdata->lastsolindex = SCIPsolGetIndex(bestsol);
               *result = SCIP_FOUNDSOL;
            }
         }

         /* terminate the diving */
         SCIP_CALL( SCIPendDive(scip) );
      }
   }
   SCIPdebugMessage("Finished 1-opt heuristic\n");

   SCIPfreeBufferArray(scip, &shiftvals);
   SCIPfreeBufferArray(scip, &shiftcands);

 TERMINATE:
   SCIPfreeBufferArray(scip, &activities);
   SCIP_CALL( SCIPfreeSol(scip, &worksol) );

   return SCIP_OKAY;
}
Ejemplo n.º 7
0
/** compute value by which the solution of variable @p var can be shifted */
static
SCIP_Real calcShiftVal(
   SCIP*                 scip,               /**< SCIP data structure */
   SCIP_VAR*             var,                /**< variable that should be shifted */
   SCIP_Real             solval,             /**< current solution value */
   SCIP_Real*            activities          /**< LP row activities */
   )
{
   SCIP_Real lb;
   SCIP_Real ub;
   SCIP_Real obj;
   SCIP_Real shiftval;

   SCIP_COL* col;
   SCIP_ROW** colrows;
   SCIP_Real* colvals;
   SCIP_Bool shiftdown;

   int ncolrows;
   int i;


   /* get variable's solution value, global bounds and objective coefficient */
   lb = SCIPvarGetLbGlobal(var);
   ub = SCIPvarGetUbGlobal(var);
   obj = SCIPvarGetObj(var);
   shiftval = 0.0;
   shiftdown = TRUE;

   /* determine shifting direction and maximal possible shifting w.r.t. corresponding bound */
   if( obj > 0.0 && SCIPisFeasGE(scip, solval - 1.0, lb) )
      shiftval = SCIPfeasFloor(scip, solval - lb);
   else if( obj < 0.0 && SCIPisFeasLE(scip, solval + 1.0, ub) )
   {
      shiftval = SCIPfeasFloor(scip, ub - solval);
      shiftdown = FALSE;
   }
   else
      return 0.0;


   SCIPdebugMessage("Try to shift %s variable <%s> with\n", shiftdown ? "down" : "up", SCIPvarGetName(var) );
   SCIPdebugMessage("    lb:<%g> <= val:<%g> <= ub:<%g> and obj:<%g> by at most: <%g>\n", lb, solval, ub, obj, shiftval);

   /* get data of LP column */
   col = SCIPvarGetCol(var);
   colrows = SCIPcolGetRows(col);
   colvals = SCIPcolGetVals(col);
   ncolrows = SCIPcolGetNLPNonz(col);

   assert(ncolrows == 0 || (colrows != NULL && colvals != NULL));

   /* find minimal shift value, st. all rows stay valid */
   for( i = 0; i < ncolrows && shiftval > 0.0; ++i )
   {
      SCIP_ROW* row;
      int rowpos;

      row = colrows[i];
      rowpos = SCIProwGetLPPos(row);
      assert(-1 <= rowpos && rowpos < SCIPgetNLPRows(scip) );

      /* only global rows need to be valid */
      if( rowpos >= 0 && !SCIProwIsLocal(row) )
      {
         SCIP_Real shiftvalrow;

         assert(SCIProwIsInLP(row));

         if( shiftdown == (colvals[i] > 0) )
            shiftvalrow = SCIPfeasFloor(scip, (activities[rowpos] - SCIProwGetLhs(row)) / ABS(colvals[i]));
         else
            shiftvalrow = SCIPfeasFloor(scip, (SCIProwGetRhs(row) -  activities[rowpos]) / ABS(colvals[i]));
#ifdef SCIP_DEBUG
         if( shiftvalrow < shiftval )
         {
            SCIPdebugMessage(" -> The shift value had to be reduced to <%g>, because of row <%s>.\n",
               shiftvalrow, SCIProwGetName(row));
            SCIPdebugMessage("    lhs:<%g> <= act:<%g> <= rhs:<%g>, colval:<%g>\n",
               SCIProwGetLhs(row), activities[rowpos], SCIProwGetRhs(row), colvals[i]);
         }
#endif
         shiftval = MIN(shiftval, shiftvalrow);
         /* shiftvalrow might be negative, if we detected infeasibility -> make sure that shiftval is >= 0 */
         shiftval = MAX(shiftval, 0.0);
      }
   }
   if( shiftdown )
      shiftval *= -1.0;

   /* we must not shift variables to infinity */
   if( SCIPisInfinity(scip, solval + shiftval) )
      shiftval = 0.0;

   return shiftval;
}
Ejemplo n.º 8
0
/** checks whether given row is valid for the debugging solution */
SCIP_RETCODE SCIPdebugCheckRow(
   SCIP_SET*             set,                /**< global SCIP settings */
   SCIP_ROW*             row                 /**< row to check for validity */
   )
{
   SCIP_COL** cols;
   SCIP_Real* vals;
   SCIP_Real lhs;
   SCIP_Real rhs;
   int nnonz;
   int i;
   SCIP_Real minactivity;
   SCIP_Real maxactivity;
   SCIP_Real solval;

   assert(set != NULL);
   assert(row != NULL);

   /* check if we are in the original problem and not in a sub MIP */
   if( !isSolutionInMip(set) )
      return SCIP_OKAY;

   /* check if the incumbent solution is at least as good as the debug solution, so we can stop to check the debug solution */
   if( debugSolIsAchieved(set) )
      return SCIP_OKAY;

   /* if the row is only locally valid, check whether the debugging solution is contained in the local subproblem */
   if( SCIProwIsLocal(row) )
   {
      SCIP_Bool solcontained;

      SCIP_CALL( isSolutionInNode(SCIPblkmem(set->scip), set, SCIPgetCurrentNode(set->scip), &solcontained) );
      if( !solcontained )
         return SCIP_OKAY;
   }

   cols = SCIProwGetCols(row);
   vals = SCIProwGetVals(row);
   nnonz = SCIProwGetNNonz(row);
   lhs = SCIProwGetLhs(row);
   rhs = SCIProwGetRhs(row);

   /* calculate row's activity on debugging solution */
   minactivity = SCIProwGetConstant(row);
   maxactivity = minactivity;
   for( i = 0; i < nnonz; ++i )
   {
      SCIP_VAR* var;

      /* get solution value of variable in debugging solution */
      var = SCIPcolGetVar(cols[i]);
      SCIP_CALL( getSolutionValue(set, var, &solval) );

      if( solval != SCIP_UNKNOWN ) /*lint !e777*/
      {
         minactivity += vals[i] * solval;
         maxactivity += vals[i] * solval;
      }
      else if( vals[i] > 0.0 )
      {
         minactivity += vals[i] * SCIPvarGetLbGlobal(var);
         maxactivity += vals[i] * SCIPvarGetUbGlobal(var);
      }
      else if( vals[i] < 0.0 )
      {
         minactivity += vals[i] * SCIPvarGetUbGlobal(var);
         maxactivity += vals[i] * SCIPvarGetLbGlobal(var);
      }
   }
   SCIPdebugMessage("debugging solution on row <%s>: %g <= [%g,%g] <= %g\n",
      SCIProwGetName(row), lhs, minactivity, maxactivity, rhs);

   /* check row for violation */
   if( SCIPsetIsFeasLT(set, maxactivity, lhs) || SCIPsetIsFeasGT(set, minactivity, rhs) )
   {
      printf("***** debug: row <%s> violates debugging solution (lhs=%.15g, rhs=%.15g, activity=[%.15g,%.15g], local=%d)\n",
         SCIProwGetName(row), lhs, rhs, minactivity, maxactivity, SCIProwIsLocal(row));
      SCIProwPrint(row, NULL);

      /* output row with solution values */
      printf("\n\n");
      printf("***** debug: violated row <%s>:\n", SCIProwGetName(row));
      printf(" %.15g <= %.15g", lhs, SCIProwGetConstant(row));
      for( i = 0; i < nnonz; ++i )
      {
         /* get solution value of variable in debugging solution */
         SCIP_CALL( getSolutionValue(set, SCIPcolGetVar(cols[i]), &solval) );
         printf(" %+.15g<%s>[%.15g]", vals[i], SCIPvarGetName(SCIPcolGetVar(cols[i])), solval);
      }
      printf(" <= %.15g\n", rhs);

      SCIPABORT();
   }

   return SCIP_OKAY;
}
Ejemplo n.º 9
0
/** execution method of primal heuristic */
static
SCIP_DECL_HEUREXEC(heurExecZirounding)
{  /*lint --e{715}*/
   SCIP_HEURDATA*     heurdata;
   SCIP_SOL*          sol;
   SCIP_VAR**         lpcands;
   SCIP_VAR**         zilpcands;

   SCIP_VAR**         slackvars;
   SCIP_Real*         upslacks;
   SCIP_Real*         downslacks;
   SCIP_Real*         activities;
   SCIP_Real*         slackvarcoeffs;
   SCIP_Bool*         rowneedsslackvar;

   SCIP_ROW**         rows;
   SCIP_Real*         lpcandssol;
   SCIP_Real*         solarray;

   SCIP_Longint       nlps;
   int                currentlpcands;
   int                nlpcands;
   int                nimplfracs;
   int                i;
   int                c;
   int                nslacks;
   int                nroundings;

   SCIP_RETCODE       retcode;

   SCIP_Bool          improvementfound;
   SCIP_Bool          numericalerror;

   assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0);
   assert(result != NULL);
   assert(SCIPhasCurrentNodeLP(scip));

   *result = SCIP_DIDNOTRUN;

   /* do not call heuristic of node was already detected to be infeasible */
   if( nodeinfeasible )
      return SCIP_OKAY;

   /* only call heuristic if an optimal LP-solution is at hand */
   if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL )
      return SCIP_OKAY;

   /* only call heuristic, if the LP objective value is smaller than the cutoff bound */
   if( SCIPisGE(scip, SCIPgetLPObjval(scip), SCIPgetCutoffbound(scip)) )
      return SCIP_OKAY;

   /* get heuristic data */
   heurdata = SCIPheurGetData(heur);
   assert(heurdata != NULL);

   /* Do not call heuristic if deactivation check is enabled and percentage of found solutions in relation
    * to number of calls falls below heurdata->stoppercentage */
   if( heurdata->stopziround && SCIPheurGetNCalls(heur) >= heurdata->minstopncalls
      && SCIPheurGetNSolsFound(heur)/(SCIP_Real)SCIPheurGetNCalls(heur) < heurdata->stoppercentage )
      return SCIP_OKAY;

   /* assure that heuristic has not already been called after the last LP had been solved */
   nlps = SCIPgetNLPs(scip);
   if( nlps == heurdata->lastlp )
      return SCIP_OKAY;

   heurdata->lastlp = nlps;

   /* get fractional variables */
   SCIP_CALL( SCIPgetLPBranchCands(scip, &lpcands, &lpcandssol, NULL, &nlpcands, NULL, &nimplfracs) );
   nlpcands = nlpcands + nimplfracs;
   /* make sure that there is at least one fractional variable that should be integral */
   if( nlpcands == 0 )
      return SCIP_OKAY;

   assert(nlpcands > 0);
   assert(lpcands != NULL);
   assert(lpcandssol != NULL);

   /* get LP rows data */
   rows    = SCIPgetLPRows(scip);
   nslacks = SCIPgetNLPRows(scip);

   /* cannot do anything if LP is empty */
   if( nslacks == 0 )
      return SCIP_OKAY;

   assert(rows != NULL);
   assert(nslacks > 0);

   /* get the working solution from heuristic's local data */
   sol = heurdata->sol;
   assert(sol != NULL);

   *result = SCIP_DIDNOTFIND;

   solarray = NULL;
   zilpcands = NULL;

   retcode = SCIP_OKAY;
   /* copy the current LP solution to the working solution and allocate memory for local data */
   SCIP_CALL( SCIPlinkLPSol(scip, sol) );
   SCIP_CALL_TERMINATE(retcode, SCIPallocBufferArray(scip, &solarray, nlpcands), TERMINATE);
   SCIP_CALL_TERMINATE(retcode, SCIPallocBufferArray(scip, &zilpcands, nlpcands), TERMINATE);

   /* copy necessary data to local arrays */
   BMScopyMemoryArray(solarray, lpcandssol, nlpcands);
   BMScopyMemoryArray(zilpcands, lpcands, nlpcands);

   /* allocate buffer data arrays */
   SCIP_CALL_TERMINATE(retcode, SCIPallocBufferArray(scip, &slackvars, nslacks), TERMINATE);
   SCIP_CALL_TERMINATE(retcode, SCIPallocBufferArray(scip, &upslacks, nslacks), TERMINATE);
   SCIP_CALL_TERMINATE(retcode, SCIPallocBufferArray(scip, &downslacks, nslacks), TERMINATE);
   SCIP_CALL_TERMINATE(retcode, SCIPallocBufferArray(scip, &slackvarcoeffs, nslacks), TERMINATE);
   SCIP_CALL_TERMINATE(retcode, SCIPallocBufferArray(scip, &rowneedsslackvar, nslacks), TERMINATE);
   SCIP_CALL_TERMINATE(retcode, SCIPallocBufferArray(scip, &activities, nslacks), TERMINATE);

   BMSclearMemoryArray(slackvars, nslacks);
   BMSclearMemoryArray(slackvarcoeffs, nslacks);
   BMSclearMemoryArray(rowneedsslackvar, nslacks);

   numericalerror = FALSE;
   nroundings = 0;

   /* loop over fractional variables and involved LP rows to find all rows which require a slack variable */
   for( c = 0; c < nlpcands; ++c )
   {
      SCIP_VAR* cand;
      SCIP_ROW** candrows;
      int r;
      int ncandrows;

      cand = zilpcands[c];
      assert(cand != NULL);
      assert(SCIPcolGetLPPos(SCIPvarGetCol(cand)) >= 0);

      candrows = SCIPcolGetRows(SCIPvarGetCol(cand));
      ncandrows = SCIPcolGetNLPNonz(SCIPvarGetCol(cand));

      assert(candrows == NULL || ncandrows > 0);

      for( r = 0; r < ncandrows; ++r )
      {
         int rowpos;

         assert(candrows != NULL); /* to please flexelint */
         assert(candrows[r] != NULL);
         rowpos = SCIProwGetLPPos(candrows[r]);

         if( rowpos >= 0 && SCIPisFeasEQ(scip, SCIProwGetLhs(candrows[r]), SCIProwGetRhs(candrows[r])) )
         {
            rowneedsslackvar[rowpos] = TRUE;
            SCIPdebugMessage("  Row %s needs slack variable for variable %s\n", SCIProwGetName(candrows[r]), SCIPvarGetName(cand));
         }
      }
   }

   /* calculate row slacks for every every row that belongs to the current LP and ensure, that the current solution
    * has no violated constraint -- if any constraint is violated, i.e. a slack is significantly smaller than zero,
    * this will cause the termination of the heuristic because Zirounding does not provide feasibility recovering
    */
   for( i = 0; i < nslacks; ++i )
   {
      SCIP_ROW*          row;
      SCIP_Real          lhs;
      SCIP_Real          rhs;

      row = rows[i];

      assert(row != NULL);

      lhs = SCIProwGetLhs(row);
      rhs = SCIProwGetRhs(row);

      /* get row activity */
      activities[i] = SCIPgetRowActivity(scip, row);
      assert(SCIPisFeasLE(scip, lhs, activities[i]) && SCIPisFeasLE(scip, activities[i], rhs));

      /* in special case if LHS or RHS is (-)infinity slacks have to be initialized as infinity */
      if( SCIPisInfinity(scip, -lhs) )
         downslacks[i] = SCIPinfinity(scip);
      else
         downslacks[i] = activities[i] - lhs;

      if( SCIPisInfinity(scip, rhs) )
         upslacks[i] = SCIPinfinity(scip);
      else
         upslacks[i] = rhs - activities[i];

      SCIPdebugMessage("lhs:%5.2f <= act:%5.2g <= rhs:%5.2g --> down: %5.2g, up:%5.2g\n", lhs, activities[i], rhs, downslacks[i], upslacks[i]);

      /* row is an equation. Try to find a slack variable in the row, i.e.,
       * a continuous variable which occurs only in this row. If no such variable exists,
       * there is no hope for an IP-feasible solution in this round
       */
      if( SCIPisFeasEQ(scip, lhs, rhs) && rowneedsslackvar[i] )
      {
         /* @todo: This is only necessary for rows containing fractional variables. */
         rowFindSlackVar(scip, row, &(slackvars[i]), &(slackvarcoeffs[i]));

         if( slackvars[i] == NULL )
         {
            SCIPdebugMessage("No slack variable found for equation %s, terminating ZI Round heuristic\n", SCIProwGetName(row));
            goto TERMINATE;
         }
         else
         {
            SCIP_Real ubslackvar;
            SCIP_Real lbslackvar;
            SCIP_Real solvalslackvar;
            SCIP_Real coeffslackvar;
            SCIP_Real ubgap;
            SCIP_Real lbgap;

            assert(SCIPvarGetType(slackvars[i]) == SCIP_VARTYPE_CONTINUOUS);
            solvalslackvar = SCIPgetSolVal(scip, sol, slackvars[i]);
            ubslackvar = SCIPvarGetUbGlobal(slackvars[i]);
            lbslackvar = SCIPvarGetLbGlobal(slackvars[i]);

            coeffslackvar = slackvarcoeffs[i];
            assert(!SCIPisFeasZero(scip, coeffslackvar));

            ubgap = ubslackvar - solvalslackvar;
            lbgap = solvalslackvar - lbslackvar;

            if( SCIPisFeasZero(scip, ubgap) )
              ubgap = 0.0;
            if( SCIPisFeasZero(scip, lbgap) )
              lbgap = 0.0;

            if( SCIPisFeasPositive(scip, coeffslackvar) )
            {
              if( !SCIPisInfinity(scip, lbslackvar) )
                upslacks[i] += coeffslackvar * lbgap;
              else
                upslacks[i] = SCIPinfinity(scip);
              if( !SCIPisInfinity(scip, ubslackvar) )
                downslacks[i] += coeffslackvar * ubgap;
              else
                downslacks[i] = SCIPinfinity(scip);
            }
            else
            {
               if( !SCIPisInfinity(scip, ubslackvar) )
                  upslacks[i] -= coeffslackvar * ubgap;
               else
                  upslacks[i] = SCIPinfinity(scip);
               if( !SCIPisInfinity(scip, lbslackvar) )
                  downslacks[i] -= coeffslackvar * lbgap;
               else
                  downslacks[i] = SCIPinfinity(scip);
            }
            SCIPdebugMessage("  Slack variable for row %s at pos %d: %g <= %s = %g <= %g; Coeff %g, upslack = %g, downslack = %g  \n",
               SCIProwGetName(row), SCIProwGetLPPos(row), lbslackvar, SCIPvarGetName(slackvars[i]), solvalslackvar, ubslackvar, coeffslackvar,
               upslacks[i], downslacks[i]);
         }
      }
      /* due to numerical inaccuracies, the rows might be feasible, even if the slacks are
       * significantly smaller than zero -> terminate
       */
      if( SCIPisFeasLT(scip, upslacks[i], 0.0) || SCIPisFeasLT(scip, downslacks[i], 0.0) )
         goto TERMINATE;
   }

   assert(nslacks == 0 || (upslacks != NULL && downslacks != NULL && activities != NULL));

   /* initialize number of remaining variables and flag to enter the main loop */
   currentlpcands = nlpcands;
   improvementfound = TRUE;

   /* iterate over variables as long as there are fractional variables left */
   while( currentlpcands > 0 && improvementfound && (heurdata->maxroundingloops == -1 || nroundings < heurdata->maxroundingloops) )
   {  /*lint --e{850}*/
      improvementfound = FALSE;
      nroundings++;
      SCIPdebugMessage("zirounding enters while loop for %d time with %d candidates left. \n", nroundings, currentlpcands);

      /* check for every remaining fractional variable if a shifting decreases ZI-value of the variable */
      for( c = 0; c < currentlpcands; ++c )
      {
         SCIP_VAR* var;
         SCIP_Real oldsolval;
         SCIP_Real upperbound;
         SCIP_Real lowerbound;
         SCIP_Real up;
         SCIP_Real down;
         SCIP_Real ziup;
         SCIP_Real zidown;
         SCIP_Real zicurrent;
         SCIP_Real shiftval;

         DIRECTION direction;

         /* get values from local data */
         oldsolval = solarray[c];
         var = zilpcands[c];

         assert(!SCIPisFeasIntegral(scip, oldsolval));
         assert(SCIPvarGetStatus(var) == SCIP_VARSTATUS_COLUMN);

         /* calculate bounds for variable and make sure that there are no numerical inconsistencies */
         upperbound = SCIPinfinity(scip);
         lowerbound = SCIPinfinity(scip);
         calculateBounds(scip, var, oldsolval, &upperbound, &lowerbound, upslacks, downslacks, nslacks, &numericalerror);

         if( numericalerror )
            goto TERMINATE;

         /* calculate the possible values after shifting */
         up   = oldsolval + upperbound;
         down = oldsolval - lowerbound;

         /* if the variable is integer or implicit binary, do not shift further than the nearest integer */
         if( SCIPvarGetType(var) != SCIP_VARTYPE_BINARY)
         {
            SCIP_Real ceilx;
            SCIP_Real floorx;

            ceilx = SCIPfeasCeil(scip, oldsolval);
            floorx = SCIPfeasFloor(scip, oldsolval);
            up   = MIN(up, ceilx);
            down = MAX(down, floorx);
         }

         /* calculate necessary values */
         ziup      = getZiValue(scip, up);
         zidown    = getZiValue(scip, down);
         zicurrent = getZiValue(scip, oldsolval);

         /* calculate the shifting direction that reduces ZI-value the most,
          * if both directions improve ZI-value equally, take the direction which improves the objective
          */
         if( SCIPisFeasLT(scip, zidown, zicurrent) || SCIPisFeasLT(scip, ziup, zicurrent) )
         {
            if( SCIPisFeasEQ(scip,ziup, zidown) )
               direction  = SCIPisFeasGE(scip, SCIPvarGetObj(var), 0.0) ? DIRECTION_DOWN : DIRECTION_UP;
            else if( SCIPisFeasLT(scip, zidown, ziup) )
               direction = DIRECTION_DOWN;
            else
               direction = DIRECTION_UP;

            /* once a possible shifting direction and value have been found, variable value is updated */
            shiftval = (direction == DIRECTION_UP ? up - oldsolval : down - oldsolval);

            /* this improves numerical stability in some cases */
            if( direction == DIRECTION_UP )
               shiftval = MIN(shiftval, upperbound);
            else
               shiftval = MIN(shiftval, lowerbound);
            /* update the solution */
            solarray[c] = direction == DIRECTION_UP ? up : down;
            SCIP_CALL( SCIPsetSolVal(scip, sol, var, solarray[c]) );

            /* update the rows activities and slacks */
            SCIP_CALL( updateSlacks(scip, sol, var, shiftval, upslacks,
                  downslacks, activities, slackvars, slackvarcoeffs, nslacks) );

            SCIPdebugMessage("zirounding update step : %d var index, oldsolval=%g, shiftval=%g\n",
               SCIPvarGetIndex(var), oldsolval, shiftval);
            /* since at least one improvement has been found, heuristic will enter main loop for another time because the improvement
             * might affect many LP rows and their current slacks and thus make further rounding steps possible */
            improvementfound = TRUE;
         }

         /* if solution value of variable has become feasibly integral due to rounding step,
          * variable is put at the end of remaining candidates array so as not to be considered in future loops
          */
         if( SCIPisFeasIntegral(scip, solarray[c]) )
         {
            zilpcands[c] = zilpcands[currentlpcands - 1];
            solarray[c] = solarray[currentlpcands - 1];
            currentlpcands--;

            /* counter is decreased if end of candidates array has not been reached yet */
            if( c < currentlpcands )
               c--;
         }
         else if( nroundings == heurdata->maxroundingloops - 1 )
            goto TERMINATE;
      }
   }

   /* in case that no candidate is left for rounding after the final main loop
    * the found solution has to be checked for feasibility in the original problem
    */
   if( currentlpcands == 0 )
   {
      SCIP_Bool stored;
      SCIP_CALL(SCIPtrySol(scip, sol, FALSE, FALSE, TRUE, FALSE, &stored));
      if( stored )
      {
#ifdef SCIP_DEBUG
         SCIPdebugMessage("found feasible rounded solution:\n");
         SCIP_CALL( SCIPprintSol(scip, sol, NULL, FALSE) );
#endif
         SCIPstatisticMessage("  ZI Round solution value: %g \n", SCIPgetSolOrigObj(scip, sol));

         *result = SCIP_FOUNDSOL;
      }
   }

   /* free memory for all locally allocated data */
 TERMINATE:
   SCIPfreeBufferArrayNull(scip, &activities);
   SCIPfreeBufferArrayNull(scip, &rowneedsslackvar);
   SCIPfreeBufferArrayNull(scip, &slackvarcoeffs);
   SCIPfreeBufferArrayNull(scip, &downslacks);
   SCIPfreeBufferArrayNull(scip, &upslacks);
   SCIPfreeBufferArrayNull(scip, &slackvars);
   SCIPfreeBufferArrayNull(scip, &zilpcands);
   SCIPfreeBufferArrayNull(scip, &solarray);

   return retcode;
}
Ejemplo n.º 10
0
/** calculate the branching score of a variable, depending on the chosen score parameter */
static
SCIP_RETCODE calcBranchScore(
   SCIP*                 scip,               /**< current SCIP */
   SCIP_HEURDATA*        heurdata,           /**< branch rule data */
   SCIP_VAR*             var,                /**< candidate variable */
   SCIP_Real             lpsolval,           /**< current fractional LP-relaxation solution value  */
   SCIP_Real*            upscore,            /**< pointer to store the variable score when branching on it in upward direction */
   SCIP_Real*            downscore,          /**< pointer to store the variable score when branching on it in downward direction */
   char                  scoreparam          /**< the score parameter of this heuristic */
   )
{
   SCIP_COL* varcol;
   SCIP_ROW** colrows;
   SCIP_Real* rowvals;
   SCIP_Real varlb;
   SCIP_Real varub;
   SCIP_Real squaredbounddiff; /* current squared difference of variable bounds (ub - lb)^2 */
   SCIP_Real newub;            /* new upper bound if branching downwards */
   SCIP_Real newlb;            /* new lower bound if branching upwards */
   SCIP_Real squaredbounddiffup; /* squared difference after branching upwards (ub - lb')^2 */
   SCIP_Real squaredbounddiffdown; /* squared difference after branching downwards (ub' - lb)^2 */
   SCIP_Real currentmean;      /* current mean value of variable uniform distribution */
   SCIP_Real meanup;           /* mean value of variable uniform distribution after branching up */
   SCIP_Real meandown;         /* mean value of variable uniform distribution after branching down*/
   SCIP_VARTYPE vartype;
   int ncolrows;
   int i;

   SCIP_Bool onlyactiverows; /* should only rows which are active at the current node be considered? */

   assert(scip != NULL);
   assert(var != NULL);
   assert(upscore != NULL);
   assert(downscore != NULL);
   assert(!SCIPisIntegral(scip, lpsolval) || SCIPvarIsBinary(var));
   assert(SCIPvarGetStatus(var) == SCIP_VARSTATUS_COLUMN);

   varcol = SCIPvarGetCol(var);
   assert(varcol != NULL);

   colrows = SCIPcolGetRows(varcol);
   rowvals = SCIPcolGetVals(varcol);
   ncolrows = SCIPcolGetNNonz(varcol);
   varlb = SCIPvarGetLbLocal(var);
   varub = SCIPvarGetUbLocal(var);
   assert(SCIPisFeasLT(scip, varlb, varub));
   vartype = SCIPvarGetType(var);

   /* calculate mean and variance of variable uniform distribution before and after branching */
   currentmean = 0.0;
   squaredbounddiff = 0.0;
   SCIPvarCalcDistributionParameters(scip, varlb, varub, vartype, &currentmean, &squaredbounddiff);

   /* unfixed binary variables may have an integer solution value in the LP solution, eg, at the presence of indicator constraints */
   if( !SCIPvarIsBinary(var) )
   {
      newlb = SCIPfeasCeil(scip, lpsolval);
      newub = SCIPfeasFloor(scip, lpsolval);
   }
   else
   {
      newlb = 1.0;
      newub = 0.0;
   }


   /* calculate the variable's uniform distribution after branching up and down, respectively. */
   squaredbounddiffup = 0.0;
   meanup = 0.0;
   SCIPvarCalcDistributionParameters(scip, newlb, varub, vartype, &meanup, &squaredbounddiffup);

   /* calculate the distribution mean and variance for a variable with finite lower bound */
   squaredbounddiffdown = 0.0;
   meandown = 0.0;
   SCIPvarCalcDistributionParameters(scip, varlb, newub, vartype, &meandown, &squaredbounddiffdown);

   /* initialize the variable's up and down score */
   *upscore = 0.0;
   *downscore = 0.0;

   onlyactiverows = FALSE;

   /* loop over the variable rows and calculate the up and down score */
   for( i = 0; i < ncolrows; ++i )
   {
      SCIP_ROW* row;
      SCIP_Real changedrowmean;
      SCIP_Real rowmean;
      SCIP_Real rowvariance;
      SCIP_Real changedrowvariance;
      SCIP_Real currentrowprob;
      SCIP_Real newrowprobup;
      SCIP_Real newrowprobdown;
      SCIP_Real squaredcoeff;
      SCIP_Real rowval;
      int rowinfinitiesdown;
      int rowinfinitiesup;
      int rowpos;

      row = colrows[i];
      rowval = rowvals[i];
      assert(row != NULL);

      /* we access the rows by their index */
      rowpos = SCIProwGetIndex(row);

      /* skip non-active rows if the user parameter was set this way */
      if( onlyactiverows && SCIPisSumPositive(scip, SCIPgetRowLPFeasibility(scip, row)) )
         continue;

      /* call method to ensure sufficient data capacity */
      SCIP_CALL( heurdataEnsureArraySize(scip, heurdata, rowpos) );

      /* calculate row activity distribution if this is the first candidate to appear in this row */
      if( heurdata->rowmeans[rowpos] == SCIP_INVALID ) /*lint !e777 doesn't like comparing floats for equality */
      {
         rowCalculateGauss(scip, heurdata, row, &heurdata->rowmeans[rowpos], &heurdata->rowvariances[rowpos],
               &heurdata->rowinfinitiesdown[rowpos], &heurdata->rowinfinitiesup[rowpos]);
      }

      /* retrieve the row distribution parameters from the branch rule data */
      rowmean = heurdata->rowmeans[rowpos];
      rowvariance = heurdata->rowvariances[rowpos];
      rowinfinitiesdown = heurdata->rowinfinitiesdown[rowpos];
      rowinfinitiesup = heurdata->rowinfinitiesup[rowpos];
      assert(!SCIPisNegative(scip, rowvariance));

      currentrowprob = SCIProwCalcProbability(scip, row, rowmean, rowvariance,
            rowinfinitiesdown, rowinfinitiesup);

      /* get variable's current expected contribution to row activity */
      squaredcoeff = SQUARED(rowval);

      /* first, get the probability change for the row if the variable is branched on upwards. The probability
       * can only be affected if the variable upper bound is finite
       */
      if( !SCIPisInfinity(scip, varub) )
      {
         int rowinftiesdownafterbranch;
         int rowinftiesupafterbranch;

         /* calculate how branching would affect the row parameters */
         changedrowmean = rowmean + rowval * (meanup - currentmean);
         changedrowvariance = rowvariance + squaredcoeff * (squaredbounddiffup - squaredbounddiff);
         changedrowvariance = MAX(0.0, changedrowvariance);

         rowinftiesdownafterbranch = rowinfinitiesdown;
         rowinftiesupafterbranch = rowinfinitiesup;

         /* account for changes of the row's infinite bound contributions */
         if( SCIPisInfinity(scip, -varlb) && rowval < 0.0 )
            rowinftiesupafterbranch--;
         if( SCIPisInfinity(scip, -varlb) && rowval > 0.0 )
            rowinftiesdownafterbranch--;

         assert(rowinftiesupafterbranch >= 0);
         assert(rowinftiesdownafterbranch >= 0);
         newrowprobup = SCIProwCalcProbability(scip, row, changedrowmean, changedrowvariance, rowinftiesdownafterbranch,
               rowinftiesupafterbranch);
      }
      else
         newrowprobup = currentrowprob;

      /* do the same for the other branching direction */
      if( !SCIPisInfinity(scip, varlb) )
      {
         int rowinftiesdownafterbranch;
         int rowinftiesupafterbranch;

         changedrowmean = rowmean + rowval * (meandown - currentmean);
         changedrowvariance = rowvariance + squaredcoeff * (squaredbounddiffdown - squaredbounddiff);
         changedrowvariance = MAX(0.0, changedrowvariance);

         rowinftiesdownafterbranch = rowinfinitiesdown;
         rowinftiesupafterbranch = rowinfinitiesup;

         /* account for changes of the row's infinite bound contributions */
         if( SCIPisInfinity(scip, varub) && rowval > 0.0 )
            rowinftiesupafterbranch -= 1;
         if( SCIPisInfinity(scip, varub) && rowval < 0.0 )
            rowinftiesdownafterbranch -= 1;

         assert(rowinftiesdownafterbranch >= 0);
         assert(rowinftiesupafterbranch >= 0);
         newrowprobdown = SCIProwCalcProbability(scip, row, changedrowmean, changedrowvariance, rowinftiesdownafterbranch,
               rowinftiesupafterbranch);
      }
      else
         newrowprobdown = currentrowprob;

      /* update the up and down score depending on the chosen scoring parameter */
      SCIP_CALL( SCIPupdateDistributionScore(scip, currentrowprob, newrowprobup, newrowprobdown, upscore, downscore, scoreparam) );

      SCIPdebugMessage("  Variable %s changes probability of row %s from %g to %g (branch up) or %g;\n",
         SCIPvarGetName(var), SCIProwGetName(row), currentrowprob, newrowprobup, newrowprobdown);
      SCIPdebugMessage("  -->  new variable score: %g (for branching up), %g (for branching down)\n",
         *upscore, *downscore);
   }

   return SCIP_OKAY;
}
Ejemplo n.º 11
0
/** calculates the initial mean and variance of the row activity normal distribution.
 *
 *  The mean value \f$ \mu \f$ is given by \f$ \mu = \sum_i=1^n c_i * (lb_i +ub_i) / 2 \f$ where
 *  \f$n \f$ is the number of variables, and \f$ c_i, lb_i, ub_i \f$ are the variable coefficient and
 *  bounds, respectively. With the same notation, the variance \f$ \sigma^2 \f$ is given by
 *  \f$ \sigma^2 = \sum_i=1^n c_i^2 * \sigma^2_i \f$, with the variance being
 *  \f$ \sigma^2_i = ((ub_i - lb_i + 1)^2 - 1) / 12 \f$ for integer variables and
 *  \f$ \sigma^2_i = (ub_i - lb_i)^2 / 12 \f$ for continuous variables.
 */
static
void rowCalculateGauss(
   SCIP*                 scip,               /**< SCIP data structure */
   SCIP_HEURDATA*        heurdata,           /**< the heuristic rule data */
   SCIP_ROW*             row,                /**< the row for which the gaussian normal distribution has to be calculated */
   SCIP_Real*            mu,                 /**< pointer to store the mean value of the gaussian normal distribution */
   SCIP_Real*            sigma2,             /**< pointer to store the variance value of the gaussian normal distribution */
   int*                  rowinfinitiesdown,  /**< pointer to store the number of variables with infinite bounds to DECREASE activity */
   int*                  rowinfinitiesup     /**< pointer to store the number of variables with infinite bounds to INCREASE activity */
   )
{
   SCIP_COL** rowcols;
   SCIP_Real* rowvals;
   int nrowvals;
   int c;

   assert(scip != NULL);
   assert(row != NULL);
   assert(mu != NULL);
   assert(sigma2 != NULL);
   assert(rowinfinitiesup != NULL);
   assert(rowinfinitiesdown != NULL);

   rowcols = SCIProwGetCols(row);
   rowvals = SCIProwGetVals(row);
   nrowvals = SCIProwGetNNonz(row);

   assert(nrowvals == 0 || rowcols != NULL);
   assert(nrowvals == 0 || rowvals != NULL);

   *mu = SCIProwGetConstant(row);
   *sigma2 = 0.0;
   *rowinfinitiesdown = 0;
   *rowinfinitiesup = 0;

   /* loop over nonzero row coefficients and sum up the variable contributions to mu and sigma2 */
   for( c = 0; c < nrowvals; ++c )
   {
      SCIP_VAR* colvar;
      SCIP_Real colval;
      SCIP_Real colvarlb;
      SCIP_Real colvarub;
      SCIP_Real squarecoeff;
      SCIP_Real varvariance;
      SCIP_Real varmean;
      int varindex;

      assert(rowcols[c] != NULL);
      colvar = SCIPcolGetVar(rowcols[c]);
      assert(colvar != NULL);

      colval = rowvals[c];
      colvarlb = SCIPvarGetLbLocal(colvar);
      colvarub = SCIPvarGetUbLocal(colvar);

      varmean = 0.0;
      varvariance = 0.0;
      varindex = SCIPvarGetProbindex(colvar);
      assert((heurdata->currentlbs[varindex] == SCIP_INVALID)
            == (heurdata->currentubs[varindex] == SCIP_INVALID)); /*lint !e777 doesn't like comparing floats for equality */

      /* variable bounds need to be watched from now on */
      if( heurdata->currentlbs[varindex] == SCIP_INVALID ) /*lint !e777 doesn't like comparing floats for equality */
         heurdataUpdateCurrentBounds(scip, heurdata, colvar);

      assert(!SCIPisInfinity(scip, colvarlb));
      assert(!SCIPisInfinity(scip, -colvarub));
      assert(SCIPisFeasLE(scip, colvarlb, colvarub));

      /* variables with infinite bounds are skipped for the calculation of the variance; they need to
       * be accounted for by the counters for infinite row activity decrease and increase and they
       * are used to shift the row activity mean in case they have one nonzero, but finite bound */
      if( SCIPisInfinity(scip, -colvarlb) || SCIPisInfinity(scip, colvarub) )
      {
         if( SCIPisInfinity(scip, colvarub) )
         {
         /* an infinite upper bound gives the row an infinite maximum activity or minimum activity, if the coefficient is
          * positive or negative, resp.
          */
            if( colval < 0.0 )
               ++(*rowinfinitiesdown);
            else
               ++(*rowinfinitiesup);
         }

         /* an infinite lower bound gives the row an infinite maximum activity or minimum activity, if the coefficient is
          * negative or positive, resp.
          */
         if( SCIPisInfinity(scip, -colvarlb) )
         {
            if( colval > 0.0 )
               ++(*rowinfinitiesdown);
            else
               ++(*rowinfinitiesup);
         }
      }
      SCIPvarCalcDistributionParameters(scip, colvarlb, colvarub, SCIPvarGetType(colvar), &varmean, &varvariance);

      /* actual values are updated; the contribution of the variable to mu is the arithmetic mean of its bounds */
      *mu += colval * varmean;

      /* the variance contribution of a variable is c^2 * (u - l)^2 / 12.0 for continuous and c^2 * ((u - l + 1)^2 - 1) / 12.0 for integer */
      squarecoeff = SQUARED(colval);
      *sigma2 += squarecoeff * varvariance;

      assert(!SCIPisFeasNegative(scip, *sigma2));
   }

   SCIPdebug( SCIPprintRow(scip, row, NULL) );
   SCIPdebugMessage("  Row %s has a mean value of %g at a sigma2 of %g \n", SCIProwGetName(row), *mu, *sigma2);
}
Ejemplo n.º 12
0
SCIP_RETCODE SCIPconshdlrBenders::sepaBenders(
		SCIP * scip,
		SCIP_CONSHDLR * conshdlr,
		SCIP_SOL * sol,
		whereFrom where,
		SCIP_RESULT * result)
{
	OsiCuts cs; /**< Benders cut placeholder */
	SCIP_Real * vals = NULL; /**< current solution */

#if 1
	if (scip_checkpriority_ < 0)
	{
		/** consider incumbent solutions only */
		double primObj = SCIPgetPrimalbound(scip);
		double currObj = SCIPgetSolOrigObj(scip, sol);
		if (SCIPisLT(scip, primObj, currObj))
		{
			DSPdebugMessage(" -> primObj %e currObj %e\n", primObj, currObj);
			return SCIP_OKAY;
		}
	}
#endif

	/** allocate memory */
	SCIP_CALL(SCIPallocMemoryArray(scip, &vals, nvars_));

	/** get current solution */
	SCIP_CALL(SCIPgetSolVals(scip, sol, nvars_, vars_, vals));

	/** TODO The following filter does not work, meaning that it provides suboptimal solution.
	 * I do not know the reason. */
#if 0
	double maxviol = 1.e-10;
	for (int j = 0; j < nvars_ - naux_; ++j)
	{
		SCIP_VARTYPE vartype = SCIPvarGetType(vars_[j]);
		if (vartype == SCIP_VARTYPE_CONTINUOUS) continue;

		double viol = 0.5 - fabs(vals[j] - floor(vals[j]) - 0.5);
		if (viol > maxviol)
			maxviol = viol;
	}
	DSPdebugMessage("maximum violation %e\n", maxviol);

	if (where != from_scip_check &&
		where != from_scip_enfolp &&
		where != from_scip_enfops &&
		maxviol > 1.e-7)
	{
		printf("where %d maxviol %e\n", where, maxviol);
		/** free memory */
		SCIPfreeMemoryArray(scip, &vals);
		return SCIP_OKAY;
	}
#endif

#ifdef DSP_DEBUG2
	double minvals = COIN_DBL_MAX;
	double maxvals = -COIN_DBL_MAX;
	double sumvals = 0.;
	double ssvals  = 0.;
	//printf("nvars_ %d naux_ %d nAuxvars_ %d\n", nvars_, naux_, tss_->nAuxvars_);
	for (int j = 0; j < nvars_ - naux_; ++j)
	{
//		if (vals[j] < 0 || vals[j] > 1)
//			printf("solution %d has value %e.\n", j, vals[j]);
		sumvals += vals[j];
		ssvals  += vals[j] * vals[j];
		minvals = minvals > vals[j] ? vals[j] : minvals;
		maxvals = maxvals < vals[j] ? vals[j] : maxvals;
	}
	DSPdebugMessage("solution: min %e max %e avg %e sum %e two-norm %e\n",
			minvals, maxvals, sumvals / nvars_, sumvals, sqrt(ssvals));
#endif

#define SCAN_GLOBAL_CUT_POOL
#ifdef SCAN_GLOBAL_CUT_POOL
	if (SCIPgetStage(scip) == SCIP_STAGE_SOLVING ||
		SCIPgetStage(scip) == SCIP_STAGE_SOLVED ||
		SCIPgetStage(scip) == SCIP_STAGE_EXITSOLVE)
	{
		bool addedPoolCut = false;
		int numPoolCuts = SCIPgetNPoolCuts(scip);
		int numCutsToScan = 100;
		SCIP_CUT ** poolcuts = SCIPgetPoolCuts(scip);
		for (int i = numPoolCuts - 1; i >= 0; --i)
		{
			if (i < 0) break;
			if (numCutsToScan == 0) break;

			/** retrieve row */
			SCIP_ROW * poolcutrow = SCIPcutGetRow(poolcuts[i]);

			/** benders? */
			if (strcmp(SCIProwGetName(poolcutrow), "benders") != 0)
				continue;

			/** counter */
			numCutsToScan--;

			if (SCIPgetCutEfficacy(scip, sol, poolcutrow) > 1.e-6)
			{
				if (where == from_scip_sepalp ||
					where == from_scip_sepasol ||
					where == from_scip_enfolp)
				{
					/** add cut */
					SCIP_Bool infeasible;
					SCIP_CALL(SCIPaddCut(scip, sol, poolcutrow,
							FALSE, /**< force cut */
							&infeasible));

					if (infeasible)
						*result = SCIP_CUTOFF;
					else //if (*result != SCIP_CUTOFF)
						*result = SCIP_SEPARATED;
				}
				else
					*result = SCIP_INFEASIBLE;
				addedPoolCut = true;
				break;
			}
		}
		if (addedPoolCut)
		{
			DSPdebugMessage("Added pool cut\n");
			/** free memory */
			SCIPfreeMemoryArray(scip, &vals);
			return SCIP_OKAY;
		}
	}
#endif

	/** generate Benders cuts */
	assert(tss_);
	tss_->generateCuts(nvars_, vals, &cs);

	/** If found Benders cuts */
	for (int i = 0; i < cs.sizeCuts(); ++i)
	{
		/** get cut pointer */
		OsiRowCut * rc = cs.rowCutPtr(i);
		if (!rc) continue;

		const CoinPackedVector cutrow = rc->row();
		if (cutrow.getNumElements() == 0) continue;

		/** is optimality cut? */
		bool isOptimalityCut = false;
		for (int j = nvars_ - naux_; j < nvars_; ++j)
		{
			if (cutrow.getMaxIndex() == j)
			{
				isOptimalityCut = true;
				break;
			}
		}

		double efficacy = rc->violated(vals) / cutrow.twoNorm();
		SCIP_Bool isEfficacious = efficacy > 1.e-6;

#define KK_TEST
#ifdef KK_TEST
		if (SCIPgetStage(scip) == SCIP_STAGE_INITSOLVE ||
			SCIPgetStage(scip) == SCIP_STAGE_SOLVING)
		{
			/** create empty row */
			SCIP_ROW * row = NULL;
			SCIP_CALL(SCIPcreateEmptyRowCons(scip, &row, conshdlr, "benders", rc->lb(), SCIPinfinity(scip),
					FALSE, /**< is row local? */
					FALSE, /**< is row modifiable? */
					FALSE  /**< is row removable? can this be TRUE? */));

			/** cache the row extension and only flush them if the cut gets added */
			SCIP_CALL(SCIPcacheRowExtensions(scip, row));

			/** collect all non-zero coefficients */
			for (int j = 0; j < cutrow.getNumElements(); ++j)
				SCIP_CALL(SCIPaddVarToRow(scip, row, vars_[cutrow.getIndices()[j]], cutrow.getElements()[j]));

			DSPdebugMessage("found Benders (%s) cut: act=%f, lhs=%f, norm=%f, eff=%f, min=%f, max=%f (range=%f)\n",
				isOptimalityCut ? "opti" : "feas",
				SCIPgetRowLPActivity(scip, row), SCIProwGetLhs(row), SCIProwGetNorm(row),
				SCIPgetCutEfficacy(scip, sol, row),
				SCIPgetRowMinCoef(scip, row), SCIPgetRowMaxCoef(scip, row),
				SCIPgetRowMaxCoef(scip, row)/SCIPgetRowMinCoef(scip, row));

			/** flush all changes before adding cut */
			SCIP_CALL(SCIPflushRowExtensions(scip, row));

			DSPdebugMessage("efficacy %e isEfficatious %d\n", efficacy, isEfficacious);

			if (isEfficacious)
			{
				if (where == from_scip_sepalp ||
					where == from_scip_sepasol ||
					where == from_scip_enfolp)
				{
					/** add cut */
					SCIP_Bool infeasible;
					SCIP_CALL(SCIPaddCut(scip, sol, row,
							FALSE, /**< force cut */
							&infeasible));

					if (infeasible)
						*result = SCIP_CUTOFF;
					else //if (*result != SCIP_CUTOFF)
						*result = SCIP_SEPARATED;
				}
				else
					*result = SCIP_INFEASIBLE;
			}

			/** add cut to global pool */
			SCIP_CALL(SCIPaddPoolCut(scip, row));
			DSPdebugMessage("number of cuts in global cut pool: %d\n", SCIPgetNPoolCuts(scip));

			/** release the row */
			SCIP_CALL(SCIPreleaseRow(scip, &row));
		}
		else if (isEfficacious &&
					where != from_scip_sepalp &&
					where != from_scip_sepasol &&
					where != from_scip_enfolp)
			*result = SCIP_INFEASIBLE;
#else
		if (where == from_scip_sepalp ||
			where == from_scip_sepasol ||
			where == from_scip_enfolp)
		{
			/** create empty row */
			SCIP_ROW * row = NULL;
			SCIP_CALL(SCIPcreateEmptyRowCons(scip, &row, conshdlr, "benders", rc->lb(), SCIPinfinity(scip),
					FALSE, /**< is row local? */
					FALSE, /**< is row modifiable? */
					FALSE  /**< is row removable? can this be TRUE? */));

			/** cache the row extension and only flush them if the cut gets added */
			SCIP_CALL(SCIPcacheRowExtensions(scip, row));

			/** collect all non-zero coefficients */
			for (int j = 0; j < cutrow.getNumElements(); ++j)
				SCIP_CALL(SCIPaddVarToRow(scip, row, vars_[cutrow.getIndices()[j]], cutrow.getElements()[j]));

			DSPdebugMessage("found Benders (%s) cut: act=%f, lhs=%f, norm=%f, eff=%f, min=%f, max=%f (range=%f)\n",
				isOptimalityCut ? "opti" : "feas",
				SCIPgetRowLPActivity(scip, row), SCIProwGetLhs(row), SCIProwGetNorm(row),
				SCIPgetCutEfficacy(scip, NULL, row),
				SCIPgetRowMinCoef(scip, row), SCIPgetRowMaxCoef(scip, row),
				SCIPgetRowMaxCoef(scip, row)/SCIPgetRowMinCoef(scip, row));

			/** flush all changes before adding cut */
			SCIP_CALL(SCIPflushRowExtensions(scip, row));

			/** is cut efficacious? */
			if (isOptimalityCut)
			{
				efficacy = SCIPgetCutEfficacy(scip, sol, row);
				isEfficacious = SCIPisCutEfficacious(scip, sol, row);
			}
			else
			{
				efficacy = rc->violated(vals);
				isEfficacious = efficacy > 1.e-6;
			}

			if (isEfficacious)
			{
				/** add cut */
				SCIP_Bool infeasible;
				SCIP_CALL(SCIPaddCut(scip, sol, row,
						FALSE, /**< force cut */
						&infeasible));

				if (infeasible)
					*result = SCIP_CUTOFF;
				else if (*result != SCIP_CUTOFF)
					*result = SCIP_SEPARATED;
			}

			/** add cut to global pool */
			SCIP_CALL(SCIPaddPoolCut(scip, row));

			/** release the row */
			SCIP_CALL(SCIPreleaseRow(scip, &row));
		}
		else
		{
			if (isOptimalityCut)
			{
				efficacy = rc->violated(vals) / cutrow.twoNorm();
				isEfficacious = efficacy > 0.05;
			}
			else
			{
				efficacy = rc->violated(vals);
				isEfficacious = efficacy > 1.e-6;
			}
			DSPdebugMessage("%s efficacy %e\n", isOptimalityCut ? "Opti" : "Feas", efficacy);

			if (isEfficacious == TRUE)
				*result = SCIP_INFEASIBLE;
		}
#endif
	}

	/** free memory */
	SCIPfreeMemoryArray(scip, &vals);

	return SCIP_OKAY;
}
Ejemplo n.º 13
0
/** LP solution separation method of separator */
static
SCIP_DECL_SEPAEXECLP(sepaExeclpStrongcg)
{  /*lint --e{715}*/
   SCIP_SEPADATA* sepadata;
   SCIP_VAR** vars;
   SCIP_COL** cols;
   SCIP_ROW** rows;
   SCIP_Real* varsolvals;
   SCIP_Real* binvrow;
   SCIP_Real* cutcoefs;
   SCIP_Real cutrhs;
   SCIP_Real cutact;
   SCIP_Real maxscale;
   SCIP_Longint maxdnom;
   int* basisind;
   int* inds;
   int ninds;
   int nvars;
   int ncols;
   int nrows;
   int ncalls;
   int depth;
   int maxdepth;
   int maxsepacuts;
   int ncuts;
   int c;
   int i;
   int cutrank;
   SCIP_Bool success;
   SCIP_Bool cutislocal;
   char normtype;

   assert(sepa != NULL);
   assert(strcmp(SCIPsepaGetName(sepa), SEPA_NAME) == 0);
   assert(scip != NULL);
   assert(result != NULL);

   *result = SCIP_DIDNOTRUN;

   sepadata = SCIPsepaGetData(sepa);
   assert(sepadata != NULL);

   depth = SCIPgetDepth(scip);
   ncalls = SCIPsepaGetNCallsAtNode(sepa);

   /* only call separator, if we are not close to terminating */
   if( SCIPisStopped(scip) )
      return SCIP_OKAY;

   /* only call the strong CG cut separator a given number of times at each node */
   if( (depth == 0 && sepadata->maxroundsroot >= 0 && ncalls >= sepadata->maxroundsroot)
      || (depth > 0 && sepadata->maxrounds >= 0 && ncalls >= sepadata->maxrounds) )
      return SCIP_OKAY;

   /* only call separator, if an optimal LP solution is at hand */
   if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL )
      return SCIP_OKAY;

   /* only call separator, if the LP solution is basic */
   if( !SCIPisLPSolBasic(scip) )
      return SCIP_OKAY;

   /* only call separator, if there are fractional variables */
   if( SCIPgetNLPBranchCands(scip) == 0 )
      return SCIP_OKAY;

   /* get variables data */
   SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, NULL, NULL, NULL, NULL) );

   /* get LP data */
   SCIP_CALL( SCIPgetLPColsData(scip, &cols, &ncols) );
   SCIP_CALL( SCIPgetLPRowsData(scip, &rows, &nrows) );
   if( ncols == 0 || nrows == 0 )
      return SCIP_OKAY;

#if 0 /* if too many columns, separator is usually very slow: delay it until no other cuts have been found */
   if( ncols >= 50*nrows )
      return SCIP_OKAY;
   if( ncols >= 5*nrows )
   {
      int ncutsfound;

      ncutsfound = SCIPgetNCutsFound(scip);
      if( ncutsfound > sepadata->lastncutsfound || !SCIPsepaWasLPDelayed(sepa) )
      {
         sepadata->lastncutsfound = ncutsfound;
         *result = SCIP_DELAYED;
         return SCIP_OKAY;
      }
   }
#endif

   /* get the type of norm to use for efficacy calculations */
   SCIP_CALL( SCIPgetCharParam(scip, "separating/efficacynorm", &normtype) );

   /* set the maximal denominator in rational representation of strong CG cut and the maximal scale factor to
    * scale resulting cut to integral values to avoid numerical instabilities
    */
   /**@todo find better but still stable strong CG cut settings: look at dcmulti, gesa3, khb0525, misc06, p2756 */
   maxdepth = SCIPgetMaxDepth(scip);
   if( depth == 0 )
   {
      maxdnom = 1000;
      maxscale = 1000.0;
   }
   else if( depth <= maxdepth/4 )
   {
      maxdnom = 1000;
      maxscale = 1000.0;
   }
   else if( depth <= maxdepth/2 )
   {
      maxdnom = 100;
      maxscale = 100.0;
   }
   else
   {
      maxdnom = 10;
      maxscale = 10.0;
   }

   *result = SCIP_DIDNOTFIND;

   /* allocate temporary memory */
   SCIP_CALL( SCIPallocBufferArray(scip, &cutcoefs, nvars) );
   SCIP_CALL( SCIPallocBufferArray(scip, &basisind, nrows) );
   SCIP_CALL( SCIPallocBufferArray(scip, &binvrow, nrows) );
   SCIP_CALL( SCIPallocBufferArray(scip, &inds, nrows) );
   varsolvals = NULL; /* allocate this later, if needed */

   /* get basis indices */
   SCIP_CALL( SCIPgetLPBasisInd(scip, basisind) );

   /* get the maximal number of cuts allowed in a separation round */
   if( depth == 0 )
      maxsepacuts = sepadata->maxsepacutsroot;
   else
      maxsepacuts = sepadata->maxsepacuts;

   SCIPdebugMessage("searching strong CG cuts: %d cols, %d rows, maxdnom=%" SCIP_LONGINT_FORMAT ", maxscale=%g, maxcuts=%d\n",
      ncols, nrows, maxdnom, maxscale, maxsepacuts);

   /* for all basic columns belonging to integer variables, try to generate a strong CG cut */
   ncuts = 0;
   for( i = 0; i < nrows && ncuts < maxsepacuts && !SCIPisStopped(scip) && *result != SCIP_CUTOFF; ++i )
   {
      SCIP_Bool tryrow;

      tryrow = FALSE;
      c = basisind[i];
      if( c >= 0 )
      {
         SCIP_VAR* var;

         assert(c < ncols);
         var = SCIPcolGetVar(cols[c]);
         if( SCIPvarGetType(var) != SCIP_VARTYPE_CONTINUOUS )
         {
            SCIP_Real primsol;

            primsol = SCIPcolGetPrimsol(cols[c]);
            assert(SCIPgetVarSol(scip, var) == primsol); /*lint !e777*/

            if( SCIPfeasFrac(scip, primsol) >= MINFRAC )
            {
               SCIPdebugMessage("trying strong CG cut for col <%s> [%g]\n", SCIPvarGetName(var), primsol);
               tryrow = TRUE;
            }
         }
      }
#ifdef SEPARATEROWS
      else
      {
         SCIP_ROW* row;

         assert(0 <= -c-1 && -c-1 < nrows);
         row = rows[-c-1];
         if( SCIProwIsIntegral(row) && !SCIProwIsModifiable(row) )
         {
            SCIP_Real primsol;

            primsol = SCIPgetRowActivity(scip, row);
            if( SCIPfeasFrac(scip, primsol) >= MINFRAC )
            {
               SCIPdebugMessage("trying strong CG cut for row <%s> [%g]\n", SCIProwGetName(row), primsol);
               tryrow = TRUE;
            }
         }
      }
#endif

      if( tryrow )
      {
         /* get the row of B^-1 for this basic integer variable with fractional solution value */
         SCIP_CALL( SCIPgetLPBInvRow(scip, i, binvrow, inds, &ninds) );

#ifdef SCIP_DEBUG
         /* initialize variables, that might not have been initialized in SCIPcalcMIR if success == FALSE */
         cutact = 0.0;
         cutrhs = SCIPinfinity(scip);
#endif
         /* create a strong CG cut out of the weighted LP rows using the B^-1 row as weights */
         SCIP_CALL( SCIPcalcStrongCG(scip, BOUNDSWITCH, USEVBDS, ALLOWLOCAL, (int) MAXAGGRLEN(nvars), sepadata->maxweightrange, MINFRAC, MAXFRAC,
               binvrow, inds, ninds, 1.0, cutcoefs, &cutrhs, &cutact, &success, &cutislocal, &cutrank) );
         assert(ALLOWLOCAL || !cutislocal);
         SCIPdebugMessage(" -> success=%u: %g <= %g\n", success, cutact, cutrhs);

         /* if successful, convert dense cut into sparse row, and add the row as a cut */
         if( success && SCIPisFeasGT(scip, cutact, cutrhs) )
         {
            SCIP_VAR** cutvars;
            SCIP_Real* cutvals;
            SCIP_Real cutnorm;
            int cutlen;

            /* if this is the first successful cut, get the LP solution for all COLUMN variables */
            if( varsolvals == NULL )
            {
               int v;

               SCIP_CALL( SCIPallocBufferArray(scip, &varsolvals, nvars) );
               for( v = 0; v < nvars; ++v )
               {
                  if( SCIPvarGetStatus(vars[v]) == SCIP_VARSTATUS_COLUMN )
                     varsolvals[v] = SCIPvarGetLPSol(vars[v]);
               }
            }
            assert(varsolvals != NULL);

            /* get temporary memory for storing the cut as sparse row */
            SCIP_CALL( SCIPallocBufferArray(scip, &cutvars, nvars) );
            SCIP_CALL( SCIPallocBufferArray(scip, &cutvals, nvars) );

            /* store the cut as sparse row, calculate activity and norm of cut */
            SCIP_CALL( storeCutInArrays(scip, nvars, vars, cutcoefs, varsolvals, normtype,
                  cutvars, cutvals, &cutlen, &cutact, &cutnorm) );

            SCIPdebugMessage(" -> strong CG cut for <%s>: act=%f, rhs=%f, norm=%f, eff=%f, rank=%d\n",
               c >= 0 ? SCIPvarGetName(SCIPcolGetVar(cols[c])) : SCIProwGetName(rows[-c-1]),
               cutact, cutrhs, cutnorm, (cutact - cutrhs)/cutnorm, cutrank);

            if( SCIPisPositive(scip, cutnorm) && SCIPisEfficacious(scip, (cutact - cutrhs)/cutnorm) )
            {
               SCIP_ROW* cut;
               char cutname[SCIP_MAXSTRLEN];

               /* create the cut */
               if( c >= 0 )
                  (void) SCIPsnprintf(cutname, SCIP_MAXSTRLEN, "scg%d_x%d", SCIPgetNLPs(scip), c);
               else
                  (void) SCIPsnprintf(cutname, SCIP_MAXSTRLEN, "scg%d_s%d", SCIPgetNLPs(scip), -c-1);
               SCIP_CALL( SCIPcreateEmptyRowSepa(scip, &cut, sepa, cutname, -SCIPinfinity(scip), cutrhs, cutislocal, FALSE, sepadata->dynamiccuts) );
               SCIP_CALL( SCIPaddVarsToRow(scip, cut, cutlen, cutvars, cutvals) );
               /*SCIPdebug( SCIP_CALL(SCIPprintRow(scip, cut, NULL)) );*/
               SCIProwChgRank(cut, cutrank);

               assert(success);
#ifdef MAKECUTINTEGRAL
               /* try to scale the cut to integral values */
               SCIP_CALL( SCIPmakeRowIntegral(scip, cut, -SCIPepsilon(scip), SCIPsumepsilon(scip),
                     maxdnom, maxscale, MAKECONTINTEGRAL, &success) );
#else
#ifdef MAKEINTCUTINTEGRAL
               /* try to scale the cut to integral values if there are no continuous variables
                *  -> leads to an integral slack variable that can later be used for other cuts
                */
               {
                  int k = 0;
                  while ( k < cutlen && SCIPvarIsIntegral(cutvars[k]) )
                     ++k;
                  if( k == cutlen )
                  {
                     SCIP_CALL( SCIPmakeRowIntegral(scip, cut, -SCIPepsilon(scip), SCIPsumepsilon(scip),
                           maxdnom, maxscale, MAKECONTINTEGRAL, &success) );
                  }
               }
#endif
#endif

#ifndef FORCECUTINTEGRAL
               success = TRUE;
#endif

               if( success )
               {
                  if( !SCIPisCutEfficacious(scip, NULL, cut) )
                  {
                     SCIPdebugMessage(" -> strong CG cut <%s> no longer efficacious: act=%f, rhs=%f, norm=%f, eff=%f\n",
                        cutname, SCIPgetRowLPActivity(scip, cut), SCIProwGetRhs(cut), SCIProwGetNorm(cut),
                        SCIPgetCutEfficacy(scip, NULL, cut));
                     /*SCIPdebug( SCIP_CALL(SCIPprintRow(scip, cut, NULL)) );*/
                     success = FALSE;
                  }
                  else
                  {
                     SCIP_Bool infeasible;

                     SCIPdebugMessage(" -> found strong CG cut <%s>: act=%f, rhs=%f, norm=%f, eff=%f, min=%f, max=%f (range=%f)\n",
                        cutname, SCIPgetRowLPActivity(scip, cut), SCIProwGetRhs(cut), SCIProwGetNorm(cut),
                        SCIPgetCutEfficacy(scip, NULL, cut),
                        SCIPgetRowMinCoef(scip, cut), SCIPgetRowMaxCoef(scip, cut),
                        SCIPgetRowMaxCoef(scip, cut)/SCIPgetRowMinCoef(scip, cut));
                     /*SCIPdebug( SCIP_CALL(SCIPprintRow(scip, cut, NULL)) );*/
                     SCIP_CALL( SCIPaddCut(scip, NULL, cut, FALSE, &infeasible) );
                     if ( infeasible )
                        *result = SCIP_CUTOFF;
                     else
                     {
                        if( !cutislocal )
                        {
                           SCIP_CALL( SCIPaddPoolCut(scip, cut) );
                        }
                        *result = SCIP_SEPARATED;
                     }
                     ncuts++;
                  }
               }
               else
               {
                  SCIPdebugMessage(" -> strong CG cut <%s> couldn't be scaled to integral coefficients: act=%f, rhs=%f, norm=%f, eff=%f\n",
                     cutname, cutact, cutrhs, cutnorm, SCIPgetCutEfficacy(scip, NULL, cut));
               }

               /* release the row */
               SCIP_CALL( SCIPreleaseRow(scip, &cut) );
            }

            /* free temporary memory */
            SCIPfreeBufferArray(scip, &cutvals);
            SCIPfreeBufferArray(scip, &cutvars);
         }
      }
   }

   /* free temporary memory */
   SCIPfreeBufferArrayNull(scip, &varsolvals);
   SCIPfreeBufferArray(scip, &inds);
   SCIPfreeBufferArray(scip, &binvrow);
   SCIPfreeBufferArray(scip, &basisind);
   SCIPfreeBufferArray(scip, &cutcoefs);

   SCIPdebugMessage("end searching strong CG cuts: found %d cuts\n", ncuts);

   sepadata->lastncutsfound = SCIPgetNCutsFound(scip);

   return SCIP_OKAY;
}
Ejemplo n.º 14
0
/** execution method of primal heuristic */
static
SCIP_DECL_HEUREXEC(heurExecShifting) /*lint --e{715}*/
{   /*lint --e{715}*/
    SCIP_HEURDATA* heurdata;
    SCIP_SOL* sol;
    SCIP_VAR** lpcands;
    SCIP_Real* lpcandssol;
    SCIP_ROW** lprows;
    SCIP_Real* activities;
    SCIP_ROW** violrows;
    SCIP_Real* nincreases;
    SCIP_Real* ndecreases;
    int* violrowpos;
    int* nfracsinrow;
    SCIP_Real increaseweight;
    SCIP_Real obj;
    SCIP_Real bestshiftval;
    SCIP_Real minobj;
    int nlpcands;
    int nlprows;
    int nvars;
    int nfrac;
    int nviolrows;
    int nprevviolrows;
    int minnviolrows;
    int nnonimprovingshifts;
    int c;
    int r;
    SCIP_Longint nlps;
    SCIP_Longint ncalls;
    SCIP_Longint nsolsfound;
    SCIP_Longint nnodes;

    assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0);
    assert(scip != NULL);
    assert(result != NULL);
    assert(SCIPhasCurrentNodeLP(scip));

    *result = SCIP_DIDNOTRUN;

    /* only call heuristic, if an optimal LP solution is at hand */
    if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL )
        return SCIP_OKAY;

    /* only call heuristic, if the LP objective value is smaller than the cutoff bound */
    if( SCIPisGE(scip, SCIPgetLPObjval(scip), SCIPgetCutoffbound(scip)) )
        return SCIP_OKAY;

    /* get heuristic data */
    heurdata = SCIPheurGetData(heur);
    assert(heurdata != NULL);

    /* don't call heuristic, if we have already processed the current LP solution */
    nlps = SCIPgetNLPs(scip);
    if( nlps == heurdata->lastlp )
        return SCIP_OKAY;
    heurdata->lastlp = nlps;

    /* don't call heuristic, if it was not successful enough in the past */
    ncalls = SCIPheurGetNCalls(heur);
    nsolsfound = 10*SCIPheurGetNBestSolsFound(heur) + SCIPheurGetNSolsFound(heur);
    nnodes = SCIPgetNNodes(scip);
    if( nnodes % ((ncalls/100)/(nsolsfound+1)+1) != 0 )
        return SCIP_OKAY;

    /* get fractional variables, that should be integral */
    /* todo check if heuristic should include implicit integer variables for its calculations */
    SCIP_CALL( SCIPgetLPBranchCands(scip, &lpcands, &lpcandssol, NULL, &nlpcands, NULL, NULL) );
    nfrac = nlpcands;

    /* only call heuristic, if LP solution is fractional */
    if( nfrac == 0 )
        return SCIP_OKAY;

    *result = SCIP_DIDNOTFIND;

    /* get LP rows */
    SCIP_CALL( SCIPgetLPRowsData(scip, &lprows, &nlprows) );

    SCIPdebugMessage("executing shifting heuristic: %d LP rows, %d fractionals\n", nlprows, nfrac);

    /* get memory for activities, violated rows, and row violation positions */
    nvars = SCIPgetNVars(scip);
    SCIP_CALL( SCIPallocBufferArray(scip, &activities, nlprows) );
    SCIP_CALL( SCIPallocBufferArray(scip, &violrows, nlprows) );
    SCIP_CALL( SCIPallocBufferArray(scip, &violrowpos, nlprows) );
    SCIP_CALL( SCIPallocBufferArray(scip, &nfracsinrow, nlprows) );
    SCIP_CALL( SCIPallocBufferArray(scip, &nincreases, nvars) );
    SCIP_CALL( SCIPallocBufferArray(scip, &ndecreases, nvars) );
    BMSclearMemoryArray(nfracsinrow, nlprows);
    BMSclearMemoryArray(nincreases, nvars);
    BMSclearMemoryArray(ndecreases, nvars);

    /* get the activities for all globally valid rows;
     * the rows should be feasible, but due to numerical inaccuracies in the LP solver, they can be violated
     */
    nviolrows = 0;
    for( r = 0; r < nlprows; ++r )
    {
        SCIP_ROW* row;

        row = lprows[r];
        assert(SCIProwGetLPPos(row) == r);

        if( !SCIProwIsLocal(row) )
        {
            activities[r] = SCIPgetRowActivity(scip, row);
            if( SCIPisFeasLT(scip, activities[r], SCIProwGetLhs(row))
                    || SCIPisFeasGT(scip, activities[r], SCIProwGetRhs(row)) )
            {
                violrows[nviolrows] = row;
                violrowpos[r] = nviolrows;
                nviolrows++;
            }
            else
                violrowpos[r] = -1;
        }
    }

    /* calc the current number of fractional variables in rows */
    for( c = 0; c < nlpcands; ++c )
        addFracCounter(nfracsinrow, nlprows, lpcands[c], +1);

    /* get the working solution from heuristic's local data */
    sol = heurdata->sol;
    assert(sol != NULL);

    /* copy the current LP solution to the working solution */
    SCIP_CALL( SCIPlinkLPSol(scip, sol) );

    /* calculate the minimal objective value possible after rounding fractional variables */
    minobj = SCIPgetSolTransObj(scip, sol);
    assert(minobj < SCIPgetCutoffbound(scip));
    for( c = 0; c < nlpcands; ++c )
    {
        obj = SCIPvarGetObj(lpcands[c]);
        bestshiftval = obj > 0.0 ? SCIPfeasFloor(scip, lpcandssol[c]) : SCIPfeasCeil(scip, lpcandssol[c]);
        minobj += obj * (bestshiftval - lpcandssol[c]);
    }

    /* try to shift remaining variables in order to become/stay feasible */
    nnonimprovingshifts = 0;
    minnviolrows = INT_MAX;
    increaseweight = 1.0;
    while( (nfrac > 0 || nviolrows > 0) && nnonimprovingshifts < MAXSHIFTINGS )
    {
        SCIP_VAR* shiftvar;
        SCIP_Real oldsolval;
        SCIP_Real newsolval;
        SCIP_Bool oldsolvalisfrac;
        int probindex;

        SCIPdebugMessage("shifting heuristic: nfrac=%d, nviolrows=%d, obj=%g (best possible obj: %g), cutoff=%g\n",
                         nfrac, nviolrows, SCIPgetSolOrigObj(scip, sol), SCIPretransformObj(scip, minobj),
                         SCIPretransformObj(scip, SCIPgetCutoffbound(scip)));

        nprevviolrows = nviolrows;

        /* choose next variable to process:
         *  - if a violated row exists, shift a variable decreasing the violation, that has least impact on other rows
         *  - otherwise, shift a variable, that has strongest devastating impact on rows in opposite direction
         */
        shiftvar = NULL;
        oldsolval = 0.0;
        newsolval = 0.0;
        if( nviolrows > 0 && (nfrac == 0 || nnonimprovingshifts < MAXSHIFTINGS-1) )
        {
            SCIP_ROW* row;
            int rowidx;
            int rowpos;
            int direction;

            rowidx = -1;
            rowpos = -1;
            row = NULL;
            if( nfrac > 0 )
            {
                for( rowidx = nviolrows-1; rowidx >= 0; --rowidx )
                {
                    row = violrows[rowidx];
                    rowpos = SCIProwGetLPPos(row);
                    assert(violrowpos[rowpos] == rowidx);
                    if( nfracsinrow[rowpos] > 0 )
                        break;
                }
            }
            if( rowidx == -1 )
            {
                rowidx = SCIPgetRandomInt(0, nviolrows-1, &heurdata->randseed);
                row = violrows[rowidx];
                rowpos = SCIProwGetLPPos(row);
                assert(0 <= rowpos && rowpos < nlprows);
                assert(violrowpos[rowpos] == rowidx);
                assert(nfracsinrow[rowpos] == 0);
            }
            assert(violrowpos[rowpos] == rowidx);

            SCIPdebugMessage("shifting heuristic: try to fix violated row <%s>: %g <= %g <= %g\n",
                             SCIProwGetName(row), SCIProwGetLhs(row), activities[rowpos], SCIProwGetRhs(row));
            SCIPdebug( SCIP_CALL( SCIPprintRow(scip, row, NULL) ) );

            /* get direction in which activity must be shifted */
            assert(SCIPisFeasLT(scip, activities[rowpos], SCIProwGetLhs(row))
                   || SCIPisFeasGT(scip, activities[rowpos], SCIProwGetRhs(row)));
            direction = SCIPisFeasLT(scip, activities[rowpos], SCIProwGetLhs(row)) ? +1 : -1;

            /* search a variable that can shift the activity in the necessary direction */
            SCIP_CALL( selectShifting(scip, sol, row, activities[rowpos], direction,
                                      nincreases, ndecreases, increaseweight, &shiftvar, &oldsolval, &newsolval) );
        }

        if( shiftvar == NULL && nfrac > 0 )
        {
            SCIPdebugMessage("shifting heuristic: search rounding variable and try to stay feasible\n");
            SCIP_CALL( selectEssentialRounding(scip, sol, minobj, lpcands, nlpcands, &shiftvar, &oldsolval, &newsolval) );
        }

        /* check, whether shifting was possible */
        if( shiftvar == NULL || SCIPisEQ(scip, oldsolval, newsolval) )
        {
            SCIPdebugMessage("shifting heuristic:  -> didn't find a shifting variable\n");
            break;
        }

        SCIPdebugMessage("shifting heuristic:  -> shift var <%s>[%g,%g], type=%d, oldval=%g, newval=%g, obj=%g\n",
                         SCIPvarGetName(shiftvar), SCIPvarGetLbGlobal(shiftvar), SCIPvarGetUbGlobal(shiftvar), SCIPvarGetType(shiftvar),
                         oldsolval, newsolval, SCIPvarGetObj(shiftvar));

        /* update row activities of globally valid rows */
        SCIP_CALL( updateActivities(scip, activities, violrows, violrowpos, &nviolrows, nlprows,
                                    shiftvar, oldsolval, newsolval) );
        if( nviolrows >= nprevviolrows )
            nnonimprovingshifts++;
        else if( nviolrows < minnviolrows )
        {
            minnviolrows = nviolrows;
            nnonimprovingshifts = 0;
        }

        /* store new solution value and decrease fractionality counter */
        SCIP_CALL( SCIPsetSolVal(scip, sol, shiftvar, newsolval) );

        /* update fractionality counter and minimal objective value possible after shifting remaining variables */
        oldsolvalisfrac = !SCIPisFeasIntegral(scip, oldsolval)
                          && (SCIPvarGetType(shiftvar) == SCIP_VARTYPE_BINARY || SCIPvarGetType(shiftvar) == SCIP_VARTYPE_INTEGER);
        obj = SCIPvarGetObj(shiftvar);
        if( (SCIPvarGetType(shiftvar) == SCIP_VARTYPE_BINARY || SCIPvarGetType(shiftvar) == SCIP_VARTYPE_INTEGER)
                && oldsolvalisfrac )
        {
            assert(SCIPisFeasIntegral(scip, newsolval));
            nfrac--;
            nnonimprovingshifts = 0;
            minnviolrows = INT_MAX;
            addFracCounter(nfracsinrow, nlprows, shiftvar, -1);

            /* the rounding was already calculated into the minobj -> update only if rounding in "wrong" direction */
            if( obj > 0.0 && newsolval > oldsolval )
                minobj += obj;
            else if( obj < 0.0 && newsolval < oldsolval )
                minobj -= obj;
        }
        else
        {
            /* update minimal possible objective value */
            minobj += obj * (newsolval - oldsolval);
        }

        /* update increase/decrease arrays */
        if( !oldsolvalisfrac )
        {
            probindex = SCIPvarGetProbindex(shiftvar);
            assert(0 <= probindex && probindex < nvars);
            increaseweight *= WEIGHTFACTOR;
            if( newsolval < oldsolval )
                ndecreases[probindex] += increaseweight;
            else
                nincreases[probindex] += increaseweight;
            if( increaseweight >= 1e+09 )
            {
                int i;

                for( i = 0; i < nvars; ++i )
                {
                    nincreases[i] /= increaseweight;
                    ndecreases[i] /= increaseweight;
                }
                increaseweight = 1.0;
            }
        }

        SCIPdebugMessage("shifting heuristic:  -> nfrac=%d, nviolrows=%d, obj=%g (best possible obj: %g)\n",
                         nfrac, nviolrows, SCIPgetSolOrigObj(scip, sol), SCIPretransformObj(scip, minobj));
    }

    /* check, if the new solution is feasible */
    if( nfrac == 0 && nviolrows == 0 )
    {
        SCIP_Bool stored;

        /* check solution for feasibility, and add it to solution store if possible
         * neither integrality nor feasibility of LP rows has to be checked, because this is already
         * done in the shifting heuristic itself; however, we better check feasibility of LP rows,
         * because of numerical problems with activity updating
         */
        SCIP_CALL( SCIPtrySol(scip, sol, FALSE, FALSE, FALSE, TRUE, &stored) );

        if( stored )
        {
            SCIPdebugMessage("found feasible shifted solution:\n");
            SCIPdebug( SCIP_CALL( SCIPprintSol(scip, sol, NULL, FALSE) ) );
            *result = SCIP_FOUNDSOL;
        }
    }

    /* free memory buffers */
    SCIPfreeBufferArray(scip, &ndecreases);
    SCIPfreeBufferArray(scip, &nincreases);
    SCIPfreeBufferArray(scip, &nfracsinrow);
    SCIPfreeBufferArray(scip, &violrowpos);
    SCIPfreeBufferArray(scip, &violrows);
    SCIPfreeBufferArray(scip, &activities);

    return SCIP_OKAY;
}
Ejemplo n.º 15
0
/** adds cuts to the LP and clears separation storage */
SCIP_RETCODE SCIPsepastoreApplyCuts(
   SCIP_SEPASTORE*       sepastore,          /**< separation storage */
   BMS_BLKMEM*           blkmem,             /**< block memory */
   SCIP_SET*             set,                /**< global SCIP settings */
   SCIP_STAT*            stat,               /**< problem statistics */
   SCIP_TREE*            tree,               /**< branch and bound tree */
   SCIP_LP*              lp,                 /**< LP data */
   SCIP_BRANCHCAND*      branchcand,         /**< branching candidate storage */
   SCIP_EVENTQUEUE*      eventqueue,         /**< event queue */
   SCIP_EVENTFILTER*     eventfilter,        /**< global event filter */
   SCIP_Bool             root,               /**< are we at the root node? */
   SCIP_Bool*            cutoff              /**< pointer to store whether an empty domain was created */
   )
{
   SCIP_NODE* node;
   SCIP_Real mincutorthogonality;
   int depth;
   int maxsepacuts;
   int ncutsapplied;
   int pos;

   assert(sepastore != NULL);
   assert(set != NULL);
   assert(tree != NULL);
   assert(lp != NULL);
   assert(cutoff != NULL);

   *cutoff = FALSE;

   SCIPdebugMessage("applying %d cuts\n", sepastore->ncuts);

   node = SCIPtreeGetCurrentNode(tree);
   assert(node != NULL);

   /* get maximal number of cuts to add to the LP */
   maxsepacuts = SCIPsetGetSepaMaxcuts(set, root);
   ncutsapplied = 0;

   /* get depth of current node */
   depth = SCIPnodeGetDepth(node);

   /* calculate minimal cut orthogonality */
   mincutorthogonality = (root ? set->sepa_minorthoroot : set->sepa_minortho);
   mincutorthogonality = MAX(mincutorthogonality, set->num_epsilon);

   /* Compute scores for all non-forced cuts and initialize orthogonalities - make sure all cuts are initialized again for the current LP solution */
   for( pos = sepastore->nforcedcuts; pos < sepastore->ncuts; pos++ )
   {
      SCIP_CALL( computeScore(sepastore, set, stat, lp, TRUE, pos) );
   }

   /* apply all forced cuts */
   for( pos = 0; pos < sepastore->nforcedcuts && !(*cutoff); pos++ )
   {
      SCIP_ROW* cut;

      cut = sepastore->cuts[pos];
      assert(SCIPsetIsInfinity(set, sepastore->scores[pos]));

      /* if the cut is a bound change (i.e. a row with only one variable), add it as bound change instead of LP row */
      if( !SCIProwIsModifiable(cut) && SCIProwGetNNonz(cut) == 1 )
      {
         SCIPdebugMessage(" -> applying forced cut <%s> as boundchange\n", SCIProwGetName(cut));
         SCIP_CALL( sepastoreApplyBdchg(sepastore, blkmem, set, stat, tree, lp, branchcand, eventqueue, cut, cutoff) );
      }
      else
      {
         /* add cut to the LP and update orthogonalities */
         SCIPdebugMessage(" -> applying forced cut <%s>\n", SCIProwGetName(cut));
         /*SCIPdebug(SCIProwPrint(cut, NULL));*/
         SCIP_CALL( sepastoreApplyCut(sepastore, blkmem, set, eventqueue, eventfilter, lp, cut, mincutorthogonality, depth, &ncutsapplied) );
      }
   }

   /* apply non-forced cuts */
   while( ncutsapplied < maxsepacuts && sepastore->ncuts > sepastore->nforcedcuts && !(*cutoff) )
   {
      SCIP_ROW* cut;
      int bestpos;
      
      /* get best non-forced cut */
      bestpos = sepastoreGetBestCut(sepastore);
      assert(sepastore->nforcedcuts <= bestpos && bestpos < sepastore->ncuts);
      assert(sepastore->scores[bestpos] != SCIP_INVALID ); /*lint !e777*/
      assert(sepastore->efficacies[bestpos] != SCIP_INVALID ); /*lint !e777*/
      cut = sepastore->cuts[bestpos];
      assert(SCIProwIsModifiable(cut) || SCIProwGetNNonz(cut) != 1); /* bound changes are forced cuts */
      assert(!SCIPsetIsInfinity(set, sepastore->scores[bestpos]));
      
      SCIPdebugMessage(" -> applying cut <%s> (pos=%d/%d, len=%d, efficacy=%g, objparallelism=%g, orthogonality=%g, score=%g)\n",
         SCIProwGetName(cut), bestpos, sepastore->ncuts, SCIProwGetNNonz(cut), sepastore->efficacies[bestpos], sepastore->objparallelisms[bestpos],
         sepastore->orthogonalities[bestpos], sepastore->scores[bestpos]);
      /*SCIPdebug(SCIProwPrint(cut, NULL));*/

      /* capture cut such that it is not destroyed in sepastoreDelCut() */
      SCIProwCapture(cut);

      /* release the row and delete the cut (also issuing ROWDELETEDSEPA event) */
      SCIP_CALL( sepastoreDelCut(sepastore, blkmem, set, eventqueue, eventfilter, lp, bestpos) );

      /* Do not add (non-forced) non-violated cuts.
       * Note: do not take SCIPsetIsEfficacious(), because constraint handlers often add cuts w.r.t. SCIPsetIsFeasPositive().
       */
      if( SCIPsetIsFeasPositive(set, sepastore->efficacies[bestpos]) )
      {
         /* add cut to the LP and update orthogonalities */
         SCIP_CALL( sepastoreApplyCut(sepastore, blkmem, set, eventqueue, eventfilter, lp, cut, mincutorthogonality, depth, &ncutsapplied) );
      }

      /* release cut */
      SCIP_CALL( SCIProwRelease(&cut, blkmem, set, lp) );
   }

   /* clear the separation storage and reset statistics for separation round */
   SCIP_CALL( SCIPsepastoreClearCuts(sepastore, blkmem, set, eventqueue, eventfilter, lp) );

   return SCIP_OKAY;
}
Ejemplo n.º 16
0
/** LP solution separation method of separator */
static
SCIP_DECL_SEPAEXECLP(sepaExeclpGomory)
{  /*lint --e{715}*/
   SCIP_SEPADATA* sepadata;
   SCIP_VAR** vars;
   SCIP_COL** cols;
   SCIP_ROW** rows;
   SCIP_Real* binvrow;
   SCIP_Real* cutcoefs;
   SCIP_Real maxscale;
   SCIP_Real minfrac;
   SCIP_Real maxfrac;
   SCIP_Longint maxdnom;
   SCIP_Bool cutoff;
   int* basisind;
   int naddedcuts;
   int nvars;
   int ncols;
   int nrows;
   int ncalls;
   int depth;
   int maxdepth;
   int maxsepacuts;
   int c;
   int i;

   assert(sepa != NULL);
   assert(strcmp(SCIPsepaGetName(sepa), SEPA_NAME) == 0);
   assert(scip != NULL);
   assert(result != NULL);

   *result = SCIP_DIDNOTRUN;

   sepadata = SCIPsepaGetData(sepa);
   assert(sepadata != NULL);

   depth = SCIPgetDepth(scip);
   ncalls = SCIPsepaGetNCallsAtNode(sepa);

   minfrac = sepadata->away;
   maxfrac = 1.0 - sepadata->away;

   /* only call separator, if we are not close to terminating */
   if( SCIPisStopped(scip) )
      return SCIP_OKAY;

   /* only call the gomory cut separator a given number of times at each node */
   if( (depth == 0 && sepadata->maxroundsroot >= 0 && ncalls >= sepadata->maxroundsroot)
      || (depth > 0 && sepadata->maxrounds >= 0 && ncalls >= sepadata->maxrounds) )
      return SCIP_OKAY;

   /* only call separator, if an optimal LP solution is at hand */
   if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL )
      return SCIP_OKAY;

   /* only call separator, if the LP solution is basic */
   if( !SCIPisLPSolBasic(scip) )
      return SCIP_OKAY;

   /* only call separator, if there are fractional variables */
   if( SCIPgetNLPBranchCands(scip) == 0 )
      return SCIP_OKAY;

   /* get variables data */
   SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, NULL, NULL, NULL, NULL) );

   /* get LP data */
   SCIP_CALL( SCIPgetLPColsData(scip, &cols, &ncols) );
   SCIP_CALL( SCIPgetLPRowsData(scip, &rows, &nrows) );
   if( ncols == 0 || nrows == 0 )
      return SCIP_OKAY;

#if 0 /* if too many columns, separator is usually very slow: delay it until no other cuts have been found */
   if( ncols >= 50*nrows )
      return SCIP_OKAY;

   if( ncols >= 5*nrows )
   {
      int ncutsfound;

      ncutsfound = SCIPgetNCutsFound(scip);
      if( ncutsfound > sepadata->lastncutsfound || !SCIPsepaWasLPDelayed(sepa) )
      {
         sepadata->lastncutsfound = ncutsfound;
         *result = SCIP_DELAYED;
         return SCIP_OKAY;
      }
   }
#endif

   /* set the maximal denominator in rational representation of gomory cut and the maximal scale factor to
    * scale resulting cut to integral values to avoid numerical instabilities
    */
   /**@todo find better but still stable gomory cut settings: look at dcmulti, gesa3, khb0525, misc06, p2756 */
   maxdepth = SCIPgetMaxDepth(scip);
   if( depth == 0 )
   {
      maxdnom = 1000;
      maxscale = 1000.0;
   }
   else if( depth <= maxdepth/4 )
   {
      maxdnom = 1000;
      maxscale = 1000.0;
   }
   else if( depth <= maxdepth/2 )
   {
      maxdnom = 100;
      maxscale = 100.0;
   }
   else
   {
      maxdnom = 10;
      maxscale = 10.0;
   }

   /* allocate temporary memory */
   SCIP_CALL( SCIPallocBufferArray(scip, &cutcoefs, nvars) );
   SCIP_CALL( SCIPallocBufferArray(scip, &basisind, nrows) );
   SCIP_CALL( SCIPallocBufferArray(scip, &binvrow, nrows) );

   /* get basis indices */
   SCIP_CALL( SCIPgetLPBasisInd(scip, basisind) );

   /* get the maximal number of cuts allowed in a separation round */
   if( depth == 0 )
      maxsepacuts = sepadata->maxsepacutsroot;
   else
      maxsepacuts = sepadata->maxsepacuts;

   SCIPdebugMessage("searching gomory cuts: %d cols, %d rows, maxdnom=%"SCIP_LONGINT_FORMAT", maxscale=%g, maxcuts=%d\n",
      ncols, nrows, maxdnom, maxscale, maxsepacuts);

   cutoff = FALSE;
   naddedcuts = 0;

   /* for all basic columns belonging to integer variables, try to generate a gomory cut */
   for( i = 0; i < nrows && naddedcuts < maxsepacuts && !SCIPisStopped(scip) && !cutoff; ++i )
   {
      SCIP_Bool tryrow;

      tryrow = FALSE;
      c = basisind[i];
      if( c >= 0 )
      {
         SCIP_VAR* var;

         assert(c < ncols);
         var = SCIPcolGetVar(cols[c]);
         if( SCIPvarGetType(var) != SCIP_VARTYPE_CONTINUOUS )
         {
            SCIP_Real primsol;

            primsol = SCIPcolGetPrimsol(cols[c]);
            assert(SCIPgetVarSol(scip, var) == primsol); /*lint !e777*/

            if( SCIPfeasFrac(scip, primsol) >= minfrac )
            {
               SCIPdebugMessage("trying gomory cut for col <%s> [%g]\n", SCIPvarGetName(var), primsol);
               tryrow = TRUE;
            }
         }
      }
      else if( sepadata->separaterows )
      {
         SCIP_ROW* row;

         assert(0 <= -c-1 && -c-1 < nrows);
         row = rows[-c-1];
         if( SCIProwIsIntegral(row) && !SCIProwIsModifiable(row) )
         {
            SCIP_Real primsol;

            primsol = SCIPgetRowActivity(scip, row);
            if( SCIPfeasFrac(scip, primsol) >= minfrac )
            {
               SCIPdebugMessage("trying gomory cut for row <%s> [%g]\n", SCIProwGetName(row), primsol);
               tryrow = TRUE;
            }
         }
      }

      if( tryrow )
      {
         SCIP_Real cutrhs;
         SCIP_Real cutact;
         SCIP_Bool success;
         SCIP_Bool cutislocal;

         /* get the row of B^-1 for this basic integer variable with fractional solution value */
         SCIP_CALL( SCIPgetLPBInvRow(scip, i, binvrow) );

         cutact = 0.0;
         cutrhs = SCIPinfinity(scip);

         /* create a MIR cut out of the weighted LP rows using the B^-1 row as weights */
         SCIP_CALL( SCIPcalcMIR(scip, NULL, BOUNDSWITCH, USEVBDS, ALLOWLOCAL, FIXINTEGRALRHS, NULL, NULL,
               (int) MAXAGGRLEN(nvars), sepadata->maxweightrange, minfrac, maxfrac,
               binvrow, 1.0, NULL, NULL, cutcoefs, &cutrhs, &cutact, &success, &cutislocal) );
         assert(ALLOWLOCAL || !cutislocal);

         /* @todo Currently we are using the SCIPcalcMIR() function to compute the coefficients of the Gomory
          *       cut. Alternatively, we could use the direct version (see thesis of Achterberg formula (8.4)) which
          *       leads to cut a of the form \sum a_i x_i \geq 1. Rumor has it that these cuts are better.
          */

         SCIPdebugMessage(" -> success=%u: %g <= %g\n", success, cutact, cutrhs);

         /* if successful, convert dense cut into sparse row, and add the row as a cut */
         if( success && SCIPisFeasGT(scip, cutact, cutrhs) )
         {
            SCIP_ROW* cut;
            char cutname[SCIP_MAXSTRLEN];
            int v;

            /* construct cut name */
            if( c >= 0 )
               (void) SCIPsnprintf(cutname, SCIP_MAXSTRLEN, "gom%d_x%d", SCIPgetNLPs(scip), c);
            else
               (void) SCIPsnprintf(cutname, SCIP_MAXSTRLEN, "gom%d_s%d", SCIPgetNLPs(scip), -c-1);

            /* create empty cut */
            SCIP_CALL( SCIPcreateEmptyRowSepa(scip, &cut, sepa, cutname, -SCIPinfinity(scip), cutrhs,
                  cutislocal, FALSE, sepadata->dynamiccuts) );

            /* cache the row extension and only flush them if the cut gets added */
            SCIP_CALL( SCIPcacheRowExtensions(scip, cut) );

            /* collect all non-zero coefficients */
            for( v = 0; v < nvars; ++v )
            {
               if( !SCIPisZero(scip, cutcoefs[v]) )
               {
                  SCIP_CALL( SCIPaddVarToRow(scip, cut, vars[v], cutcoefs[v]) );
               }
            }

            if( SCIProwGetNNonz(cut) == 0 )
            {
               assert(SCIPisFeasNegative(scip, cutrhs));
               SCIPdebugMessage(" -> gomory cut detected infeasibility with cut 0 <= %f\n", cutrhs);
               cutoff = TRUE;
            }
            else if( SCIProwGetNNonz(cut) == 1 )
            {
               /* add the bound change as cut to avoid that the LP gets modified. that would mean the LP is not flushed
                * and the method SCIPgetLPBInvRow() fails; SCIP internally will apply that bound change automatically
                */
               SCIP_CALL( SCIPaddCut(scip, NULL, cut, TRUE) );
               naddedcuts++;
            }
            else
            {
               /* Only take efficacious cuts, except for cuts with one non-zero coefficients (= bound
                * changes); the latter cuts will be handeled internally in sepastore.
                */
               if( SCIPisCutEfficacious(scip, NULL, cut) )
               {
                  assert(success == TRUE);

                  SCIPdebugMessage(" -> gomory cut for <%s>: act=%f, rhs=%f, eff=%f\n",
                     c >= 0 ? SCIPvarGetName(SCIPcolGetVar(cols[c])) : SCIProwGetName(rows[-c-1]),
                     cutact, cutrhs, SCIPgetCutEfficacy(scip, NULL, cut));

                  if( sepadata->makeintegral )
                  {
                     /* try to scale the cut to integral values */
                     SCIP_CALL( SCIPmakeRowIntegral(scip, cut, -SCIPepsilon(scip), SCIPsumepsilon(scip),
                           maxdnom, maxscale, MAKECONTINTEGRAL, &success) );

                     if( sepadata->forcecuts )
                        success = TRUE;

                     /* in case the left hand side in minus infinity and the right hand side is plus infinity the cut is
                      * useless so we are not taking it at all
                      */
                     if( (SCIPisInfinity(scip, -SCIProwGetLhs(cut)) && SCIPisInfinity(scip, SCIProwGetRhs(cut))) )
                        success = FALSE;

                     /* @todo Trying to make the Gomory cut integral might fail. Due to numerical reasons/arguments we
                      *       currently ignore such cuts. If the cut, however, has small support (let's say smaller or equal to
                      *       5), we might want to add that cut (even it does not have integral coefficients). To be able to
                      *       do that we need to add a rank to the data structure of a row. The rank of original rows are
                      *       zero and for aggregated rows it is the maximum over all used rows plus one.
                      */
                  }

                  if( success )
                  {
                     SCIPdebugMessage(" -> found gomory cut <%s>: act=%f, rhs=%f, norm=%f, eff=%f, min=%f, max=%f (range=%f)\n",
                        cutname, SCIPgetRowLPActivity(scip, cut), SCIProwGetRhs(cut), SCIProwGetNorm(cut),
                        SCIPgetCutEfficacy(scip, NULL, cut),
                        SCIPgetRowMinCoef(scip, cut), SCIPgetRowMaxCoef(scip, cut),
                        SCIPgetRowMaxCoef(scip, cut)/SCIPgetRowMinCoef(scip, cut));

                     /* flush all changes before adding the cut */
                     SCIP_CALL( SCIPflushRowExtensions(scip, cut) );

                     /* add global cuts which are not implicit bound changes to the cut pool */
                     if( !cutislocal )
                     {
                        if( sepadata->delayedcuts )
                        {
                           SCIP_CALL( SCIPaddDelayedPoolCut(scip, cut) );
                        }
                        else
                        {
                           SCIP_CALL( SCIPaddPoolCut(scip, cut) );
                        }
                     }
                     else
                     {
                        /* local cuts we add to the sepastore */
                        SCIP_CALL( SCIPaddCut(scip, NULL, cut, FALSE) );
                     }

                     naddedcuts++;
                  }
               }
            }

            /* release the row */
            SCIP_CALL( SCIPreleaseRow(scip, &cut) );
         }
      }
   }

   /* free temporary memory */
   SCIPfreeBufferArray(scip, &binvrow);
   SCIPfreeBufferArray(scip, &basisind);
   SCIPfreeBufferArray(scip, &cutcoefs);

   SCIPdebugMessage("end searching gomory cuts: found %d cuts\n", naddedcuts);

   sepadata->lastncutsfound = SCIPgetNCutsFound(scip);

   /* evalute the result of the separation */
   if( cutoff )
      *result = SCIP_CUTOFF;
   else if ( naddedcuts > 0 )
      *result = SCIP_SEPARATED;
   else
      *result = SCIP_DIDNOTFIND;

   return SCIP_OKAY;
}
Ejemplo n.º 17
0
/** creates a subproblem for subscip by fixing a number of variables */
static
SCIP_RETCODE createSubproblem(
   SCIP*                 scip,               /**< original SCIP data structure                                   */
   SCIP*                 subscip,            /**< SCIP data structure for the subproblem                         */
   SCIP_VAR**            subvars,            /**< the variables of the subproblem                                */
   SCIP_Real             minfixingrate,      /**< percentage of integer variables that have to be fixed          */
   SCIP_Bool             binarybounds,       /**< should general integers get binary bounds [floor(.),ceil(.)] ? */
   SCIP_Bool             uselprows,          /**< should subproblem be created out of the rows in the LP rows?   */
   SCIP_Bool*            success             /**< pointer to store whether the problem was created successfully  */
   )
{
   SCIP_VAR** vars;                          /* original SCIP variables */

   SCIP_Real fixingrate;

   int nvars;
   int nbinvars;
   int nintvars;
   int i;
   int fixingcounter;

   assert(scip != NULL);
   assert(subscip != NULL);
   assert(subvars != NULL);

   assert(0.0 <= minfixingrate && minfixingrate <= 1.0);

   /* get required variable data */
   SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, &nbinvars, &nintvars, NULL, NULL) );

   fixingcounter = 0;

   /* change bounds of variables of the subproblem */
   for( i = 0; i < nbinvars + nintvars; i++ )
   {
      SCIP_Real lpsolval;
      SCIP_Real lb;
      SCIP_Real ub;

      /* get the current LP solution for each variable */
      lpsolval = SCIPgetRelaxSolVal(scip, vars[i]);

      if( SCIPisFeasIntegral(scip, lpsolval) )
      {
         /* fix variables to current LP solution if it is integral,
          * use exact integral value, if the variable is only integral within numerical tolerances
          */
         lb = SCIPfloor(scip, lpsolval+0.5);
         ub = lb;
         fixingcounter++;
      }
      else if( binarybounds )
      {
         /* if the sub problem should be a binary problem, change the bounds to nearest integers */
         lb = SCIPfeasFloor(scip,lpsolval);
         ub = SCIPfeasCeil(scip,lpsolval);
      }
      else
      {
         /* otherwise just copy bounds */
         lb =  SCIPvarGetLbGlobal(vars[i]);
         ub =  SCIPvarGetUbGlobal(vars[i]);
      }

      /* perform the bound change */
      SCIP_CALL( SCIPchgVarLbGlobal(subscip, subvars[i], lb) );
      SCIP_CALL( SCIPchgVarUbGlobal(subscip, subvars[i], ub) );
   }

   /* abort, if all integer variables were fixed (which should not happen for MIP) */
   if( fixingcounter == nbinvars + nintvars )
   {
      *success = FALSE;
      return SCIP_OKAY;
   }
   else
      fixingrate = fixingcounter / (SCIP_Real)(MAX(nbinvars + nintvars, 1));
   SCIPdebugMessage("fixing rate: %g = %d of %d\n", fixingrate, fixingcounter, nbinvars + nintvars);

   /* abort, if the amount of fixed variables is insufficient */
   if( fixingrate < minfixingrate )
   {
      *success = FALSE;
      return SCIP_OKAY;
   }

   if( uselprows )
   {
      SCIP_ROW** rows;                          /* original scip rows                         */
      int nrows;

      /* get the rows and their number */
      SCIP_CALL( SCIPgetLPRowsData(scip, &rows, &nrows) );

      /* copy all rows to linear constraints */
      for( i = 0; i < nrows; i++ )
      {
         SCIP_CONS* cons;
         SCIP_VAR** consvars;
         SCIP_COL** cols;
         SCIP_Real constant;
         SCIP_Real lhs;
         SCIP_Real rhs;
         SCIP_Real* vals;
         int nnonz;
         int j;

         /* ignore rows that are only locally valid */
         if( SCIProwIsLocal(rows[i]) )
            continue;

         /* get the row's data */
         constant = SCIProwGetConstant(rows[i]);
         lhs = SCIProwGetLhs(rows[i]) - constant;
         rhs = SCIProwGetRhs(rows[i]) - constant;
         vals = SCIProwGetVals(rows[i]);
         nnonz = SCIProwGetNNonz(rows[i]);
         cols = SCIProwGetCols(rows[i]);

         assert( lhs <= rhs );

         /* allocate memory array to be filled with the corresponding subproblem variables */
         SCIP_CALL( SCIPallocBufferArray(subscip, &consvars, nnonz) );
         for( j = 0; j < nnonz; j++ )
            consvars[j] = subvars[SCIPvarGetProbindex(SCIPcolGetVar(cols[j]))];

         /* create a new linear constraint and add it to the subproblem */
         SCIP_CALL( SCIPcreateConsLinear(subscip, &cons, SCIProwGetName(rows[i]), nnonz, consvars, vals, lhs, rhs,
               TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, TRUE, TRUE, FALSE) );
         SCIP_CALL( SCIPaddCons(subscip, cons) );
         SCIP_CALL( SCIPreleaseCons(subscip, &cons) );

         /* free temporary memory */
         SCIPfreeBufferArray(subscip, &consvars);
      }
   }

   *success = TRUE;
   return SCIP_OKAY;
}
Ejemplo n.º 18
0
/** creates a subproblem for subscip by fixing a number of variables */
static
SCIP_RETCODE createSubproblem(
   SCIP*                 scip,               /**< original SCIP data structure                                  */
   SCIP*                 subscip,            /**< SCIP data structure for the subproblem                        */
   SCIP_VAR**            subvars,            /**< the variables of the subproblem                               */
   SCIP_Real             minfixingrate,      /**< percentage of integer variables that have to be fixed         */
   unsigned int*         randseed,           /**< a seed value for the random number generator                  */
   SCIP_Bool             uselprows           /**< should subproblem be created out of the rows in the LP rows?   */
   )
{
   SCIP_VAR** vars;                          /* original scip variables                    */
   SCIP_SOL* sol;                            /* pool of solutions                          */
   SCIP_Bool* marked;                        /* array of markers, which variables to fixed */
   SCIP_Bool fixingmarker;                   /* which flag should label a fixed variable?  */

   int nvars;
   int nbinvars;
   int nintvars;
   int i;
   int j;
   int nmarkers;

   /* get required data of the original problem */
   SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, &nbinvars, &nintvars, NULL, NULL) );
   sol = SCIPgetBestSol(scip);
   assert(sol != NULL);


   SCIP_CALL( SCIPallocBufferArray(scip, &marked, nbinvars+nintvars) );

   if( minfixingrate > 0.5 )
   {
      nmarkers = nbinvars + nintvars - (int) SCIPfloor(scip, minfixingrate*(nbinvars+nintvars));
      fixingmarker = FALSE;
   }
   else
   {
      nmarkers = (int) SCIPceil(scip, minfixingrate*(nbinvars+nintvars));
      fixingmarker = TRUE;
   }
   assert( 0 <= nmarkers && nmarkers <=  SCIPceil(scip,(nbinvars+nintvars)/2.0 ) );

   j = 0;
   BMSclearMemoryArray(marked, nbinvars+nintvars);
   while( j < nmarkers )
   {
      do
      {
         i = SCIPgetRandomInt(0, nbinvars+nintvars-1, randseed);
      }
      while( marked[i] );
      marked[i] = TRUE;
      j++;
   }
   assert( j == nmarkers );

   /* change bounds of variables of the subproblem */
   for( i = 0; i < nbinvars + nintvars; i++ )
   {
      /* fix all randomly marked variables */
      if( marked[i] == fixingmarker )
      {
         SCIP_Real solval;
         SCIP_Real lb;
         SCIP_Real ub;

         solval = SCIPgetSolVal(scip, sol, vars[i]);
         lb = SCIPvarGetLbGlobal(subvars[i]);
         ub = SCIPvarGetUbGlobal(subvars[i]);
         assert(SCIPisLE(scip, lb, ub));
         
         /* due to dual reductions, it may happen that the solution value is not in
            the variable's domain anymore */
         if( SCIPisLT(scip, solval, lb) )
            solval = lb;
         else if( SCIPisGT(scip, solval, ub) )
            solval = ub;
         
         /* perform the bound change */
         if( !SCIPisInfinity(scip, solval) && !SCIPisInfinity(scip, -solval) )
         {
            SCIP_CALL( SCIPchgVarLbGlobal(subscip, subvars[i], solval) );
            SCIP_CALL( SCIPchgVarUbGlobal(subscip, subvars[i], solval) );
         }
      }
   }

   if( uselprows )
   {
      SCIP_ROW** rows;   /* original scip rows */
      int nrows;

      /* get the rows and their number */
      SCIP_CALL( SCIPgetLPRowsData(scip, &rows, &nrows) );

      /* copy all rows to linear constraints */
      for( i = 0; i < nrows; i++ )
      {
         SCIP_CONS* cons;
         SCIP_VAR** consvars;
         SCIP_COL** cols;
         SCIP_Real constant;
         SCIP_Real lhs;
         SCIP_Real rhs;
         SCIP_Real* vals;
         int nnonz;

         /* ignore rows that are only locally valid */
         if( SCIProwIsLocal(rows[i]) )
            continue;

         /* get the row's data */
         constant = SCIProwGetConstant(rows[i]);
         lhs = SCIProwGetLhs(rows[i]) - constant;
         rhs = SCIProwGetRhs(rows[i]) - constant;
         vals = SCIProwGetVals(rows[i]);
         nnonz = SCIProwGetNNonz(rows[i]);
         cols = SCIProwGetCols(rows[i]);

         assert( lhs <= rhs );

         /* allocate memory array to be filled with the corresponding subproblem variables */
         SCIP_CALL( SCIPallocBufferArray(scip, &consvars, nnonz) );
         for( j = 0; j < nnonz; j++ )
            consvars[j] = subvars[SCIPvarGetProbindex(SCIPcolGetVar(cols[j]))];

         /* create a new linear constraint and add it to the subproblem */
         SCIP_CALL( SCIPcreateConsLinear(subscip, &cons, SCIProwGetName(rows[i]), nnonz, consvars, vals, lhs, rhs,
               TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, TRUE, TRUE, FALSE) );
         SCIP_CALL( SCIPaddCons(subscip, cons) );
         SCIP_CALL( SCIPreleaseCons(subscip, &cons) );

         /* free temporary memory */
         SCIPfreeBufferArray(scip, &consvars);
      }
   }

   SCIPfreeBufferArray(scip, &marked);
   return SCIP_OKAY;
}
Ejemplo n.º 19
0
/** execution method of primal heuristic */
static
SCIP_DECL_HEUREXEC(heurExecRounding) /*lint --e{715}*/
{  /*lint --e{715}*/
   SCIP_HEURDATA* heurdata;
   SCIP_SOL* sol;
   SCIP_VAR** lpcands;
   SCIP_Real* lpcandssol;
   SCIP_ROW** lprows;
   SCIP_Real* activities;
   SCIP_ROW** violrows;
   int* violrowpos;
   SCIP_Real obj;
   SCIP_Real bestroundval;
   SCIP_Real minobj;
   int nlpcands;
   int nlprows;
   int nfrac;
   int nviolrows;
   int c;
   int r;
   SCIP_Longint nlps;
   SCIP_Longint ncalls;
   SCIP_Longint nsolsfound;
   SCIP_Longint nnodes;

   assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0);
   assert(scip != NULL);
   assert(result != NULL);
   assert(SCIPhasCurrentNodeLP(scip));

   *result = SCIP_DIDNOTRUN;

   /* only call heuristic, if an optimal LP solution is at hand */
   if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL )
      return SCIP_OKAY;

   /* only call heuristic, if the LP objective value is smaller than the cutoff bound */
   if( SCIPisGE(scip, SCIPgetLPObjval(scip), SCIPgetCutoffbound(scip)) )
      return SCIP_OKAY;

   /* get heuristic data */
   heurdata = SCIPheurGetData(heur);
   assert(heurdata != NULL);

   /* don't call heuristic, if we have already processed the current LP solution */
   nlps = SCIPgetNLPs(scip);
   if( nlps == heurdata->lastlp )
      return SCIP_OKAY;
   heurdata->lastlp = nlps;

   /* don't call heuristic, if it was not successful enough in the past */
   ncalls = SCIPheurGetNCalls(heur);
   nsolsfound = 10*SCIPheurGetNBestSolsFound(heur) + SCIPheurGetNSolsFound(heur);
   nnodes = SCIPgetNNodes(scip);
   if( nnodes % ((ncalls/heurdata->successfactor)/(nsolsfound+1)+1) != 0 )
      return SCIP_OKAY;

   /* get fractional variables, that should be integral */
   SCIP_CALL( SCIPgetLPBranchCands(scip, &lpcands, &lpcandssol, NULL, &nlpcands, NULL, NULL) );
   nfrac = nlpcands;

   /* only call heuristic, if LP solution is fractional */
   if( nfrac == 0 )
      return SCIP_OKAY;

   *result = SCIP_DIDNOTFIND;

   /* get LP rows */
   SCIP_CALL( SCIPgetLPRowsData(scip, &lprows, &nlprows) );

   SCIPdebugMessage("executing rounding heuristic: %d LP rows, %d fractionals\n", nlprows, nfrac);

   /* get memory for activities, violated rows, and row violation positions */
   SCIP_CALL( SCIPallocBufferArray(scip, &activities, nlprows) );
   SCIP_CALL( SCIPallocBufferArray(scip, &violrows, nlprows) );
   SCIP_CALL( SCIPallocBufferArray(scip, &violrowpos, nlprows) );

   /* get the activities for all globally valid rows;
    * the rows should be feasible, but due to numerical inaccuracies in the LP solver, they can be violated
    */
   nviolrows = 0;
   for( r = 0; r < nlprows; ++r )
   {
      SCIP_ROW* row;

      row = lprows[r];
      assert(SCIProwGetLPPos(row) == r);

      if( !SCIProwIsLocal(row) )
      {
         activities[r] = SCIPgetRowActivity(scip, row);
         if( SCIPisFeasLT(scip, activities[r], SCIProwGetLhs(row))
            || SCIPisFeasGT(scip, activities[r], SCIProwGetRhs(row)) )
         {
            violrows[nviolrows] = row;
            violrowpos[r] = nviolrows;
            nviolrows++;
         }
         else
            violrowpos[r] = -1;
      }
   }

   /* get the working solution from heuristic's local data */
   sol = heurdata->sol;
   assert(sol != NULL);

   /* copy the current LP solution to the working solution */
   SCIP_CALL( SCIPlinkLPSol(scip, sol) );

   /* calculate the minimal objective value possible after rounding fractional variables */
   minobj = SCIPgetSolTransObj(scip, sol);
   assert(minobj < SCIPgetCutoffbound(scip));
   for( c = 0; c < nlpcands; ++c )
   {
      obj = SCIPvarGetObj(lpcands[c]);
      bestroundval = obj > 0.0 ? SCIPfeasFloor(scip, lpcandssol[c]) : SCIPfeasCeil(scip, lpcandssol[c]);
      minobj += obj * (bestroundval - lpcandssol[c]);
   }

   /* try to round remaining variables in order to become/stay feasible */
   while( nfrac > 0 )
   {
      SCIP_VAR* roundvar;
      SCIP_Real oldsolval;
      SCIP_Real newsolval;

      SCIPdebugMessage("rounding heuristic: nfrac=%d, nviolrows=%d, obj=%g (best possible obj: %g)\n",
         nfrac, nviolrows, SCIPgetSolOrigObj(scip, sol), SCIPretransformObj(scip, minobj));

      /* minobj < SCIPgetCutoffbound(scip) should be true, otherwise the rounding variable selection
       * should have returned NULL. Due to possible cancellation we use SCIPisLE. */
      assert( SCIPisLE(scip, minobj, SCIPgetCutoffbound(scip)) );

      /* choose next variable to process:
       *  - if a violated row exists, round a variable decreasing the violation, that has least impact on other rows
       *  - otherwise, round a variable, that has strongest devastating impact on rows in opposite direction
       */
      if( nviolrows > 0 )
      {
         SCIP_ROW* row;
         int rowpos;

         row = violrows[nviolrows-1];
         rowpos = SCIProwGetLPPos(row);
         assert(0 <= rowpos && rowpos < nlprows);
         assert(violrowpos[rowpos] == nviolrows-1);

         SCIPdebugMessage("rounding heuristic: try to fix violated row <%s>: %g <= %g <= %g\n",
            SCIProwGetName(row), SCIProwGetLhs(row), activities[rowpos], SCIProwGetRhs(row));
         if( SCIPisFeasLT(scip, activities[rowpos], SCIProwGetLhs(row)) )
         {
            /* lhs is violated: select a variable rounding, that increases the activity */
            SCIP_CALL( selectIncreaseRounding(scip, sol, minobj, row, &roundvar, &oldsolval, &newsolval) );
         }
         else
         {
            assert(SCIPisFeasGT(scip, activities[rowpos], SCIProwGetRhs(row)));
            /* rhs is violated: select a variable rounding, that decreases the activity */
            SCIP_CALL( selectDecreaseRounding(scip, sol, minobj, row, &roundvar, &oldsolval, &newsolval) );
         }
      }
      else
      {
         SCIPdebugMessage("rounding heuristic: search rounding variable and try to stay feasible\n");
         SCIP_CALL( selectEssentialRounding(scip, sol, minobj, lpcands, nlpcands, &roundvar, &oldsolval, &newsolval) );
      }

      /* check, whether rounding was possible */
      if( roundvar == NULL )
      {
         SCIPdebugMessage("rounding heuristic:  -> didn't find a rounding variable\n");
         break;
      }

      SCIPdebugMessage("rounding heuristic:  -> round var <%s>, oldval=%g, newval=%g, obj=%g\n",
         SCIPvarGetName(roundvar), oldsolval, newsolval, SCIPvarGetObj(roundvar));

      /* update row activities of globally valid rows */
      SCIP_CALL( updateActivities(scip, activities, violrows, violrowpos, &nviolrows, nlprows, 
            roundvar, oldsolval, newsolval) );

      /* store new solution value and decrease fractionality counter */
      SCIP_CALL( SCIPsetSolVal(scip, sol, roundvar, newsolval) );
      nfrac--;

      /* update minimal objective value possible after rounding remaining variables */
      obj = SCIPvarGetObj(roundvar);
      if( obj > 0.0 && newsolval > oldsolval )
         minobj += obj;
      else if( obj < 0.0 && newsolval < oldsolval )
         minobj -= obj;

      SCIPdebugMessage("rounding heuristic:  -> nfrac=%d, nviolrows=%d, obj=%g (best possible obj: %g)\n",
         nfrac, nviolrows, SCIPgetSolOrigObj(scip, sol), SCIPretransformObj(scip, minobj));
   }

   /* check, if the new solution is feasible */
   if( nfrac == 0 && nviolrows == 0 )
   {
      SCIP_Bool stored;

      /* check solution for feasibility, and add it to solution store if possible
       * neither integrality nor feasibility of LP rows has to be checked, because this is already
       * done in the rounding heuristic itself; however, be better check feasibility of LP rows,
       * because of numerical problems with activity updating
       */
      SCIP_CALL( SCIPtrySol(scip, sol, FALSE, FALSE, FALSE, TRUE, &stored) );

      if( stored )
      {
#ifdef SCIP_DEBUG
         SCIPdebugMessage("found feasible rounded solution:\n");
         SCIP_CALL( SCIPprintSol(scip, sol, NULL, FALSE) );
#endif
         *result = SCIP_FOUNDSOL;
      }
   }

   /* free memory buffers */
   SCIPfreeBufferArray(scip, &violrowpos);
   SCIPfreeBufferArray(scip, &violrows);
   SCIPfreeBufferArray(scip, &activities);

   return SCIP_OKAY;
}