Ejemplo n.º 1
0
/** creates the rows of the subproblem */
static
SCIP_RETCODE createRows(
   SCIP*                 scip,               /**< original SCIP data structure */
   SCIP*                 subscip,            /**< SCIP data structure for the subproblem */
   SCIP_VAR**            subvars             /**< the variables of the subproblem */
   )
{
   SCIP_ROW** rows;                          /* original scip rows                       */
   SCIP_CONS* cons;                          /* new constraint                           */
   SCIP_VAR** consvars;                      /* new constraint's variables               */
   SCIP_COL** cols;                          /* original row's columns                   */

   SCIP_Real constant;                       /* constant added to the row                */
   SCIP_Real lhs;                            /* left hand side of the row                */
   SCIP_Real rhs;                            /* left right side of the row               */
   SCIP_Real* vals;                          /* variables' coefficient values of the row */

   int nrows;
   int nnonz;
   int i;
   int j;

   /* get the rows and their number */
   SCIP_CALL( SCIPgetLPRowsData(scip, &rows, &nrows) );

   /* copy all rows to linear constraints */
   for( i = 0; i < nrows; i++ )
   {
      /* ignore rows that are only locally valid */
      if( SCIProwIsLocal(rows[i]) )
         continue;

      /* get the row's data */
      constant = SCIProwGetConstant(rows[i]);
      lhs = SCIProwGetLhs(rows[i]) - constant;
      rhs = SCIProwGetRhs(rows[i]) - constant;
      vals = SCIProwGetVals(rows[i]);
      nnonz = SCIProwGetNNonz(rows[i]);
      cols = SCIProwGetCols(rows[i]);

      assert(lhs <= rhs);

      /* allocate memory array to be filled with the corresponding subproblem variables */
      SCIP_CALL( SCIPallocBufferArray(scip, &consvars, nnonz) );
      for( j = 0; j < nnonz; j++ )
         consvars[j] = subvars[SCIPvarGetProbindex(SCIPcolGetVar(cols[j]))];

      /* create a new linear constraint and add it to the subproblem */
      SCIP_CALL( SCIPcreateConsLinear(subscip, &cons, SCIProwGetName(rows[i]), nnonz, consvars, vals, lhs, rhs,
            TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, TRUE, TRUE, FALSE) );
      SCIP_CALL( SCIPaddCons(subscip, cons) );
      SCIP_CALL( SCIPreleaseCons(subscip, &cons) );

      /* free temporary memory */
      SCIPfreeBufferArray(scip, &consvars);
   }

   return SCIP_OKAY;
}
Ejemplo n.º 2
0
/** update row activities after a variable's solution value changed */
static
SCIP_RETCODE updateRowActivities(
   SCIP*                 scip,               /**< SCIP data structure */
   SCIP_Real*            activities,         /**< LP row activities */
   SCIP_VAR*             var,                /**< variable that has been changed */
   SCIP_Real             shiftval            /**< value that is added to variable */
   )
{
   SCIP_Real* colvals;
   SCIP_ROW** colrows;
   SCIP_COL* col;

   int ncolrows;
   int i;

   assert(activities != NULL);

   /* get data of column associated to variable */
   col = SCIPvarGetCol(var);
   colrows = SCIPcolGetRows(col);
   colvals = SCIPcolGetVals(col);
   ncolrows = SCIPcolGetNLPNonz(col);
   assert(ncolrows == 0 || (colrows != NULL && colvals != NULL));

   /* enumerate all rows with nonzero entry in this column */
   for( i = 0; i < ncolrows; ++i )
   {
      SCIP_ROW* row;
      int rowpos;

      row = colrows[i];
      rowpos = SCIProwGetLPPos(row);
      assert(-1 <= rowpos && rowpos < SCIPgetNLPRows(scip) );

      /* update row activity, only regard global rows in the LP */
      if( rowpos >= 0 && !SCIProwIsLocal(row) )
      {
         activities[rowpos] +=  shiftval * colvals[i];

         if( SCIPisInfinity(scip, activities[rowpos]) )
            activities[rowpos] = SCIPinfinity(scip);
         else if( SCIPisInfinity(scip, -activities[rowpos]) )
            activities[rowpos] = -SCIPinfinity(scip);
      }
   }

   return SCIP_OKAY;
}
Ejemplo n.º 3
0
/** creates a subproblem for subscip by fixing a number of variables */
static
SCIP_RETCODE createSubproblem(
   SCIP*                 scip,               /**< original SCIP data structure                                  */
   SCIP*                 subscip,            /**< SCIP data structure for the subproblem                        */
   SCIP_VAR**            subvars,            /**< the variables of the subproblem                               */
   SCIP_Real             minfixingrate,      /**< percentage of integer variables that have to be fixed         */
   unsigned int*         randseed,           /**< a seed value for the random number generator                  */
   SCIP_Bool             uselprows           /**< should subproblem be created out of the rows in the LP rows?   */
   )
{
   SCIP_VAR** vars;                          /* original scip variables                    */
   SCIP_SOL* sol;                            /* pool of solutions                          */
   SCIP_Bool* marked;                        /* array of markers, which variables to fixed */
   SCIP_Bool fixingmarker;                   /* which flag should label a fixed variable?  */

   int nvars;
   int nbinvars;
   int nintvars;
   int i;
   int j;
   int nmarkers;

   /* get required data of the original problem */
   SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, &nbinvars, &nintvars, NULL, NULL) );
   sol = SCIPgetBestSol(scip);
   assert(sol != NULL);


   SCIP_CALL( SCIPallocBufferArray(scip, &marked, nbinvars+nintvars) );

   if( minfixingrate > 0.5 )
   {
      nmarkers = nbinvars + nintvars - (int) SCIPfloor(scip, minfixingrate*(nbinvars+nintvars));
      fixingmarker = FALSE;
   }
   else
   {
      nmarkers = (int) SCIPceil(scip, minfixingrate*(nbinvars+nintvars));
      fixingmarker = TRUE;
   }
   assert( 0 <= nmarkers && nmarkers <=  SCIPceil(scip,(nbinvars+nintvars)/2.0 ) );

   j = 0;
   BMSclearMemoryArray(marked, nbinvars+nintvars);
   while( j < nmarkers )
   {
      do
      {
         i = SCIPgetRandomInt(0, nbinvars+nintvars-1, randseed);
      }
      while( marked[i] );
      marked[i] = TRUE;
      j++;
   }
   assert( j == nmarkers );

   /* change bounds of variables of the subproblem */
   for( i = 0; i < nbinvars + nintvars; i++ )
   {
      /* fix all randomly marked variables */
      if( marked[i] == fixingmarker )
      {
         SCIP_Real solval;
         SCIP_Real lb;
         SCIP_Real ub;

         solval = SCIPgetSolVal(scip, sol, vars[i]);
         lb = SCIPvarGetLbGlobal(subvars[i]);
         ub = SCIPvarGetUbGlobal(subvars[i]);
         assert(SCIPisLE(scip, lb, ub));
         
         /* due to dual reductions, it may happen that the solution value is not in
            the variable's domain anymore */
         if( SCIPisLT(scip, solval, lb) )
            solval = lb;
         else if( SCIPisGT(scip, solval, ub) )
            solval = ub;
         
         /* perform the bound change */
         if( !SCIPisInfinity(scip, solval) && !SCIPisInfinity(scip, -solval) )
         {
            SCIP_CALL( SCIPchgVarLbGlobal(subscip, subvars[i], solval) );
            SCIP_CALL( SCIPchgVarUbGlobal(subscip, subvars[i], solval) );
         }
      }
   }

   if( uselprows )
   {
      SCIP_ROW** rows;   /* original scip rows */
      int nrows;

      /* get the rows and their number */
      SCIP_CALL( SCIPgetLPRowsData(scip, &rows, &nrows) );

      /* copy all rows to linear constraints */
      for( i = 0; i < nrows; i++ )
      {
         SCIP_CONS* cons;
         SCIP_VAR** consvars;
         SCIP_COL** cols;
         SCIP_Real constant;
         SCIP_Real lhs;
         SCIP_Real rhs;
         SCIP_Real* vals;
         int nnonz;

         /* ignore rows that are only locally valid */
         if( SCIProwIsLocal(rows[i]) )
            continue;

         /* get the row's data */
         constant = SCIProwGetConstant(rows[i]);
         lhs = SCIProwGetLhs(rows[i]) - constant;
         rhs = SCIProwGetRhs(rows[i]) - constant;
         vals = SCIProwGetVals(rows[i]);
         nnonz = SCIProwGetNNonz(rows[i]);
         cols = SCIProwGetCols(rows[i]);

         assert( lhs <= rhs );

         /* allocate memory array to be filled with the corresponding subproblem variables */
         SCIP_CALL( SCIPallocBufferArray(scip, &consvars, nnonz) );
         for( j = 0; j < nnonz; j++ )
            consvars[j] = subvars[SCIPvarGetProbindex(SCIPcolGetVar(cols[j]))];

         /* create a new linear constraint and add it to the subproblem */
         SCIP_CALL( SCIPcreateConsLinear(subscip, &cons, SCIProwGetName(rows[i]), nnonz, consvars, vals, lhs, rhs,
               TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, TRUE, TRUE, FALSE) );
         SCIP_CALL( SCIPaddCons(subscip, cons) );
         SCIP_CALL( SCIPreleaseCons(subscip, &cons) );

         /* free temporary memory */
         SCIPfreeBufferArray(scip, &consvars);
      }
   }

   SCIPfreeBufferArray(scip, &marked);
   return SCIP_OKAY;
}
Ejemplo n.º 4
0
/** adds cut stored as LP row to separation storage and captures it;
 *  if the cut should be forced to be used, an infinite score has to be used
 */
static
SCIP_RETCODE sepastoreAddCut(
   SCIP_SEPASTORE*       sepastore,          /**< separation storage */
   BMS_BLKMEM*           blkmem,             /**< block memory */
   SCIP_SET*             set,                /**< global SCIP settings */
   SCIP_STAT*            stat,               /**< problem statistics data */
   SCIP_EVENTQUEUE*      eventqueue,         /**< event queue */
   SCIP_EVENTFILTER*     eventfilter,        /**< event filter for global events */
   SCIP_LP*              lp,                 /**< LP data */
   SCIP_SOL*             sol,                /**< primal solution that was separated, or NULL for LP solution */
   SCIP_ROW*             cut,                /**< separated cut */
   SCIP_Bool             forcecut,           /**< should the cut be forced to enter the LP? */
   SCIP_Bool             root                /**< are we at the root node? */
   )
{
   SCIP_Real cutefficacy;
   SCIP_Real cutobjparallelism;
   SCIP_Real cutscore;
   int pos;

   assert(sepastore != NULL);
   assert(sepastore->nforcedcuts <= sepastore->ncuts);
   assert(set != NULL);
   assert(cut != NULL);
   assert(sol != NULL || !SCIProwIsInLP(cut));
   assert(!SCIPsetIsInfinity(set, -SCIProwGetLhs(cut)) || !SCIPsetIsInfinity(set, SCIProwGetRhs(cut)));
   assert(eventqueue != NULL);
   assert(eventfilter != NULL);

   /* in the root node, every local cut is a global cut, and global cuts are nicer in many ways...*/
   if( root && SCIProwIsLocal(cut) )
   {
      SCIPdebugMessage("change local flag of cut <%s> to FALSE due to addition in root node\n", SCIProwGetName(cut));

      SCIP_CALL( SCIProwChgLocal(cut, FALSE) );

      assert(!SCIProwIsLocal(cut));
   }

   /* check cut for redundancy
    * in each separation round, make sure that at least one (even redundant) cut enters the LP to avoid cycling
    */
   if( !forcecut && sepastore->ncuts > 0 && sepastoreIsCutRedundant(sepastore, set, stat, cut) )
      return SCIP_OKAY;

   /* if only one cut is currently present in the cut store, it could be redundant; in this case, it can now be removed
    * again, because now a non redundant cut enters the store
    */
   if( sepastore->ncuts == 1 && sepastoreIsCutRedundant(sepastore, set, stat, sepastore->cuts[0]) )
   {
      /* check, if the row deletions from separation storage events are tracked
       * if so, issue ROWDELETEDSEPA event
       */
      if( eventfilter->len > 0 && (eventfilter->eventmask & SCIP_EVENTTYPE_ROWDELETEDSEPA) != 0 )
      {
         SCIP_EVENT* event;

         SCIP_CALL( SCIPeventCreateRowDeletedSepa(&event, blkmem, sepastore->cuts[0]) );
         SCIP_CALL( SCIPeventqueueAdd(eventqueue, blkmem, set, NULL, NULL, NULL, eventfilter, &event) );
      }
      
      SCIP_CALL( SCIProwRelease(&sepastore->cuts[0], blkmem, set, lp) );
      sepastore->ncuts = 0;
      sepastore->nforcedcuts = 0;
   }

   /* a cut is forced to enter the LP if
    *  - we construct the initial LP, or
    *  - it has infinite score factor, or
    *  - it is a bound change
    * if it is a non-forced cut and no cuts should be added, abort
    */
   forcecut = forcecut || sepastore->initiallp || sepastore->forcecuts
      || (!SCIProwIsModifiable(cut) && SCIProwGetNNonz(cut) == 1);
   if( !forcecut && SCIPsetGetSepaMaxcuts(set, root) == 0 )
      return SCIP_OKAY;

   /* get enough memory to store the cut */
   SCIP_CALL( sepastoreEnsureCutsMem(sepastore, set, sepastore->ncuts+1) );
   assert(sepastore->ncuts < sepastore->cutssize);

   if( forcecut )
   {
      cutefficacy = SCIPsetInfinity(set);
      cutscore = SCIPsetInfinity(set);
      cutobjparallelism = 1.0;
   }
   else
   {
      /* initialize values to invalid (will be initialized during cut filtering) */
      cutefficacy = SCIP_INVALID;
      cutscore = SCIP_INVALID;

      /* initialize parallelism to objective (constant throughout filtering) */
      if( set->sepa_objparalfac > 0.0 )
         cutobjparallelism = SCIProwGetObjParallelism(cut, set, lp);
      else
         cutobjparallelism = 0.0; /* no need to calculate it */
   }

   SCIPdebugMessage("adding cut <%s> to separation storage of size %d (forcecut=%u, len=%d)\n",
      SCIProwGetName(cut), sepastore->ncuts, forcecut, SCIProwGetNNonz(cut));
   /*SCIPdebug(SCIProwPrint(cut, NULL));*/

   /* capture the cut */
   SCIProwCapture(cut);

   /* add cut to arrays */
   if( forcecut )
   {
      /* make room at the beginning of the array for forced cut */
      pos = sepastore->nforcedcuts;
      sepastore->cuts[sepastore->ncuts] = sepastore->cuts[pos];
      sepastore->efficacies[sepastore->ncuts] = sepastore->efficacies[pos];
      sepastore->objparallelisms[sepastore->ncuts] = sepastore->objparallelisms[pos];
      sepastore->orthogonalities[sepastore->ncuts] = sepastore->orthogonalities[pos];
      sepastore->scores[sepastore->ncuts] = sepastore->scores[pos];
      sepastore->nforcedcuts++;
   }
   else
      pos = sepastore->ncuts;

   sepastore->cuts[pos] = cut;
   sepastore->efficacies[pos] = cutefficacy;
   sepastore->objparallelisms[pos] = cutobjparallelism;
   sepastore->orthogonalities[pos] = 1.0;
   sepastore->scores[pos] = cutscore;
   sepastore->ncuts++;

   /* check, if the row addition to separation storage events are tracked
    * if so, issue ROWADDEDSEPA event
    */
   if( eventfilter->len > 0 && (eventfilter->eventmask & SCIP_EVENTTYPE_ROWADDEDSEPA) != 0 )
   {
      SCIP_EVENT* event;

      SCIP_CALL( SCIPeventCreateRowAddedSepa(&event, blkmem, cut) );
      SCIP_CALL( SCIPeventqueueAdd(eventqueue, blkmem, set, NULL, NULL, NULL, eventfilter, &event) );
   }

   return SCIP_OKAY;
}
Ejemplo n.º 5
0
/** execution method of primal heuristic */
static
SCIP_DECL_HEUREXEC(heurExecOneopt)
{  /*lint --e{715}*/

   SCIP_HEURDATA* heurdata;
   SCIP_SOL* bestsol;                        /* incumbent solution */
   SCIP_SOL* worksol;                        /* heuristic's working solution */
   SCIP_VAR** vars;                          /* SCIP variables                */
   SCIP_VAR** shiftcands;                    /* shiftable variables           */
   SCIP_ROW** lprows;                        /* SCIP LP rows                  */
   SCIP_Real* activities;                    /* row activities for working solution */
   SCIP_Real* shiftvals;

   SCIP_Real lb;
   SCIP_Real ub;
   SCIP_Bool localrows;
   SCIP_Bool valid;
   int nchgbound;
   int nbinvars;
   int nintvars;
   int nvars;
   int nlprows;
   int i;
   int nshiftcands;
   int shiftcandssize;
   SCIP_RETCODE retcode;

   assert(heur != NULL);
   assert(scip != NULL);
   assert(result != NULL);

   /* get heuristic's data */
   heurdata = SCIPheurGetData(heur);
   assert(heurdata != NULL);

   *result = SCIP_DELAYED;

   /* we only want to process each solution once */
   bestsol = SCIPgetBestSol(scip);
   if( bestsol == NULL || heurdata->lastsolindex == SCIPsolGetIndex(bestsol) )
      return SCIP_OKAY;

   /* reset the timing mask to its default value (at the root node it could be different) */
   if( SCIPgetNNodes(scip) > 1 )
      SCIPheurSetTimingmask(heur, HEUR_TIMING);

   /* get problem variables */
   SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, &nbinvars, &nintvars, NULL, NULL) );
   nintvars += nbinvars;

   /* do not run if there are no discrete variables */
   if( nintvars == 0 )
   {
      *result = SCIP_DIDNOTRUN;
      return SCIP_OKAY;
   }

   if( heurtiming == SCIP_HEURTIMING_BEFOREPRESOL )
   {
      SCIP*                 subscip;            /* the subproblem created by zeroobj              */
      SCIP_HASHMAP*         varmapfw;           /* mapping of SCIP variables to sub-SCIP variables */
      SCIP_VAR**            subvars;            /* subproblem's variables                          */
      SCIP_Real* subsolvals;                    /* solution values of the subproblem               */

      SCIP_Real timelimit;                      /* time limit for zeroobj subproblem              */
      SCIP_Real memorylimit;                    /* memory limit for zeroobj subproblem            */

      SCIP_SOL* startsol;
      SCIP_SOL** subsols;
      int nsubsols;

      if( !heurdata->beforepresol )
         return SCIP_OKAY;

      /* check whether there is enough time and memory left */
      timelimit = 0.0;
      memorylimit = 0.0;
      SCIP_CALL( SCIPgetRealParam(scip, "limits/time", &timelimit) );
      if( !SCIPisInfinity(scip, timelimit) )
         timelimit -= SCIPgetSolvingTime(scip);
      SCIP_CALL( SCIPgetRealParam(scip, "limits/memory", &memorylimit) );

      /* substract the memory already used by the main SCIP and the estimated memory usage of external software */
      if( !SCIPisInfinity(scip, memorylimit) )
      {
         memorylimit -= SCIPgetMemUsed(scip)/1048576.0;
         memorylimit -= SCIPgetMemExternEstim(scip)/1048576.0;
      }

      /* abort if no time is left or not enough memory to create a copy of SCIP, including external memory usage */
      if( timelimit <= 0.0 || memorylimit <= 2.0*SCIPgetMemExternEstim(scip)/1048576.0 )
         return SCIP_OKAY;

      /* initialize the subproblem */
      SCIP_CALL( SCIPcreate(&subscip) );

      /* create the variable mapping hash map */
      SCIP_CALL( SCIPhashmapCreate(&varmapfw, SCIPblkmem(subscip), SCIPcalcHashtableSize(5 * nvars)) );
      SCIP_CALL( SCIPallocBufferArray(scip, &subvars, nvars) );

      /* copy complete SCIP instance */
      valid = FALSE;
      SCIP_CALL( SCIPcopy(scip, subscip, varmapfw, NULL, "oneopt", TRUE, FALSE, TRUE, &valid) );
      SCIP_CALL( SCIPtransformProb(subscip) );

      /* get variable image */
      for( i = 0; i < nvars; i++ )
         subvars[i] = (SCIP_VAR*) SCIPhashmapGetImage(varmapfw, vars[i]);

      /* copy the solution */
      SCIP_CALL( SCIPallocBufferArray(scip, &subsolvals, nvars) );
      SCIP_CALL( SCIPgetSolVals(scip, bestsol, nvars, vars, subsolvals) );

      /* create start solution for the subproblem */
      SCIP_CALL( SCIPcreateOrigSol(subscip, &startsol, NULL) );
      SCIP_CALL( SCIPsetSolVals(subscip, startsol, nvars, subvars, subsolvals) );

      /* try to add new solution to sub-SCIP and free it immediately */
      valid = FALSE;
      SCIP_CALL( SCIPtrySolFree(subscip, &startsol, FALSE, FALSE, FALSE, FALSE, &valid) );
      SCIPfreeBufferArray(scip, &subsolvals);
      SCIPhashmapFree(&varmapfw);

      /* disable statistic timing inside sub SCIP */
      SCIP_CALL( SCIPsetBoolParam(subscip, "timing/statistictiming", FALSE) );

      /* deactivate basically everything except oneopt in the sub-SCIP */
      SCIP_CALL( SCIPsetPresolving(subscip, SCIP_PARAMSETTING_OFF, TRUE) );
      SCIP_CALL( SCIPsetHeuristics(subscip, SCIP_PARAMSETTING_OFF, TRUE) );
      SCIP_CALL( SCIPsetSeparating(subscip, SCIP_PARAMSETTING_OFF, TRUE) );
      SCIP_CALL( SCIPsetLongintParam(subscip, "limits/nodes", 1LL) );
      SCIP_CALL( SCIPsetRealParam(subscip, "limits/time", timelimit) );
      SCIP_CALL( SCIPsetRealParam(subscip, "limits/memory", memorylimit) );
      SCIP_CALL( SCIPsetBoolParam(subscip, "misc/catchctrlc", FALSE) );
      SCIP_CALL( SCIPsetIntParam(subscip, "display/verblevel", 0) );

      /* if necessary, some of the parameters have to be unfixed first */
      if( SCIPisParamFixed(subscip, "lp/solvefreq") )
      {
         SCIPwarningMessage(scip, "unfixing parameter lp/solvefreq in subscip of oneopt heuristic\n");
         SCIP_CALL( SCIPunfixParam(subscip, "lp/solvefreq") );
      }
      SCIP_CALL( SCIPsetIntParam(subscip, "lp/solvefreq", -1) );

      if( SCIPisParamFixed(subscip, "heuristics/oneopt/freq") )
      {
         SCIPwarningMessage(scip, "unfixing parameter heuristics/oneopt/freq in subscip of oneopt heuristic\n");
         SCIP_CALL( SCIPunfixParam(subscip, "heuristics/oneopt/freq") );
      }
      SCIP_CALL( SCIPsetIntParam(subscip, "heuristics/oneopt/freq", 1) );

      if( SCIPisParamFixed(subscip, "heuristics/oneopt/forcelpconstruction") )
      {
         SCIPwarningMessage(scip, "unfixing parameter heuristics/oneopt/forcelpconstruction in subscip of oneopt heuristic\n");
         SCIP_CALL( SCIPunfixParam(subscip, "heuristics/oneopt/forcelpconstruction") );
      }
      SCIP_CALL( SCIPsetBoolParam(subscip, "heuristics/oneopt/forcelpconstruction", TRUE) );

      /* avoid recursive call, which would lead to an endless loop */
      if( SCIPisParamFixed(subscip, "heuristics/oneopt/beforepresol") )
      {
         SCIPwarningMessage(scip, "unfixing parameter heuristics/oneopt/beforepresol in subscip of oneopt heuristic\n");
         SCIP_CALL( SCIPunfixParam(subscip, "heuristics/oneopt/beforepresol") );
      }
      SCIP_CALL( SCIPsetBoolParam(subscip, "heuristics/oneopt/beforepresol", FALSE) );

      if( valid )
      {
         retcode = SCIPsolve(subscip);

         /* errors in solving the subproblem should not kill the overall solving process;
          * hence, the return code is caught and a warning is printed, only in debug mode, SCIP will stop.
          */
         if( retcode != SCIP_OKAY )
         {
#ifndef NDEBUG
            SCIP_CALL( retcode );
#endif
            SCIPwarningMessage(scip, "Error while solving subproblem in zeroobj heuristic; sub-SCIP terminated with code <%d>\n",retcode);
         }

#ifdef SCIP_DEBUG
         SCIP_CALL( SCIPprintStatistics(subscip, NULL) );
#endif
      }

      /* check, whether a solution was found;
       * due to numerics, it might happen that not all solutions are feasible -> try all solutions until one was accepted
       */
      nsubsols = SCIPgetNSols(subscip);
      subsols = SCIPgetSols(subscip);
      valid = FALSE;
      for( i = 0; i < nsubsols && !valid; ++i )
      {
         SCIP_CALL( createNewSol(scip, subscip, subvars, heur, subsols[i], &valid) );
         if( valid )
            *result = SCIP_FOUNDSOL;
      }

      /* free subproblem */
      SCIPfreeBufferArray(scip, &subvars);
      SCIP_CALL( SCIPfree(&subscip) );

      return SCIP_OKAY;
   }

   /* we can only work on solutions valid in the transformed space */
   if( SCIPsolIsOriginal(bestsol) )
      return SCIP_OKAY;

   if( heurtiming == SCIP_HEURTIMING_BEFORENODE && (SCIPhasCurrentNodeLP(scip) || heurdata->forcelpconstruction) )
   {
      SCIP_Bool cutoff;
      cutoff = FALSE;
      SCIP_CALL( SCIPconstructLP(scip, &cutoff) );
      SCIP_CALL( SCIPflushLP(scip) );

      /* get problem variables again, SCIPconstructLP() might have added new variables */
      SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, &nbinvars, &nintvars, NULL, NULL) );
      nintvars += nbinvars;
   }

   /* we need an LP */
   if( SCIPgetNLPRows(scip) == 0 )
      return SCIP_OKAY;

   *result = SCIP_DIDNOTFIND;

   nchgbound = 0;

   /* initialize data */
   nshiftcands = 0;
   shiftcandssize = 8;
   heurdata->lastsolindex = SCIPsolGetIndex(bestsol);
   SCIP_CALL( SCIPcreateSolCopy(scip, &worksol, bestsol) );
   SCIPsolSetHeur(worksol,heur);

   SCIPdebugMessage("Starting bound adjustment in 1-opt heuristic\n");

   /* maybe change solution values due to global bound changes first */
   for( i = nvars - 1; i >= 0; --i )
   {
      SCIP_VAR* var;
      SCIP_Real solval;

      var = vars[i];
      lb = SCIPvarGetLbGlobal(var);
      ub = SCIPvarGetUbGlobal(var);

      solval = SCIPgetSolVal(scip, bestsol,var);
      /* old solution value is smaller than the actual lower bound */
      if( SCIPisFeasLT(scip, solval, lb) )
      {
         /* set the solution value to the global lower bound */
         SCIP_CALL( SCIPsetSolVal(scip, worksol, var, lb) );
         ++nchgbound;
         SCIPdebugMessage("var <%s> type %d, old solval %g now fixed to lb %g\n", SCIPvarGetName(var), SCIPvarGetType(var), solval, lb);
      }
      /* old solution value is greater than the actual upper bound */
      else if( SCIPisFeasGT(scip, solval, SCIPvarGetUbGlobal(var)) )
      {
         /* set the solution value to the global upper bound */
         SCIP_CALL( SCIPsetSolVal(scip, worksol, var, ub) );
         ++nchgbound;
         SCIPdebugMessage("var <%s> type %d, old solval %g now fixed to ub %g\n", SCIPvarGetName(var), SCIPvarGetType(var), solval, ub);
      }
   }

   SCIPdebugMessage("number of bound changes (due to global bounds) = %d\n", nchgbound);
   SCIP_CALL( SCIPgetLPRowsData(scip, &lprows, &nlprows) );
   SCIP_CALL( SCIPallocBufferArray(scip, &activities, nlprows) );

   localrows = FALSE;
   valid = TRUE;

   /* initialize activities */
   for( i = 0; i < nlprows; ++i )
   {
      SCIP_ROW* row;

      row = lprows[i];
      assert(SCIProwGetLPPos(row) == i);

      if( !SCIProwIsLocal(row) )
      {
         activities[i] = SCIPgetRowSolActivity(scip, row, worksol);
         SCIPdebugMessage("Row <%s> has activity %g\n", SCIProwGetName(row), activities[i]);
         if( SCIPisFeasLT(scip, activities[i], SCIProwGetLhs(row)) || SCIPisFeasGT(scip, activities[i], SCIProwGetRhs(row)) )
         {
            valid = FALSE;
            SCIPdebug( SCIP_CALL( SCIPprintRow(scip, row, NULL) ) );
            SCIPdebugMessage("row <%s> activity %g violates bounds, lhs = %g, rhs = %g\n", SCIProwGetName(row), activities[i], SCIProwGetLhs(row), SCIProwGetRhs(row));
            break;
         }
      }
      else
         localrows = TRUE;
   }

   if( !valid )
   {
      /** @todo try to correct lp rows */
      SCIPdebugMessage("Some global bound changes were not valid in lp rows.\n");
      goto TERMINATE;
   }

   SCIP_CALL( SCIPallocBufferArray(scip, &shiftcands, shiftcandssize) );
   SCIP_CALL( SCIPallocBufferArray(scip, &shiftvals, shiftcandssize) );


   SCIPdebugMessage("Starting 1-opt heuristic\n");

   /* enumerate all integer variables and find out which of them are shiftable */
   for( i = 0; i < nintvars; i++ )
   {
      if( SCIPvarGetStatus(vars[i]) == SCIP_VARSTATUS_COLUMN )
      {
         SCIP_Real shiftval;
         SCIP_Real solval;

         /* find out whether the variable can be shifted */
         solval = SCIPgetSolVal(scip, worksol, vars[i]);
         shiftval = calcShiftVal(scip, vars[i], solval, activities);

         /* insert the variable into the list of shifting candidates */
         if( !SCIPisFeasZero(scip, shiftval) )
         {
            SCIPdebugMessage(" -> Variable <%s> can be shifted by <%1.1f> \n", SCIPvarGetName(vars[i]), shiftval);

            if( nshiftcands == shiftcandssize)
            {
               shiftcandssize *= 8;
               SCIP_CALL( SCIPreallocBufferArray(scip, &shiftcands, shiftcandssize) );
               SCIP_CALL( SCIPreallocBufferArray(scip, &shiftvals, shiftcandssize) );
            }
            shiftcands[nshiftcands] = vars[i];
            shiftvals[nshiftcands] = shiftval;
            nshiftcands++;
         }
      }
   }

   /* if at least one variable can be shifted, shift variables sorted by their objective */
   if( nshiftcands > 0 )
   {
      SCIP_Real shiftval;
      SCIP_Real solval;
      SCIP_VAR* var;

      /* the case that exactly one variable can be shifted is slightly easier */
      if( nshiftcands == 1 )
      {
         var = shiftcands[0];
         assert(var != NULL);
         solval = SCIPgetSolVal(scip, worksol, var);
         shiftval = shiftvals[0];
         assert(!SCIPisFeasZero(scip,shiftval));
         SCIPdebugMessage(" Only one shiftcand found, var <%s>, which is now shifted by<%1.1f> \n",
            SCIPvarGetName(var), shiftval);
         SCIP_CALL( SCIPsetSolVal(scip, worksol, var, solval+shiftval) );
      }
      else
      {
         SCIP_Real* objcoeffs;

         SCIP_CALL( SCIPallocBufferArray(scip, &objcoeffs, nshiftcands) );

         SCIPdebugMessage(" %d shiftcands found \n", nshiftcands);

         /* sort the variables by their objective, optionally weighted with the shiftval */
         if( heurdata->weightedobj )
         {
            for( i = 0; i < nshiftcands; ++i )
               objcoeffs[i] = SCIPvarGetObj(shiftcands[i])*shiftvals[i];
         }
         else
         {
            for( i = 0; i < nshiftcands; ++i )
               objcoeffs[i] = SCIPvarGetObj(shiftcands[i]);
         }

         /* sort arrays with respect to the first one */
         SCIPsortRealPtr(objcoeffs, (void**)shiftcands, nshiftcands);

         /* try to shift each variable -> Activities have to be updated */
         for( i = 0; i < nshiftcands; ++i )
         {
            var = shiftcands[i];
            assert(var != NULL);
            solval = SCIPgetSolVal(scip, worksol, var);
            shiftval = calcShiftVal(scip, var, solval, activities);
            SCIPdebugMessage(" -> Variable <%s> is now shifted by <%1.1f> \n", SCIPvarGetName(vars[i]), shiftval);
            assert(i > 0 || !SCIPisFeasZero(scip, shiftval));
            assert(SCIPisFeasGE(scip, solval+shiftval, SCIPvarGetLbGlobal(var)) && SCIPisFeasLE(scip, solval+shiftval, SCIPvarGetUbGlobal(var)));
            SCIP_CALL( SCIPsetSolVal(scip, worksol, var, solval+shiftval) );
            SCIP_CALL( updateRowActivities(scip, activities, var, shiftval) );
         }

         SCIPfreeBufferArray(scip, &objcoeffs);
      }

      /* if the problem is a pure IP, try to install the solution, if it is a MIP, solve LP again to set the continuous
       * variables to the best possible value
       */
      if( nvars == nintvars || !SCIPhasCurrentNodeLP(scip) || SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL )
      {
         SCIP_Bool success;

         /* since we ignore local rows, we cannot guarantee their feasibility and have to set the checklprows flag to
          * TRUE if local rows are present
          */
         SCIP_CALL( SCIPtrySol(scip, worksol, FALSE, FALSE, FALSE, localrows, &success) );

         if( success )
         {
            SCIPdebugMessage("found feasible shifted solution:\n");
            SCIPdebug( SCIP_CALL( SCIPprintSol(scip, worksol, NULL, FALSE) ) );
            heurdata->lastsolindex = SCIPsolGetIndex(bestsol);
            *result = SCIP_FOUNDSOL;
         }
      }
      else
      {
         SCIP_Bool lperror;
#ifdef NDEBUG
         SCIP_RETCODE retstat;
#endif

         SCIPdebugMessage("shifted solution should be feasible -> solve LP to fix continuous variables to best values\n");

         /* start diving to calculate the LP relaxation */
         SCIP_CALL( SCIPstartDive(scip) );

         /* set the bounds of the variables: fixed for integers, global bounds for continuous */
         for( i = 0; i < nvars; ++i )
         {
            if( SCIPvarGetStatus(vars[i]) == SCIP_VARSTATUS_COLUMN )
            {
               SCIP_CALL( SCIPchgVarLbDive(scip, vars[i], SCIPvarGetLbGlobal(vars[i])) );
               SCIP_CALL( SCIPchgVarUbDive(scip, vars[i], SCIPvarGetUbGlobal(vars[i])) );
            }
         }
         /* apply this after global bounds to not cause an error with intermediate empty domains */
         for( i = 0; i < nintvars; ++i )
         {
            if( SCIPvarGetStatus(vars[i]) == SCIP_VARSTATUS_COLUMN )
            {
               solval = SCIPgetSolVal(scip, worksol, vars[i]);
               SCIP_CALL( SCIPchgVarLbDive(scip, vars[i], solval) );
               SCIP_CALL( SCIPchgVarUbDive(scip, vars[i], solval) );
            }
         }

         /* solve LP */
         SCIPdebugMessage(" -> old LP iterations: %" SCIP_LONGINT_FORMAT "\n", SCIPgetNLPIterations(scip));

         /**@todo in case of an MINLP, if SCIPisNLPConstructed() is TRUE, say, rather solve the NLP instead of the LP */
         /* Errors in the LP solver should not kill the overall solving process, if the LP is just needed for a heuristic.
          * Hence in optimized mode, the return code is caught and a warning is printed, only in debug mode, SCIP will stop.
          */
#ifdef NDEBUG
         retstat = SCIPsolveDiveLP(scip, -1, &lperror, NULL);
         if( retstat != SCIP_OKAY )
         { 
            SCIPwarningMessage(scip, "Error while solving LP in Oneopt heuristic; LP solve terminated with code <%d>\n",retstat);
         }
#else
         SCIP_CALL( SCIPsolveDiveLP(scip, -1, &lperror, NULL) );
#endif

         SCIPdebugMessage(" -> new LP iterations: %" SCIP_LONGINT_FORMAT "\n", SCIPgetNLPIterations(scip));
         SCIPdebugMessage(" -> error=%u, status=%d\n", lperror, SCIPgetLPSolstat(scip));

         /* check if this is a feasible solution */
         if( !lperror && SCIPgetLPSolstat(scip) == SCIP_LPSOLSTAT_OPTIMAL )
         {
            SCIP_Bool success;

            /* copy the current LP solution to the working solution */
            SCIP_CALL( SCIPlinkLPSol(scip, worksol) );
            SCIP_CALL( SCIPtrySol(scip, worksol, FALSE, FALSE, FALSE, FALSE, &success) );

            /* check solution for feasibility */
            if( success )
            {
               SCIPdebugMessage("found feasible shifted solution:\n");
               SCIPdebug( SCIP_CALL( SCIPprintSol(scip, worksol, NULL, FALSE) ) );
               heurdata->lastsolindex = SCIPsolGetIndex(bestsol);
               *result = SCIP_FOUNDSOL;
            }
         }

         /* terminate the diving */
         SCIP_CALL( SCIPendDive(scip) );
      }
   }
   SCIPdebugMessage("Finished 1-opt heuristic\n");

   SCIPfreeBufferArray(scip, &shiftvals);
   SCIPfreeBufferArray(scip, &shiftcands);

 TERMINATE:
   SCIPfreeBufferArray(scip, &activities);
   SCIP_CALL( SCIPfreeSol(scip, &worksol) );

   return SCIP_OKAY;
}
Ejemplo n.º 6
0
/** compute value by which the solution of variable @p var can be shifted */
static
SCIP_Real calcShiftVal(
   SCIP*                 scip,               /**< SCIP data structure */
   SCIP_VAR*             var,                /**< variable that should be shifted */
   SCIP_Real             solval,             /**< current solution value */
   SCIP_Real*            activities          /**< LP row activities */
   )
{
   SCIP_Real lb;
   SCIP_Real ub;
   SCIP_Real obj;
   SCIP_Real shiftval;

   SCIP_COL* col;
   SCIP_ROW** colrows;
   SCIP_Real* colvals;
   SCIP_Bool shiftdown;

   int ncolrows;
   int i;


   /* get variable's solution value, global bounds and objective coefficient */
   lb = SCIPvarGetLbGlobal(var);
   ub = SCIPvarGetUbGlobal(var);
   obj = SCIPvarGetObj(var);
   shiftval = 0.0;
   shiftdown = TRUE;

   /* determine shifting direction and maximal possible shifting w.r.t. corresponding bound */
   if( obj > 0.0 && SCIPisFeasGE(scip, solval - 1.0, lb) )
      shiftval = SCIPfeasFloor(scip, solval - lb);
   else if( obj < 0.0 && SCIPisFeasLE(scip, solval + 1.0, ub) )
   {
      shiftval = SCIPfeasFloor(scip, ub - solval);
      shiftdown = FALSE;
   }
   else
      return 0.0;


   SCIPdebugMessage("Try to shift %s variable <%s> with\n", shiftdown ? "down" : "up", SCIPvarGetName(var) );
   SCIPdebugMessage("    lb:<%g> <= val:<%g> <= ub:<%g> and obj:<%g> by at most: <%g>\n", lb, solval, ub, obj, shiftval);

   /* get data of LP column */
   col = SCIPvarGetCol(var);
   colrows = SCIPcolGetRows(col);
   colvals = SCIPcolGetVals(col);
   ncolrows = SCIPcolGetNLPNonz(col);

   assert(ncolrows == 0 || (colrows != NULL && colvals != NULL));

   /* find minimal shift value, st. all rows stay valid */
   for( i = 0; i < ncolrows && shiftval > 0.0; ++i )
   {
      SCIP_ROW* row;
      int rowpos;

      row = colrows[i];
      rowpos = SCIProwGetLPPos(row);
      assert(-1 <= rowpos && rowpos < SCIPgetNLPRows(scip) );

      /* only global rows need to be valid */
      if( rowpos >= 0 && !SCIProwIsLocal(row) )
      {
         SCIP_Real shiftvalrow;

         assert(SCIProwIsInLP(row));

         if( shiftdown == (colvals[i] > 0) )
            shiftvalrow = SCIPfeasFloor(scip, (activities[rowpos] - SCIProwGetLhs(row)) / ABS(colvals[i]));
         else
            shiftvalrow = SCIPfeasFloor(scip, (SCIProwGetRhs(row) -  activities[rowpos]) / ABS(colvals[i]));
#ifdef SCIP_DEBUG
         if( shiftvalrow < shiftval )
         {
            SCIPdebugMessage(" -> The shift value had to be reduced to <%g>, because of row <%s>.\n",
               shiftvalrow, SCIProwGetName(row));
            SCIPdebugMessage("    lhs:<%g> <= act:<%g> <= rhs:<%g>, colval:<%g>\n",
               SCIProwGetLhs(row), activities[rowpos], SCIProwGetRhs(row), colvals[i]);
         }
#endif
         shiftval = MIN(shiftval, shiftvalrow);
         /* shiftvalrow might be negative, if we detected infeasibility -> make sure that shiftval is >= 0 */
         shiftval = MAX(shiftval, 0.0);
      }
   }
   if( shiftdown )
      shiftval *= -1.0;

   /* we must not shift variables to infinity */
   if( SCIPisInfinity(scip, solval + shiftval) )
      shiftval = 0.0;

   return shiftval;
}
Ejemplo n.º 7
0
/** creates a subproblem for subscip by fixing a number of variables */
static
SCIP_RETCODE createSubproblem(
   SCIP*                 scip,               /**< original SCIP data structure                                   */
   SCIP*                 subscip,            /**< SCIP data structure for the subproblem                         */
   SCIP_VAR**            subvars,            /**< the variables of the subproblem                                */
   SCIP_Real             minfixingrate,      /**< percentage of integer variables that have to be fixed          */
   SCIP_Bool             binarybounds,       /**< should general integers get binary bounds [floor(.),ceil(.)] ? */
   SCIP_Bool             uselprows,          /**< should subproblem be created out of the rows in the LP rows?   */
   SCIP_Bool*            success             /**< pointer to store whether the problem was created successfully  */
   )
{
   SCIP_VAR** vars;                          /* original SCIP variables */

   SCIP_Real fixingrate;

   int nvars;
   int nbinvars;
   int nintvars;
   int i;
   int fixingcounter;

   assert(scip != NULL);
   assert(subscip != NULL);
   assert(subvars != NULL);

   assert(0.0 <= minfixingrate && minfixingrate <= 1.0);

   /* get required variable data */
   SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, &nbinvars, &nintvars, NULL, NULL) );

   fixingcounter = 0;

   /* change bounds of variables of the subproblem */
   for( i = 0; i < nbinvars + nintvars; i++ )
   {
      SCIP_Real lpsolval;
      SCIP_Real lb;
      SCIP_Real ub;

      /* get the current LP solution for each variable */
      lpsolval = SCIPgetRelaxSolVal(scip, vars[i]);

      if( SCIPisFeasIntegral(scip, lpsolval) )
      {
         /* fix variables to current LP solution if it is integral,
          * use exact integral value, if the variable is only integral within numerical tolerances
          */
         lb = SCIPfloor(scip, lpsolval+0.5);
         ub = lb;
         fixingcounter++;
      }
      else if( binarybounds )
      {
         /* if the sub problem should be a binary problem, change the bounds to nearest integers */
         lb = SCIPfeasFloor(scip,lpsolval);
         ub = SCIPfeasCeil(scip,lpsolval);
      }
      else
      {
         /* otherwise just copy bounds */
         lb =  SCIPvarGetLbGlobal(vars[i]);
         ub =  SCIPvarGetUbGlobal(vars[i]);
      }

      /* perform the bound change */
      SCIP_CALL( SCIPchgVarLbGlobal(subscip, subvars[i], lb) );
      SCIP_CALL( SCIPchgVarUbGlobal(subscip, subvars[i], ub) );
   }

   /* abort, if all integer variables were fixed (which should not happen for MIP) */
   if( fixingcounter == nbinvars + nintvars )
   {
      *success = FALSE;
      return SCIP_OKAY;
   }
   else
      fixingrate = fixingcounter / (SCIP_Real)(MAX(nbinvars + nintvars, 1));
   SCIPdebugMessage("fixing rate: %g = %d of %d\n", fixingrate, fixingcounter, nbinvars + nintvars);

   /* abort, if the amount of fixed variables is insufficient */
   if( fixingrate < minfixingrate )
   {
      *success = FALSE;
      return SCIP_OKAY;
   }

   if( uselprows )
   {
      SCIP_ROW** rows;                          /* original scip rows                         */
      int nrows;

      /* get the rows and their number */
      SCIP_CALL( SCIPgetLPRowsData(scip, &rows, &nrows) );

      /* copy all rows to linear constraints */
      for( i = 0; i < nrows; i++ )
      {
         SCIP_CONS* cons;
         SCIP_VAR** consvars;
         SCIP_COL** cols;
         SCIP_Real constant;
         SCIP_Real lhs;
         SCIP_Real rhs;
         SCIP_Real* vals;
         int nnonz;
         int j;

         /* ignore rows that are only locally valid */
         if( SCIProwIsLocal(rows[i]) )
            continue;

         /* get the row's data */
         constant = SCIProwGetConstant(rows[i]);
         lhs = SCIProwGetLhs(rows[i]) - constant;
         rhs = SCIProwGetRhs(rows[i]) - constant;
         vals = SCIProwGetVals(rows[i]);
         nnonz = SCIProwGetNNonz(rows[i]);
         cols = SCIProwGetCols(rows[i]);

         assert( lhs <= rhs );

         /* allocate memory array to be filled with the corresponding subproblem variables */
         SCIP_CALL( SCIPallocBufferArray(subscip, &consvars, nnonz) );
         for( j = 0; j < nnonz; j++ )
            consvars[j] = subvars[SCIPvarGetProbindex(SCIPcolGetVar(cols[j]))];

         /* create a new linear constraint and add it to the subproblem */
         SCIP_CALL( SCIPcreateConsLinear(subscip, &cons, SCIProwGetName(rows[i]), nnonz, consvars, vals, lhs, rhs,
               TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, TRUE, TRUE, FALSE) );
         SCIP_CALL( SCIPaddCons(subscip, cons) );
         SCIP_CALL( SCIPreleaseCons(subscip, &cons) );

         /* free temporary memory */
         SCIPfreeBufferArray(subscip, &consvars);
      }
   }

   *success = TRUE;
   return SCIP_OKAY;
}
/** update row activities after a variable's solution value changed */
static
SCIP_RETCODE updateActivities(
   SCIP*                 scip,               /**< SCIP data structure */
   SCIP_Real*            activities,         /**< LP row activities */
   SCIP_ROW**            violrows,           /**< array with currently violated rows */
   int*                  violrowpos,         /**< position of LP rows in violrows array */
   int*                  nviolrows,          /**< pointer to the number of currently violated rows */
   int                   nlprows,            /**< number of rows in current LP */
   SCIP_VAR*             var,                /**< variable that has been changed */
   SCIP_Real             oldsolval,          /**< old solution value of variable */
   SCIP_Real             newsolval           /**< new solution value of variable */
   )
{
   SCIP_COL* col;
   SCIP_ROW** colrows;
   SCIP_Real* colvals;
   SCIP_Real delta;
   int ncolrows;
   int r;

   assert(activities != NULL);
   assert(nviolrows != NULL);
   assert(0 <= *nviolrows && *nviolrows <= nlprows);

   delta = newsolval - oldsolval;
   col = SCIPvarGetCol(var);
   colrows = SCIPcolGetRows(col);
   colvals = SCIPcolGetVals(col);
   ncolrows = SCIPcolGetNLPNonz(col);
   assert(ncolrows == 0 || (colrows != NULL && colvals != NULL));

   for( r = 0; r < ncolrows; ++r )
   {
      SCIP_ROW* row;
      int rowpos;

      row = colrows[r];
      rowpos = SCIProwGetLPPos(row);
      assert(-1 <= rowpos && rowpos < nlprows);

      if( rowpos >= 0 && !SCIProwIsLocal(row) )
      {
         SCIP_Real oldactivity;
         SCIP_Real newactivity;

         assert(SCIProwIsInLP(row));

         /* update row activity */
         oldactivity = activities[rowpos];
         if( !SCIPisInfinity(scip, -oldactivity) && !SCIPisInfinity(scip, oldactivity) )
         {
            newactivity = oldactivity + delta * colvals[r];
            if( SCIPisInfinity(scip, newactivity) )
               newactivity = SCIPinfinity(scip);
            else if( SCIPisInfinity(scip, -newactivity) )
               newactivity = -SCIPinfinity(scip);
            activities[rowpos] = newactivity;

            /* update row violation arrays */
            updateViolations(scip, row, violrows, violrowpos, nviolrows, oldactivity, newactivity);
         }
      }
   }

   return SCIP_OKAY;
}
Ejemplo n.º 9
0
/** execution method of primal heuristic */
static
SCIP_DECL_HEUREXEC(heurExecShifting) /*lint --e{715}*/
{   /*lint --e{715}*/
    SCIP_HEURDATA* heurdata;
    SCIP_SOL* sol;
    SCIP_VAR** lpcands;
    SCIP_Real* lpcandssol;
    SCIP_ROW** lprows;
    SCIP_Real* activities;
    SCIP_ROW** violrows;
    SCIP_Real* nincreases;
    SCIP_Real* ndecreases;
    int* violrowpos;
    int* nfracsinrow;
    SCIP_Real increaseweight;
    SCIP_Real obj;
    SCIP_Real bestshiftval;
    SCIP_Real minobj;
    int nlpcands;
    int nlprows;
    int nvars;
    int nfrac;
    int nviolrows;
    int nprevviolrows;
    int minnviolrows;
    int nnonimprovingshifts;
    int c;
    int r;
    SCIP_Longint nlps;
    SCIP_Longint ncalls;
    SCIP_Longint nsolsfound;
    SCIP_Longint nnodes;

    assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0);
    assert(scip != NULL);
    assert(result != NULL);
    assert(SCIPhasCurrentNodeLP(scip));

    *result = SCIP_DIDNOTRUN;

    /* only call heuristic, if an optimal LP solution is at hand */
    if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL )
        return SCIP_OKAY;

    /* only call heuristic, if the LP objective value is smaller than the cutoff bound */
    if( SCIPisGE(scip, SCIPgetLPObjval(scip), SCIPgetCutoffbound(scip)) )
        return SCIP_OKAY;

    /* get heuristic data */
    heurdata = SCIPheurGetData(heur);
    assert(heurdata != NULL);

    /* don't call heuristic, if we have already processed the current LP solution */
    nlps = SCIPgetNLPs(scip);
    if( nlps == heurdata->lastlp )
        return SCIP_OKAY;
    heurdata->lastlp = nlps;

    /* don't call heuristic, if it was not successful enough in the past */
    ncalls = SCIPheurGetNCalls(heur);
    nsolsfound = 10*SCIPheurGetNBestSolsFound(heur) + SCIPheurGetNSolsFound(heur);
    nnodes = SCIPgetNNodes(scip);
    if( nnodes % ((ncalls/100)/(nsolsfound+1)+1) != 0 )
        return SCIP_OKAY;

    /* get fractional variables, that should be integral */
    /* todo check if heuristic should include implicit integer variables for its calculations */
    SCIP_CALL( SCIPgetLPBranchCands(scip, &lpcands, &lpcandssol, NULL, &nlpcands, NULL, NULL) );
    nfrac = nlpcands;

    /* only call heuristic, if LP solution is fractional */
    if( nfrac == 0 )
        return SCIP_OKAY;

    *result = SCIP_DIDNOTFIND;

    /* get LP rows */
    SCIP_CALL( SCIPgetLPRowsData(scip, &lprows, &nlprows) );

    SCIPdebugMessage("executing shifting heuristic: %d LP rows, %d fractionals\n", nlprows, nfrac);

    /* get memory for activities, violated rows, and row violation positions */
    nvars = SCIPgetNVars(scip);
    SCIP_CALL( SCIPallocBufferArray(scip, &activities, nlprows) );
    SCIP_CALL( SCIPallocBufferArray(scip, &violrows, nlprows) );
    SCIP_CALL( SCIPallocBufferArray(scip, &violrowpos, nlprows) );
    SCIP_CALL( SCIPallocBufferArray(scip, &nfracsinrow, nlprows) );
    SCIP_CALL( SCIPallocBufferArray(scip, &nincreases, nvars) );
    SCIP_CALL( SCIPallocBufferArray(scip, &ndecreases, nvars) );
    BMSclearMemoryArray(nfracsinrow, nlprows);
    BMSclearMemoryArray(nincreases, nvars);
    BMSclearMemoryArray(ndecreases, nvars);

    /* get the activities for all globally valid rows;
     * the rows should be feasible, but due to numerical inaccuracies in the LP solver, they can be violated
     */
    nviolrows = 0;
    for( r = 0; r < nlprows; ++r )
    {
        SCIP_ROW* row;

        row = lprows[r];
        assert(SCIProwGetLPPos(row) == r);

        if( !SCIProwIsLocal(row) )
        {
            activities[r] = SCIPgetRowActivity(scip, row);
            if( SCIPisFeasLT(scip, activities[r], SCIProwGetLhs(row))
                    || SCIPisFeasGT(scip, activities[r], SCIProwGetRhs(row)) )
            {
                violrows[nviolrows] = row;
                violrowpos[r] = nviolrows;
                nviolrows++;
            }
            else
                violrowpos[r] = -1;
        }
    }

    /* calc the current number of fractional variables in rows */
    for( c = 0; c < nlpcands; ++c )
        addFracCounter(nfracsinrow, nlprows, lpcands[c], +1);

    /* get the working solution from heuristic's local data */
    sol = heurdata->sol;
    assert(sol != NULL);

    /* copy the current LP solution to the working solution */
    SCIP_CALL( SCIPlinkLPSol(scip, sol) );

    /* calculate the minimal objective value possible after rounding fractional variables */
    minobj = SCIPgetSolTransObj(scip, sol);
    assert(minobj < SCIPgetCutoffbound(scip));
    for( c = 0; c < nlpcands; ++c )
    {
        obj = SCIPvarGetObj(lpcands[c]);
        bestshiftval = obj > 0.0 ? SCIPfeasFloor(scip, lpcandssol[c]) : SCIPfeasCeil(scip, lpcandssol[c]);
        minobj += obj * (bestshiftval - lpcandssol[c]);
    }

    /* try to shift remaining variables in order to become/stay feasible */
    nnonimprovingshifts = 0;
    minnviolrows = INT_MAX;
    increaseweight = 1.0;
    while( (nfrac > 0 || nviolrows > 0) && nnonimprovingshifts < MAXSHIFTINGS )
    {
        SCIP_VAR* shiftvar;
        SCIP_Real oldsolval;
        SCIP_Real newsolval;
        SCIP_Bool oldsolvalisfrac;
        int probindex;

        SCIPdebugMessage("shifting heuristic: nfrac=%d, nviolrows=%d, obj=%g (best possible obj: %g), cutoff=%g\n",
                         nfrac, nviolrows, SCIPgetSolOrigObj(scip, sol), SCIPretransformObj(scip, minobj),
                         SCIPretransformObj(scip, SCIPgetCutoffbound(scip)));

        nprevviolrows = nviolrows;

        /* choose next variable to process:
         *  - if a violated row exists, shift a variable decreasing the violation, that has least impact on other rows
         *  - otherwise, shift a variable, that has strongest devastating impact on rows in opposite direction
         */
        shiftvar = NULL;
        oldsolval = 0.0;
        newsolval = 0.0;
        if( nviolrows > 0 && (nfrac == 0 || nnonimprovingshifts < MAXSHIFTINGS-1) )
        {
            SCIP_ROW* row;
            int rowidx;
            int rowpos;
            int direction;

            rowidx = -1;
            rowpos = -1;
            row = NULL;
            if( nfrac > 0 )
            {
                for( rowidx = nviolrows-1; rowidx >= 0; --rowidx )
                {
                    row = violrows[rowidx];
                    rowpos = SCIProwGetLPPos(row);
                    assert(violrowpos[rowpos] == rowidx);
                    if( nfracsinrow[rowpos] > 0 )
                        break;
                }
            }
            if( rowidx == -1 )
            {
                rowidx = SCIPgetRandomInt(0, nviolrows-1, &heurdata->randseed);
                row = violrows[rowidx];
                rowpos = SCIProwGetLPPos(row);
                assert(0 <= rowpos && rowpos < nlprows);
                assert(violrowpos[rowpos] == rowidx);
                assert(nfracsinrow[rowpos] == 0);
            }
            assert(violrowpos[rowpos] == rowidx);

            SCIPdebugMessage("shifting heuristic: try to fix violated row <%s>: %g <= %g <= %g\n",
                             SCIProwGetName(row), SCIProwGetLhs(row), activities[rowpos], SCIProwGetRhs(row));
            SCIPdebug( SCIP_CALL( SCIPprintRow(scip, row, NULL) ) );

            /* get direction in which activity must be shifted */
            assert(SCIPisFeasLT(scip, activities[rowpos], SCIProwGetLhs(row))
                   || SCIPisFeasGT(scip, activities[rowpos], SCIProwGetRhs(row)));
            direction = SCIPisFeasLT(scip, activities[rowpos], SCIProwGetLhs(row)) ? +1 : -1;

            /* search a variable that can shift the activity in the necessary direction */
            SCIP_CALL( selectShifting(scip, sol, row, activities[rowpos], direction,
                                      nincreases, ndecreases, increaseweight, &shiftvar, &oldsolval, &newsolval) );
        }

        if( shiftvar == NULL && nfrac > 0 )
        {
            SCIPdebugMessage("shifting heuristic: search rounding variable and try to stay feasible\n");
            SCIP_CALL( selectEssentialRounding(scip, sol, minobj, lpcands, nlpcands, &shiftvar, &oldsolval, &newsolval) );
        }

        /* check, whether shifting was possible */
        if( shiftvar == NULL || SCIPisEQ(scip, oldsolval, newsolval) )
        {
            SCIPdebugMessage("shifting heuristic:  -> didn't find a shifting variable\n");
            break;
        }

        SCIPdebugMessage("shifting heuristic:  -> shift var <%s>[%g,%g], type=%d, oldval=%g, newval=%g, obj=%g\n",
                         SCIPvarGetName(shiftvar), SCIPvarGetLbGlobal(shiftvar), SCIPvarGetUbGlobal(shiftvar), SCIPvarGetType(shiftvar),
                         oldsolval, newsolval, SCIPvarGetObj(shiftvar));

        /* update row activities of globally valid rows */
        SCIP_CALL( updateActivities(scip, activities, violrows, violrowpos, &nviolrows, nlprows,
                                    shiftvar, oldsolval, newsolval) );
        if( nviolrows >= nprevviolrows )
            nnonimprovingshifts++;
        else if( nviolrows < minnviolrows )
        {
            minnviolrows = nviolrows;
            nnonimprovingshifts = 0;
        }

        /* store new solution value and decrease fractionality counter */
        SCIP_CALL( SCIPsetSolVal(scip, sol, shiftvar, newsolval) );

        /* update fractionality counter and minimal objective value possible after shifting remaining variables */
        oldsolvalisfrac = !SCIPisFeasIntegral(scip, oldsolval)
                          && (SCIPvarGetType(shiftvar) == SCIP_VARTYPE_BINARY || SCIPvarGetType(shiftvar) == SCIP_VARTYPE_INTEGER);
        obj = SCIPvarGetObj(shiftvar);
        if( (SCIPvarGetType(shiftvar) == SCIP_VARTYPE_BINARY || SCIPvarGetType(shiftvar) == SCIP_VARTYPE_INTEGER)
                && oldsolvalisfrac )
        {
            assert(SCIPisFeasIntegral(scip, newsolval));
            nfrac--;
            nnonimprovingshifts = 0;
            minnviolrows = INT_MAX;
            addFracCounter(nfracsinrow, nlprows, shiftvar, -1);

            /* the rounding was already calculated into the minobj -> update only if rounding in "wrong" direction */
            if( obj > 0.0 && newsolval > oldsolval )
                minobj += obj;
            else if( obj < 0.0 && newsolval < oldsolval )
                minobj -= obj;
        }
        else
        {
            /* update minimal possible objective value */
            minobj += obj * (newsolval - oldsolval);
        }

        /* update increase/decrease arrays */
        if( !oldsolvalisfrac )
        {
            probindex = SCIPvarGetProbindex(shiftvar);
            assert(0 <= probindex && probindex < nvars);
            increaseweight *= WEIGHTFACTOR;
            if( newsolval < oldsolval )
                ndecreases[probindex] += increaseweight;
            else
                nincreases[probindex] += increaseweight;
            if( increaseweight >= 1e+09 )
            {
                int i;

                for( i = 0; i < nvars; ++i )
                {
                    nincreases[i] /= increaseweight;
                    ndecreases[i] /= increaseweight;
                }
                increaseweight = 1.0;
            }
        }

        SCIPdebugMessage("shifting heuristic:  -> nfrac=%d, nviolrows=%d, obj=%g (best possible obj: %g)\n",
                         nfrac, nviolrows, SCIPgetSolOrigObj(scip, sol), SCIPretransformObj(scip, minobj));
    }

    /* check, if the new solution is feasible */
    if( nfrac == 0 && nviolrows == 0 )
    {
        SCIP_Bool stored;

        /* check solution for feasibility, and add it to solution store if possible
         * neither integrality nor feasibility of LP rows has to be checked, because this is already
         * done in the shifting heuristic itself; however, we better check feasibility of LP rows,
         * because of numerical problems with activity updating
         */
        SCIP_CALL( SCIPtrySol(scip, sol, FALSE, FALSE, FALSE, TRUE, &stored) );

        if( stored )
        {
            SCIPdebugMessage("found feasible shifted solution:\n");
            SCIPdebug( SCIP_CALL( SCIPprintSol(scip, sol, NULL, FALSE) ) );
            *result = SCIP_FOUNDSOL;
        }
    }

    /* free memory buffers */
    SCIPfreeBufferArray(scip, &ndecreases);
    SCIPfreeBufferArray(scip, &nincreases);
    SCIPfreeBufferArray(scip, &nfracsinrow);
    SCIPfreeBufferArray(scip, &violrowpos);
    SCIPfreeBufferArray(scip, &violrows);
    SCIPfreeBufferArray(scip, &activities);

    return SCIP_OKAY;
}
Ejemplo n.º 10
0
/** checks whether given row is valid for the debugging solution */
SCIP_RETCODE SCIPdebugCheckRow(
   SCIP_SET*             set,                /**< global SCIP settings */
   SCIP_ROW*             row                 /**< row to check for validity */
   )
{
   SCIP_COL** cols;
   SCIP_Real* vals;
   SCIP_Real lhs;
   SCIP_Real rhs;
   int nnonz;
   int i;
   SCIP_Real minactivity;
   SCIP_Real maxactivity;
   SCIP_Real solval;

   assert(set != NULL);
   assert(row != NULL);

   /* check if we are in the original problem and not in a sub MIP */
   if( !isSolutionInMip(set) )
      return SCIP_OKAY;

   /* check if the incumbent solution is at least as good as the debug solution, so we can stop to check the debug solution */
   if( debugSolIsAchieved(set) )
      return SCIP_OKAY;

   /* if the row is only locally valid, check whether the debugging solution is contained in the local subproblem */
   if( SCIProwIsLocal(row) )
   {
      SCIP_Bool solcontained;

      SCIP_CALL( isSolutionInNode(SCIPblkmem(set->scip), set, SCIPgetCurrentNode(set->scip), &solcontained) );
      if( !solcontained )
         return SCIP_OKAY;
   }

   cols = SCIProwGetCols(row);
   vals = SCIProwGetVals(row);
   nnonz = SCIProwGetNNonz(row);
   lhs = SCIProwGetLhs(row);
   rhs = SCIProwGetRhs(row);

   /* calculate row's activity on debugging solution */
   minactivity = SCIProwGetConstant(row);
   maxactivity = minactivity;
   for( i = 0; i < nnonz; ++i )
   {
      SCIP_VAR* var;

      /* get solution value of variable in debugging solution */
      var = SCIPcolGetVar(cols[i]);
      SCIP_CALL( getSolutionValue(set, var, &solval) );

      if( solval != SCIP_UNKNOWN ) /*lint !e777*/
      {
         minactivity += vals[i] * solval;
         maxactivity += vals[i] * solval;
      }
      else if( vals[i] > 0.0 )
      {
         minactivity += vals[i] * SCIPvarGetLbGlobal(var);
         maxactivity += vals[i] * SCIPvarGetUbGlobal(var);
      }
      else if( vals[i] < 0.0 )
      {
         minactivity += vals[i] * SCIPvarGetUbGlobal(var);
         maxactivity += vals[i] * SCIPvarGetLbGlobal(var);
      }
   }
   SCIPdebugMessage("debugging solution on row <%s>: %g <= [%g,%g] <= %g\n",
      SCIProwGetName(row), lhs, minactivity, maxactivity, rhs);

   /* check row for violation */
   if( SCIPsetIsFeasLT(set, maxactivity, lhs) || SCIPsetIsFeasGT(set, minactivity, rhs) )
   {
      printf("***** debug: row <%s> violates debugging solution (lhs=%.15g, rhs=%.15g, activity=[%.15g,%.15g], local=%d)\n",
         SCIProwGetName(row), lhs, rhs, minactivity, maxactivity, SCIProwIsLocal(row));
      SCIProwPrint(row, NULL);

      /* output row with solution values */
      printf("\n\n");
      printf("***** debug: violated row <%s>:\n", SCIProwGetName(row));
      printf(" %.15g <= %.15g", lhs, SCIProwGetConstant(row));
      for( i = 0; i < nnonz; ++i )
      {
         /* get solution value of variable in debugging solution */
         SCIP_CALL( getSolutionValue(set, SCIPcolGetVar(cols[i]), &solval) );
         printf(" %+.15g<%s>[%.15g]", vals[i], SCIPvarGetName(SCIPcolGetVar(cols[i])), solval);
      }
      printf(" <= %.15g\n", rhs);

      SCIPABORT();
   }

   return SCIP_OKAY;
}
Ejemplo n.º 11
0
/** execution method of primal heuristic */
static
SCIP_DECL_HEUREXEC(heurExecRounding) /*lint --e{715}*/
{  /*lint --e{715}*/
   SCIP_HEURDATA* heurdata;
   SCIP_SOL* sol;
   SCIP_VAR** lpcands;
   SCIP_Real* lpcandssol;
   SCIP_ROW** lprows;
   SCIP_Real* activities;
   SCIP_ROW** violrows;
   int* violrowpos;
   SCIP_Real obj;
   SCIP_Real bestroundval;
   SCIP_Real minobj;
   int nlpcands;
   int nlprows;
   int nfrac;
   int nviolrows;
   int c;
   int r;
   SCIP_Longint nlps;
   SCIP_Longint ncalls;
   SCIP_Longint nsolsfound;
   SCIP_Longint nnodes;

   assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0);
   assert(scip != NULL);
   assert(result != NULL);
   assert(SCIPhasCurrentNodeLP(scip));

   *result = SCIP_DIDNOTRUN;

   /* only call heuristic, if an optimal LP solution is at hand */
   if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL )
      return SCIP_OKAY;

   /* only call heuristic, if the LP objective value is smaller than the cutoff bound */
   if( SCIPisGE(scip, SCIPgetLPObjval(scip), SCIPgetCutoffbound(scip)) )
      return SCIP_OKAY;

   /* get heuristic data */
   heurdata = SCIPheurGetData(heur);
   assert(heurdata != NULL);

   /* don't call heuristic, if we have already processed the current LP solution */
   nlps = SCIPgetNLPs(scip);
   if( nlps == heurdata->lastlp )
      return SCIP_OKAY;
   heurdata->lastlp = nlps;

   /* don't call heuristic, if it was not successful enough in the past */
   ncalls = SCIPheurGetNCalls(heur);
   nsolsfound = 10*SCIPheurGetNBestSolsFound(heur) + SCIPheurGetNSolsFound(heur);
   nnodes = SCIPgetNNodes(scip);
   if( nnodes % ((ncalls/heurdata->successfactor)/(nsolsfound+1)+1) != 0 )
      return SCIP_OKAY;

   /* get fractional variables, that should be integral */
   SCIP_CALL( SCIPgetLPBranchCands(scip, &lpcands, &lpcandssol, NULL, &nlpcands, NULL, NULL) );
   nfrac = nlpcands;

   /* only call heuristic, if LP solution is fractional */
   if( nfrac == 0 )
      return SCIP_OKAY;

   *result = SCIP_DIDNOTFIND;

   /* get LP rows */
   SCIP_CALL( SCIPgetLPRowsData(scip, &lprows, &nlprows) );

   SCIPdebugMessage("executing rounding heuristic: %d LP rows, %d fractionals\n", nlprows, nfrac);

   /* get memory for activities, violated rows, and row violation positions */
   SCIP_CALL( SCIPallocBufferArray(scip, &activities, nlprows) );
   SCIP_CALL( SCIPallocBufferArray(scip, &violrows, nlprows) );
   SCIP_CALL( SCIPallocBufferArray(scip, &violrowpos, nlprows) );

   /* get the activities for all globally valid rows;
    * the rows should be feasible, but due to numerical inaccuracies in the LP solver, they can be violated
    */
   nviolrows = 0;
   for( r = 0; r < nlprows; ++r )
   {
      SCIP_ROW* row;

      row = lprows[r];
      assert(SCIProwGetLPPos(row) == r);

      if( !SCIProwIsLocal(row) )
      {
         activities[r] = SCIPgetRowActivity(scip, row);
         if( SCIPisFeasLT(scip, activities[r], SCIProwGetLhs(row))
            || SCIPisFeasGT(scip, activities[r], SCIProwGetRhs(row)) )
         {
            violrows[nviolrows] = row;
            violrowpos[r] = nviolrows;
            nviolrows++;
         }
         else
            violrowpos[r] = -1;
      }
   }

   /* get the working solution from heuristic's local data */
   sol = heurdata->sol;
   assert(sol != NULL);

   /* copy the current LP solution to the working solution */
   SCIP_CALL( SCIPlinkLPSol(scip, sol) );

   /* calculate the minimal objective value possible after rounding fractional variables */
   minobj = SCIPgetSolTransObj(scip, sol);
   assert(minobj < SCIPgetCutoffbound(scip));
   for( c = 0; c < nlpcands; ++c )
   {
      obj = SCIPvarGetObj(lpcands[c]);
      bestroundval = obj > 0.0 ? SCIPfeasFloor(scip, lpcandssol[c]) : SCIPfeasCeil(scip, lpcandssol[c]);
      minobj += obj * (bestroundval - lpcandssol[c]);
   }

   /* try to round remaining variables in order to become/stay feasible */
   while( nfrac > 0 )
   {
      SCIP_VAR* roundvar;
      SCIP_Real oldsolval;
      SCIP_Real newsolval;

      SCIPdebugMessage("rounding heuristic: nfrac=%d, nviolrows=%d, obj=%g (best possible obj: %g)\n",
         nfrac, nviolrows, SCIPgetSolOrigObj(scip, sol), SCIPretransformObj(scip, minobj));

      /* minobj < SCIPgetCutoffbound(scip) should be true, otherwise the rounding variable selection
       * should have returned NULL. Due to possible cancellation we use SCIPisLE. */
      assert( SCIPisLE(scip, minobj, SCIPgetCutoffbound(scip)) );

      /* choose next variable to process:
       *  - if a violated row exists, round a variable decreasing the violation, that has least impact on other rows
       *  - otherwise, round a variable, that has strongest devastating impact on rows in opposite direction
       */
      if( nviolrows > 0 )
      {
         SCIP_ROW* row;
         int rowpos;

         row = violrows[nviolrows-1];
         rowpos = SCIProwGetLPPos(row);
         assert(0 <= rowpos && rowpos < nlprows);
         assert(violrowpos[rowpos] == nviolrows-1);

         SCIPdebugMessage("rounding heuristic: try to fix violated row <%s>: %g <= %g <= %g\n",
            SCIProwGetName(row), SCIProwGetLhs(row), activities[rowpos], SCIProwGetRhs(row));
         if( SCIPisFeasLT(scip, activities[rowpos], SCIProwGetLhs(row)) )
         {
            /* lhs is violated: select a variable rounding, that increases the activity */
            SCIP_CALL( selectIncreaseRounding(scip, sol, minobj, row, &roundvar, &oldsolval, &newsolval) );
         }
         else
         {
            assert(SCIPisFeasGT(scip, activities[rowpos], SCIProwGetRhs(row)));
            /* rhs is violated: select a variable rounding, that decreases the activity */
            SCIP_CALL( selectDecreaseRounding(scip, sol, minobj, row, &roundvar, &oldsolval, &newsolval) );
         }
      }
      else
      {
         SCIPdebugMessage("rounding heuristic: search rounding variable and try to stay feasible\n");
         SCIP_CALL( selectEssentialRounding(scip, sol, minobj, lpcands, nlpcands, &roundvar, &oldsolval, &newsolval) );
      }

      /* check, whether rounding was possible */
      if( roundvar == NULL )
      {
         SCIPdebugMessage("rounding heuristic:  -> didn't find a rounding variable\n");
         break;
      }

      SCIPdebugMessage("rounding heuristic:  -> round var <%s>, oldval=%g, newval=%g, obj=%g\n",
         SCIPvarGetName(roundvar), oldsolval, newsolval, SCIPvarGetObj(roundvar));

      /* update row activities of globally valid rows */
      SCIP_CALL( updateActivities(scip, activities, violrows, violrowpos, &nviolrows, nlprows, 
            roundvar, oldsolval, newsolval) );

      /* store new solution value and decrease fractionality counter */
      SCIP_CALL( SCIPsetSolVal(scip, sol, roundvar, newsolval) );
      nfrac--;

      /* update minimal objective value possible after rounding remaining variables */
      obj = SCIPvarGetObj(roundvar);
      if( obj > 0.0 && newsolval > oldsolval )
         minobj += obj;
      else if( obj < 0.0 && newsolval < oldsolval )
         minobj -= obj;

      SCIPdebugMessage("rounding heuristic:  -> nfrac=%d, nviolrows=%d, obj=%g (best possible obj: %g)\n",
         nfrac, nviolrows, SCIPgetSolOrigObj(scip, sol), SCIPretransformObj(scip, minobj));
   }

   /* check, if the new solution is feasible */
   if( nfrac == 0 && nviolrows == 0 )
   {
      SCIP_Bool stored;

      /* check solution for feasibility, and add it to solution store if possible
       * neither integrality nor feasibility of LP rows has to be checked, because this is already
       * done in the rounding heuristic itself; however, be better check feasibility of LP rows,
       * because of numerical problems with activity updating
       */
      SCIP_CALL( SCIPtrySol(scip, sol, FALSE, FALSE, FALSE, TRUE, &stored) );

      if( stored )
      {
#ifdef SCIP_DEBUG
         SCIPdebugMessage("found feasible rounded solution:\n");
         SCIP_CALL( SCIPprintSol(scip, sol, NULL, FALSE) );
#endif
         *result = SCIP_FOUNDSOL;
      }
   }

   /* free memory buffers */
   SCIPfreeBufferArray(scip, &violrowpos);
   SCIPfreeBufferArray(scip, &violrows);
   SCIPfreeBufferArray(scip, &activities);

   return SCIP_OKAY;
}
Ejemplo n.º 12
0
/** execution method of primal heuristic */
static
SCIP_DECL_HEUREXEC(heurExecOctane)
{  /*lint --e{715}*/
   SCIP_HEURDATA* heurdata;
   SCIP_SOL* sol;
   SCIP_SOL** first_sols;     /* stores the first ffirst sols in order to check for common violation of a row */

   SCIP_VAR** vars;           /* the variables of the problem */
   SCIP_VAR** fracvars;       /* variables, that are fractional in current LP solution */
   SCIP_VAR** subspacevars;   /* the variables on which the search is performed. Either coinciding with vars or with the
                               * space of all fractional variables of the current LP solution */

   SCIP_Real p;               /* n/2 - <delta,x> ( for some facet delta ) */
   SCIP_Real q;               /* <delta,a> */

   SCIP_Real* rayorigin;      /* origin of the ray, vector x in paper */
   SCIP_Real* raydirection;   /* direction of the ray, vector a in paper */
   SCIP_Real* negquotient;    /* negated quotient of rayorigin and raydirection, vector v in paper */
   SCIP_Real* lambda;         /* stores the distance of the facets (s.b.) to the origin of the ray */

   SCIP_Bool usefracspace;    /* determines whether the search concentrates on fractional variables and fixes integer ones */
   SCIP_Bool cons_viol;       /* used for checking whether a linear constraint is violated by one of the possible solutions */
   SCIP_Bool success;
   SCIP_Bool* sign;           /* signature of the direction of the ray */
   SCIP_Bool** facets;        /* list of extended facets */

   int nvars;            /* number of variables  */
   int nbinvars;         /* number of 0-1-variables */
   int nfracvars;        /* number of fractional variables in current LP solution */
   int nsubspacevars;    /* dimension of the subspace on which the search is performed */
   int nfacets;          /* number of facets hidden by the ray that where already found */
   int i;                /* counter */
   int j;                /* counter */
   int f_max;            /* {0,1}-points to be checked */
   int f_first;          /* {0,1}-points to be generated at first in order to check whether a restart is necessary */
   int r;                /* counter */
   int firstrule;

   int* perm;            /* stores the way in which the coordinates were permuted */
   int* fracspace;       /* maps the variables of the subspace to the original variables */

   assert(heur != NULL);
   assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0);
   assert(scip != NULL);
   assert(result != NULL);
   assert(SCIPhasCurrentNodeLP(scip));

   *result = SCIP_DELAYED;

   /* only call heuristic, if an optimal LP solution is at hand */
   if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL )
      return SCIP_OKAY;

   *result = SCIP_DIDNOTRUN;

   SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, &nbinvars, NULL, NULL, NULL) );

   /* OCTANE is for use in 0-1 programs only */
   if( nvars != nbinvars )
      return SCIP_OKAY;

   /* get heuristic's data */
   heurdata = SCIPheurGetData(heur);
   assert( heurdata != NULL );

   /* don't call heuristic, if it was not successful enough in the past */
   /*lint --e{647}*/
   if( SCIPgetNNodes(scip) % (SCIPheurGetNCalls(heur) / (100 * SCIPheurGetNBestSolsFound(heur) + 10*heurdata->nsuccess + 1) + 1) != 0 )
      return SCIP_OKAY;

   SCIP_CALL( SCIPgetLPBranchCands(scip, &fracvars, NULL, NULL, &nfracvars, NULL) );

   /* don't use integral starting points */
   if( nfracvars == 0 )
      return SCIP_OKAY;

   /* get working pointers from heurdata */
   sol = heurdata->sol;
   assert( sol != NULL );
   f_max = heurdata->f_max;
   f_first = heurdata->f_first;
   usefracspace = heurdata->usefracspace;

   SCIP_CALL( SCIPallocBufferArray(scip, &fracspace, nvars) );

   /* determine the space one which OCTANE should work either as the whole space or as the space of fractional variables */
   if( usefracspace )
   {
      nsubspacevars = nfracvars;
      SCIP_CALL( SCIPallocBufferArray(scip, &subspacevars, nsubspacevars) );
      BMScopyMemoryArray(subspacevars, fracvars, nsubspacevars);
      for( i = nvars - 1; i >= 0; --i )
         fracspace[i] = -1;
      for( i = nsubspacevars - 1; i >= 0; --i )
         fracspace[SCIPvarGetProbindex(subspacevars[i])] = i;
   }
   else
   {
      int currentindex;

      nsubspacevars = nvars;
      SCIP_CALL( SCIPallocBufferArray(scip, &subspacevars, nsubspacevars) );

      /* only copy the variables which are in the current LP */
      currentindex = 0;
      for( i = 0; i < nvars; ++i )
      {
         if( SCIPcolGetLPPos(SCIPvarGetCol(vars[i])) >= 0 )
         {
            subspacevars[currentindex] = vars[i];
            fracspace[i] = currentindex;
            ++currentindex;

         }
         else
         {
            fracspace[i] = -1;
            --nsubspacevars;
         }
      }
   }

   /* nothing to do for empty search space */
   if( nsubspacevars == 0 )
      return SCIP_OKAY;

   assert(0 < nsubspacevars && nsubspacevars <= nvars);

   for( i = 0; i < nsubspacevars; i++)
      assert(fracspace[SCIPvarGetProbindex(subspacevars[i])] == i);

   /* at most 2^(n-1) facets can be hit */
   if( nsubspacevars < 30 )
   {
      /*lint --e{701}*/
      assert(f_max > 0);
      f_max = MIN(f_max, 1 << (nsubspacevars - 1) );
   }

   f_first = MIN(f_first, f_max);

   /* memory allocation */
   SCIP_CALL( SCIPallocBufferArray(scip, &rayorigin, nsubspacevars) );
   SCIP_CALL( SCIPallocBufferArray(scip, &raydirection, nsubspacevars) );
   SCIP_CALL( SCIPallocBufferArray(scip, &negquotient, nsubspacevars) );
   SCIP_CALL( SCIPallocBufferArray(scip, &sign, nsubspacevars) );
   SCIP_CALL( SCIPallocBufferArray(scip, &perm, nsubspacevars) );
   SCIP_CALL( SCIPallocBufferArray(scip, &lambda, f_max + 1) );
   SCIP_CALL( SCIPallocBufferArray(scip, &facets, f_max + 1) );
   for( i = f_max; i >= 0; --i )
   {
      /*lint --e{866}*/
      SCIP_CALL( SCIPallocBufferArray(scip, &facets[i], nsubspacevars) );
   }
   SCIP_CALL( SCIPallocBufferArray(scip, &first_sols, f_first) );

   *result = SCIP_DIDNOTFIND;

   /* starting OCTANE */
   SCIPdebugMessage("run Octane heuristic on %s variables, which are %d vars, generate at most %d facets, using rule number %d\n",
      usefracspace ? "fractional" : "all", nsubspacevars, f_max, (heurdata->lastrule+1)%5);

   /* generate starting point in original coordinates */
   SCIP_CALL( generateStartingPoint(scip, rayorigin, subspacevars, nsubspacevars) );
   for( i = nsubspacevars - 1; i >= 0; --i )
      rayorigin[i] -= 0.5;

   firstrule = heurdata->lastrule;
   ++firstrule;
   for( r = firstrule; r <= firstrule + 10 && !SCIPisStopped(scip); r++ )
   {
      SCIP_ROW** rows;
      int nrows;

      /* generate shooting ray in original coordinates by certain rules */
      switch(r % 5)
      {
      case 1:
         if( heurdata->useavgnbray )
         {
            SCIP_CALL( generateAverageNBRay(scip, raydirection, fracspace, subspacevars, nsubspacevars) );
         }
         break;
      case 2:
         if( heurdata->useobjray )
         {
            SCIP_CALL( generateObjectiveRay(scip, raydirection, subspacevars, nsubspacevars) );
         }
         break;
      case 3:
         if( heurdata->usediffray )
         {
            SCIP_CALL( generateDifferenceRay(scip, raydirection, subspacevars, nsubspacevars) );
         }
         break;
      case 4:
         if( heurdata->useavgwgtray && SCIPisLPSolBasic(scip) )
         {
            SCIP_CALL( generateAverageRay(scip, raydirection, subspacevars, nsubspacevars, TRUE) );
         }
         break;
      case 0:
         if( heurdata->useavgray && SCIPisLPSolBasic(scip) )
         {
            SCIP_CALL( generateAverageRay(scip, raydirection, subspacevars, nsubspacevars, FALSE) );
         }
         break;
      default:
         SCIPerrorMessage("invalid ray rule identifier\n");
         SCIPABORT();
      }

      /* there must be a feasible direction for the shooting ray */
      if( isZero(scip, raydirection, nsubspacevars) )
         continue;

      /* transform coordinates such that raydirection >= 0 */
      flipCoords(rayorigin, raydirection, sign, nsubspacevars);

      for( i = f_max - 1; i >= 0; --i)
         lambda[i] = SCIPinfinity(scip);

      /* calculate negquotient, initialize perm, facets[0], p, and q */
      p = 0.5 * nsubspacevars;
      q = 0.0;
      for( i = nsubspacevars - 1; i >= 0; --i )
      {
         /* calculate negquotient, the ratio of rayorigin and raydirection, paying special attention to the case raydirection[i] == 0 */
         if( SCIPisFeasZero(scip, raydirection[i]) )
         {
            if( rayorigin[i] < 0 )
               negquotient[i] = SCIPinfinity(scip);
            else
               negquotient[i] = -SCIPinfinity(scip);
         }
         else
            negquotient[i] = - (rayorigin[i] / raydirection[i]);

         perm[i] = i;

         /* initialization of facets[0] to the all-one facet with p and q its characteristic values */
         facets[0][i] = TRUE;
         p -= rayorigin[i];
         q += raydirection[i];
      }

      assert(SCIPisPositive(scip, q));

      /* resort the coordinates in nonincreasing order of negquotient */
      SCIPsortDownRealRealRealBoolPtr( negquotient, raydirection, rayorigin, sign, (void**) subspacevars, nsubspacevars);

#ifndef NDEBUG
      for( i = 0; i < nsubspacevars; i++ )
         assert( raydirection[i] >= 0 );
      for( i = 1; i < nsubspacevars; i++ )
         assert( negquotient[i - 1] >= negquotient[i] );
#endif
      /* finished initialization */

      /* find the first facet of the octahedron hit by a ray shot from rayorigin into direction raydirection */
      for( i = 0; i < nsubspacevars && negquotient[i] * q > p; ++i )
      {
         facets[0][i] = FALSE;
         p += 2 * rayorigin[i];
         q -= 2 * raydirection[i];
         assert(SCIPisPositive(scip, p));
         assert(SCIPisPositive(scip, q));
      }

      /* avoid dividing by values close to 0.0 */
      if( !SCIPisFeasPositive(scip, q) )
         continue;

      /* assert necessary for flexelint */
      assert(q > 0);
      lambda[0] = p / q;

      nfacets = 1;

      /* find the first facets hit by the ray */
      for( i = 0; i < nfacets && i < f_first; ++i)
         generateNeighborFacets(scip, facets, lambda, rayorigin, raydirection, negquotient, nsubspacevars, f_max, i, &nfacets);

      /* construct the first ffirst possible solutions */
      for( i = 0; i < nfacets && i < f_first; ++i )
      {
         SCIP_CALL( SCIPcreateSol(scip, &first_sols[i], heur) );
         SCIP_CALL( getSolFromFacet(scip, facets[i], first_sols[i], sign, subspacevars, nsubspacevars) );
         assert( first_sols[i] != NULL );
      }

      /* try, whether there is a row violated by all of the first ffirst solutions */
      cons_viol = FALSE;
      SCIP_CALL( SCIPgetLPRowsData(scip, &rows, &nrows) );
      for( i = nrows - 1; i >= 0; --i )
      {
         if( !SCIProwIsLocal(rows[i]) )
         {
            SCIP_COL** cols;
            SCIP_Real constant;
            SCIP_Real lhs;
            SCIP_Real rhs;
            SCIP_Real rowval;
            SCIP_Real* coeffs;
            int nnonzerovars;
            int k;

            /* get the row's data */
            constant = SCIProwGetConstant(rows[i]);
            lhs = SCIProwGetLhs(rows[i]);
            rhs = SCIProwGetRhs(rows[i]);
            coeffs = SCIProwGetVals(rows[i]);
            nnonzerovars = SCIProwGetNNonz(rows[i]);
            cols = SCIProwGetCols(rows[i]);
            rowval = constant;

            for( j = nnonzerovars - 1; j >= 0; --j )
               rowval += coeffs[j] * SCIPgetSolVal(scip, first_sols[0], SCIPcolGetVar(cols[j]));

            /* if the row's lhs is violated by the first sol, test, whether it is violated by the next ones, too */
            if( lhs > rowval )
            {
               cons_viol = TRUE;
               for( k = MIN(f_first, nfacets) - 1; k > 0; --k )
               {
                  rowval = constant;
                  for( j = nnonzerovars - 1; j >= 0; --j )
                     rowval += coeffs[j] * SCIPgetSolVal(scip, first_sols[k], SCIPcolGetVar(cols[j]));
                  if( lhs <= rowval )
                  {
                     cons_viol = FALSE;
                     break;
                  }
               }
            }
            /* dito for the right hand side */
            else if( rhs < rowval )
            {
               cons_viol = TRUE;
               for( k = MIN(f_first, nfacets) - 1; k > 0; --k )
               {
                  rowval = constant;
                  for( j = nnonzerovars - 1; j >= 0; --j )
                     rowval += coeffs[j] * SCIPgetSolVal(scip, first_sols[k], SCIPcolGetVar(cols[j]));
                  if( rhs >= rowval )
                  {
                     cons_viol = FALSE;
                     break;
                  }
               }
            }
            /* break as soon as one row is violated by all of the ffirst solutions */
            if( cons_viol )
               break;
         }
      }


      if( !cons_viol )
      {
         /* if there was no row violated by all solutions, try whether one or more of them are feasible */
         for( i = MIN(f_first, nfacets) - 1; i >= 0; --i )
         {
            assert(first_sols[i] != NULL);
            SCIP_CALL( SCIPtrySol(scip, first_sols[i], FALSE, TRUE, FALSE, TRUE, &success) );
            if( success )
               *result = SCIP_FOUNDSOL;
         }
         /* search for further facets and construct and try solutions out of facets fixed as closest ones */
         for( i = f_first; i < f_max; ++i)
         {
            if( i >= nfacets )
               break;
            generateNeighborFacets(scip, facets, lambda, rayorigin, raydirection, negquotient, nsubspacevars, f_max, i, &nfacets);
            SCIP_CALL( getSolFromFacet(scip, facets[i], sol, sign, subspacevars, nsubspacevars) );
            SCIP_CALL( SCIPtrySol(scip, sol, FALSE, TRUE, FALSE, TRUE, &success) );
            if( success )
               *result = SCIP_FOUNDSOL;
         }
      }

      /* finished OCTANE */
      for( i = MIN(f_first, nfacets) - 1; i >= 0; --i )
      {
         SCIP_CALL( SCIPfreeSol(scip, &first_sols[i]) );
      }
   }
   heurdata->lastrule = r;

   if( *result == SCIP_FOUNDSOL )
      ++(heurdata->nsuccess);

   /* free temporary memory */
   SCIPfreeBufferArray(scip, &first_sols);
   for( i = f_max; i >= 0; --i )
      SCIPfreeBufferArray(scip, &facets[i]);
   SCIPfreeBufferArray(scip, &facets);
   SCIPfreeBufferArray(scip, &lambda);
   SCIPfreeBufferArray(scip, &perm);
   SCIPfreeBufferArray(scip, &sign);
   SCIPfreeBufferArray(scip, &negquotient);
   SCIPfreeBufferArray(scip, &raydirection);
   SCIPfreeBufferArray(scip, &rayorigin);
   SCIPfreeBufferArray(scip, &subspacevars);
   SCIPfreeBufferArray(scip, &fracspace);

   return SCIP_OKAY;
}