Ejemplo n.º 1
0
/* checks whether the new solution was found at the same node by the same heuristic as an already selected one */
static
SCIP_Bool solHasNewSource(
   SCIP_SOL**            sols,               /**< feasible SCIP solutions */
   int*                  selection,          /**< pool of solutions crossover uses */
   int                   selectionsize,      /**< size of solution pool */
   int                   newsol              /**< candidate solution */
)
{
   int i;

   for( i = 0; i < selectionsize; i++)
      if( SCIPsolGetHeur(sols[selection[i]]) == SCIPsolGetHeur(sols[newsol])
         && SCIPsolGetNodenum(sols[selection[i]]) == SCIPsolGetNodenum(sols[newsol]) )
         return FALSE;

   return TRUE;
}
Ejemplo n.º 2
0
/** changes the color of the node to the color of nodes with a primal solution */
void SCIPvisualFoundSolution(
   SCIP_VISUAL*          visual,             /**< visualization information */
   SCIP_SET*             set,                /**< global SCIP settings */
   SCIP_STAT*            stat,               /**< problem statistics */
   SCIP_NODE*            node,               /**< node where the solution was found, or NULL */
   SCIP_Bool             bettersol,          /**< the solution was better than the previous ones */
   SCIP_SOL*             sol                 /**< solution that has been found */
   )
{
   if ( visual->vbcfile != NULL )
   {
      if ( node != NULL && set->visual_dispsols )
      {
         if ( SCIPnodeGetType(node) != SCIP_NODETYPE_PROBINGNODE )
            vbcSetColor(visual, stat, node, SCIP_VBCCOLOR_SOLUTION);
      }
   }

   if ( visual->bakfile != NULL && bettersol )
   {
      SCIP_Real obj;

      if ( set->visual_objextern )
         obj = SCIPgetSolOrigObj(set->scip, sol);
      else
         obj = SCIPgetSolTransObj(set->scip, sol);

      if ( SCIPsolGetHeur(sol) == NULL && node != NULL )
      {
         /* if LP solution was feasible ... */
         SCIP_VAR* branchvar;
         SCIP_BOUNDTYPE branchtype;
         SCIP_Real branchbound;
         SCIP_NODE *pnode;
         size_t parentnodenum;
         size_t nodenum;
         char t = 'M';

         /* find first parent that is not a probing node */
         pnode = node;
         while ( pnode != NULL && SCIPnodeGetType(pnode) == SCIP_NODETYPE_PROBINGNODE )
            pnode = pnode->parent;

         if ( pnode != NULL )
         {
            /* get node num from hash map */
            nodenum = (size_t)SCIPhashmapGetImage(visual->nodenum, pnode);

            /* get nodenum of parent node from hash map */
            parentnodenum = (pnode->parent != NULL ? (size_t)SCIPhashmapGetImage(visual->nodenum, pnode->parent) : 0);
            assert( pnode->parent == NULL || parentnodenum > 0 );

            /* get branching information */
            getBranchInfo(pnode, &branchvar, &branchtype, &branchbound);

            /* determine branching type */
            if ( branchvar != NULL )
               t = (branchtype == SCIP_BOUNDTYPE_LOWER ? 'R' : 'L');

            printTime(visual, stat, FALSE);
            SCIPmessageFPrintInfo(visual->messagehdlr, visual->bakfile, "integer %d %d %c %f\n", (int)nodenum, (int)parentnodenum, t, obj);
         }
      }
      else
      {
         printTime(visual, stat, FALSE);
         SCIPmessageFPrintInfo(visual->messagehdlr, visual->bakfile, "heuristic %f\n", obj);
      }
   }
}
Ejemplo n.º 3
0
/** execution method of primal heuristic */
static
SCIP_DECL_HEUREXEC(heurExecIndicator)
{  /*lint --e{715}*/
   SCIP_HEURDATA* heurdata;
   int nfoundsols = 0;

   assert( heur != NULL );
   assert( scip != NULL );
   assert( result != NULL );

   *result = SCIP_DIDNOTRUN;

   if ( SCIPgetSubscipDepth(scip) > 0 )
      return SCIP_OKAY;

   /* get heuristic's data */
   heurdata = SCIPheurGetData(heur);
   assert( heurdata != NULL );

   /* call heuristic, if solution candidate is available */
   if ( heurdata->solcand != NULL )
   {
      assert( heurdata->nindconss > 0 );
      assert( heurdata->indconss != NULL );

      /* The heuristic will only be successful if there are no integral variables and no binary variables except the
       * indicator variables. */
      if ( SCIPgetNIntVars(scip) > 0 || heurdata->nindconss < SCIPgetNBinVars(scip) )
         return SCIP_OKAY;

      SCIP_CALL( trySolCandidate(scip, heur, heurdata, heurdata->nindconss, heurdata->indconss, heurdata->solcand, &nfoundsols) );

      if ( nfoundsols > 0 )
         *result = SCIP_FOUNDSOL;
      else
         *result = SCIP_DIDNOTFIND;

      /* free memory */
      SCIPfreeBlockMemoryArray(scip, &(heurdata->solcand), heurdata->nindconss);
      SCIPfreeBlockMemoryArray(scip, &(heurdata->indconss), heurdata->nindconss);
   }
   else
   {
      SCIP_CONS** indconss;
      SCIP_Bool* solcand;
      SCIP_SOL* bestsol;
      int nindconss;
      int i;

      if ( heurdata->indicatorconshdlr == NULL )
         return SCIP_OKAY;

      /* check whether a new best solution has been found */
      bestsol = SCIPgetBestSol(scip);
      if ( bestsol == heurdata->lastsol )
         return SCIP_OKAY;
      heurdata->lastsol = bestsol;

      /* avoid solutions produced by this heuristic */
      if ( SCIPsolGetHeur(bestsol) == heur )
         return SCIP_OKAY;

      /* The heuristic will only be successful if there are no integral variables and no binary variables except the
       * indicator variables. */
      if ( SCIPgetNIntVars(scip) > 0 || SCIPconshdlrGetNConss(heurdata->indicatorconshdlr) < SCIPgetNBinVars(scip) )
         return SCIP_OKAY;

      nindconss = SCIPconshdlrGetNConss(heurdata->indicatorconshdlr);
      if ( nindconss == 0 )
         return SCIP_OKAY;

      indconss = SCIPconshdlrGetConss(heurdata->indicatorconshdlr);
      assert( indconss != NULL );

      /* fill solutin candidate */
      SCIP_CALL( SCIPallocBufferArray(scip, &solcand, nindconss) );
      for (i = 0; i < nindconss; ++i)
      {
         SCIP_VAR* binvar;
         SCIP_Real val;

         solcand[i] = FALSE;
         if ( SCIPconsIsActive(indconss[i]) )
         {
            binvar = SCIPgetBinaryVarIndicator(indconss[i]);
            assert( binvar != NULL );

            val = SCIPgetSolVal(scip, bestsol, binvar);
            assert( SCIPisFeasIntegral(scip, val) );
            if ( val > 0.5 )
               solcand[i] = TRUE;
         }
      }

      SCIPdebugMessage("Trying to improve best solution of value %f.\n", SCIPgetSolOrigObj(scip, bestsol) );

      /* try one-opt heuristic */
      SCIP_CALL( tryOneOpt(scip, heur, heurdata, nindconss, indconss, solcand, &nfoundsols) );

      if ( nfoundsols > 0 )
         *result = SCIP_FOUNDSOL;
      else
         *result = SCIP_DIDNOTFIND;

      SCIPfreeBufferArray(scip, &solcand);
   }

   return SCIP_OKAY;
}
Ejemplo n.º 4
0
/** execution method of primal heuristic */
static
SCIP_DECL_HEUREXEC(heurExecLocalbranching)
{  /*lint --e{715}*/
   SCIP_Longint maxnnodes;                   /* maximum number of subnodes                            */
   SCIP_Longint nsubnodes;                   /* nodelimit for subscip                                 */

   SCIP_HEURDATA* heurdata;
   SCIP* subscip;                            /* the subproblem created by localbranching              */
   SCIP_VAR** subvars;                       /* subproblem's variables                                */
   SCIP_SOL* bestsol;                        /* best solution so far                                  */
   SCIP_EVENTHDLR*       eventhdlr;          /* event handler for LP events                     */

   SCIP_Real timelimit;                      /* timelimit for subscip (equals remaining time of scip) */
   SCIP_Real cutoff;                         /* objective cutoff for the subproblem                   */
   SCIP_Real upperbound;
   SCIP_Real memorylimit;

   SCIP_HASHMAP* varmapfw;                   /* mapping of SCIP variables to sub-SCIP variables */
   SCIP_VAR** vars;

   int nvars;
   int i;

   SCIP_Bool success;

   SCIP_RETCODE retcode;

   assert(heur != NULL);
   assert(scip != NULL);
   assert(result != NULL);

   *result = SCIP_DIDNOTRUN;

   /* get heuristic's data */
   heurdata = SCIPheurGetData(heur);
   assert( heurdata != NULL );

   /* there should be enough binary variables that a local branching constraint makes sense */
   if( SCIPgetNBinVars(scip) < 2*heurdata->neighborhoodsize )
      return SCIP_OKAY;

   *result = SCIP_DELAYED;

   /* only call heuristic, if an IP solution is at hand */
   if( SCIPgetNSols(scip) <= 0  )
      return SCIP_OKAY;

   bestsol = SCIPgetBestSol(scip);
   assert(bestsol != NULL);

   /* only call heuristic, if the best solution comes from transformed problem */
   if( SCIPsolIsOriginal(bestsol) )
      return SCIP_OKAY;

   /* only call heuristic, if enough nodes were processed since last incumbent */
   if( SCIPgetNNodes(scip) - SCIPgetSolNodenum(scip, bestsol)  < heurdata->nwaitingnodes)
      return SCIP_OKAY;

   /* only call heuristic, if the best solution does not come from trivial heuristic */
   if( SCIPsolGetHeur(bestsol) != NULL && strcmp(SCIPheurGetName(SCIPsolGetHeur(bestsol)), "trivial") == 0 )
      return SCIP_OKAY;

   /* reset neighborhood and minnodes, if new solution was found */
   if( heurdata->lastsol != bestsol )
   {
      heurdata->curneighborhoodsize = heurdata->neighborhoodsize;
      heurdata->curminnodes = heurdata->minnodes;
      heurdata->emptyneighborhoodsize = 0;
      heurdata->callstatus = EXECUTE;
      heurdata->lastsol = bestsol;
   }

   /* if no new solution was found and local branching also seems to fail, just keep on waiting */
   if( heurdata->callstatus == WAITFORNEWSOL )
      return SCIP_OKAY;

   *result = SCIP_DIDNOTRUN;

   /* calculate the maximal number of branching nodes until heuristic is aborted */
   maxnnodes = (SCIP_Longint)(heurdata->nodesquot * SCIPgetNNodes(scip));

   /* reward local branching if it succeeded often */
   maxnnodes = (SCIP_Longint)(maxnnodes * (1.0 + 2.0*(SCIPheurGetNBestSolsFound(heur)+1.0)/(SCIPheurGetNCalls(heur)+1.0)));
   maxnnodes -= 100 * SCIPheurGetNCalls(heur);  /* count the setup costs for the sub-MIP as 100 nodes */
   maxnnodes += heurdata->nodesofs;

   /* determine the node limit for the current process */
   nsubnodes = maxnnodes - heurdata->usednodes;
   nsubnodes = MIN(nsubnodes, heurdata->maxnodes);

   /* check whether we have enough nodes left to call sub problem solving */
   if( nsubnodes < heurdata->curminnodes )
      return SCIP_OKAY;

   if( SCIPisStopped(scip) )
      return SCIP_OKAY;

   *result = SCIP_DIDNOTFIND;

   SCIPdebugMessage("running localbranching heuristic ...\n");

   /* get the data of the variables and the best solution */
   SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, NULL, NULL, NULL, NULL) );

   /* initializing the subproblem */
   SCIP_CALL( SCIPallocBufferArray(scip, &subvars, nvars) );
   SCIP_CALL( SCIPcreate(&subscip) );

   /* create the variable mapping hash map */
   SCIP_CALL( SCIPhashmapCreate(&varmapfw, SCIPblkmem(subscip), SCIPcalcHashtableSize(5 * nvars)) );
   success = FALSE;
   eventhdlr = NULL;

   if( heurdata->uselprows )
   {
      char probname[SCIP_MAXSTRLEN];

      /* copy all plugins */
      SCIP_CALL( SCIPincludeDefaultPlugins(subscip) );

      /* get name of the original problem and add the string "_localbranchsub" */
      (void) SCIPsnprintf(probname, SCIP_MAXSTRLEN, "%s_localbranchsub", SCIPgetProbName(scip));

      /* create the subproblem */
      SCIP_CALL( SCIPcreateProb(subscip, probname, NULL, NULL, NULL, NULL, NULL, NULL, NULL) );

      /* copy all variables */
      SCIP_CALL( SCIPcopyVars(scip, subscip, varmapfw, NULL, TRUE) );
   }
   else
   {
      SCIP_CALL( SCIPcopy(scip, subscip, varmapfw, NULL, "localbranchsub", TRUE, FALSE, TRUE, &success) );

      if( heurdata->copycuts )
      {
         /* copies all active cuts from cutpool of sourcescip to linear constraints in targetscip */
         SCIP_CALL( SCIPcopyCuts(scip, subscip, varmapfw, NULL, TRUE, NULL) );
      }

      /* create event handler for LP events */
      SCIP_CALL( SCIPincludeEventhdlrBasic(subscip, &eventhdlr, EVENTHDLR_NAME, EVENTHDLR_DESC, eventExecLocalbranching, NULL) );
      if( eventhdlr == NULL )
      {
         SCIPerrorMessage("event handler for "HEUR_NAME" heuristic not found.\n");
         return SCIP_PLUGINNOTFOUND;
      }
   }
   SCIPdebugMessage("Copying the plugins was %ssuccessful.\n", success ? "" : "not ");

   for (i = 0; i < nvars; ++i)
      subvars[i] = (SCIP_VAR*) SCIPhashmapGetImage(varmapfw, vars[i]);

   /* free hash map */
   SCIPhashmapFree(&varmapfw);

   /* if the subproblem could not be created, free memory and return */
   if( !success )
   {
      *result = SCIP_DIDNOTRUN;
      goto TERMINATE;
   }

   /* do not abort subproblem on CTRL-C */
   SCIP_CALL( SCIPsetBoolParam(subscip, "misc/catchctrlc", FALSE) );

#ifndef SCIP_DEBUG
   /* disable output to console */
   SCIP_CALL( SCIPsetIntParam(subscip, "display/verblevel", 0) );
#endif

   /* check whether there is enough time and memory left */
   SCIP_CALL( SCIPgetRealParam(scip, "limits/time", &timelimit) );
   if( !SCIPisInfinity(scip, timelimit) )
      timelimit -= SCIPgetSolvingTime(scip);
   SCIP_CALL( SCIPgetRealParam(scip, "limits/memory", &memorylimit) );

   /* substract the memory already used by the main SCIP and the estimated memory usage of external software */
   if( !SCIPisInfinity(scip, memorylimit) )
   {
      memorylimit -= SCIPgetMemUsed(scip)/1048576.0;
      memorylimit -= SCIPgetMemExternEstim(scip)/1048576.0;
   }

   /* abort if no time is left or not enough memory to create a copy of SCIP, including external memory usage */
   if( timelimit <= 0.0 || memorylimit <= 2.0*SCIPgetMemExternEstim(scip)/1048576.0 )
      goto TERMINATE;

   /* set limits for the subproblem */
   heurdata->nodelimit = nsubnodes;
   SCIP_CALL( SCIPsetLongintParam(subscip, "limits/nodes", nsubnodes) );
   SCIP_CALL( SCIPsetLongintParam(subscip, "limits/stallnodes", MAX(10, nsubnodes/10)) );
   SCIP_CALL( SCIPsetIntParam(subscip, "limits/bestsol", 3) );
   SCIP_CALL( SCIPsetRealParam(subscip, "limits/time", timelimit) );
   SCIP_CALL( SCIPsetRealParam(subscip, "limits/memory", memorylimit) );

   /* forbid recursive call of heuristics and separators solving subMIPs */
   SCIP_CALL( SCIPsetSubscipsOff(subscip, TRUE) );

   /* disable cutting plane separation */
   SCIP_CALL( SCIPsetSeparating(subscip, SCIP_PARAMSETTING_OFF, TRUE) );

   /* disable expensive presolving */
   SCIP_CALL( SCIPsetPresolving(subscip, SCIP_PARAMSETTING_FAST, TRUE) );

   /* use best estimate node selection */
   if( SCIPfindNodesel(subscip, "estimate") != NULL && !SCIPisParamFixed(subscip, "nodeselection/estimate/stdpriority") )
   {
      SCIP_CALL( SCIPsetIntParam(subscip, "nodeselection/estimate/stdpriority", INT_MAX/4) );
   }

   /* use inference branching */
   if( SCIPfindBranchrule(subscip, "inference") != NULL && !SCIPisParamFixed(subscip, "branching/inference/priority") )
   {
      SCIP_CALL( SCIPsetIntParam(subscip, "branching/inference/priority", INT_MAX/4) );
   }

   /* disable conflict analysis */
   if( !SCIPisParamFixed(subscip, "conflict/useprop") )
   {
      SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useprop", FALSE) );
   }
   if( !SCIPisParamFixed(subscip, "conflict/useinflp") )
   {
      SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useinflp", FALSE) );
   }
   if( !SCIPisParamFixed(subscip, "conflict/useboundlp") )
   {
      SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useboundlp", FALSE) );
   }
   if( !SCIPisParamFixed(subscip, "conflict/usesb") )
   {
      SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/usesb", FALSE) );
   }
   if( !SCIPisParamFixed(subscip, "conflict/usepseudo") )
   {
      SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/usepseudo", FALSE) );
   }

   /* employ a limit on the number of enforcement rounds in the quadratic constraint handler; this fixes the issue that
    * sometimes the quadratic constraint handler needs hundreds or thousands of enforcement rounds to determine the
    * feasibility status of a single node without fractional branching candidates by separation (namely for uflquad
    * instances); however, the solution status of the sub-SCIP might get corrupted by this; hence no deductions shall be
    * made for the original SCIP
    */
   if( SCIPfindConshdlr(subscip, "quadratic") != NULL && !SCIPisParamFixed(subscip, "constraints/quadratic/enfolplimit") )
   {
      SCIP_CALL( SCIPsetIntParam(subscip, "constraints/quadratic/enfolplimit", 500) );
   }

   /* copy the original problem and add the local branching constraint */
   if( heurdata->uselprows )
   {
      SCIP_CALL( createSubproblem(scip, subscip, subvars) );
   }
   SCIP_CALL( addLocalBranchingConstraint(scip, subscip, subvars, heurdata) );

   /* add an objective cutoff */
   cutoff = SCIPinfinity(scip);
   assert( !SCIPisInfinity(scip,SCIPgetUpperbound(scip)) );

   upperbound = SCIPgetUpperbound(scip) - SCIPsumepsilon(scip);
   if( !SCIPisInfinity(scip,-1.0*SCIPgetLowerbound(scip)) )
   {
      cutoff = (1-heurdata->minimprove)*SCIPgetUpperbound(scip) + heurdata->minimprove*SCIPgetLowerbound(scip);
   }
   else
   {
      if( SCIPgetUpperbound ( scip ) >= 0 )
         cutoff = ( 1 - heurdata->minimprove ) * SCIPgetUpperbound ( scip );
      else
         cutoff = ( 1 + heurdata->minimprove ) * SCIPgetUpperbound ( scip );
   }
   cutoff = MIN(upperbound, cutoff );
   SCIP_CALL( SCIPsetObjlimit(subscip, cutoff) );

   /* catch LP events of sub-SCIP */
   if( !heurdata->uselprows )
   {
      assert(eventhdlr != NULL);

      SCIP_CALL( SCIPtransformProb(subscip) );
      SCIP_CALL( SCIPcatchEvent(subscip, SCIP_EVENTTYPE_LPSOLVED, eventhdlr, (SCIP_EVENTDATA*) heurdata, NULL) );
   }

   /* solve the subproblem */
   SCIPdebugMessage("solving local branching subproblem with neighborhoodsize %d and maxnodes %"SCIP_LONGINT_FORMAT"\n",
      heurdata->curneighborhoodsize, nsubnodes);
   retcode = SCIPsolve(subscip);

   /* drop LP events of sub-SCIP */
   if( !heurdata->uselprows )
   {
      assert(eventhdlr != NULL);

      SCIP_CALL( SCIPdropEvent(subscip, SCIP_EVENTTYPE_LPSOLVED, eventhdlr, (SCIP_EVENTDATA*) heurdata, -1) );
   }

   /* Errors in solving the subproblem should not kill the overall solving process
    * Hence, the return code is caught and a warning is printed, only in debug mode, SCIP will stop.
    */
   if( retcode != SCIP_OKAY )
   {
#ifndef NDEBUG
      SCIP_CALL( retcode );
#endif
      SCIPwarningMessage(scip, "Error while solving subproblem in local branching heuristic; sub-SCIP terminated with code <%d>\n",retcode);
   }

   /* print solving statistics of subproblem if we are in SCIP's debug mode */
   SCIPdebug( SCIP_CALL( SCIPprintStatistics(subscip, NULL) ) );

   heurdata->usednodes += SCIPgetNNodes(subscip);
   SCIPdebugMessage("local branching used %"SCIP_LONGINT_FORMAT"/%"SCIP_LONGINT_FORMAT" nodes\n",
      SCIPgetNNodes(subscip), nsubnodes);

   /* check, whether a solution was found */
   if( SCIPgetNSols(subscip) > 0 )
   {
      SCIP_SOL** subsols;
      int nsubsols;

      /* check, whether a solution was found;
       * due to numerics, it might happen that not all solutions are feasible -> try all solutions until one was accepted
       */
      nsubsols = SCIPgetNSols(subscip);
      subsols = SCIPgetSols(subscip);
      success = FALSE;
      for( i = 0; i < nsubsols && !success; ++i )
      {
         SCIP_CALL( createNewSol(scip, subscip, subvars, heur, subsols[i], &success) );
      }
      if( success )
      {
         SCIPdebugMessage("-> accepted solution of value %g\n", SCIPgetSolOrigObj(subscip, subsols[i]));
         *result = SCIP_FOUNDSOL;
      }
   }

   /* check the status of the sub-MIP */
   switch( SCIPgetStatus(subscip) )
   {
   case SCIP_STATUS_OPTIMAL:
   case SCIP_STATUS_BESTSOLLIMIT:
      heurdata->callstatus = WAITFORNEWSOL; /* new solution will immediately be installed at next call */
      SCIPdebugMessage(" -> found new solution\n");
      break;

   case SCIP_STATUS_NODELIMIT:
   case SCIP_STATUS_STALLNODELIMIT:
   case SCIP_STATUS_TOTALNODELIMIT:
      heurdata->callstatus = EXECUTE;
      heurdata->curneighborhoodsize = (heurdata->emptyneighborhoodsize + heurdata->curneighborhoodsize)/2;
      heurdata->curminnodes *= 2;
      SCIPdebugMessage(" -> node limit reached: reduced neighborhood to %d, increased minnodes to %d\n",
         heurdata->curneighborhoodsize, heurdata->curminnodes);
      if( heurdata->curneighborhoodsize <= heurdata->emptyneighborhoodsize )
      {
         heurdata->callstatus = WAITFORNEWSOL;
         SCIPdebugMessage(" -> new neighborhood was already proven to be empty: wait for new solution\n");
      }
      break;

   case SCIP_STATUS_INFEASIBLE:
   case SCIP_STATUS_INFORUNBD:
      heurdata->emptyneighborhoodsize = heurdata->curneighborhoodsize;
      heurdata->curneighborhoodsize += heurdata->curneighborhoodsize/2;
      heurdata->curneighborhoodsize = MAX(heurdata->curneighborhoodsize, heurdata->emptyneighborhoodsize + 2);
      heurdata->callstatus = EXECUTE;
      SCIPdebugMessage(" -> neighborhood is empty: increased neighborhood to %d\n", heurdata->curneighborhoodsize);
      break;

   case SCIP_STATUS_UNKNOWN:
   case SCIP_STATUS_USERINTERRUPT:
   case SCIP_STATUS_TIMELIMIT:
   case SCIP_STATUS_MEMLIMIT:
   case SCIP_STATUS_GAPLIMIT:
   case SCIP_STATUS_SOLLIMIT:
   case SCIP_STATUS_UNBOUNDED:
   default:
      heurdata->callstatus = WAITFORNEWSOL;
      SCIPdebugMessage(" -> unexpected sub-MIP status <%d>: waiting for new solution\n", SCIPgetStatus(subscip));
      break;
   }

 TERMINATE:
   /* free subproblem */
   SCIPfreeBufferArray(scip, &subvars);
   SCIP_CALL( SCIPfree(&subscip) );

   return SCIP_OKAY;
}
Ejemplo n.º 5
0
/** creates a subproblem for subscip by fixing a number of variables */
static
SCIP_RETCODE setupSubproblem(
   SCIP*                 scip,               /**< original SCIP data structure */
   SCIP*                 subscip,            /**< SCIP data structure for the subproblem */
   SCIP_VAR**            subvars,            /**< the variables of the subproblem */
   int*                  selection,          /**< pool of solutions crossover will use */
   SCIP_HEURDATA*        heurdata,           /**< primal heuristic data */
   SCIP_Bool*            success             /**< pointer to store whether the problem was created successfully */
   )
{
   SCIP_SOL** sols;                         /* array of all solutions found so far         */
   int nsols;                               /* number of all solutions found so far        */
   int nusedsols;                           /* number of solutions to use in crossover     */

   int i;
   char consname[SCIP_MAXSTRLEN];

   /* get solutions' data */
   nsols = SCIPgetNSols(scip);
   sols = SCIPgetSols(scip);
   nusedsols = heurdata->nusedsols;

   assert(nusedsols > 1);
   assert(nsols >= nusedsols);

   /* use nusedsols best solutions if randomization is deactivated or there are only nusedsols solutions at hand
    * or a good new solution was found since last call */
   if( !heurdata->randomization || nsols == nusedsols || heurdata->prevlastsol != sols[nusedsols-1] )
   {
      SOLTUPLE* elem;
      SCIP_HEUR* solheur;
      SCIP_Longint solnodenum;
      SCIP_Bool allsame;

      for( i = 0; i < nusedsols; i++ )
         selection[i] = i;
      SCIP_CALL( createSolTuple(scip, &elem, selection, nusedsols, heurdata) );

      solheur = SCIPsolGetHeur(sols[0]);
      solnodenum = SCIPsolGetNodenum(sols[0]);
      allsame = TRUE;

      /* check, whether all solutions have been found by the same heuristic at the same node; in this case we do not run
       * crossover, since it would probably just optimize over the same space as the other heuristic
       */
      for( i = 1; i < nusedsols; i++ )
      {
         if( SCIPsolGetHeur(sols[i]) != solheur || SCIPsolGetNodenum(sols[i]) != solnodenum )
            allsame = FALSE;
      }
      *success = !allsame && !SCIPhashtableExists(heurdata->hashtable, elem);

      /* check, whether solution tuple has already been tried */
      if( !SCIPhashtableExists(heurdata->hashtable, elem) )
      {
         SCIP_CALL( SCIPhashtableInsert(heurdata->hashtable, elem) );
      }

      /* if solution tuple has already been tried, randomization is allowed and enough solutions are at hand, try
       * to randomize another tuple. E.g., this can happen if the last crossover solution was among the best ones */
      if( !(*success) && heurdata->randomization && nsols > nusedsols )
      {
         SCIP_CALL( selectSolsRandomized(scip, selection, heurdata, success) );
      }

   }
   /* otherwise randomize the set of solutions */
   else
   {
      SCIP_CALL( selectSolsRandomized(scip, selection, heurdata, success) );
   }

   /* no acceptable solution tuple could be created */
   if( !(*success) )
      return SCIP_OKAY;

   /* get name of the original problem and add the string "_crossoversub" */
   (void) SCIPsnprintf(consname, SCIP_MAXSTRLEN, "%s_crossoversub", SCIPgetProbName(scip));

   /* set up the variables of the subproblem */
   SCIP_CALL( fixVariables(scip, subscip, subvars, selection, heurdata, success) );

   /* we copy the rows of the LP, if the enough variables could be fixed and we work on the MIP
      relaxation of the problem */
   if( *success && heurdata->uselprows )
   {
      SCIP_CALL( createRows(scip, subscip, subvars) );
   }

   return SCIP_OKAY;
}