Ejemplo n.º 1
0
static
void calcPscostQuot(
   SCIP*                 scip,               /**< SCIP data structure */
   SCIP_VAR*             var,                /**< problem variable */
   SCIP_Real             primsol,            /**< primal solution of variable */
   SCIP_Real             frac,               /**< fractionality of variable */
   int                   rounddir,           /**< -1: round down, +1: round up, 0: select due to pseudo cost values */
   SCIP_Real*            pscostquot,         /**< pointer to store pseudo cost quotient */
   SCIP_Bool*            roundup             /**< pointer to store whether the variable should be rounded up */
   )
{
   SCIP_Real pscostdown;
   SCIP_Real pscostup;

   assert(pscostquot != NULL);
   assert(roundup != NULL);

   /* bound fractions to not prefer variables that are nearly integral */
   frac = MAX(frac, 0.1);
   frac = MIN(frac, 0.9);

   /* get pseudo cost quotient */
   pscostdown = SCIPgetVarPseudocostVal(scip, var, 0.0-frac);
   pscostup = SCIPgetVarPseudocostVal(scip, var, 1.0-frac);
   assert(pscostdown >= 0.0 && pscostup >= 0.0);

   /* choose rounding direction */
   if( rounddir == -1 )
      *roundup = FALSE;
   else if( rounddir == +1 )
      *roundup = TRUE;
   else if( frac < 0.3 )
      *roundup = FALSE;
   else if( frac > 0.7 )
      *roundup = TRUE;
   else if( primsol < SCIPvarGetRootSol(var) - 0.4 )
      *roundup = FALSE;
   else if( primsol > SCIPvarGetRootSol(var) + 0.4 )
      *roundup = TRUE;
   else if( pscostdown < pscostup )
      *roundup = FALSE;
   else
      *roundup = TRUE;

   /* calculate pseudo cost quotient */
   if( *roundup )
      *pscostquot = sqrt(frac) * (1.0+pscostdown) / (1.0+pscostup);
   else
      *pscostquot = sqrt(1.0-frac) * (1.0+pscostup) / (1.0+pscostdown);

   /* prefer decisions on binary variables */
   if( SCIPvarIsBinary(var) )
      (*pscostquot) *= 1000.0;
}
Ejemplo n.º 2
0
/** branching execution method for fractional LP solutions */
static
SCIP_DECL_BRANCHEXECLP(branchExeclpPscost)
{  /*lint --e{715}*/
   SCIP_VAR** lpcands;
   SCIP_Real* lpcandssol;
   SCIP_Real bestscore;
   SCIP_Real bestrootdiff;
   int nlpcands;
   int bestcand;
   int c;

   assert(branchrule != NULL);
   assert(strcmp(SCIPbranchruleGetName(branchrule), BRANCHRULE_NAME) == 0);
   assert(scip != NULL);
   assert(result != NULL);

   SCIPdebugMessage("Execlp method of pscost branching\n");

   /* get branching candidates */
   SCIP_CALL( SCIPgetLPBranchCands(scip, &lpcands, &lpcandssol, NULL, NULL, &nlpcands, NULL) );
   assert(nlpcands > 0);

   bestcand = -1;
   bestscore = -SCIPinfinity(scip);
   bestrootdiff = 0.0;
   for( c = 0; c < nlpcands; ++c )
   {
      SCIP_Real score;
      SCIP_Real rootsolval;
      SCIP_Real rootdiff;

      score = SCIPgetVarPseudocostScore(scip, lpcands[c], lpcandssol[c]);
      rootsolval = SCIPvarGetRootSol(lpcands[c]);
      rootdiff = REALABS(lpcandssol[c] - rootsolval);
      if( SCIPisSumGT(scip, score, bestscore) || (SCIPisSumEQ(scip, score, bestscore) && rootdiff > bestrootdiff) )
      {
         bestcand = c;
         bestscore = score;
         bestrootdiff = rootdiff;
      }
   }
   assert(0 <= bestcand && bestcand < nlpcands);
   assert(!SCIPisFeasIntegral(scip, lpcandssol[bestcand]));

   /* perform the branching */
   SCIPdebugMessage(" -> %d cands, selected cand %d: variable <%s> (solval=%g, score=%g)\n",
      nlpcands, bestcand, SCIPvarGetName(lpcands[bestcand]), lpcandssol[bestcand], bestscore);

   /* perform the branching */
   SCIP_CALL( SCIPbranchVar(scip, lpcands[bestcand], NULL, NULL, NULL) );
   *result = SCIP_BRANCHED;

   return SCIP_OKAY;
}
Ejemplo n.º 3
0
/** generates the direction of the shooting ray as the difference between the root and the current LP solution */
static
SCIP_RETCODE generateDifferenceRay(
   SCIP*                 scip,               /**< SCIP data structure                   */
   SCIP_Real*            raydirection,       /**< shooting ray                          */
   SCIP_VAR**            subspacevars,       /**< pointer to fractional space variables */
   int                   nsubspacevars       /**< dimension of fractional space         */
   )
{
   int v;

   assert(scip != NULL);
   assert(raydirection != NULL);
   assert(subspacevars != NULL);

   for( v = nsubspacevars - 1; v >= 0; --v )
      raydirection[v] = SCIPvarGetLPSol(subspacevars[v]) - SCIPvarGetRootSol(subspacevars[v]);

   return SCIP_OKAY;
}
Ejemplo n.º 4
0
/** execution method of primal heuristic */
static
SCIP_DECL_HEUREXEC(heurExecLinesearchdiving)
{  /*lint --e{715}*/
   SCIP_HEURDATA* heurdata;
   SCIP_LPSOLSTAT lpsolstat;
   SCIP_VAR* var;
   SCIP_VAR** lpcands;
   SCIP_Real* lpcandssol;
   SCIP_Real* lpcandsfrac;
   SCIP_Real searchubbound;
   SCIP_Real searchavgbound;
   SCIP_Real searchbound;
   SCIP_Real objval;
   SCIP_Real oldobjval;
   SCIP_Real solval;
   SCIP_Real rootsolval;
   SCIP_Real distquot;
   SCIP_Real bestdistquot;
   SCIP_Bool roundup;
   SCIP_Bool bestcandroundup;
   SCIP_Bool lperror;
   SCIP_Bool cutoff;
   SCIP_Bool backtracked;
   SCIP_Bool success;
   SCIP_Longint ncalls;
   SCIP_Longint nsolsfound;
   SCIP_Longint nlpiterations;
   SCIP_Longint maxnlpiterations;
   int nlpcands;
   int startnlpcands;
   int depth;
   int maxdepth;
   int maxdivedepth;
   int divedepth;
   int bestcand;
   int c;

   assert(heur != NULL);
   assert(scip != NULL);
   assert(result != NULL);
   assert(SCIPhasCurrentNodeLP(scip));

   *result = SCIP_DELAYED;

   /* do not call heuristic of node was already detected to be infeasible */
   if( nodeinfeasible )
      return SCIP_OKAY;

   /* only call heuristic, if an optimal LP solution is at hand */
   if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL )
      return SCIP_OKAY;

   /* only call heuristic, if the LP objective value is smaller than the cutoff bound */
   if( SCIPisGE(scip, SCIPgetLPObjval(scip), SCIPgetCutoffbound(scip)) )
      return SCIP_OKAY;

   /* only call heuristic, if the LP solution is basic (which allows fast resolve in diving) */
   if( !SCIPisLPSolBasic(scip) )
      return SCIP_OKAY;

   /* don't dive two times at the same node */
   if( SCIPgetLastDivenode(scip) == SCIPgetNNodes(scip) && SCIPgetDepth(scip) > 0 )
      return SCIP_OKAY;

   *result = SCIP_DIDNOTRUN;

   /* get heuristic's data */
   heurdata = SCIPheurGetData(heur);
   assert(heurdata != NULL);

   /* only try to dive, if we are in the correct part of the tree, given by minreldepth and maxreldepth */
   depth = SCIPgetDepth(scip);
   maxdepth = SCIPgetMaxDepth(scip);
   maxdepth = MAX(maxdepth, 30);
   if( depth < heurdata->minreldepth*maxdepth || depth > heurdata->maxreldepth*maxdepth )
      return SCIP_OKAY;

   /* calculate the maximal number of LP iterations until heuristic is aborted */
   nlpiterations = SCIPgetNNodeLPIterations(scip);
   ncalls = SCIPheurGetNCalls(heur);
   nsolsfound = 10*SCIPheurGetNBestSolsFound(heur) + heurdata->nsuccess;
   maxnlpiterations = (SCIP_Longint)((1.0 + 10.0*(nsolsfound+1.0)/(ncalls+1.0)) * heurdata->maxlpiterquot * nlpiterations);
   maxnlpiterations += heurdata->maxlpiterofs;

   /* don't try to dive, if we took too many LP iterations during diving */
   if( heurdata->nlpiterations >= maxnlpiterations )
      return SCIP_OKAY;

   /* allow at least a certain number of LP iterations in this dive */
   maxnlpiterations = MAX(maxnlpiterations, heurdata->nlpiterations + MINLPITER);

   /* get fractional variables that should be integral */
   SCIP_CALL( SCIPgetLPBranchCands(scip, &lpcands, &lpcandssol, &lpcandsfrac, &nlpcands, NULL, NULL) );

   /* don't try to dive, if there are no fractional variables */
   if( nlpcands == 0 )
      return SCIP_OKAY;

   /* calculate the objective search bound */
   if( SCIPgetNSolsFound(scip) == 0 )
   {
      if( heurdata->maxdiveubquotnosol > 0.0 )
         searchubbound = SCIPgetLowerbound(scip)
            + heurdata->maxdiveubquotnosol * (SCIPgetCutoffbound(scip) - SCIPgetLowerbound(scip));
      else
         searchubbound = SCIPinfinity(scip);
      if( heurdata->maxdiveavgquotnosol > 0.0 )
         searchavgbound = SCIPgetLowerbound(scip)
            + heurdata->maxdiveavgquotnosol * (SCIPgetAvgLowerbound(scip) - SCIPgetLowerbound(scip));
      else
         searchavgbound = SCIPinfinity(scip);
   }
   else
   {
      if( heurdata->maxdiveubquot > 0.0 )
         searchubbound = SCIPgetLowerbound(scip)
            + heurdata->maxdiveubquot * (SCIPgetCutoffbound(scip) - SCIPgetLowerbound(scip));
      else
         searchubbound = SCIPinfinity(scip);
      if( heurdata->maxdiveavgquot > 0.0 )
         searchavgbound = SCIPgetLowerbound(scip)
            + heurdata->maxdiveavgquot * (SCIPgetAvgLowerbound(scip) - SCIPgetLowerbound(scip));
      else
         searchavgbound = SCIPinfinity(scip);
   }
   searchbound = MIN(searchubbound, searchavgbound);
   if( SCIPisObjIntegral(scip) )
      searchbound = SCIPceil(scip, searchbound);

   /* calculate the maximal diving depth: 10 * min{number of integer variables, max depth} */
   maxdivedepth = SCIPgetNBinVars(scip) + SCIPgetNIntVars(scip);
   maxdivedepth = MIN(maxdivedepth, maxdepth);
   maxdivedepth *= 10;

   *result = SCIP_DIDNOTFIND;

   /* start diving */
   SCIP_CALL( SCIPstartProbing(scip) );

   /* enables collection of variable statistics during probing */
   SCIPenableVarHistory(scip);

   /* get LP objective value */
   lpsolstat = SCIP_LPSOLSTAT_OPTIMAL;
   objval = SCIPgetLPObjval(scip);

   SCIPdebugMessage("(node %"SCIP_LONGINT_FORMAT") executing linesearchdiving heuristic: depth=%d, %d fractionals, dualbound=%g, searchbound=%g\n",
      SCIPgetNNodes(scip), SCIPgetDepth(scip), nlpcands, SCIPgetDualbound(scip), SCIPretransformObj(scip, searchbound));

   /* dive as long we are in the given objective, depth and iteration limits and fractional variables exist, but
    * - if possible, we dive at least with the depth 10
    * - if the number of fractional variables decreased at least with 1 variable per 2 dive depths, we continue diving
    */
   lperror = FALSE;
   cutoff = FALSE;
   divedepth = 0;
   startnlpcands = nlpcands;
   while( !lperror && !cutoff && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL && nlpcands > 0
      && (divedepth < 10
         || nlpcands <= startnlpcands - divedepth/2
         || (divedepth < maxdivedepth && heurdata->nlpiterations < maxnlpiterations && objval < searchbound))
      && !SCIPisStopped(scip) )
   {
      SCIP_CALL( SCIPnewProbingNode(scip) );
      divedepth++;

      /* choose variable fixing:
       * - in the projected space of fractional variables, extend the line segment connecting the root solution and
       *   the current LP solution up to the point, where one of the fractional variables becomes integral
       * - round this variable to the integral value
       */
      bestcand = 0;
      bestdistquot = SCIPinfinity(scip);
      bestcandroundup = FALSE;
      for( c = 0; c < nlpcands; ++c )
      {
         var = lpcands[c];
         solval = lpcandssol[c];
         rootsolval = SCIPvarGetRootSol(var);

         /* calculate distance to integral value divided by distance to root solution */
         if( SCIPisLT(scip, solval, rootsolval) )
         {
            roundup = FALSE;
            distquot = (solval - SCIPfeasFloor(scip, solval)) / (rootsolval - solval);

            /* avoid roundable candidates */
            if( SCIPvarMayRoundDown(var) )
               distquot *= 1000.0;
         }
         else if( SCIPisGT(scip, solval, rootsolval) )
         {
            roundup = TRUE;
            distquot = (SCIPfeasCeil(scip, solval) - solval) / (solval - rootsolval);

            /* avoid roundable candidates */
            if( SCIPvarMayRoundUp(var) )
               distquot *= 1000.0;
         }
         else
         {
            roundup = FALSE;
            distquot = SCIPinfinity(scip);
         }

         /* check, if candidate is new best candidate */
         if( distquot < bestdistquot )
         {
            bestcand = c;
            bestcandroundup = roundup;
            bestdistquot = distquot;
         }
      }

      /* create solution from diving LP and try to round it */
      SCIP_CALL( SCIPlinkLPSol(scip, heurdata->sol) );
      SCIP_CALL( SCIProundSol(scip, heurdata->sol, &success) );
      if( success )
      {
         SCIPdebugMessage("linesearchdiving found roundable primal solution: obj=%g\n",
            SCIPgetSolOrigObj(scip, heurdata->sol));

         /* try to add solution to SCIP */
         SCIP_CALL( SCIPtrySol(scip, heurdata->sol, FALSE, FALSE, FALSE, FALSE, &success) );

         /* check, if solution was feasible and good enough */
         if( success )
         {
            SCIPdebugMessage(" -> solution was feasible and good enough\n");
            *result = SCIP_FOUNDSOL;
         }
      }

      /* apply rounding of best candidate */
      var = lpcands[bestcand];

      backtracked = FALSE;
      do
      {
         /* if the variable is already fixed or if the solution value is outside the domain, numerical troubles may have
          * occured or variable was fixed by propagation while backtracking => Abort diving!
          */
         if( SCIPvarGetLbLocal(var) >= SCIPvarGetUbLocal(var) - 0.5 )
         {
            SCIPdebugMessage("selected variable <%s> already fixed to [%g,%g] (solval: %.9f), diving aborted \n",
               SCIPvarGetName(var), SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var), lpcandssol[bestcand]);
            cutoff = TRUE;
            break;
         }
         if( SCIPisFeasLT(scip, lpcandssol[bestcand], SCIPvarGetLbLocal(var)) || SCIPisFeasGT(scip, lpcandssol[bestcand], SCIPvarGetUbLocal(var)) )
         {
            SCIPdebugMessage("selected variable's <%s> solution value is outside the domain [%g,%g] (solval: %.9f), diving aborted\n",
               SCIPvarGetName(var), SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var), lpcandssol[bestcand]);
            assert(backtracked);
            break;
         }

         /* apply rounding of best candidate */
         if( bestcandroundup == !backtracked )
         {
            /* round variable up */
            SCIPdebugMessage("  dive %d/%d, LP iter %"SCIP_LONGINT_FORMAT"/%"SCIP_LONGINT_FORMAT": var <%s>, sol=%g, root=%g, [%g,%g] -> [%g,%g]\n",
               divedepth, maxdivedepth, heurdata->nlpiterations, maxnlpiterations,
               SCIPvarGetName(var), lpcandssol[bestcand], SCIPvarGetRootSol(var),
               SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var),
               SCIPfeasCeil(scip, lpcandssol[bestcand]), SCIPvarGetUbLocal(var));
            SCIP_CALL( SCIPchgVarLbProbing(scip, var, SCIPfeasCeil(scip, lpcandssol[bestcand])) );
         }
         else
         {
            /* round variable down */
            SCIPdebugMessage("  dive %d/%d, LP iter %"SCIP_LONGINT_FORMAT"/%"SCIP_LONGINT_FORMAT": var <%s>, sol=%g, root=%g, [%g,%g] -> [%g,%g]\n",
               divedepth, maxdivedepth, heurdata->nlpiterations, maxnlpiterations,
               SCIPvarGetName(var), lpcandssol[bestcand], SCIPvarGetRootSol(var),
               SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var),
               SCIPvarGetLbLocal(var), SCIPfeasFloor(scip, lpcandssol[bestcand]));
            SCIP_CALL( SCIPchgVarUbProbing(scip, var, SCIPfeasFloor(scip, lpcandssol[bestcand])) );
         }

         /* apply domain propagation */
         SCIP_CALL( SCIPpropagateProbing(scip, 0, &cutoff, NULL) );
         if( !cutoff )
         {
            /* resolve the diving LP */
            /* Errors in the LP solver should not kill the overall solving process, if the LP is just needed for a heuristic.
             * Hence in optimized mode, the return code is caught and a warning is printed, only in debug mode, SCIP will stop.
             */
#ifdef NDEBUG
            SCIP_RETCODE retstat;
            nlpiterations = SCIPgetNLPIterations(scip);
            retstat = SCIPsolveProbingLP(scip, MAX((int)(maxnlpiterations - heurdata->nlpiterations), MINLPITER), &lperror, &cutoff);
            if( retstat != SCIP_OKAY )
            {
               SCIPwarningMessage(scip, "Error while solving LP in Linesearchdiving heuristic; LP solve terminated with code <%d>\n",retstat);
            }
#else
            nlpiterations = SCIPgetNLPIterations(scip);
            SCIP_CALL( SCIPsolveProbingLP(scip, MAX((int)(maxnlpiterations - heurdata->nlpiterations), MINLPITER), &lperror, &cutoff) );
#endif

            if( lperror )
               break;

            /* update iteration count */
            heurdata->nlpiterations += SCIPgetNLPIterations(scip) - nlpiterations;

            /* get LP solution status, objective value, and fractional variables, that should be integral */
            lpsolstat = SCIPgetLPSolstat(scip);
            assert(cutoff || (lpsolstat != SCIP_LPSOLSTAT_OBJLIMIT && lpsolstat != SCIP_LPSOLSTAT_INFEASIBLE &&
                  (lpsolstat != SCIP_LPSOLSTAT_OPTIMAL || SCIPisLT(scip, SCIPgetLPObjval(scip), SCIPgetCutoffbound(scip)))));
         }

         /* perform backtracking if a cutoff was detected */
         if( cutoff && !backtracked && heurdata->backtrack )
         {
            SCIPdebugMessage("  *** cutoff detected at level %d - backtracking\n", SCIPgetProbingDepth(scip));
            SCIP_CALL( SCIPbacktrackProbing(scip, SCIPgetProbingDepth(scip)-1) );
            SCIP_CALL( SCIPnewProbingNode(scip) );
            backtracked = TRUE;
         }
         else
            backtracked = FALSE;
      }
      while( backtracked );

      if( !lperror && !cutoff && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL )
      {
         /* get new objective value */
         oldobjval = objval;
         objval = SCIPgetLPObjval(scip);

         /* update pseudo cost values */
         if( SCIPisGT(scip, objval, oldobjval) )
         {
            if( bestcandroundup )
            {
               SCIP_CALL( SCIPupdateVarPseudocost(scip, lpcands[bestcand], 1.0-lpcandsfrac[bestcand],
                     objval - oldobjval, 1.0) );
            }
            else
            {
               SCIP_CALL( SCIPupdateVarPseudocost(scip, lpcands[bestcand], 0.0-lpcandsfrac[bestcand],
                     objval - oldobjval, 1.0) );
            }
         }

         /* get new fractional variables */
         SCIP_CALL( SCIPgetLPBranchCands(scip, &lpcands, &lpcandssol, &lpcandsfrac, &nlpcands, NULL, NULL) );
      }
      SCIPdebugMessage("   -> lpsolstat=%d, objval=%g, nfrac=%d\n", lpsolstat, objval, nlpcands);
   }

   /* check if a solution has been found */
   if( nlpcands == 0 && !lperror && !cutoff && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL )
   {
      /* create solution from diving LP */
      SCIP_CALL( SCIPlinkLPSol(scip, heurdata->sol) );
      SCIPdebugMessage("linesearchdiving found primal solution: obj=%g\n", SCIPgetSolOrigObj(scip, heurdata->sol));

      /* try to add solution to SCIP */
      SCIP_CALL( SCIPtrySol(scip, heurdata->sol, FALSE, FALSE, FALSE, FALSE, &success) );

      /* check, if solution was feasible and good enough */
      if( success )
      {
         SCIPdebugMessage(" -> solution was feasible and good enough\n");
         *result = SCIP_FOUNDSOL;
      }
   }

   /* end diving */
   SCIP_CALL( SCIPendProbing(scip) );

   if( *result == SCIP_FOUNDSOL )
      heurdata->nsuccess++;

   SCIPdebugMessage("linesearchdiving heuristic finished\n");

   return SCIP_OKAY;
}
/** execution method of primal heuristic */
static
SCIP_DECL_HEUREXEC(heurExecRootsoldiving) /*lint --e{715}*/
{  /*lint --e{715}*/
   SCIP_HEURDATA* heurdata;
   SCIP_VAR** vars;
   SCIP_Real* rootsol;
   SCIP_Real* objchgvals;
   int* softroundings;
   int* intvalrounds;
   int nvars;
   int nbinvars;
   int nintvars;
   int nlpcands;
   SCIP_LPSOLSTAT lpsolstat;
   SCIP_Real absstartobjval;
   SCIP_Real objstep;
   SCIP_Real alpha;
   SCIP_Real oldobj;
   SCIP_Real newobj;
   SCIP_Bool lperror;
   SCIP_Bool lpsolchanged;
   SCIP_Longint nsolsfound;
   SCIP_Longint ncalls;
   SCIP_Longint nlpiterations;
   SCIP_Longint maxnlpiterations;
   int depth;
   int maxdepth;
   int maxdivedepth;
   int divedepth;
   int startnlpcands;
   int ncycles;
   int i;

   assert(heur != NULL);
   assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0);
   assert(scip != NULL);
   assert(result != NULL);
   assert(SCIPhasCurrentNodeLP(scip));

   *result = SCIP_DELAYED;

   /* only call heuristic, if an optimal LP solution is at hand */
   if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL )
      return SCIP_OKAY;

   /* only call heuristic, if the LP solution is basic (which allows fast resolve in diving) */
   if( !SCIPisLPSolBasic(scip) )
      return SCIP_OKAY;

   /* don't dive two times at the same node */
   if( SCIPgetLastDivenode(scip) == SCIPgetNNodes(scip) && SCIPgetDepth(scip) > 0 )
      return SCIP_OKAY;

   *result = SCIP_DIDNOTRUN;

   /* get heuristic's data */
   heurdata = SCIPheurGetData(heur);
   assert(heurdata != NULL);

   /* only apply heuristic, if only a few solutions have been found */
   if( heurdata->maxsols >= 0 && SCIPgetNSolsFound(scip) >= heurdata->maxsols )
      return SCIP_OKAY;

   /* only try to dive, if we are in the correct part of the tree, given by minreldepth and maxreldepth */
   depth = SCIPgetDepth(scip);
   maxdepth = SCIPgetMaxDepth(scip);
   maxdepth = MAX(maxdepth, 30);
   if( depth < heurdata->minreldepth*maxdepth || depth > heurdata->maxreldepth*maxdepth )
      return SCIP_OKAY;

   /* calculate the maximal number of LP iterations until heuristic is aborted */
   nlpiterations = SCIPgetNNodeLPIterations(scip);
   ncalls = SCIPheurGetNCalls(heur);
   nsolsfound = 10*SCIPheurGetNBestSolsFound(heur) + heurdata->nsuccess;
   maxnlpiterations = (SCIP_Longint)((1.0 + 10.0*(nsolsfound+1.0)/(ncalls+1.0)) * heurdata->maxlpiterquot * nlpiterations);
   maxnlpiterations += heurdata->maxlpiterofs;

   /* don't try to dive, if we took too many LP iterations during diving */
   if( heurdata->nlpiterations >= maxnlpiterations )
      return SCIP_OKAY;

   /* allow at least a certain number of LP iterations in this dive */
   maxnlpiterations = MAX(maxnlpiterations, heurdata->nlpiterations + MINLPITER);

   /* get number of fractional variables, that should be integral */
   nlpcands = SCIPgetNLPBranchCands(scip);

   /* don't try to dive, if there are no fractional variables */
   if( nlpcands == 0 )
      return SCIP_OKAY;

   /* calculate the maximal diving depth */
   nvars = SCIPgetNBinVars(scip) + SCIPgetNIntVars(scip);
   if( SCIPgetNSolsFound(scip) == 0 )
      maxdivedepth = (int)(heurdata->depthfacnosol * nvars);
   else
      maxdivedepth = (int)(heurdata->depthfac * nvars);
   maxdivedepth = MAX(maxdivedepth, 10);

   *result = SCIP_DIDNOTFIND;

   /* get all variables of LP */
   SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, &nbinvars, &nintvars, NULL, NULL) );

   /* get root solution value of all binary and integer variables */
   SCIP_CALL( SCIPallocBufferArray(scip, &rootsol, nbinvars + nintvars) );
   for( i = 0; i < nbinvars + nintvars; i++ )
      rootsol[i] = SCIPvarGetRootSol(vars[i]);

   /* get current LP objective value, and calculate length of a single step in an objective coefficient */
   absstartobjval = SCIPgetLPObjval(scip);
   absstartobjval = ABS(absstartobjval);
   absstartobjval = MAX(absstartobjval, 1.0);
   objstep = absstartobjval / 10.0;

   /* initialize array storing the preferred soft rounding directions and counting the integral value rounds */
   SCIP_CALL( SCIPallocBufferArray(scip, &softroundings, nbinvars + nintvars) );
   BMSclearMemoryArray(softroundings, nbinvars + nintvars);
   SCIP_CALL( SCIPallocBufferArray(scip, &intvalrounds, nbinvars + nintvars) );
   BMSclearMemoryArray(intvalrounds, nbinvars + nintvars);

   /* allocate temporary memory for buffering objective changes */
   SCIP_CALL( SCIPallocBufferArray(scip, &objchgvals, nbinvars + nintvars) );

   /* start diving */
   SCIP_CALL( SCIPstartDive(scip) );

   SCIPdebugMessage("(node %"SCIP_LONGINT_FORMAT") executing rootsoldiving heuristic: depth=%d, %d fractionals, dualbound=%g, maxnlpiterations=%"SCIP_LONGINT_FORMAT", maxdivedepth=%d, LPobj=%g, objstep=%g\n",
      SCIPgetNNodes(scip), SCIPgetDepth(scip), nlpcands, SCIPgetDualbound(scip), maxnlpiterations, maxdivedepth,
      SCIPgetLPObjval(scip), objstep);

   lperror = FALSE;
   divedepth = 0;
   lpsolstat = SCIP_LPSOLSTAT_OPTIMAL;
   alpha = heurdata->alpha;
   ncycles = 0;
   lpsolchanged = TRUE;
   startnlpcands = nlpcands;
   while( !lperror && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL && nlpcands > 0 && ncycles < 10
      && (divedepth < 10
         || nlpcands <= startnlpcands - divedepth/2
         || (divedepth < maxdivedepth && heurdata->nlpiterations < maxnlpiterations))
      && !SCIPisStopped(scip) )
   {
      SCIP_Bool success;
      int hardroundingidx;
      int hardroundingdir;
      SCIP_Real hardroundingoldbd;
      SCIP_Real hardroundingnewbd;
      SCIP_Bool boundschanged;

      SCIP_RETCODE retcode;

      /* create solution from diving LP and try to round it */
      SCIP_CALL( SCIPlinkLPSol(scip, heurdata->sol) );
      SCIP_CALL( SCIProundSol(scip, heurdata->sol, &success) );

      if( success )
      {
         SCIPdebugMessage("rootsoldiving found roundable primal solution: obj=%g\n", SCIPgetSolOrigObj(scip, heurdata->sol));

         /* try to add solution to SCIP */
         SCIP_CALL( SCIPtrySol(scip, heurdata->sol, FALSE, FALSE, FALSE, FALSE, &success) );

         /* check, if solution was feasible and good enough */
         if( success )
         {
            SCIPdebugMessage(" -> solution was feasible and good enough\n");
            *result = SCIP_FOUNDSOL;
         }
      }

      divedepth++;
      hardroundingidx = -1;
      hardroundingdir = 0;
      hardroundingoldbd = 0.0;
      hardroundingnewbd = 0.0;
      boundschanged = FALSE;

      SCIPdebugMessage("dive %d/%d, LP iter %"SCIP_LONGINT_FORMAT"/%"SCIP_LONGINT_FORMAT":\n", divedepth, maxdivedepth, heurdata->nlpiterations, maxnlpiterations);

      /* round solution x* from diving LP:
       *   - x~_j = down(x*_j)    if x*_j is integer or binary variable and x*_j <= root solution_j
       *   - x~_j = up(x*_j)      if x*_j is integer or binary variable and x*_j  > root solution_j
       *   - x~_j = x*_j          if x*_j is continuous variable
       * change objective function in diving LP:
       *   - if x*_j is integral, or j is a continuous variable, set obj'_j = alpha * obj_j
       *   - otherwise, set obj'_j = alpha * obj_j + sign(x*_j - x~_j)
       */
      for( i = 0; i < nbinvars + nintvars; i++ )
      {
         SCIP_VAR* var;
         SCIP_Real solval;

         var = vars[i];
         oldobj = SCIPgetVarObjDive(scip, var);
         newobj = oldobj;

         solval =  SCIPvarGetLPSol(var);
         if( SCIPisFeasIntegral(scip, solval) )
         {
            /* if the variable became integral after a soft rounding, count the rounds; after a while, fix it to its
             * current integral value;
             * otherwise, fade out the objective value
             */
            if( softroundings[i] != 0 && lpsolchanged )
            {
               intvalrounds[i]++;
               if( intvalrounds[i] == 5 && SCIPgetVarLbDive(scip, var) < SCIPgetVarUbDive(scip, var) - 0.5 )
               {
                  /* use exact integral value, if the variable is only integral within numerical tolerances */
                  solval = SCIPfloor(scip, solval+0.5);
                  SCIPdebugMessage(" -> fixing <%s> = %g\n", SCIPvarGetName(var), solval);
                  SCIP_CALL( SCIPchgVarLbDive(scip, var, solval) );
                  SCIP_CALL( SCIPchgVarUbDive(scip, var, solval) );
                  boundschanged = TRUE;
               }
            }
            else
               newobj = alpha * oldobj;
         }
         else if( solval <= rootsol[i] )
         {
            /* if the variable was soft rounded most of the time downwards, round it downwards by changing the bounds;
             * otherwise, apply soft rounding by changing the objective value
             */
            softroundings[i]--;
            if( softroundings[i] <= -10 && hardroundingidx == -1 )
            {
               SCIPdebugMessage(" -> hard rounding <%s>[%g] <= %g\n",
                  SCIPvarGetName(var), solval, SCIPfeasFloor(scip, solval));
               hardroundingidx = i;
               hardroundingdir = -1;
               hardroundingoldbd = SCIPgetVarUbDive(scip, var);
               hardroundingnewbd = SCIPfeasFloor(scip, solval);
               SCIP_CALL( SCIPchgVarUbDive(scip, var, hardroundingnewbd) );
               boundschanged = TRUE;
            }
            else
               newobj = alpha * oldobj + objstep;
         }
         else
         {
            /* if the variable was soft rounded most of the time upwards, round it upwards by changing the bounds;
             * otherwise, apply soft rounding by changing the objective value
             */
            softroundings[i]++;
            if( softroundings[i] >= +10 && hardroundingidx == -1 )
            {
               SCIPdebugMessage(" -> hard rounding <%s>[%g] >= %g\n",
                  SCIPvarGetName(var), solval, SCIPfeasCeil(scip, solval));
               hardroundingidx = i;
               hardroundingdir = +1;
               hardroundingoldbd = SCIPgetVarLbDive(scip, var);
               hardroundingnewbd = SCIPfeasCeil(scip, solval);
               SCIP_CALL( SCIPchgVarLbDive(scip, var, hardroundingnewbd) );
               boundschanged = TRUE;
            }
            else
               newobj = alpha * oldobj - objstep;
         }

         /* remember the objective change */
         objchgvals[i] = newobj;
      }

      /* apply objective changes if there was no bound change */
      if( !boundschanged )
      {
         /* apply cached changes on integer variables */
         for( i = 0; i < nbinvars + nintvars; ++i )
         {
            SCIP_VAR* var;

            var = vars[i];
            SCIPdebugMessage(" -> i=%d  var <%s>, solval=%g, rootsol=%g, oldobj=%g, newobj=%g\n",
               i, SCIPvarGetName(var), SCIPvarGetLPSol(var), rootsol[i], SCIPgetVarObjDive(scip, var), objchgvals[i]);

            SCIP_CALL( SCIPchgVarObjDive(scip, var, objchgvals[i]) );
         }

         /* fade out the objective values of the continuous variables */
         for( i = nbinvars + nintvars; i < nvars; i++ )
         {
            SCIP_VAR* var;

            var = vars[i];
            oldobj = SCIPgetVarObjDive(scip, var);
            newobj = alpha * oldobj;

            SCIPdebugMessage(" -> i=%d  var <%s>, solval=%g, oldobj=%g, newobj=%g\n",
               i, SCIPvarGetName(var), SCIPvarGetLPSol(var), oldobj, newobj);

            SCIP_CALL( SCIPchgVarObjDive(scip, var, newobj) );
         }
      }

   SOLVEAGAIN:
      /* resolve the diving LP */
      nlpiterations = SCIPgetNLPIterations(scip);

      retcode = SCIPsolveDiveLP(scip,  MAX((int)(maxnlpiterations - heurdata->nlpiterations), MINLPITER), &lperror);
      lpsolstat = SCIPgetLPSolstat(scip);

      /* Errors in the LP solver should not kill the overall solving process, if the LP is just needed for a heuristic.
       * Hence in optimized mode, the return code is caught and a warning is printed, only in debug mode, SCIP will stop.
       */
      if( retcode != SCIP_OKAY )
      {
#ifndef NDEBUG
         if( lpsolstat != SCIP_LPSOLSTAT_UNBOUNDEDRAY )
         {
            SCIP_CALL( retcode );
         }
#endif
         SCIPwarningMessage(scip, "Error while solving LP in Rootsoldiving heuristic; LP solve terminated with code <%d>\n", retcode);
         SCIPwarningMessage(scip, "This does not affect the remaining solution procedure --> continue\n");
      }

      if( lperror )
         break;

      /* update iteration count */
      heurdata->nlpiterations += SCIPgetNLPIterations(scip) - nlpiterations;

      /* if no LP iterations were performed, we stayed at the same solution -> count this cycling */
      lpsolchanged = (SCIPgetNLPIterations(scip) != nlpiterations);
      if( lpsolchanged )
         ncycles = 0;
      else if( !boundschanged ) /* do not count if integral variables have been fixed */
         ncycles++;

      /* get LP solution status and number of fractional variables, that should be integral */
      if( lpsolstat == SCIP_LPSOLSTAT_INFEASIBLE && hardroundingidx != -1 )
      {
         SCIP_VAR* var;

         var = vars[hardroundingidx];

         /* round the hard rounded variable to the opposite direction and resolve the LP */
         if( hardroundingdir == -1 )
         {
            SCIPdebugMessage(" -> opposite hard rounding <%s> >= %g\n", SCIPvarGetName(var), hardroundingnewbd + 1.0);
            SCIP_CALL( SCIPchgVarUbDive(scip, var, hardroundingoldbd) );
            SCIP_CALL( SCIPchgVarLbDive(scip, var, hardroundingnewbd + 1.0) );
         }
         else
         {
            SCIPdebugMessage(" -> opposite hard rounding <%s> <= %g\n", SCIPvarGetName(var), hardroundingnewbd - 1.0);
            SCIP_CALL( SCIPchgVarLbDive(scip, var, hardroundingoldbd) );
            SCIP_CALL( SCIPchgVarUbDive(scip, var, hardroundingnewbd - 1.0) );
         }
         hardroundingidx = -1;
         goto SOLVEAGAIN;
      }
      if( lpsolstat == SCIP_LPSOLSTAT_OPTIMAL )
         nlpcands = SCIPgetNLPBranchCands(scip);
      SCIPdebugMessage("   -> lpsolstat=%d, nfrac=%d\n", lpsolstat, nlpcands);
   }

   SCIPdebugMessage("---> diving finished: lpsolstat = %d, depth %d/%d, LP iter %"SCIP_LONGINT_FORMAT"/%"SCIP_LONGINT_FORMAT"\n",
      lpsolstat, divedepth, maxdivedepth, heurdata->nlpiterations, maxnlpiterations);

   /* check if a solution has been found */
   if( nlpcands == 0 && !lperror && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL )
   {
      SCIP_Bool success;

      /* create solution from diving LP */
      SCIP_CALL( SCIPlinkLPSol(scip, heurdata->sol) );
      SCIPdebugMessage("rootsoldiving found primal solution: obj=%g\n", SCIPgetSolOrigObj(scip, heurdata->sol));

      /* try to add solution to SCIP */
      SCIP_CALL( SCIPtrySol(scip, heurdata->sol, FALSE, FALSE, FALSE, FALSE, &success) );

      /* check, if solution was feasible and good enough */
      if( success )
      {
         SCIPdebugMessage(" -> solution was feasible and good enough\n");
         *result = SCIP_FOUNDSOL;
      }
   }

   /* end diving */
   SCIP_CALL( SCIPendDive(scip) );

   if( *result == SCIP_FOUNDSOL )
      heurdata->nsuccess++;

   /* free temporary memory */
   SCIPfreeBufferArray(scip, &objchgvals);
   SCIPfreeBufferArray(scip, &intvalrounds);
   SCIPfreeBufferArray(scip, &softroundings);
   SCIPfreeBufferArray(scip, &rootsol);

   SCIPdebugMessage("rootsoldiving heuristic finished\n");

   return SCIP_OKAY;
}