Ejemplo n.º 1
0
u_int
decode_fpu(unsigned int Fpu_register[], unsigned int trap_counts[])
{
    unsigned int current_ir, excp;
    int target, exception_index = 1;
    boolean inexact;
    unsigned int aflags;
    unsigned int bflags;
    unsigned int excptype;


    /* Keep stats on how many floating point exceptions (based on type)
     * that happen.  Want to keep this overhead low, but still provide
     * some information to the customer.  All exits from this routine
     * need to restore Fpu_register[0]
    */

    bflags=(Fpu_register[0] & 0xf8000000);
    Fpu_register[0] &= 0x07ffffff;

    /* exception_index is used to index the exception register queue.  It
     *   always points at the last register that contains a valid exception.  A
     *   zero value implies no exceptions (also the initialized value).  Setting
     *   the T-bit resets the exception_index to zero.
     */

    /*
     * Check for reserved-op exception.  A reserved-op exception does not 
     * set any exception registers nor does it set the T-bit.  If the T-bit
     * is not set then a reserved-op exception occurred.
     *
     * At some point, we may want to report reserved op exceptions as
     * illegal instructions.
     */
    
    if (!Is_tbit_set()) {
	update_trap_counts(Fpu_register, aflags, bflags, trap_counts);
	return SIGNALCODE(SIGILL, ILL_COPROC);
    }

    /* 
     * Is a coprocessor op. 
     *
     * Now we need to determine what type of exception occurred.
     */
    for (exception_index=1; exception_index<=MAX_EXCP_REG; exception_index++) {
	current_ir = Excp_instr(exception_index);
	  /*
	   * On PA89: there are 5 different unimplemented exception
	   * codes: 0x1, 0x9, 0xb, 0x3, and 0x23.  PA-RISC 2.0 adds
	   * another, 0x2b.  Only these have the low order bit set.
	   */
	excptype = Excp_type(exception_index);
	if (excptype & UNIMPLEMENTEDEXCEPTION) {
		/*
		 * Clear T-bit and exception register so that
		 * we can tell if a trap really occurs while 
		 * emulating the instruction.
		 */
		Clear_tbit();
		Clear_excp_register(exception_index);
		/*
		 * Now emulate this instruction.  If a trap occurs,
		 * fpudispatch will return a non-zero number 
		 */
		excp = fpudispatch(current_ir,excptype,0,Fpu_register);
		/* accumulate the status flags, don't lose them as in hpux */
		if (excp) {
			/*
			 * We now need to make sure that the T-bit and the
			 * exception register contain the correct values
			 * before continuing.
			 */
			/*
			 * Set t-bit since it might still be needed for a
			 * subsequent real trap (I don't understand fully -PB)
			 */
			Set_tbit();
			/* some of the following code uses
			 * Excp_type(exception_index) so fix that up */
			Set_exceptiontype_and_instr_field(excp,current_ir,
			 Fpu_register[exception_index]);
			if (excp == UNIMPLEMENTEDEXCEPTION) {
				/*
			 	 * it is really unimplemented, so restore the
			 	 * TIMEX extended unimplemented exception code
			 	 */
				excp = excptype;
				update_trap_counts(Fpu_register, aflags, bflags, 
					   trap_counts);
				return SIGNALCODE(SIGILL, ILL_COPROC);
			}
			/* some of the following code uses excptype, so
			 * fix that up too */
			excptype = excp;
		}
		/* handle exceptions other than the real UNIMPLIMENTED the
		 * same way as if the hardware had caused them */
		if (excp == NOEXCEPTION)
			/* For now use 'break', should technically be 'continue' */
			break;
	}

	  /*
	   * In PA89, the underflow exception has been extended to encode
	   * additional information.  The exception looks like pp01x0,
	   * where x is 1 if inexact and pp represent the inexact bit (I)
	   * and the round away bit (RA)
	   */
	if (excptype & UNDERFLOWEXCEPTION) {
		/* check for underflow trap enabled */
		if (Is_underflowtrap_enabled()) {
			update_trap_counts(Fpu_register, aflags, bflags, 
					   trap_counts);
			return SIGNALCODE(SIGFPE, FPE_FLTUND);
		} else {
		    /*
		     * Isn't a real trap; we need to 
		     * return the default value.
		     */
		    target = current_ir & fivebits;
#ifndef lint
		    if (Ibit(Fpu_register[exception_index])) inexact = TRUE;
		    else inexact = FALSE;
#endif
		    switch (Excp_format()) {
		      case SGL:
		        /*
		         * If ra (round-away) is set, will 
		         * want to undo the rounding done
		         * by the hardware.
		         */
		        if (Rabit(Fpu_register[exception_index])) 
				Sgl_decrement(Fpu_sgl(target));

			/* now denormalize */
			sgl_denormalize(&Fpu_sgl(target),&inexact,Rounding_mode());
		    	break;
		      case DBL:
		    	/*
		    	 * If ra (round-away) is set, will 
		    	 * want to undo the rounding done
		    	 * by the hardware.
		    	 */
		    	if (Rabit(Fpu_register[exception_index])) 
				Dbl_decrement(Fpu_dblp1(target),Fpu_dblp2(target));

			/* now denormalize */
			dbl_denormalize(&Fpu_dblp1(target),&Fpu_dblp2(target),
			  &inexact,Rounding_mode());
		    	break;
		    }
		    if (inexact) Set_underflowflag();
		    /* 
		     * Underflow can generate an inexact
		     * exception.  If inexact trap is enabled,
		     * want to do an inexact trap, otherwise 
		     * set inexact flag.
		     */
		    if (inexact && Is_inexacttrap_enabled()) {
		    	/*
		    	 * Set exception field of exception register
		    	 * to inexact, parm field to zero.
			 * Underflow bit should be cleared.
		    	 */
		    	Set_exceptiontype(Fpu_register[exception_index],
			 INEXACTEXCEPTION);
			Set_parmfield(Fpu_register[exception_index],0);
			update_trap_counts(Fpu_register, aflags, bflags, 
					   trap_counts);
			return SIGNALCODE(SIGFPE, FPE_FLTRES);
		    }
		    else {
		    	/*
		    	 * Exception register needs to be cleared.  
			 * Inexact flag needs to be set if inexact.
		    	 */
		    	Clear_excp_register(exception_index);
		    	if (inexact) Set_inexactflag();
		    }
		}
		continue;
	}
	switch(Excp_type(exception_index)) {
	  case OVERFLOWEXCEPTION:
	  case OVERFLOWEXCEPTION | INEXACTEXCEPTION:
		/* check for overflow trap enabled */
			update_trap_counts(Fpu_register, aflags, bflags, 
					   trap_counts);
		if (Is_overflowtrap_enabled()) {
			update_trap_counts(Fpu_register, aflags, bflags, 
					   trap_counts);
			return SIGNALCODE(SIGFPE, FPE_FLTOVF);
		} else {
			/*
			 * Isn't a real trap; we need to 
			 * return the default value.
			 */
			target = current_ir & fivebits;
			switch (Excp_format()) {
			  case SGL: 
				Sgl_setoverflow(Fpu_sgl(target));
				break;
			  case DBL:
				Dbl_setoverflow(Fpu_dblp1(target),Fpu_dblp2(target));
				break;
			}
			Set_overflowflag();
			/* 
			 * Overflow always generates an inexact
			 * exception.  If inexact trap is enabled,
			 * want to do an inexact trap, otherwise 
			 * set inexact flag.
			 */
			if (Is_inexacttrap_enabled()) {
				/*
				 * Set exception field of exception
				 * register to inexact.  Overflow
				 * bit should be cleared.
				 */
				Set_exceptiontype(Fpu_register[exception_index],
				 INEXACTEXCEPTION);
				update_trap_counts(Fpu_register, aflags, bflags,
					   trap_counts);
				return SIGNALCODE(SIGFPE, FPE_FLTRES);
			}
			else {
				/*
				 * Exception register needs to be cleared.  
				 * Inexact flag needs to be set.
				 */
				Clear_excp_register(exception_index);
				Set_inexactflag();
			}
		}
		break;
	  case INVALIDEXCEPTION:
	  case OPC_2E_INVALIDEXCEPTION:
		update_trap_counts(Fpu_register, aflags, bflags, trap_counts);
		return SIGNALCODE(SIGFPE, FPE_FLTINV);
	  case DIVISIONBYZEROEXCEPTION:
		update_trap_counts(Fpu_register, aflags, bflags, trap_counts);
	  	return SIGNALCODE(SIGFPE, FPE_FLTDIV);
	  case INEXACTEXCEPTION:
		update_trap_counts(Fpu_register, aflags, bflags, trap_counts);
		return SIGNALCODE(SIGFPE, FPE_FLTRES);
	  default:
		update_trap_counts(Fpu_register, aflags, bflags, trap_counts);
		printk("%s(%d) Unknown FPU exception 0x%x\n", __FILE__,
			__LINE__, Excp_type(exception_index));
		return SIGNALCODE(SIGILL, ILL_COPROC);
	  case NOEXCEPTION:	/* no exception */
		/*
		 * Clear exception register in case 
		 * other fields are non-zero.
		 */
		Clear_excp_register(exception_index);
		break;
	}
    }
    /*
     * No real exceptions occurred.
     */
    Clear_tbit();
    update_trap_counts(Fpu_register, aflags, bflags, trap_counts);
    return(NOTRAP);
}
Ejemplo n.º 2
0
int
sgl_fmpy(
    sgl_floating_point *srcptr1,
    sgl_floating_point *srcptr2,
    sgl_floating_point *dstptr,
    unsigned int *status)
{
    register unsigned int opnd1, opnd2, opnd3, result;
    register int dest_exponent, count;
    register boolean inexact = FALSE, guardbit = FALSE, stickybit = FALSE;
    boolean is_tiny;

    opnd1 = *srcptr1;
    opnd2 = *srcptr2;
    /*
     * set sign bit of result
     */
    if (Sgl_sign(opnd1) ^ Sgl_sign(opnd2)) Sgl_setnegativezero(result);
    else Sgl_setzero(result);
    /*
     * check first operand for NaN's or infinity
     */
    if (Sgl_isinfinity_exponent(opnd1)) {
        if (Sgl_iszero_mantissa(opnd1)) {
            if (Sgl_isnotnan(opnd2)) {
                if (Sgl_iszero_exponentmantissa(opnd2)) {
                    /*
                     * invalid since operands are infinity
                     * and zero
                     */
                    if (Is_invalidtrap_enabled())
                        return(INVALIDEXCEPTION);
                    Set_invalidflag();
                    Sgl_makequietnan(result);
                    *dstptr = result;
                    return(NOEXCEPTION);
                }
                /*
                 * return infinity
                 */
                Sgl_setinfinity_exponentmantissa(result);
                *dstptr = result;
                return(NOEXCEPTION);
            }
        }
        else {
            /*
             * is NaN; signaling or quiet?
             */
            if (Sgl_isone_signaling(opnd1)) {
                /* trap if INVALIDTRAP enabled */
                if (Is_invalidtrap_enabled())
                    return(INVALIDEXCEPTION);
                /* make NaN quiet */
                Set_invalidflag();
                Sgl_set_quiet(opnd1);
            }
            /*
             * is second operand a signaling NaN?
             */
            else if (Sgl_is_signalingnan(opnd2)) {
                /* trap if INVALIDTRAP enabled */
                if (Is_invalidtrap_enabled())
                    return(INVALIDEXCEPTION);
                /* make NaN quiet */
                Set_invalidflag();
                Sgl_set_quiet(opnd2);
                *dstptr = opnd2;
                return(NOEXCEPTION);
            }
            /*
             * return quiet NaN
             */
            *dstptr = opnd1;
            return(NOEXCEPTION);
        }
    }
    /*
     * check second operand for NaN's or infinity
     */
    if (Sgl_isinfinity_exponent(opnd2)) {
        if (Sgl_iszero_mantissa(opnd2)) {
            if (Sgl_iszero_exponentmantissa(opnd1)) {
                /* invalid since operands are zero & infinity */
                if (Is_invalidtrap_enabled())
                    return(INVALIDEXCEPTION);
                Set_invalidflag();
                Sgl_makequietnan(opnd2);
                *dstptr = opnd2;
                return(NOEXCEPTION);
            }
            /*
             * return infinity
             */
            Sgl_setinfinity_exponentmantissa(result);
            *dstptr = result;
            return(NOEXCEPTION);
        }
        /*
         * is NaN; signaling or quiet?
         */
        if (Sgl_isone_signaling(opnd2)) {
            /* trap if INVALIDTRAP enabled */
            if (Is_invalidtrap_enabled()) return(INVALIDEXCEPTION);

            /* make NaN quiet */
            Set_invalidflag();
            Sgl_set_quiet(opnd2);
        }
        /*
         * return quiet NaN
         */
        *dstptr = opnd2;
        return(NOEXCEPTION);
    }
    /*
     * Generate exponent
     */
    dest_exponent = Sgl_exponent(opnd1) + Sgl_exponent(opnd2) - SGL_BIAS;

    /*
     * Generate mantissa
     */
    if (Sgl_isnotzero_exponent(opnd1)) {
        /* set hidden bit */
        Sgl_clear_signexponent_set_hidden(opnd1);
    }
    else {
        /* check for zero */
        if (Sgl_iszero_mantissa(opnd1)) {
            Sgl_setzero_exponentmantissa(result);
            *dstptr = result;
            return(NOEXCEPTION);
        }
        /* is denormalized, adjust exponent */
        Sgl_clear_signexponent(opnd1);
        Sgl_leftshiftby1(opnd1);
        Sgl_normalize(opnd1,dest_exponent);
    }
    /* opnd2 needs to have hidden bit set with msb in hidden bit */
    if (Sgl_isnotzero_exponent(opnd2)) {
        Sgl_clear_signexponent_set_hidden(opnd2);
    }
    else {
        /* check for zero */
        if (Sgl_iszero_mantissa(opnd2)) {
            Sgl_setzero_exponentmantissa(result);
            *dstptr = result;
            return(NOEXCEPTION);
        }
        /* is denormalized; want to normalize */
        Sgl_clear_signexponent(opnd2);
        Sgl_leftshiftby1(opnd2);
        Sgl_normalize(opnd2,dest_exponent);
    }

    /* Multiply two source mantissas together */

    Sgl_leftshiftby4(opnd2);     /* make room for guard bits */
    Sgl_setzero(opnd3);
    /*
     * Four bits at a time are inspected in each loop, and a
     * simple shift and add multiply algorithm is used.
     */
    for (count=1; count<SGL_P; count+=4) {
        stickybit |= Slow4(opnd3);
        Sgl_rightshiftby4(opnd3);
        if (Sbit28(opnd1)) Sall(opnd3) += (Sall(opnd2) << 3);
        if (Sbit29(opnd1)) Sall(opnd3) += (Sall(opnd2) << 2);
        if (Sbit30(opnd1)) Sall(opnd3) += (Sall(opnd2) << 1);
        if (Sbit31(opnd1)) Sall(opnd3) += Sall(opnd2);
        Sgl_rightshiftby4(opnd1);
    }
    /* make sure result is left-justified */
    if (Sgl_iszero_sign(opnd3)) {
        Sgl_leftshiftby1(opnd3);
    }
    else {
        /* result mantissa >= 2. */
        dest_exponent++;
    }
    /* check for denormalized result */
    while (Sgl_iszero_sign(opnd3)) {
        Sgl_leftshiftby1(opnd3);
        dest_exponent--;
    }
    /*
     * check for guard, sticky and inexact bits
     */
    stickybit |= Sgl_all(opnd3) << (SGL_BITLENGTH - SGL_EXP_LENGTH + 1);
    guardbit = Sbit24(opnd3);
    inexact = guardbit | stickybit;

    /* re-align mantissa */
    Sgl_rightshiftby8(opnd3);

    /*
     * round result
     */
    if (inexact && (dest_exponent>0 || Is_underflowtrap_enabled())) {
        Sgl_clear_signexponent(opnd3);
        switch (Rounding_mode()) {
        case ROUNDPLUS:
            if (Sgl_iszero_sign(result))
                Sgl_increment(opnd3);
            break;
        case ROUNDMINUS:
            if (Sgl_isone_sign(result))
                Sgl_increment(opnd3);
            break;
        case ROUNDNEAREST:
            if (guardbit) {
                if (stickybit || Sgl_isone_lowmantissa(opnd3))
                    Sgl_increment(opnd3);
            }
        }
        if (Sgl_isone_hidden(opnd3)) dest_exponent++;
    }
    Sgl_set_mantissa(result,opnd3);

    /*
     * Test for overflow
     */
    if (dest_exponent >= SGL_INFINITY_EXPONENT) {
        /* trap if OVERFLOWTRAP enabled */
        if (Is_overflowtrap_enabled()) {
            /*
             * Adjust bias of result
             */
            Sgl_setwrapped_exponent(result,dest_exponent,ovfl);
            *dstptr = result;
            if (inexact)
                if (Is_inexacttrap_enabled())
                    return(OVERFLOWEXCEPTION | INEXACTEXCEPTION);
                else Set_inexactflag();
            return(OVERFLOWEXCEPTION);
        }
        inexact = TRUE;
        Set_overflowflag();
        /* set result to infinity or largest number */
        Sgl_setoverflow(result);
    }
    /*
     * Test for underflow
     */
    else if (dest_exponent <= 0) {
        /* trap if UNDERFLOWTRAP enabled */
        if (Is_underflowtrap_enabled()) {
            /*
             * Adjust bias of result
             */
            Sgl_setwrapped_exponent(result,dest_exponent,unfl);
            *dstptr = result;
            if (inexact)
                if (Is_inexacttrap_enabled())
                    return(UNDERFLOWEXCEPTION | INEXACTEXCEPTION);
                else Set_inexactflag();
            return(UNDERFLOWEXCEPTION);
        }

        /* Determine if should set underflow flag */
        is_tiny = TRUE;
        if (dest_exponent == 0 && inexact) {
            switch (Rounding_mode()) {
            case ROUNDPLUS:
                if (Sgl_iszero_sign(result)) {
                    Sgl_increment(opnd3);
                    if (Sgl_isone_hiddenoverflow(opnd3))
                        is_tiny = FALSE;
                    Sgl_decrement(opnd3);
                }
                break;
            case ROUNDMINUS:
                if (Sgl_isone_sign(result)) {
                    Sgl_increment(opnd3);
                    if (Sgl_isone_hiddenoverflow(opnd3))
                        is_tiny = FALSE;
                    Sgl_decrement(opnd3);
                }
                break;
            case ROUNDNEAREST:
                if (guardbit && (stickybit ||
                                 Sgl_isone_lowmantissa(opnd3))) {
                    Sgl_increment(opnd3);
                    if (Sgl_isone_hiddenoverflow(opnd3))
                        is_tiny = FALSE;
                    Sgl_decrement(opnd3);
                }
                break;
            }
        }

        /*
         * denormalize result or set to signed zero
         */
        stickybit = inexact;
        Sgl_denormalize(opnd3,dest_exponent,guardbit,stickybit,inexact);

        /* return zero or smallest number */
        if (inexact) {
            switch (Rounding_mode()) {
            case ROUNDPLUS:
                if (Sgl_iszero_sign(result)) {
                    Sgl_increment(opnd3);
                }
                break;
            case ROUNDMINUS:
                if (Sgl_isone_sign(result)) {
                    Sgl_increment(opnd3);
                }
                break;
            case ROUNDNEAREST:
                if (guardbit && (stickybit ||
                                 Sgl_isone_lowmantissa(opnd3))) {
                    Sgl_increment(opnd3);
                }
                break;
            }
            if (is_tiny) Set_underflowflag();
        }
        Sgl_set_exponentmantissa(result,opnd3);
    }
    else Sgl_set_exponent(result,dest_exponent);
    *dstptr = result;

    /* check for inexact */
    if (inexact) {
        if (Is_inexacttrap_enabled()) return(INEXACTEXCEPTION);
        else Set_inexactflag();
    }
    return(NOEXCEPTION);
}
Ejemplo n.º 3
0
int
sgl_fdiv (sgl_floating_point * srcptr1, sgl_floating_point * srcptr2,
	  sgl_floating_point * dstptr, unsigned int *status)
{
	register unsigned int opnd1, opnd2, opnd3, result;
	register int dest_exponent, count;
	register boolean inexact = FALSE, guardbit = FALSE, stickybit = FALSE;
	boolean is_tiny;

	opnd1 = *srcptr1;
	opnd2 = *srcptr2;
	/* 
	 * set sign bit of result 
	 */
	if (Sgl_sign(opnd1) ^ Sgl_sign(opnd2)) Sgl_setnegativezero(result);  
	else Sgl_setzero(result);
	/*
	 * check first operand for NaN's or infinity
	 */
	if (Sgl_isinfinity_exponent(opnd1)) {
		if (Sgl_iszero_mantissa(opnd1)) {
			if (Sgl_isnotnan(opnd2)) {
				if (Sgl_isinfinity(opnd2)) {
					/* 
					 * invalid since both operands 
					 * are infinity 
					 */
					if (Is_invalidtrap_enabled()) 
                                		return(INVALIDEXCEPTION);
                                	Set_invalidflag();
                                	Sgl_makequietnan(result);
					*dstptr = result;
					return(NOEXCEPTION);
				}
				/*
			 	 * return infinity
			 	 */
				Sgl_setinfinity_exponentmantissa(result);
				*dstptr = result;
				return(NOEXCEPTION);
			}
		}
		else {
                	/*
                 	 * is NaN; signaling or quiet?
                 	 */
                	if (Sgl_isone_signaling(opnd1)) {
                        	/* trap if INVALIDTRAP enabled */
                        	if (Is_invalidtrap_enabled()) 
                            		return(INVALIDEXCEPTION);
                        	/* make NaN quiet */
                        	Set_invalidflag();
                        	Sgl_set_quiet(opnd1);
                	}
			/* 
			 * is second operand a signaling NaN? 
			 */
			else if (Sgl_is_signalingnan(opnd2)) {
                        	/* trap if INVALIDTRAP enabled */
                        	if (Is_invalidtrap_enabled())
                            		return(INVALIDEXCEPTION);
                        	/* make NaN quiet */
                        	Set_invalidflag();
                        	Sgl_set_quiet(opnd2);
                		*dstptr = opnd2;
                		return(NOEXCEPTION);
			}
                	/*
                 	 * return quiet NaN
                 	 */
                	*dstptr = opnd1;
                	return(NOEXCEPTION);
		}
	}
	/*
	 * check second operand for NaN's or infinity
	 */
	if (Sgl_isinfinity_exponent(opnd2)) {
		if (Sgl_iszero_mantissa(opnd2)) {
			/*
			 * return zero
			 */
			Sgl_setzero_exponentmantissa(result);
			*dstptr = result;
			return(NOEXCEPTION);
		}
                /*
                 * is NaN; signaling or quiet?
                 */
                if (Sgl_isone_signaling(opnd2)) {
                        /* trap if INVALIDTRAP enabled */
                        if (Is_invalidtrap_enabled()) return(INVALIDEXCEPTION);
                        /* make NaN quiet */
                        Set_invalidflag();
                        Sgl_set_quiet(opnd2);
                }
                /*
                 * return quiet NaN
                 */
                *dstptr = opnd2;
                return(NOEXCEPTION);
	}
	/*
	 * check for division by zero
	 */
	if (Sgl_iszero_exponentmantissa(opnd2)) {
		if (Sgl_iszero_exponentmantissa(opnd1)) {
			/* invalid since both operands are zero */
			if (Is_invalidtrap_enabled()) return(INVALIDEXCEPTION);
                        Set_invalidflag();
                        Sgl_makequietnan(result);
			*dstptr = result;
			return(NOEXCEPTION);
		}
		if (Is_divisionbyzerotrap_enabled())
                        return(DIVISIONBYZEROEXCEPTION);
                Set_divisionbyzeroflag();
                Sgl_setinfinity_exponentmantissa(result);
		*dstptr = result;
		return(NOEXCEPTION);
	}
	/*
	 * Generate exponent 
	 */
	dest_exponent = Sgl_exponent(opnd1) - Sgl_exponent(opnd2) + SGL_BIAS;

	/*
	 * Generate mantissa
	 */
	if (Sgl_isnotzero_exponent(opnd1)) {
		/* set hidden bit */
		Sgl_clear_signexponent_set_hidden(opnd1);
	}
	else {
		/* check for zero */
		if (Sgl_iszero_mantissa(opnd1)) {
			Sgl_setzero_exponentmantissa(result);
			*dstptr = result;
			return(NOEXCEPTION);
		}
                /* is denormalized; want to normalize */
                Sgl_clear_signexponent(opnd1);
                Sgl_leftshiftby1(opnd1);
		Sgl_normalize(opnd1,dest_exponent);
	}
	/* opnd2 needs to have hidden bit set with msb in hidden bit */
	if (Sgl_isnotzero_exponent(opnd2)) {
		Sgl_clear_signexponent_set_hidden(opnd2);
	}
	else {
                /* is denormalized; want to normalize */
                Sgl_clear_signexponent(opnd2);
                Sgl_leftshiftby1(opnd2);
		while(Sgl_iszero_hiddenhigh7mantissa(opnd2)) {
			Sgl_leftshiftby8(opnd2);
			dest_exponent += 8;
		}
		if(Sgl_iszero_hiddenhigh3mantissa(opnd2)) {
			Sgl_leftshiftby4(opnd2);
			dest_exponent += 4;
		}
		while(Sgl_iszero_hidden(opnd2)) {
			Sgl_leftshiftby1(opnd2);
			dest_exponent += 1;
		}
	}

	/* Divide the source mantissas */

	/*
	 * A non_restoring divide algorithm is used.
	 */
	Sgl_subtract(opnd1,opnd2,opnd1);
	Sgl_setzero(opnd3);
	for (count=1;count<=SGL_P && Sgl_all(opnd1);count++) {
		Sgl_leftshiftby1(opnd1);
		Sgl_leftshiftby1(opnd3);
		if (Sgl_iszero_sign(opnd1)) {
			Sgl_setone_lowmantissa(opnd3);
			Sgl_subtract(opnd1,opnd2,opnd1);
		}
		else Sgl_addition(opnd1,opnd2,opnd1);
	}
	if (count <= SGL_P) {
		Sgl_leftshiftby1(opnd3);
		Sgl_setone_lowmantissa(opnd3);
		Sgl_leftshift(opnd3,SGL_P-count);
		if (Sgl_iszero_hidden(opnd3)) {
			Sgl_leftshiftby1(opnd3);
			dest_exponent--;
		}
	}
	else {
		if (Sgl_iszero_hidden(opnd3)) {
			/* need to get one more bit of result */
			Sgl_leftshiftby1(opnd1);
			Sgl_leftshiftby1(opnd3);
			if (Sgl_iszero_sign(opnd1)) {
				Sgl_setone_lowmantissa(opnd3);
				Sgl_subtract(opnd1,opnd2,opnd1);
			}
			else Sgl_addition(opnd1,opnd2,opnd1);
			dest_exponent--;
		}
		if (Sgl_iszero_sign(opnd1)) guardbit = TRUE;
		stickybit = Sgl_all(opnd1);
	}
	inexact = guardbit | stickybit;

	/* 
	 * round result 
	 */
	if (inexact && (dest_exponent > 0 || Is_underflowtrap_enabled())) {
		Sgl_clear_signexponent(opnd3);
		switch (Rounding_mode()) {
			case ROUNDPLUS: 
				if (Sgl_iszero_sign(result)) 
					Sgl_increment_mantissa(opnd3);
				break;
			case ROUNDMINUS: 
				if (Sgl_isone_sign(result)) 
					Sgl_increment_mantissa(opnd3);
				break;
			case ROUNDNEAREST:
				if (guardbit) {
			   	if (stickybit || Sgl_isone_lowmantissa(opnd3))
			      	    Sgl_increment_mantissa(opnd3);
				}
		}
		if (Sgl_isone_hidden(opnd3)) dest_exponent++;
	}
	Sgl_set_mantissa(result,opnd3);

        /* 
         * Test for overflow
         */
	if (dest_exponent >= SGL_INFINITY_EXPONENT) {
                /* trap if OVERFLOWTRAP enabled */
                if (Is_overflowtrap_enabled()) {
                        /*
                         * Adjust bias of result
                         */
                        Sgl_setwrapped_exponent(result,dest_exponent,ovfl);
                        *dstptr = result;
                        if (inexact) 
                            if (Is_inexacttrap_enabled())
                                return(OVERFLOWEXCEPTION | INEXACTEXCEPTION);
                            else Set_inexactflag();
                        return(OVERFLOWEXCEPTION);
                }
		Set_overflowflag();
                /* set result to infinity or largest number */
		Sgl_setoverflow(result);
		inexact = TRUE;
	}
        /* 
         * Test for underflow
         */
	else if (dest_exponent <= 0) {
                /* trap if UNDERFLOWTRAP enabled */
                if (Is_underflowtrap_enabled()) {
                        /*
                         * Adjust bias of result
                         */
                        Sgl_setwrapped_exponent(result,dest_exponent,unfl);
                        *dstptr = result;
                        if (inexact) 
                            if (Is_inexacttrap_enabled())
                                return(UNDERFLOWEXCEPTION | INEXACTEXCEPTION);
                            else Set_inexactflag();
                        return(UNDERFLOWEXCEPTION);
                }

		/* Determine if should set underflow flag */
		is_tiny = TRUE;
		if (dest_exponent == 0 && inexact) {
			switch (Rounding_mode()) {
			case ROUNDPLUS: 
				if (Sgl_iszero_sign(result)) {
					Sgl_increment(opnd3);
					if (Sgl_isone_hiddenoverflow(opnd3))
                			    is_tiny = FALSE;
					Sgl_decrement(opnd3);
				}
				break;
			case ROUNDMINUS: 
				if (Sgl_isone_sign(result)) {
					Sgl_increment(opnd3);
					if (Sgl_isone_hiddenoverflow(opnd3))
                			    is_tiny = FALSE;
					Sgl_decrement(opnd3);
				}
				break;
			case ROUNDNEAREST:
				if (guardbit && (stickybit || 
				    Sgl_isone_lowmantissa(opnd3))) {
				      	Sgl_increment(opnd3);
					if (Sgl_isone_hiddenoverflow(opnd3))
                			    is_tiny = FALSE;
					Sgl_decrement(opnd3);
				}
				break;
			}
		}

                /*
                 * denormalize result or set to signed zero
                 */
		stickybit = inexact;
		Sgl_denormalize(opnd3,dest_exponent,guardbit,stickybit,inexact);

		/* return rounded number */ 
		if (inexact) {
			switch (Rounding_mode()) {
			case ROUNDPLUS:
				if (Sgl_iszero_sign(result)) {
					Sgl_increment(opnd3);
				}
				break;
			case ROUNDMINUS: 
				if (Sgl_isone_sign(result))  {
					Sgl_increment(opnd3);
				}
				break;
			case ROUNDNEAREST:
				if (guardbit && (stickybit || 
				    Sgl_isone_lowmantissa(opnd3))) {
			      		Sgl_increment(opnd3);
				}
				break;
			}
                	if (is_tiny) Set_underflowflag();
                }
		Sgl_set_exponentmantissa(result,opnd3);
	}
	else Sgl_set_exponent(result,dest_exponent);
	*dstptr = result;
	/* check for inexact */
	if (inexact) {
		if (Is_inexacttrap_enabled()) return(INEXACTEXCEPTION);
		else  Set_inexactflag();
	}
	return(NOEXCEPTION);
}