void PrintSubvector( amps_File file, Subvector *subvector, Subgrid *subgrid) { int ix, iy, iz; int nx, ny, nz; int i, j, k; ix = SubgridIX(subgrid); iy = SubgridIY(subgrid); iz = SubgridIZ(subgrid); nx = SubgridNX(subgrid); ny = SubgridNY(subgrid); nz = SubgridNZ(subgrid); amps_Fprintf(file, "\t\tPosition(%d,%d,%d), Size (%d,%d,%d)\n", ix, iy, iz, nx, ny, nz); for(k = iz; k < iz + nz; k++) for(j = iy; j < iy + ny; j++) for(i = ix; i < ix + nx; i++) amps_Fprintf(file, "\t\t(%d,%d,%d): %f\n", i, j, k, *SubvectorElt(subvector, i, j, k)); }
long SizeofPFBinarySubvector( Subvector *subvector, Subgrid *subgrid) { int ix = SubgridIX(subgrid); int iy = SubgridIY(subgrid); int iz = SubgridIZ(subgrid); int nx = SubgridNX(subgrid); int ny = SubgridNY(subgrid); int nz = SubgridNZ(subgrid); int nx_v = SubvectorNX(subvector); int ny_v = SubvectorNY(subvector); int i, j, k, ai; long size; size = 9*amps_SizeofInt; ai = 0; BoxLoopI1(i,j,k, ix,iy,iz,nx,ny,nz, ai,nx_v,ny_v,nz_v,1,1,1, { size += amps_SizeofDouble; });
/*-------------------------------------------------------------------------- * InputPorosity *--------------------------------------------------------------------------*/ void InputPorosity( GeomSolid * geounit, GrGeomSolid *gr_geounit, Vector * field) { /*----------------------------------------------------------------------- * Local variables *-----------------------------------------------------------------------*/ PFModule *this_module = ThisPFModule; PublicXtra *public_xtra = (PublicXtra*)PFModulePublicXtra(this_module); InstanceXtra *instance_xtra = (InstanceXtra*)PFModuleInstanceXtra(this_module); double field_value = (public_xtra->field_value); Grid *grid = (instance_xtra->grid); Subgrid *subgrid; Subvector *field_sub; double *fieldp; int subgrid_loop; int i, j, k; int ix, iy, iz; int nx, ny, nz; int r; int index; (void)geounit; /*----------------------------------------------------------------------- * Assign constant values to field *-----------------------------------------------------------------------*/ /* extra variables for reading from file */ Type3 * dummy3; dummy3 = (Type3*)(public_xtra->data); Vector *ic_values = dummy3->ic_values; Subvector *ic_values_sub; double *ic_values_dat; for (subgrid_loop = 0; subgrid_loop < GridNumSubgrids(grid); subgrid_loop++) { subgrid = GridSubgrid(grid, subgrid_loop); field_sub = VectorSubvector(field, subgrid_loop); /* new subvector from file */ ic_values_sub = VectorSubvector(ic_values, subgrid_loop); ix = SubgridIX(subgrid); iy = SubgridIY(subgrid); iz = SubgridIZ(subgrid); nx = SubgridNX(subgrid); ny = SubgridNY(subgrid); nz = SubgridNZ(subgrid); /* RDF: assume resolution is the same in all 3 directions */ r = SubgridRX(subgrid); fieldp = SubvectorData(field_sub); /* new subvector data to read from */ ic_values_dat = SubvectorData(ic_values_sub); GrGeomInLoop(i, j, k, gr_geounit, r, ix, iy, iz, nx, ny, nz, { index = SubvectorEltIndex(field_sub, i, j, k); /* now assign the value from file to field */ // fieldp[index] = field_value; fieldp[index] = ic_values_dat[index]; }); }
double InnerProd( Vector *x, Vector *y) { Grid *grid = VectorGrid(x); Subgrid *subgrid; Subvector *y_sub; Subvector *x_sub; double *yp, *xp; double result = 0.0; int ix, iy, iz; int nx, ny, nz; int nx_v, ny_v, nz_v; int i_s, i, j, k, iv; amps_Invoice result_invoice; result_invoice = amps_NewInvoice("%d", &result); ForSubgridI(i_s, GridSubgrids(grid)) { subgrid = GridSubgrid(grid, i_s); ix = SubgridIX(subgrid); iy = SubgridIY(subgrid); iz = SubgridIZ(subgrid); nx = SubgridNX(subgrid); ny = SubgridNY(subgrid); nz = SubgridNZ(subgrid); y_sub = VectorSubvector(y, i_s); x_sub = VectorSubvector(x, i_s); nx_v = SubvectorNX(y_sub); ny_v = SubvectorNY(y_sub); nz_v = SubvectorNZ(y_sub); yp = SubvectorElt(y_sub, ix, iy, iz); xp = SubvectorElt(x_sub, ix, iy, iz); iv = 0; BoxLoopI1(i, j, k, ix, iy, iz, nx, ny, nz, iv, nx_v, ny_v, nz_v, 1, 1, 1, { result += yp[iv] * xp[iv]; });
void Axpy( double alpha, Vector *x, Vector *y) { Grid *grid = VectorGrid(x); Subgrid *subgrid; Subvector *y_sub; Subvector *x_sub; double *yp, *xp; int ix, iy, iz; int nx, ny, nz; int nx_v, ny_v, nz_v; int i_s, i, j, k, iv; ForSubgridI(i_s, GridSubgrids(grid)) { subgrid = GridSubgrid(grid, i_s); ix = SubgridIX(subgrid); iy = SubgridIY(subgrid); iz = SubgridIZ(subgrid); nx = SubgridNX(subgrid); ny = SubgridNY(subgrid); nz = SubgridNZ(subgrid); y_sub = VectorSubvector(y, i_s); x_sub = VectorSubvector(x, i_s); nx_v = SubvectorNX(y_sub); ny_v = SubvectorNY(y_sub); nz_v = SubvectorNZ(y_sub); yp = SubvectorElt(y_sub, ix, iy, iz); xp = SubvectorElt(x_sub, ix, iy, iz); iv = 0; BoxLoopI1(i, j, k, ix, iy, iz, nx, ny, nz, iv, nx_v, ny_v, nz_v, 1, 1, 1, { yp[iv] += alpha * xp[iv]; });
double ComputeTotalConcen( GrGeomSolid *gr_domain, Grid * grid, Vector * substance) { Subgrid *subgrid; double cell_volume, field_sum; double dx, dy, dz; Subvector *s_sub; int i, j, k, r, ix, iy, iz, nx, ny, nz, is, ips; int *fdir; double *data; amps_Invoice result_invoice; field_sum = 0.0; ForSubgridI(is, GridSubgrids(grid)) { subgrid = GridSubgrid(grid, is); s_sub = VectorSubvector(substance, is); ix = SubgridIX(subgrid); iy = SubgridIY(subgrid); iz = SubgridIZ(subgrid); nx = SubgridNX(subgrid); ny = SubgridNY(subgrid); nz = SubgridNZ(subgrid); dx = SubgridDX(subgrid); dy = SubgridDY(subgrid); dz = SubgridDZ(subgrid); /* RDF: assume resolution is the same in all 3 directions */ r = SubgridRX(subgrid); data = SubvectorData(s_sub); cell_volume = dx * dy * dz; GrGeomSurfLoop(i, j, k, fdir, gr_domain, r, ix, iy, iz, nx, ny, nz, { ips = SubvectorEltIndex(s_sub, i, j, k); data[ips] = 0.0; });
void PhaseDensity( int phase, /* Phase */ Vector *phase_pressure, /* Vector of phase pressures at each block */ Vector *density_v, /* Vector of return densities at each block */ double *pressure_d, /* Double array of pressures */ double *density_d, /* Double array return density */ int fcn) /* Flag determining what to calculate * fcn = CALCFCN => calculate the function value * fcn = CALCDER => calculate the function * derivative */ /* Module returns either a double array or Vector of densities. * If density_v is NULL, then a double array is returned. * This "overloading" was provided so that the density module written * for the Richards' solver modules would be backward compatible with * the Impes modules. */ { PFModule *this_module = ThisPFModule; PublicXtra *public_xtra = (PublicXtra *)PFModulePublicXtra(this_module); Type0 *dummy0; Type1 *dummy1; Grid *grid; Subvector *p_sub; Subvector *d_sub; double *pp; double *dp; Subgrid *subgrid; int sg; int ix, iy, iz; int nx, ny, nz; int nx_p, ny_p, nz_p; int nx_d, ny_d, nz_d; int i, j, k, ip, id; switch((public_xtra -> type[phase])) { case 0: { double constant; dummy0 = (Type0 *)(public_xtra -> data[phase]); constant = (dummy0 -> constant); if ( density_v != NULL) { grid = VectorGrid(density_v); ForSubgridI(sg, GridSubgrids(grid)) { subgrid = GridSubgrid(grid, sg); d_sub = VectorSubvector(density_v, sg); ix = SubgridIX(subgrid) - 1; iy = SubgridIY(subgrid) - 1; iz = SubgridIZ(subgrid) - 1; nx = SubgridNX(subgrid) + 2; ny = SubgridNY(subgrid) + 2; nz = SubgridNZ(subgrid) + 2; nx_d = SubvectorNX(d_sub); ny_d = SubvectorNY(d_sub); nz_d = SubvectorNZ(d_sub); dp = SubvectorElt(d_sub, ix, iy, iz); id = 0; if ( fcn == CALCFCN ) { BoxLoopI1(i, j, k, ix, iy, iz, nx, ny, nz, id, nx_d, ny_d, nz_d, 1, 1, 1, { dp[id] = constant; }); }
void ICPhaseSatur( Vector *ic_phase_satur, int phase, ProblemData *problem_data) { PFModule *this_module = ThisPFModule; PublicXtra *public_xtra = (PublicXtra *)PFModulePublicXtra(this_module); Grid *grid = VectorGrid(ic_phase_satur); Type0 *dummy0; SubgridArray *subgrids = GridSubgrids(grid); Subgrid *subgrid; Subvector *ps_sub; double *data; int ix, iy, iz; int nx, ny, nz; int r; double field_sum; int is, i, j, k, ips; /*----------------------------------------------------------------------- * Initial saturation conditions for this phase *-----------------------------------------------------------------------*/ InitVector(ic_phase_satur, 0.0); switch((public_xtra -> type[phase])) { case 0: { int num_regions; int *region_indices; double *values; GrGeomSolid *gr_solid; double value; int ir; dummy0 = (Type0 *)(public_xtra -> data[phase]); num_regions = (dummy0 -> num_regions); region_indices = (dummy0 -> region_indices); values = (dummy0 -> values); for (ir = 0; ir < num_regions; ir++) { gr_solid = ProblemDataGrSolid(problem_data, region_indices[ir]); value = values[ir]; ForSubgridI(is, subgrids) { subgrid = SubgridArraySubgrid(subgrids, is); ps_sub = VectorSubvector(ic_phase_satur, is); ix = SubgridIX(subgrid); iy = SubgridIY(subgrid); iz = SubgridIZ(subgrid); nx = SubgridNX(subgrid); ny = SubgridNY(subgrid); nz = SubgridNZ(subgrid); /* RDF: assume resolution is the same in all 3 directions */ r = SubgridRX(subgrid); data = SubvectorData(ps_sub); GrGeomInLoop(i, j, k, gr_solid, r, ix, iy, iz, nx, ny, nz, { ips = SubvectorEltIndex(ps_sub, i, j, k); data[ips] = value; }); } } break; }
void ComputeDomain( SubgridArray *all_subgrids, Databox *top, Databox *bottom, int P, int Q, int R) { int num_procs = P * Q * R; int p; // For each subgrid find the min/max k values // in the active region (using top/bottom). // Reset the subgrid to reflect this vertical extent. for(p = 0; p < num_procs; p++) { int s_i; ForSubgridI(s_i, all_subgrids) { Subgrid* subgrid = SubgridArraySubgrid(all_subgrids, s_i); int process = SubgridProcess(subgrid); if(process == p) { int i; int j; int ix = SubgridIX(subgrid); int iy = SubgridIY(subgrid); int iz = SubgridIZ(subgrid); int nx = SubgridNX(subgrid); int ny = SubgridNY(subgrid); int nz = SubgridNZ(subgrid); int patch_top = iz; int patch_bottom = iz + nz; for (j = iy; j < iy+ ny; ++j) { for (i = ix; i < ix + nx; ++i) { int k_top = *(DataboxCoeff(top, i, j, 0)); if ( k_top >= 0 ) { patch_top = max(patch_top, k_top); } int k_bottom = *(DataboxCoeff(bottom, i, j, 0)); if ( k_bottom >= 0 ) { patch_bottom = min(patch_bottom, k_bottom); } } } // adjust grid to include 2 pad cells patch_top = min(patch_top+2, iz + nz - 1); patch_bottom = max(patch_bottom-2, iz); // adjust for ghost cells, need to have patches // that extend in height to the neighbor patches. // // There is a more efficient way to compute all this but // since these are 2d arrays it should be reasonably quick. // Not a single loop since we don't need to pad these values. ix = max(0, ix -1); nx = min(DataboxNx(top) - ix, nx + 2 - ix); iy = max(0, iy -1); ny = min(DataboxNy(top) - iy, ny + 2 - iy); for (j = iy; j < iy+ ny; ++j) { for (i = ix; i < ix + nx; ++i) { int k_top = *(DataboxCoeff(top, i, j, 0)); if ( k_top >= 0 ) { patch_top = max(patch_top, k_top); } int k_bottom = *(DataboxCoeff(bottom, i, j, 0)); if ( k_bottom >= 0 ) { patch_bottom = min(patch_bottom, k_bottom); } } } SubgridIZ(subgrid) = patch_bottom; SubgridNZ(subgrid) = (patch_top - SubgridIZ(subgrid)) + 1; } } }
void OverlandSum(ProblemData *problem_data, Vector *pressure, /* Current pressure values */ double dt, Vector *overland_sum) { GrGeomSolid *gr_domain = ProblemDataGrDomain(problem_data); double dx, dy, dz; int i, j, r, is; int ix, iy, iz; int nx, ny; Subgrid *subgrid; Grid *grid = VectorGrid(pressure); Vector *slope_x = ProblemDataTSlopeX(problem_data); Vector *slope_y = ProblemDataTSlopeY(problem_data); Vector *mannings = ProblemDataMannings(problem_data); Vector *top = ProblemDataIndexOfDomainTop(problem_data); Subvector *overland_sum_subvector; Subvector *slope_x_subvector; Subvector *slope_y_subvector; Subvector *mannings_subvector; Subvector *pressure_subvector; Subvector *top_subvector; int index_overland_sum; int index_slope_x; int index_slope_y; int index_mannings; int index_pressure; int index_top; double *overland_sum_ptr; double *slope_x_ptr; double *slope_y_ptr; double *mannings_ptr; double *pressure_ptr; double *top_ptr; int ipatch; BCStruct *bc_struct; BCPressureData *bc_pressure_data = ProblemDataBCPressureData(problem_data); int num_patches = BCPressureDataNumPatches(bc_pressure_data); bc_struct = NewBCStruct(GridSubgrids(grid), gr_domain, num_patches, BCPressureDataPatchIndexes(bc_pressure_data), BCPressureDataBCTypes(bc_pressure_data), NULL); if (num_patches > 0) { for (ipatch = 0; ipatch < num_patches; ipatch++) { switch(BCPressureDataType(bc_pressure_data,ipatch)) { case 7: { ForSubgridI(is, GridSubgrids(grid)) { subgrid = GridSubgrid(grid, is); overland_sum_subvector = VectorSubvector(overland_sum, is); slope_x_subvector = VectorSubvector(slope_x, is); slope_y_subvector = VectorSubvector(slope_y, is); mannings_subvector = VectorSubvector(mannings, is); pressure_subvector = VectorSubvector(pressure, is); top_subvector = VectorSubvector(top, is); r = SubgridRX(subgrid); ix = SubgridIX(subgrid); iy = SubgridIY(subgrid); iz = SubgridIZ(subgrid); nx = SubgridNX(subgrid); ny = SubgridNY(subgrid); dx = SubgridDX(subgrid); dy = SubgridDY(subgrid); dz = SubgridDZ(subgrid); overland_sum_ptr = SubvectorData(overland_sum_subvector); slope_x_ptr = SubvectorData(slope_x_subvector); slope_y_ptr = SubvectorData(slope_y_subvector); mannings_ptr = SubvectorData(mannings_subvector); pressure_ptr = SubvectorData(pressure_subvector); top_ptr = SubvectorData(top_subvector); int state; const int inactive = -1; const int active = 1; for(i = ix; i < ix + nx; i++) { j = iy - 1; index_top = SubvectorEltIndex(top_subvector, i, j, 0); int k = (int)top_ptr[index_top]; if( k < 0 ) { state = inactive; } else { state = active; } while( j < iy + ny) { if( state == inactive) { index_top = SubvectorEltIndex(top_subvector, i, j, 0); k = (int)top_ptr[index_top]; while( k < 0 && j <= iy + ny) { j++; index_top = SubvectorEltIndex(top_subvector, i, j, 0); k = (int)top_ptr[index_top]; } // If still in interior if( j < iy + ny) { if ( k >=0 ) { // inactive to active index_slope_y = SubvectorEltIndex(slope_y_subvector, i, j, 0); // sloping to inactive active from active if( slope_y_ptr[index_slope_y] > 0) { index_pressure = SubvectorEltIndex(pressure_subvector, i, j, k); if(pressure_ptr[index_pressure] > 0) { index_overland_sum = SubvectorEltIndex(overland_sum_subvector, i, j, 0); index_mannings = SubvectorEltIndex(mannings_subvector, i, j, 0); overland_sum_ptr[index_overland_sum] += (sqrt( fabs(slope_y_ptr[index_slope_y]) ) / mannings_ptr[index_mannings] ) * pow(pressure_ptr[index_pressure], 5.0 / 3.0) * dx * dt; } } } state = active; } } else { index_top = SubvectorEltIndex(top_subvector, i, j+1, 0); k = (int)top_ptr[index_top]; while( k >= 0 && j <= iy + ny) { j++; index_top = SubvectorEltIndex(top_subvector, i, j+1, 0); k = (int)top_ptr[index_top]; } // If still in interior if( j < iy + ny) { index_top = SubvectorEltIndex(top_subvector, i, j, 0); k = (int)top_ptr[index_top]; // active to inactive index_slope_y = SubvectorEltIndex(slope_y_subvector, i, j, 0); // sloping from active to inactive if( slope_y_ptr[index_slope_y] < 0) { index_pressure = SubvectorEltIndex(pressure_subvector, i, j, k); if(pressure_ptr[index_pressure] > 0) { index_overland_sum = SubvectorEltIndex(overland_sum_subvector, i, j, 0); index_mannings = SubvectorEltIndex(mannings_subvector, i, j, 0); overland_sum_ptr[index_overland_sum] += (sqrt( fabs(slope_y_ptr[index_slope_y]) ) / mannings_ptr[index_mannings] ) * pow(pressure_ptr[index_pressure], 5.0 / 3.0) * dx * dt; } } } state = inactive; } j++; } } #if 0 for(i = ix; i < ix + nx; i++) { for(j = iy; j < iy + ny; j++) { index_top = SubvectorEltIndex(top_subvector, i, j, 0); int k = (int)top_ptr[index_top]; if ( !(k < 0)) { /* Compute runnoff if slope is running off of active region */ index_overland_sum = SubvectorEltIndex(overland_sum_subvector, i, j, 0); index_slope_x = SubvectorEltIndex(slope_x_subvector, i, j, 0); index_slope_y = SubvectorEltIndex(slope_y_subvector, i, j, 0); index_mannings = SubvectorEltIndex(mannings_subvector, i, j, 0); index_pressure = SubvectorEltIndex(pressure_subvector, i, j, k); if( slope_y_ptr[index_slope_y] > 0 ) { if(pressure_ptr[index_pressure] > 0) { overland_sum_ptr[index_overland_sum] += (sqrt( fabs(slope_y_ptr[index_slope_y]) ) / mannings_ptr[index_mannings] ) * pow(pressure_ptr[index_pressure], 5.0 / 3.0) * dx * dt; } } /* Loop until going back outside of active area */ while( (j + 1 < iy + ny) && !(top_ptr[SubvectorEltIndex(top_subvector, i, j+1, 0)] < 0) ) { j++; } /* Found either domain boundary or outside of active area. Compute runnoff if slope is running off of active region. */ index_top = SubvectorEltIndex(top_subvector, i, j, 0); k = (int)top_ptr[index_top]; index_overland_sum = SubvectorEltIndex(overland_sum_subvector, i, j, 0); index_slope_x = SubvectorEltIndex(slope_x_subvector, i, j, 0); index_slope_y = SubvectorEltIndex(slope_y_subvector, i, j, 0); index_mannings = SubvectorEltIndex(mannings_subvector, i, j, 0); index_pressure = SubvectorEltIndex(pressure_subvector, i, j, k); if( slope_y_ptr[index_slope_y] < 0 ) { if(pressure_ptr[index_pressure] > 0) { overland_sum_ptr[index_overland_sum] += (sqrt( fabs(slope_y_ptr[index_slope_y]) ) / mannings_ptr[index_mannings] ) * pow(pressure_ptr[index_pressure], 5.0 / 3.0) * dx * dt; } } } } } #endif for(j = iy; j < iy + ny; j++) { i = ix - 1; index_top = SubvectorEltIndex(top_subvector, i, j, 0); int k = (int)top_ptr[index_top]; if( k < 0 ) { state = inactive; } else { state = active; } while( i < ix + nx) { if( state == inactive) { index_top = SubvectorEltIndex(top_subvector, i, j, 0); k = (int)top_ptr[index_top]; while( k < 0 && i <= ix + nx) { i++; index_top = SubvectorEltIndex(top_subvector, i, j, 0); k = (int)top_ptr[index_top]; } // If still in interior if( i < ix + nx) { if ( k >=0 ) { // inactive to active index_slope_x = SubvectorEltIndex(slope_x_subvector, i, j, 0); // sloping to inactive active from active if( slope_x_ptr[index_slope_x] > 0) { index_pressure = SubvectorEltIndex(pressure_subvector, i, j, k); if(pressure_ptr[index_pressure] > 0) { index_overland_sum = SubvectorEltIndex(overland_sum_subvector, i, j, 0); index_mannings = SubvectorEltIndex(mannings_subvector, i, j, 0); overland_sum_ptr[index_overland_sum] += (sqrt( fabs(slope_x_ptr[index_slope_x]) ) / mannings_ptr[index_mannings] ) * pow(pressure_ptr[index_pressure], 5.0 / 3.0) * dy * dt; } } } state = active; } } else { index_top = SubvectorEltIndex(top_subvector, i+1, j, 0); k = (int)top_ptr[index_top]; while( k >= 0 && i <= ix + nx) { i++; index_top = SubvectorEltIndex(top_subvector, i+1, j, 0); k = (int)top_ptr[index_top]; } // If still in interior if( i < ix + nx) { index_top = SubvectorEltIndex(top_subvector, i, j, 0); k = (int)top_ptr[index_top]; // active to inactive index_slope_x = SubvectorEltIndex(slope_x_subvector, i, j, 0); // sloping from active to inactive if( slope_x_ptr[index_slope_x] < 0) { index_pressure = SubvectorEltIndex(pressure_subvector, i, j, k); if(pressure_ptr[index_pressure] > 0) { index_overland_sum = SubvectorEltIndex(overland_sum_subvector, i, j, 0); index_mannings = SubvectorEltIndex(mannings_subvector, i, j, 0); overland_sum_ptr[index_overland_sum] += (sqrt( fabs(slope_x_ptr[index_slope_x]) ) / mannings_ptr[index_mannings] ) * pow(pressure_ptr[index_pressure], 5.0 / 3.0) * dy * dt; } } } state = inactive; } i++; } } #if 0 for(j = iy; j < iy + ny; j++) { for(i = ix; i < ix + nx; i++) { index_top = SubvectorEltIndex(top_subvector, i, j, 0); int k = (int)top_ptr[index_top]; if ( !(k < 0)) { /* Compute runnoff if slope is running off of active region */ index_overland_sum = SubvectorEltIndex(overland_sum_subvector, i, j, 0); index_slope_x = SubvectorEltIndex(slope_x_subvector, i, j, 0); index_slope_y = SubvectorEltIndex(slope_y_subvector, i, j, 0); index_mannings = SubvectorEltIndex(mannings_subvector, i, j, 0); index_pressure = SubvectorEltIndex(pressure_subvector, i, j, k); if( slope_x_ptr[index_slope_x] > 0 ) { if(pressure_ptr[index_pressure] > 0) { overland_sum_ptr[index_overland_sum] += (sqrt( fabs(slope_x_ptr[index_slope_y]) ) / mannings_ptr[index_mannings] ) * pow(pressure_ptr[index_pressure], 5.0 / 3.0) * dy * dt; } } /* Loop until going back outside of active area */ while( (i + 1 < ix + nx) && !(top_ptr[SubvectorEltIndex(top_subvector, i+1, j, 0)] < 0) ) { i++; } /* Found either domain boundary or outside of active area. Compute runnoff if slope is running off of active region. */ index_top = SubvectorEltIndex(top_subvector, i, j, 0); k = (int)top_ptr[index_top]; index_overland_sum = SubvectorEltIndex(overland_sum_subvector, i, j, 0); index_slope_x = SubvectorEltIndex(slope_x_subvector, i, j, 0); index_slope_y = SubvectorEltIndex(slope_y_subvector, i, j, 0); index_mannings = SubvectorEltIndex(mannings_subvector, i, j, 0); index_pressure = SubvectorEltIndex(pressure_subvector, i, j, k); if( slope_x_ptr[index_slope_x] < 0 ) { if(pressure_ptr[index_pressure] > 0) { overland_sum_ptr[index_overland_sum] += (sqrt( fabs(slope_x_ptr[index_slope_x]) ) / mannings_ptr[index_mannings] ) * pow(pressure_ptr[index_pressure], 5.0 / 3.0) * dy * dt; } } } } } #endif } } } } }
void PFMG( Vector *soln, Vector *rhs, double tol, int zero) { (void)zero; #ifdef HAVE_HYPRE PFModule *this_module = ThisPFModule; InstanceXtra *instance_xtra = (InstanceXtra*)PFModuleInstanceXtra(this_module); PublicXtra *public_xtra = (PublicXtra*)PFModulePublicXtra(this_module); HYPRE_StructMatrix hypre_mat = instance_xtra->hypre_mat; HYPRE_StructVector hypre_b = instance_xtra->hypre_b; HYPRE_StructVector hypre_x = instance_xtra->hypre_x; HYPRE_StructSolver hypre_pfmg_data = instance_xtra->hypre_pfmg_data; Grid *grid = VectorGrid(rhs); Subgrid *subgrid; int sg; Subvector *rhs_sub; Subvector *soln_sub; double *rhs_ptr; double *soln_ptr; double value; int index[3]; int ix, iy, iz; int nx, ny, nz; int nx_v, ny_v, nz_v; int i, j, k; int iv; int num_iterations; double rel_norm; /* Copy rhs to hypre_b vector. */ BeginTiming(public_xtra->time_index_copy_hypre); ForSubgridI(sg, GridSubgrids(grid)) { subgrid = SubgridArraySubgrid(GridSubgrids(grid), sg); rhs_sub = VectorSubvector(rhs, sg); rhs_ptr = SubvectorData(rhs_sub); ix = SubgridIX(subgrid); iy = SubgridIY(subgrid); iz = SubgridIZ(subgrid); nx = SubgridNX(subgrid); ny = SubgridNY(subgrid); nz = SubgridNZ(subgrid); nx_v = SubvectorNX(rhs_sub); ny_v = SubvectorNY(rhs_sub); nz_v = SubvectorNZ(rhs_sub); iv = SubvectorEltIndex(rhs_sub, ix, iy, iz); BoxLoopI1(i, j, k, ix, iy, iz, nx, ny, nz, iv, nx_v, ny_v, nz_v, 1, 1, 1, { index[0] = i; index[1] = j; index[2] = k; HYPRE_StructVectorSetValues(hypre_b, index, rhs_ptr[iv]); });
void LBInitializeBC( Lattice * lattice, Problem * problem, ProblemData *problem_data) { /*------------------------------------------------------------* * Local variables *------------------------------------------------------------*/ /* Lattice variables */ Grid *grid = (lattice->grid); Vector *pressure = (lattice->pressure); Vector *perm = (lattice->perm); CharVector *cellType = (lattice->cellType); double time = (lattice->t); /* Structures */ BCPressureData *bc_pressure_data = ProblemDataBCPressureData(problem_data); TimeCycleData *time_cycle_data; SubgridArray *subgrids = GridSubgrids(grid); GrGeomSolid *gr_domain; /* Patch variables */ double ***values; double *patch_values = NULL; int *fdir; /* Grid parameters */ Subgrid *subgrid; int nx, ny, nz; int ix, iy, iz; int nx_v, ny_v, nz_v; /* Indices and counters */ int num_patches; int num_phases; int ipatch, is, i, j, k, ival; int cycle_number, interval_number; int r; /* Physical variables and coefficients */ Subvector *sub_p; double *pp; Subvector *sub_perm; double *permp; Subcharvector *sub_cellType; char *cellTypep; double rho_g; /* Communications */ VectorUpdateCommHandle *handle; /*-------------------------- * Initializations *--------------------------*/ rho_g = ProblemGravity(problem) * RHO; num_patches = BCPressureDataNumPatches(bc_pressure_data); gr_domain = ProblemDataGrDomain(problem_data); num_phases = BCPressureDataNumPhases(bc_pressure_data); if (num_patches > 0) { time_cycle_data = BCPressureDataTimeCycleData(bc_pressure_data); values = ctalloc(double **, num_patches); for (ipatch = 0; ipatch < num_patches; ipatch++) { values[ipatch] = ctalloc(double *, SubgridArraySize(subgrids)); cycle_number = BCPressureDataCycleNumber(bc_pressure_data, ipatch); interval_number = TimeCycleDataComputeIntervalNumber(problem, time, time_cycle_data, cycle_number); switch (BCPressureDataType(bc_pressure_data, ipatch)) { case 0: { BCPressureType0 *bc_pressure_type0; GeomSolid *ref_solid; double z, dz2; double **elevations; int ref_patch, iel; bc_pressure_type0 = (BCPressureType0*)BCPressureDataIntervalValue( bc_pressure_data, ipatch, interval_number); ref_solid = ProblemDataSolid(problem_data, BCPressureType0RefSolid(bc_pressure_type0)); ref_patch = BCPressureType0RefPatch(bc_pressure_type0); /* Calculate elevations at (x,y) points on reference patch. */ elevations = CalcElevations(ref_solid, ref_patch, subgrids, problem_data); ForSubgridI(is, subgrids) { /* subgrid = GridSubgrid(grid, is); */ subgrid = SubgridArraySubgrid(subgrids, is); sub_p = VectorSubvector(pressure, is); sub_perm = VectorSubvector(perm, is); sub_cellType = CharVectorSubcharvector(cellType, is); nx = SubgridNX(subgrid); ny = SubgridNY(subgrid); nz = SubgridNZ(subgrid); ix = SubgridIX(subgrid); iy = SubgridIY(subgrid); iz = SubgridIZ(subgrid); /* RDF: assume resolution is the same in all 3 directions */ r = SubgridRX(subgrid); pp = SubvectorData(sub_p); permp = SubvectorData(sub_perm); cellTypep = SubcharvectorData(sub_cellType); nx_v = SubvectorNX(sub_p); ny_v = SubvectorNY(sub_p); nz_v = SubvectorNZ(sub_p); values[ipatch][is] = patch_values; dz2 = RealSpaceDZ(0) / 2.0; GrGeomPatchLoop(i, j, k, fdir, gr_domain, ipatch, r, ix, iy, iz, nx, ny, nz, { ival = SubvectorEltIndex(sub_p, i, j, k); iel = (i - ix) + (j - iy) * nx; z = RealSpaceZ(k, 0) + fdir[2] * dz2; pp[ival] = BCPressureType0Value(bc_pressure_type0) - rho_g * (z - elevations[is][iel]); cellTypep[ival] = 0; }); tfree(elevations[is]); } /* End subgrid loop */ tfree(elevations); break; } case 1: { BCPressureType1 *bc_pressure_type1; int num_points; double x, y, z, dx2, dy2, dz2; double unitx, unity, line_min, line_length, xy, slope; int ip; bc_pressure_type1 = (BCPressureType1*)BCPressureDataIntervalValue(bc_pressure_data, ipatch, interval_number); ForSubgridI(is, subgrids) { /* subgrid = GridSubgrid(grid, is); */ subgrid = SubgridArraySubgrid(subgrids, is); sub_p = VectorSubvector(pressure, is); sub_perm = VectorSubvector(perm, is); sub_cellType = CharVectorSubcharvector(cellType, is); nx = SubgridNX(subgrid); ny = SubgridNY(subgrid); nz = SubgridNZ(subgrid); ix = SubgridIX(subgrid); iy = SubgridIY(subgrid); iz = SubgridIZ(subgrid); /* RDF: assume resolution is the same in all 3 directions */ r = SubgridRX(subgrid); pp = SubvectorData(sub_p); permp = SubvectorData(sub_perm); cellTypep = SubcharvectorData(sub_cellType); nx_v = SubvectorNX(sub_p); ny_v = SubvectorNY(sub_p); nz_v = SubvectorNZ(sub_p); values[ipatch][is] = patch_values; dx2 = RealSpaceDX(0) / 2.0; dy2 = RealSpaceDY(0) / 2.0; dz2 = RealSpaceDZ(0) / 2.0; /* compute unit direction vector for piecewise linear line */ unitx = BCPressureType1XUpper(bc_pressure_type1) - BCPressureType1XLower(bc_pressure_type1); unity = BCPressureType1YUpper(bc_pressure_type1) - BCPressureType1YLower(bc_pressure_type1); line_length = sqrt(unitx * unitx + unity * unity); unitx /= line_length; unity /= line_length; line_min = BCPressureType1XLower(bc_pressure_type1) * unitx + BCPressureType1YLower(bc_pressure_type1) * unity; GrGeomPatchLoop(i, j, k, fdir, gr_domain, ipatch, r, ix, iy, iz, nx, ny, nz, { ival = SubvectorEltIndex(sub_p, i, j, k); x = RealSpaceX(i, 0) + fdir[0] * dx2; y = RealSpaceY(j, 0) + fdir[1] * dy2; z = RealSpaceZ(k, 0) + fdir[2] * dz2; /* project center of BC face onto piecewise line */ xy = (x * unitx + y * unity - line_min) / line_length; /* find two neighboring points */ ip = 1; /* Kludge; this needs to be fixed. */ num_points = 2; for (; ip < (num_points - 1); ip++) { if (xy < BCPressureType1Point(bc_pressure_type1, ip)) break; } /* compute the slope */ slope = ((BCPressureType1Value(bc_pressure_type1, ip) - BCPressureType1Value(bc_pressure_type1, (ip - 1))) / (BCPressureType1Point(bc_pressure_type1, ip) - BCPressureType1Point(bc_pressure_type1, (ip - 1)))); pp[ival] = BCPressureType1Value(bc_pressure_type1, ip - 1) + slope * (xy - BCPressureType1Point( bc_pressure_type1, ip - 1)) - rho_g * z; cellTypep[ival] = 0; }); } /* End subgrid loop */
void XSlope( ProblemData *problem_data, Vector * x_slope, Vector * dummy) { PFModule *this_module = ThisPFModule; PublicXtra *public_xtra = (PublicXtra*)PFModulePublicXtra(this_module); InstanceXtra *instance_xtra = (InstanceXtra*)PFModuleInstanceXtra(this_module); Grid *grid3d = instance_xtra->grid3d; GrGeomSolid *gr_solid, *gr_domain; Type0 *dummy0; Type1 *dummy1; Type2 *dummy2; Type3 *dummy3; VectorUpdateCommHandle *handle; SubgridArray *subgrids = GridSubgrids(grid3d); Subgrid *subgrid; Subvector *ps_sub; Subvector *sx_values_sub; double *data; double *psdat, *sx_values_dat; //double slopex[60][32][392]; int ix, iy, iz; int nx, ny, nz; int r; int is, i, j, k, ips, ipicv; double time = 0.0; (void)dummy; /*----------------------------------------------------------------------- * Put in any user defined sources for this phase *-----------------------------------------------------------------------*/ InitVectorAll(x_slope, 0.0); switch ((public_xtra->type)) { case 0: { int num_regions; int *region_indices; double *values; double x, y, z; double value; int ir; dummy0 = (Type0*)(public_xtra->data); num_regions = (dummy0->num_regions); region_indices = (dummy0->region_indices); values = (dummy0->values); for (ir = 0; ir < num_regions; ir++) { gr_solid = ProblemDataGrSolid(problem_data, region_indices[ir]); value = values[ir]; ForSubgridI(is, subgrids) { subgrid = SubgridArraySubgrid(subgrids, is); ps_sub = VectorSubvector(x_slope, is); ix = SubgridIX(subgrid); iy = SubgridIY(subgrid); iz = SubgridIZ(subgrid); nx = SubgridNX(subgrid); ny = SubgridNY(subgrid); nz = SubgridNZ(subgrid); /* RDF: assume resolution is the same in all 3 directions */ r = SubgridRX(subgrid); /* * TODO * SGS this does not match the loop in nl_function_eval. That * loop is going over more than the inner geom locations. Is that * important? Originally the x_slope array was not being allocated * by ctalloc, just alloc and unitialized memory reads were being * caused. Switched that to be ctalloc to init to 0 to "hack" a * fix but is this really a sign of deeper indexing problems? */ /* @RMM: todo. the looping to set slopes only goes over interior nodes * not ALL nodes (including ghost) as in nl fn eval and now the overland eval * routines. THis is fine in the KW approximation which only needs interior values * but for diffusive wave and for the terrain following grid (which uses the surface * topo slopes as subsurface slopes) this can cuase bddy problems. */ data = SubvectorData(ps_sub); GrGeomInLoop(i, j, k, gr_solid, r, ix, iy, iz, nx, ny, nz, { ips = SubvectorEltIndex(ps_sub, i, j, 0); x = RealSpaceX(i, SubgridRX(subgrid)); //data[ips] = sin(x)/8.0 + (1/8)*pow(x,-(7/8)) +sin(x/5.0)/(5.0*8.0); data[ips] = value; }); } } break; } /* End case 0 */
void PGSRF( GeomSolid * geounit, GrGeomSolid *gr_geounit, Vector * field, RFCondData * cdata) { /*-----------------* * Local variables * *-----------------*/ PFModule *this_module = ThisPFModule; PublicXtra *public_xtra = (PublicXtra*)PFModulePublicXtra(this_module); InstanceXtra *instance_xtra = (InstanceXtra*)PFModuleInstanceXtra(this_module); /* Input parameters (see PGSRFNewPublicXtra() below) */ double lambdaX = (public_xtra->lambdaX); double lambdaY = (public_xtra->lambdaY); double lambdaZ = (public_xtra->lambdaZ); double mean = (public_xtra->mean); double sigma = (public_xtra->sigma); int dist_type = (public_xtra->dist_type); double low_cutoff = (public_xtra->low_cutoff); double high_cutoff = (public_xtra->high_cutoff); int max_search_rad = (public_xtra->max_search_rad); int max_npts = (public_xtra->max_npts); int max_cpts = (public_xtra->max_cpts); Vector *tmpRF = NULL; /* Conditioning data */ int nc = (cdata->nc); double *x = (cdata->x); double *y = (cdata->y); double *z = (cdata->z); double *v = (cdata->v); /* Grid parameters */ Grid *grid = (instance_xtra->grid); Subgrid *subgrid; Subvector *sub_field; Subvector *sub_tmpRF; int NX, NY, NZ; /* Subgrid parameters */ int nx, ny, nz; double dx, dy, dz; int nx_v, ny_v, nz_v; int nx_v2, ny_v2, nz_v2; int nxG, nyG, nzG; /* Counters, indices, flags */ int gridloop; int i, j, k, n, m; int ii, jj, kk; int i2, j2, k2; int imin, jmin, kmin; int rpx, rpy, rpz; int npts; int index1, index2, index3; /* Spatial variables */ double *fieldp; double *tmpRFp; int iLx, iLy, iLz; /* Correlation length in terms of grid points */ int iLxp1, iLyp1, iLzp1; /* One more than each of the above */ int nLx, nLy, nLz; /* Size of correlation neighborhood in grid pts. */ int iLxyz; /* iLxyz = iLx*iLy*iLz */ int nLxyz; /* nLxyz = nLx*nLy*nLz */ int ix, iy, iz; int ref; int ix2, iy2, iz2; int i_search, j_search, k_search; int ci_search, cj_search, ck_search; double X0, Y0, Z0; /* Variables used in kriging algorithm */ double cmean, csigma; /* Conditional mean and std. dev. from kriging */ double A; double *A_sub; /* Sub-covariance matrix for external cond pts */ double *A11; /* Submatrix; note that A11 is 1-dim */ double **A12, **A21, **A22;/* Submatrices for external conditioning data */ double **M; /* Used as a temporary matrix */ double *b; /* Covariance vector for conditioning points */ double *b_tmp, *b2; double *w, *w_tmp; /* Solution vector to Aw=b */ int *ixx, *iyy, *izz; double *value; int di, dj, dk; double uni, gau; double ***cov; int ierr; /* Conditioning data variables */ int cpts; /* N cond pts for a single simulated node */ double *cval; /* Values for cond data for single node */ /* Communications */ VectorUpdateCommHandle *handle; int update_mode; /* Miscellaneous variables */ int **rand_path; char ***marker; int p, r, modulus; double a1, a2, a3; double cx, cy, cz; double sum; // FIXME Shouldn't we get this from numeric_limits? double Tiny = 1.0e-12; (void)geounit; /*----------------------------------------------------------------------- * Allocate temp vectors *-----------------------------------------------------------------------*/ tmpRF = NewVectorType(instance_xtra->grid, 1, max_search_rad, vector_cell_centered); /*----------------------------------------------------------------------- * Start sequential Gaussian simulator algorithm *-----------------------------------------------------------------------*/ /* Begin timing */ BeginTiming(public_xtra->time_index); /* initialize random number generators */ SeedRand(public_xtra->seed); /* For now, we will assume that all subgrids have the same uniform spacing */ subgrid = GridSubgrid(grid, 0); dx = SubgridDX(subgrid); dy = SubgridDY(subgrid); dz = SubgridDZ(subgrid); /* Size of search neighborhood through which random path must be defined */ iLx = (int)(lambdaX / dx); iLy = (int)(lambdaY / dy); iLz = (int)(lambdaZ / dz); /* For computational efficiency, we'll limit the * size of the search neighborhood. */ if (iLx > max_search_rad) iLx = max_search_rad; if (iLy > max_search_rad) iLy = max_search_rad; if (iLz > max_search_rad) iLz = max_search_rad; iLxp1 = iLx + 1; iLyp1 = iLy + 1; iLzp1 = iLz + 1; iLxyz = iLxp1 * iLyp1 * iLzp1; /* Define the size of a correlation neighborhood */ nLx = 2 * iLx + 1; nLy = 2 * iLy + 1; nLz = 2 * iLz + 1; nLxyz = nLx * nLy * nLz; /*------------------------ * Define a random path through the points in this subgrid. * The random path generation procedure of Srivastava and * Gomez has been adopted in this subroutine. A linear * congruential generator of the form: r(i) = 5*r(i-1)+1 mod(2**n) * has a cycle length of 2**n. By choosing the smallest power of * 2 that is still larger than the total number of points to be * simulated, the method ensures that all indices will be * generated once and only once. *------------------------*/ rand_path = talloc(int*, iLxyz); for (i = 0; i < iLxyz; i++) rand_path[i] = talloc(int, 3); modulus = 2; while (modulus < iLxyz + 1) modulus *= 2; /* Compute a random starting node */ p = (int)Rand(); r = 1 + p * (iLxyz - 1); k = (r - 1) / (iLxp1 * iLyp1); j = (r - 1 - iLxp1 * iLyp1 * k) / iLxp1; i = (r - 1) - (k * iLyp1 + j) * iLxp1; rand_path[0][2] = k; rand_path[0][1] = j; rand_path[0][0] = i; /* Determine the next nodes */ for (n = 1; n < iLxyz; n++) { r = (5 * r + 1) % modulus; while ((r < 1) || (r > iLxyz)) r = (5 * r + 1) % modulus; k = ((r - 1) / (iLxp1 * iLyp1)); j = (((r - 1) - iLxp1 * iLyp1 * k) / iLxp1); i = (r - 1) - (k * iLyp1 + j) * iLxp1; rand_path[n][0] = i; rand_path[n][1] = j; rand_path[n][2] = k; } /*----------------------------------------------------------------------- * Compute correlation lookup table *-----------------------------------------------------------------------*/ /* First compute a covariance lookup table */ cov = talloc(double**, nLx); for (i = 0; i < nLx; i++) { cov[i] = talloc(double*, nLy); for (j = 0; j < nLy; j++) cov[i][j] = ctalloc(double, nLz); } /* Note that in the construction of the covariance matrix * the max_search_rad is not used. Covariance depends upon * the correlation lengths, lambdaX/Y/Z, and the grid spacing. * The max_search_rad can be longer or shorter than the correlation * lengths. The bigger the search radius, the more accurately * the random field will match the correlation structure of the * covariance function. But the run time will increase greatly * as max_search_rad gets bigger because of the kriging matrix * that must be solved (see below). */ cx = 0.0; cy = 0.0; cz = 0.0; if (lambdaX != 0.0) cx = dx * dx / (lambdaX * lambdaX); if (lambdaY != 0.0) cy = dy * dy / (lambdaY * lambdaY); if (lambdaZ != 0.0) cz = dz * dz / (lambdaZ * lambdaZ); for (k = 0; k < nLz; k++) for (j = 0; j < nLy; j++) for (i = 0; i < nLx; i++) { a1 = i * i * cx; a2 = j * j * cy; a3 = k * k * cz; cov[i][j][k] = exp(-sqrt(a1 + a2 + a3)); } /* Allocate memory for variables that will be used in kriging */ A11 = ctalloc(double, nLxyz * nLxyz); A_sub = ctalloc(double, nLxyz * nLxyz); A12 = ctalloc(double*, nLxyz); A21 = ctalloc(double*, nLxyz); A22 = ctalloc(double*, nLxyz); M = ctalloc(double*, nLxyz); for (i = 0; i < nLxyz; i++) { A12[i] = ctalloc(double, nLxyz); A21[i] = ctalloc(double, nLxyz); A22[i] = ctalloc(double, nLxyz); M[i] = ctalloc(double, nLxyz); } b = ctalloc(double, nLxyz); b2 = ctalloc(double, nLxyz); b_tmp = ctalloc(double, nLxyz); w = ctalloc(double, nLxyz); w_tmp = ctalloc(double, nLxyz); value = ctalloc(double, nLxyz); cval = ctalloc(double, nLxyz); ixx = ctalloc(int, nLxyz); iyy = ctalloc(int, nLxyz); izz = ctalloc(int, nLxyz); /* Allocate space for the "marker" used to keep track of which * points in a representative correlation box have been simulated * already. */ marker = talloc(char**, (3 * iLx + 1)); marker += iLx; for (i = -iLx; i <= 2 * iLx; i++) { marker[i] = talloc(char*, (3 * iLy + 1)); marker[i] += iLy; for (j = -iLy; j <= 2 * iLy; j++) { marker[i][j] = ctalloc(char, (3 * iLz + 1)); marker[i][j] += iLz; for (k = -iLz; k <= 2 * iLz; k++) marker[i][j][k] = 0; } } /* Convert the cutoff values to a gaussian if they're lognormal on input */ if ((dist_type == 1) || (dist_type == 3)) { if (low_cutoff <= 0.0) { low_cutoff = Tiny; } else { low_cutoff = (log(low_cutoff / mean)) / sigma; } if (high_cutoff <= 0.0) { high_cutoff = DBL_MAX; } else { high_cutoff = (log(high_cutoff / mean)) / sigma; } } /*-------------------------------------------------------------------- * Start pGs algorithm *--------------------------------------------------------------------*/ for (gridloop = 0; gridloop < GridNumSubgrids(grid); gridloop++) { subgrid = GridSubgrid(grid, gridloop); sub_tmpRF = VectorSubvector(tmpRF, gridloop); sub_field = VectorSubvector(field, gridloop); tmpRFp = SubvectorData(sub_tmpRF); fieldp = SubvectorData(sub_field); X0 = RealSpaceX(0, SubgridRX(subgrid)); Y0 = RealSpaceY(0, SubgridRY(subgrid)); Z0 = RealSpaceZ(0, SubgridRZ(subgrid)); ix = SubgridIX(subgrid); iy = SubgridIY(subgrid); iz = SubgridIZ(subgrid); nx = SubgridNX(subgrid); ny = SubgridNY(subgrid); nz = SubgridNZ(subgrid); NX = ix + nx; NY = iy + ny; NZ = iz + nz; /* RDF: assume resolution is the same in all 3 directions */ ref = SubgridRX(subgrid); nx_v = SubvectorNX(sub_field); ny_v = SubvectorNY(sub_field); nz_v = SubvectorNZ(sub_field); nx_v2 = SubvectorNX(sub_tmpRF); ny_v2 = SubvectorNY(sub_tmpRF); nz_v2 = SubvectorNZ(sub_tmpRF); /* Initialize tmpRF vector */ GrGeomInLoop(i, j, k, gr_geounit, ref, ix, iy, iz, nx, ny, nz, { index2 = SubvectorEltIndex(sub_tmpRF, i, j, k); tmpRFp[index2] = 0.0; }); /* Convert conditioning data to N(0,1) distribution if * it's assumed to be lognormal. Then copy it into tmpRFp */ if ((dist_type == 1) || (dist_type == 3)) { for (n = 0; n < nc; n++) { i = (int)((x[n] - X0) / dx + 0.5); j = (int)((y[n] - Y0) / dy + 0.5); k = (int)((z[n] - Z0) / dz + 0.5); if ((ix - max_search_rad <= i && i <= ix + nx + max_search_rad) && (iy - max_search_rad <= j && j <= iy + ny + max_search_rad) && (iz - max_search_rad <= k && k <= iz + nz + max_search_rad)) { index2 = SubvectorEltIndex(sub_tmpRF, i, j, k); if (v[n] <= 0.0) tmpRFp[index2] = Tiny; else tmpRFp[index2] = (log(v[n] / mean)) / sigma; } } } /* Otherwise, shift data to N(0,1) distribution */ else { for (n = 0; n < nc; n++) { i = (int)((x[n] - X0) / dx + 0.5); j = (int)((y[n] - Y0) / dy + 0.5); k = (int)((z[n] - Z0) / dz + 0.5); if ((ix - max_search_rad <= i && i <= ix + nx + max_search_rad) && (iy - max_search_rad <= j && j <= iy + ny + max_search_rad) && (iz - max_search_rad <= k && k <= iz + nz + max_search_rad)) { index2 = SubvectorEltIndex(sub_tmpRF, i, j, k); tmpRFp[index2] = (v[n] - mean) / sigma; } } } /* Set the search radii in each direction. If the maximum * number of points in a neighborhood is exceeded, these limits * will be reduced. */ i_search = iLx; j_search = iLy; k_search = iLz; /* Compute values at all points using all templates */ for (n = 0; n < iLxyz; n++) { /* Update the ghost layer before proceeding */ if (n > 0) { /* First reset max_search_radius */ max_search_rad = i_search; if (j_search > max_search_rad) max_search_rad = j_search; if (k_search > max_search_rad) max_search_rad = k_search; /* Reset the comm package based on the new max_search_radius */ if (max_search_rad == 1) update_mode = VectorUpdatePGS1; else if (max_search_rad == 2) update_mode = VectorUpdatePGS2; else if (max_search_rad == 3) update_mode = VectorUpdatePGS3; else update_mode = VectorUpdatePGS4; handle = InitVectorUpdate(tmpRF, update_mode); FinalizeVectorUpdate(handle); } rpx = rand_path[n][0]; rpy = rand_path[n][1]; rpz = rand_path[n][2]; ix2 = rpx; while (ix2 < ix) ix2 += iLxp1; iy2 = rpy; while (iy2 < iy) iy2 += iLyp1; iz2 = rpz; while (iz2 < iz) iz2 += iLzp1; /* This if clause checks to see if there are, in fact, * any points at all in this subgrid, for this * particular region. Note that each value of n in the * above n-loop corresponds to a different region. */ if ((ix2 < ix + nx) && (iy2 < iy + ny) && (iz2 < iz + nz)) { /* * Construct the input matrix and vector for kriging, * solve the linear system, and compute csigma. * These depend only on the spatial distribution of * conditioning data, not on the actual values of * the data. Only the conditional mean (cmean) depends * on actual values, so it must be computed for every * point. Thus, it's found within the pgs_Boxloop below. * The size of the linear system that must be solved here * will be no larger than (2r+1)^3, where r=max_search_rad. * It is clear from this why it is necessary to limit * the size of the search radius. */ /* Here the marker array indicates which points within * the search radius have been simulated already. This * spatial pattern of conditioning points will be the * same for every point in the current template. Thus, * this system can be solved once *outside* of the * GrGeomInLoop2 below. */ npts = 9999; while (npts > max_npts) { m = 0; /* Count the number of points in search ellipse */ for (k = rpz - k_search; k <= rpz + k_search; k++) for (j = rpy - j_search; j <= rpy + j_search; j++) for (i = rpx - i_search; i <= rpx + i_search; i++) { if (marker[i][j][k]) { ixx[m] = i; iyy[m] = j; izz[m++] = k; } } npts = m; /* If npts is too large, reduce the size of the * search ellipse one axis at a time. */ if (npts > max_npts) { /* If i_search is the biggest, reduce it by one. */ if ((i_search >= j_search) && (i_search >= k_search)) { i_search--; } /* Or, if j_search is the biggest, reduce it by one. */ else if ((j_search >= i_search) && (j_search >= k_search)) { j_search--; } /* Otherwise, reduce k_search by one. */ else { k_search--; } } } m = 0; for (j = 0; j < npts; j++) { di = abs(rpx - ixx[j]); dj = abs(rpy - iyy[j]); dk = abs(rpz - izz[j]); b[j] = cov[di][dj][dk]; for (i = 0; i < npts; i++) { di = abs(ixx[i] - ixx[j]); dj = abs(iyy[i] - iyy[j]); dk = abs(izz[i] - izz[j]); A11[m++] = cov[di][dj][dk]; } } /* Solve the linear system */ for (i = 0; i < npts; i++) w[i] = b[i]; if (npts > 0) { dpofa_(A11, &npts, &npts, &ierr); dposl_(A11, &npts, &npts, w); } /* Compute the conditional standard deviation for the RV * to be simulated. */ csigma = 0.0; for (i = 0; i < npts; i++) csigma += w[i] * b[i]; csigma = sqrt(cov[0][0][0] - csigma); /* The following loop hits every point in the current * region. That is, it skips by max_search_rad+1 * through the subgrid. In this way, all the points * in this loop may simulated simultaneously; each is * outside the search radius of all the others. */ nxG = (nx + ix); nyG = (ny + iy); nzG = (nz + iz); for (k = iz2; k < nzG; k += iLzp1) for (j = iy2; j < nyG; j += iLyp1) for (i = ix2; i < nxG; i += iLxp1) { index1 = SubvectorEltIndex(sub_field, i, j, k); index2 = SubvectorEltIndex(sub_tmpRF, i, j, k); /* Only simulate points in this geounit and that don't * already have a value. If a node already has a value, * it was assigned as external conditioning data, * so we don't need to simulate it. */ if (fabs(tmpRFp[index2]) < Tiny) { /* Condition the random variable */ m = 0; cpts = 0; for (kk = -k_search; kk <= k_search; kk++) for (jj = -j_search; jj <= j_search; jj++) for (ii = -i_search; ii <= i_search; ii++) { value[m] = 0.0; index3 = SubvectorEltIndex(sub_tmpRF, i + ii, j + jj, k + kk); if (marker[ii + rpx][jj + rpy][kk + rpz]) { value[m++] = tmpRFp[index3]; } /* In this case, there is a value at this point, * but it wasn't simulated yet (as indicated by the * fact that the marker has no place for it). Thus, * it must be external conditioning data. */ else if (fabs(tmpRFp[index3]) > Tiny) { ixx[npts + cpts] = rpx + ii; iyy[npts + cpts] = rpy + jj; izz[npts + cpts] = rpz + kk; cval[cpts++] = tmpRFp[index3]; } } /* If cpts is too large, reduce the size of the * search neighborhood, one axis at a time. */ /* Define the size of the search neighborhood */ ci_search = i_search; cj_search = j_search; ck_search = k_search; while (cpts > max_cpts) { /* If ci_search is the biggest, reduce it by one. */ if ((ci_search >= cj_search) && (ci_search >= ck_search)) ci_search--; /* Or, if cj_search is the biggest, reduce it by one. */ else if ((cj_search >= ci_search) && (cj_search >= ck_search)) cj_search--; /* Otherwise, reduce ck_search by one. */ else ck_search--; /* Now recount the conditioning data points */ m = 0; cpts = 0; for (kk = -ck_search; kk <= ck_search; kk++) for (jj = -cj_search; jj <= cj_search; jj++) for (ii = -ci_search; ii <= ci_search; ii++) { index3 = SubvectorEltIndex(sub_tmpRF, i + ii, j + jj, k + kk); if (!(marker[rpx + ii][rpy + jj][rpz + kk]) && (fabs(tmpRFp[index3]) > Tiny)) { ixx[npts + cpts] = rpx + ii; iyy[npts + cpts] = rpy + jj; izz[npts + cpts] = rpz + kk; cval[cpts++] = tmpRFp[index3]; } } } for (i2 = 0; i2 < npts; i2++) w_tmp[i2] = w[i2]; /*-------------------------------------------------- * Conditioning to external data is done here. *--------------------------------------------------*/ if (cpts > 0) { /* Compute the submatrices */ for (j2 = 0; j2 < npts + cpts; j2++) { di = abs(rpx - ixx[j2]); dj = abs(rpy - iyy[j2]); dk = abs(rpz - izz[j2]); b[j2] = cov[di][dj][dk]; for (i2 = 0; i2 < npts + cpts; i2++) { di = abs(ixx[i2] - ixx[j2]); dj = abs(iyy[i2] - iyy[j2]); dk = abs(izz[i2] - izz[j2]); A = cov[di][dj][dk]; if (i2 < npts && j2 >= npts) A12[i2][j2 - npts] = A; if (i2 >= npts && j2 < npts) A21[i2 - npts][j2] = A; if (i2 >= npts && j2 >= npts) A22[i2 - npts][j2 - npts] = A; } } /* Compute b2' = b2 - A21 * A11_inv * b1 and augment b1 */ for (i2 = 0; i2 < cpts; i2++) b2[i2] = b[i2 + npts]; for (i2 = 0; i2 < npts; i2++) b_tmp[i2] = b[i2]; dposl_(A11, &npts, &npts, b_tmp); for (i2 = 0; i2 < cpts; i2++) { sum = 0.0; for (j2 = 0; j2 < npts; j2++) { sum += A21[i2][j2] * b_tmp[j2]; } b2[i2] -= sum; } for (i2 = 0; i2 < cpts; i2++) b[i2 + npts] = b2[i2]; /* Compute A22' = A22 - A21 * A11_inv * A12 */ for (j2 = 0; j2 < cpts; j2++) for (i2 = 0; i2 < npts; i2++) M[j2][i2] = A12[i2][j2]; if (npts > 0) { for (i2 = 0; i2 < cpts; i2++) dposl_(A11, &npts, &npts, M[i2]); } for (j2 = 0; j2 < cpts; j2++) for (i2 = 0; i2 < cpts; i2++) { sum = 0.0; for (k2 = 0; k2 < npts; k2++) sum += A21[i2][k2] * M[j2][k2]; A22[i2][j2] -= sum; } m = 0; for (j2 = 0; j2 < cpts; j2++) for (i2 = 0; i2 < cpts; i2++) A_sub[m++] = A22[i2][j2]; /* Compute x2 where A22*x2 = b2' */ dpofa_(A_sub, &cpts, &cpts, &ierr); dposl_(A_sub, &cpts, &cpts, b2); /* Compute w_tmp where A11*w_tmp = (b1 - A12*b2) */ if (npts > 0) { for (i2 = 0; i2 < npts; i2++) { sum = 0.0; for (k2 = 0; k2 < cpts; k2++) sum += A12[i2][k2] * b2[k2]; w_tmp[i2] = b[i2] - sum; } dposl_(A11, &npts, &npts, w_tmp); } /* Fill in the rest of w_tmp with b2 */ for (i2 = npts; i2 < npts + cpts; i2++) { w_tmp[i2] = b2[i2]; value[i2] = cval[i2 - npts]; } /* Recompute csigma */ csigma = 0.0; for (i2 = 0; i2 < npts + cpts; i2++) csigma += w_tmp[i2] * b[i2]; csigma = sqrt(cov[0][0][0] - csigma); } /*-------------------------------------------------- * End of external conditioning *--------------------------------------------------*/ cmean = 0.0; for (m = 0; m < npts + cpts; m++) cmean += w_tmp[m] * value[m]; /* uni = fieldp[index1]; */ uni = Rand(); gauinv_(&uni, &gau, &ierr); tmpRFp[index2] = csigma * gau + cmean; /* Cutoff tail values if required */ if (dist_type > 1) { if (tmpRFp[index2] < low_cutoff) tmpRFp[index2] = low_cutoff; if (tmpRFp[index2] > high_cutoff) tmpRFp[index2] = high_cutoff; } } /* if( abs(tmpRFp[index2]) < Tiny ) */ } /* end of triple for-loops over i,j,k */ /* Update the marker vector */ imin = rpx - iLxp1; if (imin < -iLx) imin += iLxp1; jmin = rpy - iLyp1; if (jmin < -iLy) jmin += iLyp1; kmin = rpz - iLzp1; if (kmin < -iLz) kmin += iLzp1; for (kk = kmin; kk <= 2 * iLz; kk += iLzp1) for (jj = jmin; jj <= 2 * iLy; jj += iLyp1) for (ii = imin; ii <= 2 * iLx; ii += iLxp1) { marker[ii][jj][kk] = 1; } } /* if(...) */ } /* n loop */ /* Make log-normal if requested. Note that low * and high cutoffs are already accomplished. */ if ((dist_type == 1) || (dist_type == 3)) { GrGeomInLoop(i, j, k, gr_geounit, ref, ix, iy, iz, nx, ny, nz, { index1 = SubvectorEltIndex(sub_field, i, j, k); index2 = SubvectorEltIndex(sub_tmpRF, i, j, k); fieldp[index1] = mean * exp((sigma) * tmpRFp[index2]); });
void ComputeTop(Problem * problem, /* General problem information */ ProblemData *problem_data /* Contains geometry information for the problem */ ) { GrGeomSolid *gr_solid = ProblemDataGrDomain(problem_data); Vector *top = ProblemDataIndexOfDomainTop(problem_data); Vector *perm_x = ProblemDataPermeabilityX(problem_data); Grid *grid2d = VectorGrid(top); SubgridArray *grid2d_subgrids = GridSubgrids(grid2d); /* use perm grid as top is 2D and want to loop over Z */ Grid *grid3d = VectorGrid(perm_x); SubgridArray *grid3d_subgrids = GridSubgrids(grid3d); double *top_data; int index; VectorUpdateCommHandle *handle; (void)problem; InitVectorAll(top, -1); // PFVConstInit(-1, top); int is; ForSubgridI(is, grid3d_subgrids) { Subgrid *grid2d_subgrid = SubgridArraySubgrid(grid2d_subgrids, is); Subgrid *grid3d_subgrid = SubgridArraySubgrid(grid3d_subgrids, is); Subvector *top_subvector = VectorSubvector(top, is); int grid3d_ix = SubgridIX(grid3d_subgrid); int grid3d_iy = SubgridIY(grid3d_subgrid); int grid3d_iz = SubgridIZ(grid3d_subgrid); int grid2d_iz = SubgridIZ(grid2d_subgrid); int grid3d_nx = SubgridNX(grid3d_subgrid); int grid3d_ny = SubgridNY(grid3d_subgrid); int grid3d_nz = SubgridNZ(grid3d_subgrid); int grid3d_r = SubgridRX(grid3d_subgrid); top_data = SubvectorData(top_subvector); int i, j, k; GrGeomInLoop(i, j, k, gr_solid, grid3d_r, grid3d_ix, grid3d_iy, grid3d_iz, grid3d_nx, grid3d_ny, grid3d_nz, { index = SubvectorEltIndex(top_subvector, i, j, grid2d_iz); if (top_data[index] < k) { top_data[index] = k; } });
void PermeabilityFace( Vector *zperm, Vector *permeability) { PFModule *this_module = ThisPFModule; InstanceXtra *instance_xtra = (InstanceXtra *)PFModuleInstanceXtra(this_module); PublicXtra *public_xtra = (PublicXtra *)PFModulePublicXtra(this_module); Grid *z_grid = (instance_xtra -> z_grid); VectorUpdateCommHandle *handle; SubgridArray *subgrids; Subgrid *subgrid; Subvector *subvector_pc, *subvector_pf; int ix, iy, iz; int nx, ny, nz; double dx, dy, dz; int nx_pc, ny_pc, nz_pc; int nx_pf, ny_pf, nz_pf; int pci, pfi; int sg, i, j, k; int flopest; double *pf, *pc_l, *pc_u; /*----------------------------------------------------------------------- * Begin timing *-----------------------------------------------------------------------*/ BeginTiming(public_xtra -> time_index); /*----------------------------------------------------------------------- * exchange boundary data for cell permeability values *-----------------------------------------------------------------------*/ handle = InitVectorUpdate(permeability, VectorUpdateAll); FinalizeVectorUpdate(handle); /*----------------------------------------------------------------------- * compute the z-face permeabilities for each subgrid *-----------------------------------------------------------------------*/ subgrids = GridSubgrids(z_grid); ForSubgridI(sg, subgrids) { subgrid = SubgridArraySubgrid(subgrids, sg); subvector_pc = VectorSubvector(permeability, sg); subvector_pf = VectorSubvector(zperm, sg); ix = SubgridIX(subgrid); iy = SubgridIY(subgrid); iz = SubgridIZ(subgrid); nx = SubgridNX(subgrid); ny = SubgridNY(subgrid); nz = SubgridNZ(subgrid); dx = SubgridDX(subgrid); dy = SubgridDY(subgrid); dz = SubgridDZ(subgrid); nx_pc = SubvectorNX(subvector_pc); ny_pc = SubvectorNY(subvector_pc); nz_pc = SubvectorNZ(subvector_pc); nx_pf = SubvectorNX(subvector_pf); ny_pf = SubvectorNY(subvector_pf); nz_pf = SubvectorNZ(subvector_pf); flopest = nx_pf * ny_pf * nz_pf; pc_l = SubvectorElt(subvector_pc, ix ,iy ,iz-1); pc_u = SubvectorElt(subvector_pc, ix ,iy ,iz ); pf = SubvectorElt(subvector_pf, ix ,iy ,iz); pci = 0; pfi = 0; BoxLoopI2(i,j,k, ix,iy,iz,nx,ny,nz, pci,nx_pc,ny_pc,nz_pc,1,1,1, pfi,nx_pf,ny_pf,nz_pf,1,1,1, { pf[pfi] = Mean( pc_l[pci], pc_u[pci] ); });
void PFVLinearSum( /* LinearSum : z = a * x + b * y */ double a, Vector *x, double b, Vector *y, Vector *z) { double c; Vector *v1, *v2; int test; Grid *grid = VectorGrid(x); Subgrid *subgrid; Subvector *x_sub; Subvector *y_sub; Subvector *z_sub; double *yp, *xp, *zp; int ix, iy, iz; int nx, ny, nz; int nx_x, ny_x, nz_x; int nx_y, ny_y, nz_y; int nx_z, ny_z, nz_z; int sg, i, j, k, i_x, i_y, i_z; if ((b == ONE) && (z == y)) /* BLAS usage: axpy y <- ax+y */ { PFVAxpy(a, x, y); return; } if ((a == ONE) && (z == x)) /* BLAS usage: axpy x <- by+x */ { PFVAxpy(b, y, x); return; } /* Case: a == b == 1.0 */ if ((a == ONE) && (b == ONE)) { PFVSum(x, y, z); return; } /* Cases: (1) a == 1.0, b = -1.0, (2) a == -1.0, b == 1.0 */ if ((test = ((a == ONE) && (b == -ONE))) || ((a == -ONE) && (b == ONE))) { v1 = test ? y : x; v2 = test ? x : y; PFVDiff(v2, v1, z); return; } /* Cases: (1) a == 1.0, b == other or 0.0, (2) a == other or 0.0, b == 1.0 */ /* if a or b is 0.0, then user should have called N_VScale */ if ((test = (a == ONE)) || (b == ONE)) { c = test ? b : a; v1 = test ? y : x; v2 = test ? x : y; PFVLin1(c, v1, v2, z); return; } /* Cases: (1) a == -1.0, b != 1.0, (2) a != 1.0, b == -1.0 */ if ((test = (a == -ONE)) || (b == -ONE)) { c = test ? b : a; v1 = test ? y : x; v2 = test ? x : y; PFVLin2(c, v1, v2, z); return; } /* Case: a == b */ /* catches case both a and b are 0.0 - user should have called N_VConst */ if (a == b) { PFVScaleSum(a, x, y, z); return; } /* Case: a == -b */ if (a == -b) { PFVScaleDiff(a, x, y, z); return; } /* Do all cases not handled above: * (1) a == other, b == 0.0 - user should have called N_VScale * (2) a == 0.0, b == other - user should have called N_VScale * (3) a,b == other, a !=b, a != -b */ ForSubgridI(sg, GridSubgrids(grid)) { subgrid = GridSubgrid(grid, sg); z_sub = VectorSubvector(z, sg); x_sub = VectorSubvector(x, sg); y_sub = VectorSubvector(y, sg); ix = SubgridIX(subgrid); iy = SubgridIY(subgrid); iz = SubgridIZ(subgrid); nx = SubgridNX(subgrid); ny = SubgridNY(subgrid); nz = SubgridNZ(subgrid); nx_x = SubvectorNX(x_sub); ny_x = SubvectorNY(x_sub); nz_x = SubvectorNZ(x_sub); nx_y = SubvectorNX(y_sub); ny_y = SubvectorNY(y_sub); nz_y = SubvectorNZ(y_sub); nx_z = SubvectorNX(z_sub); ny_z = SubvectorNY(z_sub); nz_z = SubvectorNZ(z_sub); zp = SubvectorElt(z_sub, ix, iy, iz); xp = SubvectorElt(x_sub, ix, iy, iz); yp = SubvectorElt(y_sub, ix, iy, iz); i_x = 0; i_y = 0; i_z = 0; BoxLoopI3(i, j, k, ix, iy, iz, nx, ny, nz, i_x, nx_x, ny_x, nz_x, 1, 1, 1, i_y, nx_y, ny_y, nz_y, 1, 1, 1, i_z, nx_z, ny_z, nz_z, 1, 1, 1, { zp[i_z] = a * xp[i_x] + b * yp[i_y]; });
GrGeomExtentArray *GrGeomCreateExtentArray( SubgridArray *subgrids, int xl_ghost, int xu_ghost, int yl_ghost, int yu_ghost, int zl_ghost, int zu_ghost) { Background *bg = GlobalsBackground; GrGeomExtentArray *extent_array; GrGeomExtents *extents; int size; Subgrid *subgrid; int ref; int bg_ix, bg_iy, bg_iz; int bg_nx, bg_ny, bg_nz; int is; size = SubgridArraySize(subgrids); extents = ctalloc(GrGeomExtents, size); ForSubgridI(is, subgrids) { subgrid = SubgridArraySubgrid(subgrids, is); /* compute background grid extents on MaxRefLevel index space */ ref = (int)pow(2.0, GlobalsMaxRefLevel); bg_ix = BackgroundIX(bg) * ref; bg_iy = BackgroundIY(bg) * ref; bg_iz = BackgroundIZ(bg) * ref; bg_nx = BackgroundNX(bg) * ref; bg_ny = BackgroundNY(bg) * ref; bg_nz = BackgroundNZ(bg) * ref; ref = (int)Pow2(GlobalsMaxRefLevel); /*------------------------------------------ * set the lower extent values *------------------------------------------*/ if (xl_ghost > -1) { xl_ghost = pfmax(xl_ghost, 1); GrGeomExtentsIXLower(extents[is]) = (SubgridIX(subgrid) - xl_ghost) * ref; } else { GrGeomExtentsIXLower(extents[is]) = bg_ix; } if (yl_ghost > -1) { yl_ghost = pfmax(yl_ghost, 1); GrGeomExtentsIYLower(extents[is]) = (SubgridIY(subgrid) - yl_ghost) * ref; } else { GrGeomExtentsIYLower(extents[is]) = bg_iy; } if (zl_ghost > -1) { zl_ghost = pfmax(zl_ghost, 1); GrGeomExtentsIZLower(extents[is]) = (SubgridIZ(subgrid) - zl_ghost) * ref; } else { GrGeomExtentsIZLower(extents[is]) = bg_iz; } /*------------------------------------------ * set the upper extent values *------------------------------------------*/ if (xu_ghost > -1) { xu_ghost = pfmax(xu_ghost, 1); GrGeomExtentsIXUpper(extents[is]) = (SubgridIX(subgrid) + SubgridNX(subgrid) + xu_ghost) * ref - 1; } else { GrGeomExtentsIXUpper(extents[is]) = bg_ix + bg_nx - 1; } if (yu_ghost > -1) { yu_ghost = pfmax(yu_ghost, 1); GrGeomExtentsIYUpper(extents[is]) = (SubgridIY(subgrid) + SubgridNY(subgrid) + yu_ghost) * ref - 1; } else { GrGeomExtentsIYUpper(extents[is]) = bg_iy + bg_ny - 1; } if (zu_ghost > -1) { zu_ghost = pfmax(zu_ghost, 1); GrGeomExtentsIZUpper(extents[is]) = (SubgridIZ(subgrid) + SubgridNZ(subgrid) + zu_ghost) * ref - 1; } else { GrGeomExtentsIZUpper(extents[is]) = bg_iz + bg_nz - 1; } /*------------------------------------------ * convert to "octree coordinates" *------------------------------------------*/ /* Moved into the loop by SGS 7/8/98, was lying outside the is * loop which was an error (accessing invalid array elements) */ GrGeomExtentsIXLower(extents[is]) -= bg_ix; GrGeomExtentsIYLower(extents[is]) -= bg_iy; GrGeomExtentsIZLower(extents[is]) -= bg_iz; GrGeomExtentsIXUpper(extents[is]) -= bg_ix; GrGeomExtentsIYUpper(extents[is]) -= bg_iy; GrGeomExtentsIZUpper(extents[is]) -= bg_iz; }