Ejemplo n.º 1
0
static amf0_data_t* _amf0_data(SV* sv) {
    amf0_data_t* d;

    if (NULL == sv || !SvOK(sv)) {
        d = (amf0_data_t*)amf0_null_init();
    }
    else if (SvPOKp(sv)) {
        STRLEN len;
        char*  c = SvPV(sv, len);

        d = (amf0_data_t*)amf0_string_init_len(c, len);
    }
    else if (SvNOKp(sv)) {
        d = (amf0_data_t*)amf0_number_init((double)SvNVX(sv));
    }
    else if (SvIOK_UV(sv)) {
        d = (amf0_data_t*)amf0_number_init((double)SvUV(sv));
    }
    else if (SvIOKp(sv)) {
        d = (amf0_data_t*)amf0_number_init((double)SvIV(sv));
    }
    else if (SvROK(sv)) {
        d = _amf0_data_rv(SvRV(sv));
    }
    else {
        Perl_croak(aTHX_ "Data::AMF::XS doesn't support SvTYPE: %d\n", SvTYPE(sv));
    }

    return d;
}
Ejemplo n.º 2
0
static void pe_tracevar(pe_watcher *wa, SV *sv, int got) {
    /* Adapted from tkGlue.c

       We are a "magic" set processor.
       So we are (I think) supposed to look at "private" flags 
       and set the public ones if appropriate.
       e.g. "chop" sets SvPOKp as a hint but not SvPOK

       presumably other operators set other private bits.

       Question are successive "magics" called in correct order?

       i.e. if we are tracing a tied variable should we call 
       some magic list or be careful how we insert ourselves in the list?
    */

    pe_ioevent *ev;

    if (SvPOKp(sv)) SvPOK_on(sv);
    if (SvNOKp(sv)) SvNOK_on(sv);
    if (SvIOKp(sv)) SvIOK_on(sv);

    ev = (pe_ioevent*) (*wa->vtbl->new_event)(wa);
    ++ev->base.hits;
    ev->got |= got;
    queueEvent((pe_event*) ev);
}
Ejemplo n.º 3
0
/* Entry point for serialization. Dumps generic SVs and delegates
 * to more specialized functions for RVs, etc. */
void
ddl_dump_sv(pTHX_ ddl_encoder_t *enc, SV *src)
{
  SvGETMAGIC(src);

  /* dump strings */
  if (SvPOKp(src)) {
    STRLEN len;
    char *str = SvPV(src, len);
    BUF_SIZE_ASSERT(enc, 2 + len);
    ddl_dump_pv(aTHX_ enc, str, len, SvUTF8(src));
  }
  /* dump floats */
  else if (SvNOKp(src)) {
    BUF_SIZE_ASSERT(enc, NV_DIG + 32);
    Gconvert(SvNVX(src), NV_DIG, 0, enc->pos);
    enc->pos += strlen(enc->pos);
  }
  /* dump ints */
  else if (SvIOKp(src)) {
    /* we assume we can always read an IV as a UV and vice versa
     * we assume two's complement
     * we assume no aliasing issues in the union */
    if (SvIsUV(src) ? SvUVX(src) <= 59000
                    : SvIVX(src) <= 59000 && SvIVX(src) >= -59000)
    {
      /* optimise the "small number case"
       * code will likely be branchless and use only a single multiplication
       * works for numbers up to 59074 */
      I32 i = SvIVX(src);
      U32 u;
      char digit, nz = 0;

      BUF_SIZE_ASSERT(enc, 6);

      *enc->pos = '-'; enc->pos += i < 0 ? 1 : 0;
      u = i < 0 ? -i : i;

      /* convert to 4.28 fixed-point representation */
      u *= ((0xfffffff + 10000) / 10000); /* 10**5, 5 fractional digits */

      /* now output digit by digit, each time masking out the integer part
       * and multiplying by 5 while moving the decimal point one to the right,
       * resulting in a net multiplication by 10.
       * we always write the digit to memory but conditionally increment
       * the pointer, to enable the use of conditional move instructions. */
      digit = u >> 28; *enc->pos = digit + '0'; enc->pos += (nz = nz || digit); u = (u & 0xfffffffUL) * 5;
      digit = u >> 27; *enc->pos = digit + '0'; enc->pos += (nz = nz || digit); u = (u & 0x7ffffffUL) * 5;
      digit = u >> 26; *enc->pos = digit + '0'; enc->pos += (nz = nz || digit); u = (u & 0x3ffffffUL) * 5;
      digit = u >> 25; *enc->pos = digit + '0'; enc->pos += (nz = nz || digit); u = (u & 0x1ffffffUL) * 5;
      digit = u >> 24; *enc->pos = digit + '0'; enc->pos += 1; /* correctly generate '0' */
    }
    else {
Ejemplo n.º 4
0
static void perl_call_signal(PERL_SCRIPT_REC *script, SV *func,
			     int signal_id, gconstpointer *args)
{
	dSP;

	PERL_SIGNAL_ARGS_REC *rec;
	SV *sv, *perlarg, *saved_args[SIGNAL_MAX_ARGUMENTS];
	AV *av;
        void *arg;
	int n;


	ENTER;
	SAVETMPS;

	PUSHMARK(sp);

	/* push signal argument to perl stack */
	rec = perl_signal_args_find(signal_id);

        memset(saved_args, 0, sizeof(saved_args));
	for (n = 0; n < SIGNAL_MAX_ARGUMENTS &&
		    rec != NULL && rec->args[n] != NULL; n++) {
		arg = (void *) args[n];

                if (strncmp(rec->args[n], "glistptr_", 9) == 0) {
			/* pointer to linked list - push as AV */
			GList *tmp, **ptr;
                        int is_iobject, is_str;

                        is_iobject = strcmp(rec->args[n]+9, "iobject") == 0;
                        is_str = strcmp(rec->args[n]+9, "char*") == 0;
			av = newAV();

			ptr = arg;
			for (tmp = *ptr; tmp != NULL; tmp = tmp->next) {
				sv = is_iobject ? iobject_bless((SERVER_REC *) tmp->data) :
					is_str ? new_pv(tmp->data) :
					irssi_bless_plain(rec->args[n]+9, tmp->data);
				av_push(av, sv);
			}

			saved_args[n] = perlarg = newRV_noinc((SV *) av);
                } else if (strcmp(rec->args[n], "int") == 0)
                        perlarg = newSViv((IV)arg);
                else if (arg == NULL)
                        perlarg = &PL_sv_undef;
                else if (strcmp(rec->args[n], "string") == 0)
                        perlarg = new_pv(arg);
                else if (strcmp(rec->args[n], "ulongptr") == 0)
                        perlarg = newSViv(*(unsigned long *) arg);
                else if (strcmp(rec->args[n], "intptr") == 0)
                        saved_args[n] = perlarg = newRV_noinc(newSViv(*(int *) arg));
                else if (strncmp(rec->args[n], "gslist_", 7) == 0) {
			/* linked list - push as AV */
			GSList *tmp;
			int is_iobject;

                        is_iobject = strcmp(rec->args[n]+7, "iobject") == 0;
			av = newAV();
			for (tmp = arg; tmp != NULL; tmp = tmp->next) {
				sv = is_iobject ? iobject_bless((SERVER_REC *) tmp->data) :
					irssi_bless_plain(rec->args[n]+7, tmp->data);
				av_push(av, sv);
			}

			perlarg = newRV_noinc((SV *) av);
		} else if (strcmp(rec->args[n], "iobject") == 0) {
			/* "irssi object" - any struct that has
			   "int type; int chat_type" as it's first
			   variables (server, channel, ..) */
			perlarg = iobject_bless((SERVER_REC *) arg);
		} else if (strcmp(rec->args[n], "siobject") == 0) {
			/* "simple irssi object" - any struct that has
			   int type; as it's first variable (dcc) */
			perlarg = simple_iobject_bless((SERVER_REC *) arg);
		} else {
			/* blessed object */
			perlarg = plain_bless(arg, rec->args[n]);
		}
		XPUSHs(sv_2mortal(perlarg));
	}

	PUTBACK;
	perl_call_sv(func, G_EVAL|G_DISCARD);
	SPAGAIN;

	if (SvTRUE(ERRSV)) {
		char *error = g_strdup(SvPV_nolen(ERRSV));
		signal_emit("script error", 2, script, error);
                g_free(error);
                rec = NULL;
	}

        /* restore arguments the perl script modified */
	for (n = 0; n < SIGNAL_MAX_ARGUMENTS &&
		    rec != NULL && rec->args[n] != NULL; n++) {
		arg = (void *) args[n];

		if (saved_args[n] == NULL)
                        continue;

		if (strcmp(rec->args[n], "intptr") == 0) {
			int *val = arg;
			*val = SvIV(SvRV(saved_args[n]));
		} else if (strncmp(rec->args[n], "glistptr_", 9) == 0) {
                        GList **ret = arg;
			GList *out = NULL;
                        void *val;
                        int count;

			av = (AV *) SvRV(saved_args[n]);
                        count = av_len(av);
			while (count-- >= 0) {
				sv = av_shift(av);
				if (SvPOKp(sv))
					val = g_strdup(SvPV_nolen(sv));
				else
                                        val = GINT_TO_POINTER(SvIV(sv));

				out = g_list_append(out, val);
			}

			if (strcmp(rec->args[n]+9, "char*") == 0)
                                g_list_foreach(*ret, (GFunc) g_free, NULL);
			g_list_free(*ret);
                        *ret = out;
		}
	}

	FREETMPS;
	LEAVE;
}
Ejemplo n.º 5
0
// This function reads the various JavaBin datatypes and returns a Perl SV.
// Different datatypes are jumped to view a lookup in an array of computed gotos.
//
// The first group (undef to enum) use the entire tag for the index of the type.
//
// The second are matched by taking the tag byte, shifting it by 5 so to only read
// the first 3 bits of the tag byte, giving it a range or 0-7 inclusive.
//
// To store both in one array the second group have 18 added to them. See DISPATCH.
//
// The remaining 5 bits can then be used to store the size of the datatype, e.g. how
// many chars in a string, this therefore has a range of 0-31, if the size exceeds or
// matches this then an additional vint is added.
//
// The overview of the tag byte is therefore TTTSSSSS with T and S being type and size.
static SV* read_sv(pTHX) {
    void* dispatch[] = {
        &&read_undef,
        &&read_bool,
        &&read_bool,
        &&read_byte,
        &&read_short,
        &&read_double,
        &&read_int,
        &&read_long,
        &&read_float,
        &&read_date,
        &&read_map,
        &&read_solr_doc,
        &&read_solr_doc_list,
        &&read_byte_array,
        &&read_iterator,
        NULL,
        NULL,
        NULL,
        &&read_enum,
        &&read_string,
        &&read_small_int,
        &&read_small_long,
        &&read_array,
        &&read_map,
        &&read_map,
    };

    in++;

    goto *dispatch[in[-1] >> 5 ? (in[-1] >> 5) + 18 : in[-1]];

read_undef:
    return &PL_sv_undef;
read_bool: {
        SV *rv = newSV_type(SVt_IV), *sv = in[-1] == 1 ? bool_true : bool_false;

        SvREFCNT(sv)++;
        SvROK_on(rv);
        SvRV_set(rv, sv);

        return rv;
    }
read_byte:
    return newSViv((int8_t) *in++);
read_short: {
        const int16_t s = in[0] << 8 | in[1];

        in += 2;

        return newSViv(s);
    }
read_double: {
        // For perls with double length NVs this conversion is simple.
        // Read 8 bytes, cast to double, return. For long double perls
        // more magic is used, see read_float for more details.

        const int_double u = { (uint64_t) in[0] << 56 |
                               (uint64_t) in[1] << 48 |
                               (uint64_t) in[2] << 40 |
                               (uint64_t) in[3] << 32 |
                               (uint64_t) in[4] << 24 |
                               (uint64_t) in[5] << 16 |
                               (uint64_t) in[6] << 8  |
                               (uint64_t) in[7] };

        in += 8;

    #ifdef USE_LONG_DOUBLE
        char *str = alloca(snprintf(NULL, 0, "%.14f", u.d));

        sprintf(str, "%.14f", u.d);

        return newSVnv(strtold(str, NULL));
    #else
        return newSVnv(u.d);
    #endif
    }
read_int: {
        const int32_t i = in[0] << 24 | in[1] << 16 | in[2] << 8 | in[3];

        in += 4;

        return newSViv(i);
    }
read_long: {
        const int64_t l = (uint64_t) in[0] << 56 |
                          (uint64_t) in[1] << 48 |
                          (uint64_t) in[2] << 40 |
                          (uint64_t) in[3] << 32 |
                          (uint64_t) in[4] << 24 |
                          (uint64_t) in[5] << 16 |
                          (uint64_t) in[6] << 8  |
                          (uint64_t) in[7];

        in += 8;

        return newSViv(l);
    }
read_float: {
        // JavaBin has a 4byte float format, NVs in perl are double or long double,
        // therefore a little magic is required. Read the 4 bytes into an int in the
        // correct endian order. Re-read these bits as a float, stringify this float,
        // then finally numify the string into a double or long double.
        const int_float u = { in[0] << 24 | in[1] << 16 | in[2] << 8 | in[3] };

        in += 4;

        char *str = alloca(snprintf(NULL, 0, "%f", u.f));

        sprintf(str, "%f", u.f);

    #ifdef USE_LONG_DOUBLE
        return newSVnv(strtold(str, NULL));
    #else
        return newSVnv(strtod(str, NULL));
    #endif
    }
read_date: {
        const int64_t date_ms = (uint64_t) in[0] << 56 |
                                (uint64_t) in[1] << 48 |
                                (uint64_t) in[2] << 40 |
                                (uint64_t) in[3] << 32 |
                                (uint64_t) in[4] << 24 |
                                (uint64_t) in[5] << 16 |
                                (uint64_t) in[6] << 8  |
                                (uint64_t) in[7];

        in += 8;

        const time_t date = date_ms / 1000;

        const struct tm *t = gmtime(&date);

        char date_str[25];

        sprintf(date_str, "%u-%02u-%02uT%02u:%02u:%02u.%03uZ", t->tm_year + 1900,
                t->tm_mon + 1,
                t->tm_mday,
                t->tm_hour,
                t->tm_min,
                t->tm_sec,
                (uint32_t) (date_ms % 1000));

        return newSVpvn(date_str, 24);
    }
read_solr_doc:
    in++;     // Assume a solr doc is a map.
read_map: {
        HV *hv = (HV*)newSV_type(SVt_PVHV);

        uint32_t len = in[-1] >> 5 ? READ_LEN : read_v_int();

        while (len--) {
            cached_key key;

            in++;

            const uint32_t i = READ_LEN;

            if (i)
                key = cached_keys[i];
            else {
                in++;

                cached_keys[++cache_pos] = key = (cached_key){ (char*)in, 0, READ_LEN };

                uint8_t *key_str = in;

                in += key.len;

                // Set the UTF8 flag if we hit a high byte.
                while (key_str != in) {
                    if (*key_str++ & 128) {
                        key.flags = HVhek_UTF8;
                        break;
                    }
                }
            }

            hv_common(hv, NULL, key.key, key.len, key.flags, HV_FETCH_ISSTORE, read_sv(aTHX), 0);
        }

        SV *rv = newSV_type(SVt_IV);

        SvROK_on(rv);
        SvRV_set(rv, (SV*)hv);

        return rv;
    }
read_solr_doc_list: {
        HV *hv = (HV*)newSV_type(SVt_PVHV);

        // Assume values are in an array, skip tag & read_sv.
        in++;

        hv_set(hv, "numFound", read_sv(aTHX), numFound);
        hv_set(hv, "start",    read_sv(aTHX), start);
        hv_set(hv, "maxScore", read_sv(aTHX), maxScore);
        hv_set(hv, "docs",     read_sv(aTHX), docs);

        SV *rv = newSV_type(SVt_IV);

        SvROK_on(rv);
        SvRV_set(rv, (SV*)hv);

        return rv;
    }
read_byte_array: {
        AV *av = (AV*)newSV_type(SVt_PVAV);

        SSize_t len = read_v_int();

        SV **ary = safemalloc(len * sizeof(SV*));

        AvALLOC(av) = AvARRAY(av) = ary;
        AvFILLp(av) = AvMAX(av) = len - 1;

        while (len--)
            *ary++ = newSViv((int8_t) *in++);

        SV *rv = newSV_type(SVt_IV);

        SvROK_on(rv);
        SvRV_set(rv, (SV*)av);

        return rv;
    }
read_iterator: {
        AV *av = (AV*)newSV_type(SVt_PVAV);

        uint32_t len = 0;

        while (*in != 15)
            av_store(av, len++, read_sv(aTHX));

        in++;

        SV *rv = newSV_type(SVt_IV);

        SvROK_on(rv);
        SvRV_set(rv, (SV*)av);

        return rv;
    }
read_enum: {
        SV *sv = read_sv(aTHX); // small_int if +ve, int otherwise.

        sv_upgrade(sv, SVt_PVMG);

        in++;

        const STRLEN len = READ_LEN;

        char *str = sv_grow(sv, len + 1);

        memcpy(str, in, len);

        in += len;

        str[len] = '\0';

        SvCUR(sv) = len;

        SvFLAGS(sv) = SVf_IOK | SVp_IOK | SVs_OBJECT | SVf_POK | SVp_POK | SVt_PVMG | SVf_UTF8;

        HV *stash = CALL(gv_stashpvn, STR_WITH_LEN("JavaBin::Enum"), 0);

        SvREFCNT(stash)++;
        SvSTASH_set(sv, stash);

        SV *rv = newSV_type(SVt_IV);

        SvROK_on(rv);
        SvRV_set(rv, sv);

        return rv;
    }
read_string: {
        const STRLEN len = READ_LEN;

        SV *sv = newSV_type(SVt_PV);

        char *str = SvPVX(sv) = (char*)safemalloc(len);

        memcpy(str, in, len);

        SvCUR(sv) = SvLEN(sv) = len;
        SvFLAGS(sv) |= SVf_POK | SVp_POK | SVf_UTF8;

        in += len;

        return sv;
    }
read_small_int: {
        uint32_t result = in[-1] & 15;

        if (in[-1] & 16)
            result |= read_v_int() << 4;

        return newSViv(result);
    }
read_small_long: {
        uint64_t result = in[-1] & 15;

        // Inlined variable-length +ve long code, see read_v_int().
        if (in[-1] & 16) {
            uint8_t shift = 4;

            do result |= (*in++ & 127) << shift;
            while (in[-1] & 128 && (shift += 7));
        }

        return newSViv(result);
    }
read_array: {
        AV *av = (AV*)newSV_type(SVt_PVAV);

        SSize_t len = READ_LEN;

        SV **ary = safemalloc(len * sizeof(SV*));

        AvALLOC(av) = AvARRAY(av) = ary;
        AvFILLp(av) = AvMAX(av) = len - 1;

        while (len--)
            *ary++ = read_sv(aTHX);

        SV *rv = newSV_type(SVt_IV);

        SvROK_on(rv);
        SvRV(rv) = (SV*)av;

        return rv;
    }
}

static void grow_out(pTHX_ const STRLEN want) {
    const STRLEN len = out_buf - (uint8_t *)SvPVX(out_sv);

    // If we want more than we have, realloc the string.
    if (len + want >= SvLEN(out_sv)) {
        sv_grow(out_sv, len + want);

        out_buf = (uint8_t *)SvPVX(out_sv) + len;
    }
}

static void write_v_int(uint32_t i) {
    while (i & ~127) {
        *out_buf++ = (i & 127) | 128;

        i >>= 7;
    }

    *out_buf++ = i;
}

static void write_shifted_tag(uint8_t tag, uint32_t len) {
    if (len < 31)
        *out_buf++ = tag | len;
    else {
        *out_buf++ = tag | 31;

        write_v_int(len - 31);
    }
}

static void write_sv(pTHX_ SV *sv) {
    SvGETMAGIC(sv);

    if (SvPOKp(sv)) {
        const STRLEN len = SvCUR(sv);

        grow_out(aTHX_ len + 5);

        write_shifted_tag(32, len);

        memcpy(out_buf, SvPVX(sv), len);

        out_buf += len;
    }
    else if (SvNOKp(sv)) {
        const int_double u = { .d = SvNV(sv) };

        grow_out(aTHX_ 9);

        *out_buf++ = 5;
        *out_buf++ = u.i >> 56;
        *out_buf++ = u.i >> 48;
        *out_buf++ = u.i >> 40;
        *out_buf++ = u.i >> 32;
        *out_buf++ = u.i >> 24;
        *out_buf++ = u.i >> 16;
        *out_buf++ = u.i >> 8;
        *out_buf++ = u.i;
    }
    else if (SvIOKp(sv)) {
Ejemplo n.º 6
0
int RPerl_SvPOKp(SV* input_sv) { return(SvPOKp(input_sv)); }
Ejemplo n.º 7
0
/* Converts perl values to equivalent JS values */
JSBool
PJS_ReflectPerl2JS(
    pTHX_ 
    JSContext *cx,
    JSObject *pobj,
    SV *ref,
    jsval *rval
) {
    PJS_Context *pcx = PJS_GET_CONTEXT(cx);
    JSObject *newobj = NULL;

    if(++pcx->svconv % 2000 == 0) {
	JSErrorReporter older;
	ENTER; SAVETMPS; /* Scope for finalizers */
	older = JS_SetErrorReporter(cx, NULL);
	if(pcx->svconv > 10000) {
	    JS_GC(cx);
	    pcx->svconv = 0;
	} else JS_MaybeGC(cx);
	JS_SetErrorReporter(cx, older);
	FREETMPS; LEAVE;
    }
    if(SvROK(ref)) {
	MAGIC *mg;
	/* First check old jsvisitors */
	if((newobj = PJS_IsPerlVisitor(aTHX_ pcx, SvRV(ref)))) {
	    PJS_DEBUG("Old jsvisitor returns\n");
	    *rval = OBJECT_TO_JSVAL(newobj);
	    return JS_TRUE;
	}

	if(SvMAGICAL(SvRV(ref)) && (mg = mg_find(SvRV(ref), PERL_MAGIC_tied))
	   && mg->mg_obj && sv_derived_from(mg->mg_obj, PJS_BOXED_PACKAGE)) {
	    PJS_DEBUG1("A magical ref %s, shortcircuit!\n", SvPV_nolen((SV*)mg->mg_obj));
	    ref = mg->mg_obj;
	}

	if(sv_derived_from(ref, PJS_BOXED_PACKAGE)) {
	    SV **fref = av_fetch((AV *)SvRV(SvRV(ref)), 2, 0);
	    assert(sv_derived_from(*fref, PJS_RAW_JSVAL));
	    *rval = (jsval)SvIV(SvRV(*fref));
	    return JS_TRUE;
	}

	if(sv_derived_from(ref, PJS_BOOLEAN)) {
	    *rval = SvTRUE(SvRV(ref)) ? JSVAL_TRUE : JSVAL_FALSE;
	    return JS_TRUE;
	}
	
	if(sv_isobject(ref)) {
	    newobj = PJS_NewPerlObject(aTHX_ cx, pobj, ref); 
	    if(newobj) {
		*rval = OBJECT_TO_JSVAL(newobj);
		return JS_TRUE;
	    }
	    return JS_FALSE;
	}
    }

    SvGETMAGIC(ref);

    if(!SvOK(ref)) /* undef */
        *rval = JSVAL_VOID;
    else if(SvIOK(ref) || SvIOKp(ref)) {
        if(SvIV(ref) <= JSVAL_INT_MAX)
            *rval = INT_TO_JSVAL(SvIV(ref));
        else JS_NewDoubleValue(cx, (double) SvIV(ref), rval);
    }
    else if(SvNOK(ref)) 
        JS_NewDoubleValue(cx, SvNV(ref), rval);
    else if(SvPOK(ref) || SvPOKp(ref)) {
        STRLEN len;
        char *str;
	SV *temp=NULL;
	if(SvREADONLY(ref)) {
	    temp = newSVsv(ref);
	    str = PJS_SvPV(temp, len);
	} else str = PJS_SvPV(ref, len);
	JSString *jstr = ((int)len >= 0)
	    ? JS_NewStringCopyN(cx, str, len)
	    : JS_NewUCStringCopyN(cx, (jschar *)str, -(int)len);
	sv_free(temp);
	if(!jstr) return JS_FALSE;
        *rval = STRING_TO_JSVAL(jstr);
    }
    else if(SvROK(ref)) { /* Plain reference */
        I32 type = SvTYPE(SvRV(ref));

        if(type == SVt_PVHV)
	    newobj = PJS_NewPerlHash(aTHX_ cx, pobj, ref);
	else if(type == SVt_PVAV)
	    newobj = PJS_NewPerlArray(aTHX_ cx, pobj, ref);
        else if(type == SVt_PVCV)
            newobj = PJS_NewPerlSub(aTHX_ cx, pobj, ref);            
	else
	    newobj = PJS_NewPerlScalar(aTHX_ cx, pobj, ref);
	if(!newobj) return JS_FALSE;
	*rval = OBJECT_TO_JSVAL(newobj);
    }
    else {
        warn("I have no idea what perl send us (it's of type %i), I'll pretend it's undef", SvTYPE(ref));
        *rval = JSVAL_VOID;
    }

    return JS_TRUE;
}