Ejemplo n.º 1
0
/**
 * Service routine. Must be regulary called by main program (NOT IN ISR!).
 * It does the following:
 * - Check if receive bufer contains anything.
 */
void lcdService(void) {
    static TICK8 tLcd = 0;
    static BYTE lcdNum=0; //Keypad to service
    BYTE c;

    //Enter every 40ms
    if ( TickGetDiff8bit(tLcd) >= ((TICK8)TICKS_PER_SECOND / (TICK8)25) )
    {
        tLcd = TickGet8bit();

        //Empty all keypad buffers
        //Get status byte from LCD
        if (lcdGetByte(lcdNum, LCD2S_CMD_GET_STATUS, &c) == 0) {
            //Has the LCD got keys to be read
            if (c & 0x80) {
                //Check if more space left in buffer - last byte of buffer can not be used, because that is when put=get, which indicates empty
                if ( ((kpadBufPut[lcdNum]+1)&KPAD_BUF_SIZE_MASK) != kpadBufGet[lcdNum]) {
                    //Get key from LCD
                    lcdGetByte(lcdNum, LCD2S_CMD_GET_KEY, &c);

                    //Add byte to kpadBuf, and increment put pointer
                    kpadBuf[lcdNum][ kpadBufPut[lcdNum]++ ] = c;
                    kpadBufPut[lcdNum] &= KPAD_BUF_SIZE_MASK;
                }
            }
        }

        //Increment keypad to service
        if (++lcdNum >= LCD2S_MAX_NUMBER) {
            lcdNum = 0; //Reset to first keypad
        }
    }
}
Ejemplo n.º 2
0
static void ProcessIO(void)
{
    static TICK8 tmr10ms = 0;
    
    //Enter each 10ms
    if ( TickGetDiff8bit(tmr10ms) >= ((TICK8)TICKS_PER_SECOND / (TICK8)100) )
    {
        tmr10ms = TickGet8bit();


    }
    

    //Convert next ADC channel, and store result in adcChannel array
    #if (defined(APP_USE_ADC8) || defined(APP_USE_ADC10)) && (ADC_CHANNELS > 0)
    {
        static BYTE adcChannel; //Current ADC channel. Value from 0 - n
        static BOOL ADC_Wait = 0;

        //Increment ADCChannel and start new convertion
        if (!ADC_Wait)
        {
            //Increment to next ADC channel
            if ((++adcChannel) >= ADC_CHANNELS)
            {
                adcChannel = 0;
            }
            
            //Check if current ADC channel (adcChannel) is configured to be ADC channel
            if (adcChannel < ((~ADCON1) & 0x0F))
            {
                //Convert next ADC Channel
                ADCON0 &= ~0x3C;
                ADCON0 |= (adcChannel << 2);
                ADCON0_ADON = 1;    //Switch on ADC
                ADCON0_GO = 1;      //Go
                ADC_Wait  = 1;
            }
            //Not ADC channel, set to 0
            else {
                AdcValues[ adcChannel ] = 0;
            }
        }
        
        //End of ADC Convertion: save data
        if ( ( ADC_Wait ) && ( !ADCON0_GO ) ) {
#if defined(APP_USE_ADC8)
            AdcValues[adcChannel] = ADRESH;
#elif defined(APP_USE_ADC10)
            //AdcValues[adcChannel] = (WORD) ((((WORD)ADRESH) << 8) | ((WORD)ADRESL));
            //AdcValues[adcChannel] = (WORD)((ADRESH*256)+ADRESL);
            AdcValues[adcChannel] = ((WORD)ADRESH << 8) | (WORD)ADRESL;
#endif
            ADC_Wait = 0;
        }
    }
    #endif
}
Ejemplo n.º 3
0
void RTC_Service( void )
{
	static TICK8 trtc = 0;
	// execute once per second
	 if ( TickGetDiff8bit(trtc) >= (TICK8)TICKS_PER_SECOND  )
    {	
	    trtc = TickGet8bit();
		ReadRTC();
		
	}
	
}		
Ejemplo n.º 4
0
/*
 * Main entry point.
 */
void main(void)
{
    static TICK8 t = 0;

#ifdef	HEATHERD
	NODE_INFO tcpServerNode;
	static TCP_SOCKET tcpSocketUser = INVALID_SOCKET;
	BYTE c;
#endif

    static BYTE testLED;
    testLED = 1;

    //Set SWDTEN bit, this will enable the watch dog timer
    WDTCON_SWDTEN = 1;
    aliveCntrMain = 0xff;   //Disable alive counter during initialization. Setting to 0xff disables it.

    //Initialize any application specific hardware.
    InitializeBoard();

    //Initialize all stack related components. Following steps must
    //be performed for all applications using PICmicro TCP/IP Stack.
    TickInit();    

    //Initialize buses
    busInit();

    //Initialize serial ports early, because they could be required for debugging
    if (appcfgGetc(APPCFG_USART1_CFG & APPCFG_USART_ENABLE)) {
        appcfgUSART();              //Configure the USART1
    }

    if (appcfgGetc(APPCFG_USART2_CFG & APPCFG_USART_ENABLE)) {
        appcfgUSART2();             //Configure the USART2
    }

    //After initializing all modules that use interrupts, enable global interrupts
    INTCON_GIEH = 1;
    INTCON_GIEL = 1;

    //Initialize file system.
    fsysInit();

    //Intialize HTTP Execution unit
    htpexecInit();

    //Initialize Stack and application related NV variables.
    appcfgInit();

    //First call appcfgCpuIOValues() and then only appcfgCpuIO()!!! This ensures the value are set, before enabling ports.
    appcfgCpuIOValues();    //Configure the CPU's I/O port pin default values
    appcfgCpuIO();          //Configure the CPU's I/O port pin directions - input or output
    
    appcfgADC();            //Configure ADC unit
    appcfgPWM();            //Configure PWM Channels

    //Serial configuration menu - display it for configured time and allow user to enter configuration menu
    scfInit(appcfgGetc(APPCFG_STARTUP_SER_DLY));
    
    //LCD Display Initialize
    lcdInit();

    //Initialize expansion board
    appcfgXboard();

    StackInit();

#if defined(STACK_USE_HTTP_SERVER)
    HTTPInit();
#endif

#if defined(STACK_USE_FTP_SERVER)
    FTPInit();
#endif

    //Intialise network componet of buses - only call after StackInit()!
    busNetInit();

    //Initializes events.
    evtInit();

    //Initializes "UDP Command Port" and "UDP Even Port".
    cmdInit();

    ioInit();

    #if (DEBUG_MAIN >= LOG_DEBUG)
        debugPutMsg(1); //@mxd:1:Starting main loop
    #endif

    /*
     * Once all items are initialized, go into infinite loop and let
     * stack items execute their tasks.
     * If application needs to perform its own task, it should be
     * done at the end of while loop.
     * Note that this is a "co-operative mult-tasking" mechanism
     * where every task performs its tasks (whether all in one shot
     * or part of it) and returns so that other tasks can do their
     * job.
     * If a task needs very long time to do its job, it must broken
     * down into smaller pieces so that other tasks can have CPU time.
     */

#ifdef HEATHERD
    //Create a TCP socket that listens on port 54123
    tcpSocketUser = TCPListen(HEATHERD);

#define HEATHERD_ENABLE (!(appcfgGetc(APPCFG_TRISA) & 1))
#define HEATHERD_WRITE_ENABLE (!(appcfgGetc(APPCFG_TRISA) & 2))

#endif
    
    while(1)
    {
        aliveCntrMain = 38;     //Reset if not services in 52.42ms x 38 = 2 seconds

        //Blink SYSTEM LED every second.
        if (appcfgGetc(APPCFG_SYSFLAGS) & APPCFG_SYSFLAGS_BLINKB6) {
            //Configure RB6 as output, and blink it every 500ms
            if ( TickGetDiff8bit(t) >= ((TICK8)TICKS_PER_SECOND / (TICK8)2) )
            {
                t = TickGet8bit();
                
                //If B6 is configured as input, change to output
                if (appcfgGetc(APPCFG_TRISB) & 0x40) {
                    appcfgPutc(APPCFG_TRISB, appcfgGetc(APPCFG_TRISB) & 0b10111111);
                }
          
                TRISB_RB6 = 0;
                LATB6 ^= 1;     //Toggle
                
                //Toggle IOR5E LED, if IOR5E is present
                if (appcfgGetc(APPCFG_XBRD_TYPE) == XBRD_TYPE_IOR5E) {
                    ior5eLatchData.bits.ledPWR ^= 1;    // Toggle
                }
            }
        }

        //This task performs normal stack task including checking for incoming packet,
        //type of packet and calling appropriate stack entity to process it.
        StackTask();

        //Service LCD display
        lcdService();
        
        //Process commands
        cmdTask();
        
        //Process events
        evtTask();

        //Process serial busses
        busTask();

        //I2C Task
        i2cTask();


#ifdef HEATHERD
        //Has a remote node made connection with the port we are listening on
        if ((tcpSocketUser != INVALID_SOCKET) && TCPIsConnected(tcpSocketUser)) {
    		if (HEATHERD_ENABLE) {
	
	            //Is there any data waiting for us on the TCP socket?
	            //Because of the design of the Modtronix TCP/IP stack we have to
	            //consume all data sent to us as soon as we detect it.
	            while(TCPIsGetReady(tcpSocketUser)) {
	                //We are only interrested in the first byte of the message.
	                TCPGet(tcpSocketUser, &c);
					if (HEATHERD_WRITE_ENABLE) serPutByte(c);
	            }
	            //Discard the socket buffer.
	            TCPDiscard(tcpSocketUser);
			    while (serIsGetReady() && TCPIsPutReady(tcpSocketUser)) {
					TCPPut(tcpSocketUser,serGetByte());
				}
				TCPFlush(tcpSocketUser);
	        } else {
				TCPDisconnect(tcpSocketUser);
			}
		}
#endif

#if defined(STACK_USE_HTTP_SERVER)
        //This is a TCP application.  It listens to TCP port 80
        //with one or more sockets and responds to remote requests.
        HTTPServer();
#endif

#if defined(STACK_USE_FTP_SERVER)
        FTPServer();
#endif

#if defined(STACK_USE_ANNOUNCE)
        DiscoveryTask();
#endif

#if defined(STACK_USE_NBNS)
        NBNSTask();
#endif

        //Add your application speicifc tasks here.
        ProcessIO();

        //For DHCP information, display how many times we have renewed the IP
        //configuration since last reset.
        if ( DHCPBindCount != myDHCPBindCount )
        {
            #if (DEBUG_MAIN >= LOG_INFO)
                debugPutMsg(2); //@mxd:2:DHCP Bind Count = %D
                debugPutByteHex(DHCPBindCount);
            #endif
            
            //Display new IP address
            #if (DEBUG_MAIN >= LOG_INFO)
                debugPutMsg(3); //@mxd:3:DHCP complete, IP = %D.%D.%D.%D
                debugPutByteHex(AppConfig.MyIPAddr.v[0]);
                debugPutByteHex(AppConfig.MyIPAddr.v[1]);
                debugPutByteHex(AppConfig.MyIPAddr.v[2]);
                debugPutByteHex(AppConfig.MyIPAddr.v[3]);
            #endif
            myDHCPBindCount = DHCPBindCount;
            
            #if defined(STACK_USE_ANNOUNCE)
                AnnounceIP();
            #endif             
        }
    }
}
Ejemplo n.º 5
0
///////////////////////////////////////////////////////////////////////////////
// Main entry point.
//
void main(void)
{
    static TICK8 t = 0;
    BYTE i;
    char strBuf[10];

    // Initialize any application specific hardware.
    InitializeBoard();

    // Initialize all stack related components.
    // Following steps must be performed for all applications using
    // PICmicro TCP/IP Stack.
    TickInit();

    // Initialize file system.
    fsysInit();

    // Intialize HTTP Execution unit
    htpexecInit();

    // Initialze serial port
    serInit();
    
    // Initialize Stack and application related NV variables.
    appcfgInit();
    appcfgUSART();        	// Configure the USART

#ifdef SER_USE_INTERRUPT    // Interrupt enabled serial ports have to be enabled
    serEnable();
#endif

    appcfgCpuIO();          // Configure the CPU's I/O port pin directions - input or output
    appcfgCpuIOValues();    // Configure the CPU's I/O port pin default values
    appcfgADC();            // Configure ADC unit
	appcfgPWM();			// Configure PWM unit
	
    // Serial configuration menu - display it for configured time and 
    // allow user to enter configuration menu
    scfInit( appcfgGetc( APPCFG_STARTUP_SER_DLY ) );

    StackInit();

#if defined(STACK_USE_HTTP_SERVER)
    HTTPInit();
#endif


#if defined( STACK_USE_DHCP ) || defined( STACK_USE_IP_GLEANING )
    // If DHCP is NOT enabled
    if ( ( appcfgGetc( APPCFG_NETFLAGS ) & APPCFG_NETFLAGS_DHCP ) == 0 ) {
		// Force IP address display update.
        myDHCPBindCount = 1;
        
#if defined( STACK_USE_DHCP )
        DHCPDisable();
#endif
    }
#endif

#if ( DEBUG_MAIN >= LOG_DEBUG )
        debugPutMsg(1); //@mxd:1:Starting main loop
#endif

	// Init VSCP functionality
	vscp_init();

	bInitialized = FALSE;	// Not initialized
    
#if defined(STACK_USE_NTP_SERVER)    
    // Initialize time 
    hour = 0;
	minute = 0;
	second = 0;
#endif	
	
	appcfgPutc( VSCP_DM_MATRIX_BASE, 0x00 );
 	appcfgPutc( VSCP_DM_MATRIX_BASE+1, 0x00 );
 	appcfgPutc( VSCP_DM_MATRIX_BASE+2, 0x00 );
 	appcfgPutc( VSCP_DM_MATRIX_BASE+3, 0x00 );
    
    
	//
    // Once all items are initialized, go into infinite loop and let
    // stack items execute their tasks.
    // If application needs to perform its own task, it should be
    // done at the end of while loop.
    // Note that this is a "co-operative mult-tasking" mechanism
    // where every task performs its tasks (whether all in one shot
    // or part of it) and returns so that other tasks can do their
    // job.
    // If a task needs very long time to do its job, it must broken
    // down into smaller pieces so that other tasks can have CPU time.
    //
    while ( 1 ) {
	    
	    // Used for initial delay to give stack and chip some time to
	    // initialize. If not used messages sent during this time will 
	    // fail.
        if  ( TickGet() > ( 5 * TICK_SECOND ) ) {
        	bInitialized = TRUE;
        }
	    
	    // We should do the ftp download every three hours
        //if ( TickGetDiff( TickGet(), loadTime ) >= ( 3 * 3600 * TICK_SECOND ) ) {
	    //	loadTime = TickGet();
	    //	bftpLoadWork = TRUE;
	    //}
	    
        // Blink SYSTEM LED every second.
        if ( appcfgGetc( APPCFG_SYSFLAGS ) & APPCFG_SYSFLAGS_BLINKB6 ) {
            if ( TickGetDiff8bit( t ) >= ((TICK8)( TICKS_PER_SECOND / 2 ) ) ) {
                t = TickGet8bit();
                TRISB_RB6 = 0;
                LATB6 ^= 1;
            }
        }

        // This task performs normal stack task including checking for incoming packet,
        // type of packet and calling appropriate stack entity to process it.
        StackTask();

#if defined(STACK_USE_HTTP_SERVER)
        // This is a TCP application.  It listens to TCP port 80
        // with one or more sockets and responds to remote requests.
        HTTPServer();
#endif

#if defined(STACK_USE_FTP_SERVER)
        FTPServer();
#endif

        // Add your application speicifc tasks here.
        ProcessIO();
        
#if defined(VSCP_USE_TCP )        
        // VSCP Task
        if ( bInitialized ) {
        	vscp_tcp_task();
        }
#endif        
        
        if ( bInitialized ) {
        	vscp_main_task();
			process_can_message();
			if ( g_can_error )
			{
				send_can_error_message( g_can_error );
				g_can_error = 0;
			}
        }
        
#if defined(STACK_USE_NTP_SERVER)        
        if ( bInitialized ) {
        	//ntp_task();
        }	
#endif        

        // For DHCP information, display how many times we have renewed the IP
        // configuration since last reset.
        if ( DHCPBindCount != myDHCPBindCount ) {
#if (DEBUG_MAIN >= LOG_INFO)
        	debugPutMsg( 2 ); 		// @mxd:2:DHCP Bind Count = %D
            debugPutByteHex(DHCPBindCount);
#endif
            
            // Display new IP address
#if (DEBUG_MAIN >= LOG_INFO)
            debugPutMsg( 3 ); 	//@mxd:3:DHCP complete, IP = %D.%D.%D.%D
            debugPutByteHex( AppConfig.MyIPAddr.v[ 0 ] );
            debugPutByteHex( AppConfig.MyIPAddr.v[ 1 ] );
            debugPutByteHex( AppConfig.MyIPAddr.v[ 2 ] );
            debugPutByteHex( AppConfig.MyIPAddr.v[ 3 ] );
#endif
            myDHCPBindCount = DHCPBindCount;
        }
    }
}
Ejemplo n.º 6
0
/*
 * Main entry point.
 */
void main(void)
{
    static TICK8 t = 0;
    BYTE i;
    char strBuf[10];

    /*
     * Initialize any application specific hardware.
     */
    InitializeBoard();

    /*
     * Initialize all stack related components.
     * Following steps must be performed for all applications using
     * PICmicro TCP/IP Stack.
     */
    TickInit();

    /*
     * Initialize file system.
     */
    fsysInit();

    //Intialize HTTP Execution unit
    htpexecInit();

    //Initialze serial port
    serInit();
    
    /*
     * Initialize Stack and application related NV variables.
     */
    appcfgInit();
    appcfgUSART();              //Configure the USART
    #ifdef SER_USE_INTERRUPT    //Interrupt enabled serial ports have to be enabled
    serEnable();
    #endif
    appcfgCpuIO();          //Configure the CPU's I/O port pin directions - input or output
    appcfgCpuIOValues();    //Configure the CPU's I/O port pin default values
    appcfgADC();            //Configure ADC unit

    //Serial configuration menu - display it for configured time and allow user to enter configuration menu
    scfInit(appcfgGetc(APPCFG_STARTUP_SER_DLY));

    StackInit();

#if defined(STACK_USE_HTTP_SERVER)
    HTTPInit();
#endif

#if defined(STACK_USE_FTP_SERVER)
    FTPInit();
#endif


#if defined(STACK_USE_DHCP) || defined(STACK_USE_IP_GLEANING)
    //If DHCP is NOT enabled
    if ((appcfgGetc(APPCFG_NETFLAGS) & APPCFG_NETFLAGS_DHCP) == 0)
    {
        //Force IP address display update.
        myDHCPBindCount = 1;
        
        #if defined(STACK_USE_DHCP)
        DHCPDisable();
        #endif
    }
#endif

    #if (DEBUG_MAIN >= LOG_DEBUG)
        debugPutMsg(1); //@mxd:1:Starting main loop
    #endif

    
    /*
     * Once all items are initialized, go into infinite loop and let
     * stack items execute their tasks.
     * If application needs to perform its own task, it should be
     * done at the end of while loop.
     * Note that this is a "co-operative mult-tasking" mechanism
     * where every task performs its tasks (whether all in one shot
     * or part of it) and returns so that other tasks can do their
     * job.
     * If a task needs very long time to do its job, it must broken
     * down into smaller pieces so that other tasks can have CPU time.
     */
    while(1)
    {
        //Blink SYSTEM LED every second.
        if (appcfgGetc(APPCFG_SYSFLAGS) & APPCFG_SYSFLAGS_BLINKB6) {
            if ( TickGetDiff8bit(t) >= ((TICK8)(TICKS_PER_SECOND/2)) )
            {
                t = TickGet8bit();
                TRISB_RB6 = 0;
                LATB6 ^= 1;
            }
        }

        //This task performs normal stack task including checking for incoming packet,
        //type of packet and calling appropriate stack entity to process it.
        StackTask();

#if defined(STACK_USE_HTTP_SERVER)
        //This is a TCP application.  It listens to TCP port 80
        //with one or more sockets and responds to remote requests.
        HTTPServer();
#endif

#if defined(STACK_USE_FTP_SERVER)
        FTPServer();
#endif

        //Add your application speicifc tasks here.
        ProcessIO();

        //For DHCP information, display how many times we have renewed the IP
        //configuration since last reset.
        if ( DHCPBindCount != myDHCPBindCount )
        {
            #if (DEBUG_MAIN >= LOG_INFO)
                debugPutMsg(2); //@mxd:2:DHCP Bind Count = %D
                debugPutByteHex(DHCPBindCount);
            #endif
            
            //Display new IP address
            #if (DEBUG_MAIN >= LOG_INFO)
                debugPutMsg(3); //@mxd:3:DHCP complete, IP = %D.%D.%D.%D
                debugPutByteHex(AppConfig.MyIPAddr.v[0]);
                debugPutByteHex(AppConfig.MyIPAddr.v[1]);
                debugPutByteHex(AppConfig.MyIPAddr.v[2]);
                debugPutByteHex(AppConfig.MyIPAddr.v[3]);
            #endif
            myDHCPBindCount = DHCPBindCount;
        }
    }
}
Ejemplo n.º 7
0
/*
 * Main entry point.
 */
void main(void)
{
    static TICK8 t = 0;
    static TICK8 tmr10ms = 0;
    
    //Initialize any application specific hardware.
    InitializeBoard();

    //Initialize all stack related components. Following steps must
    //be performed for all applications using PICmicro TCP/IP Stack.
    TickInit();

    //Initialize file system.
    fsysInit();

    //Intialize HTTP Execution unit
    htpexecInit();

    //Initialze serial port
    serInit();
    
    //Initialize Stack and application related NV variables.
    appcfgInit();
    appcfgUSART();              //Configure the USART
    #ifdef SER_USE_INTERRUPT    //Interrupt enabled serial ports have to be enabled
    serEnable();
    #endif
    appcfgCpuIO();          //Configure the CPU's I/O port pin directions - input or output
    appcfgCpuIOValues();    //Configure the CPU's I/O port pin default values
    appcfgADC();            //Configure ADC unit
    appcfgPWM();            //Configure PWM Channels

    //Serial configuration menu - display it for configured time and allow user to enter configuration menu
    scfInit(appcfgGetc(APPCFG_STARTUP_SER_DLY));
    
    //LCD Display Initialize
    lcdInit();

    StackInit();

#if defined(STACK_USE_HTTP_SERVER)
    HTTPInit();
#endif

#if defined(STACK_USE_FTP_SERVER)
    FTPInit();
#endif

    //Initializes "UDP Command Port" and "UDP Command Responce Port".
    cmdUdpInit();

#if defined(STACK_USE_DHCP) || defined(STACK_USE_IP_GLEANING)
    DHCPReset();    //Initialize DHCP module
    
    //If DHCP is NOT enabled
    if ((appcfgGetc(APPCFG_NETFLAGS) & APPCFG_NETFLAGS_DHCP) == 0)
    {
        //Force IP address display update.
        myDHCPBindCount = 1;
        
        #if defined(STACK_USE_DHCP)
        DHCPDisable();
        #endif
    }
#endif

    #if (DEBUG_MAIN >= LOG_DEBUG)
        debugPutMsg(1); //@mxd:1:Starting main loop
    #endif

    /*
     * Once all items are initialized, go into infinite loop and let
     * stack items execute their tasks.
     * If application needs to perform its own task, it should be
     * done at the end of while loop.
     * Note that this is a "co-operative mult-tasking" mechanism
     * where every task performs its tasks (whether all in one shot
     * or part of it) and returns so that other tasks can do their
     * job.
     * If a task needs very long time to do its job, it must broken
     * down into smaller pieces so that other tasks can have CPU time.
     */
    while(1)
    {
        //Clear timer 1 every cycle, can be used to measure events. Has a overflow of 65ms.
        //Get delay in this function with:
        // TMR1L | (TMR1H<<8)
        TMR1H = 0;  //First write to TMR1H buffer!
        TMR1L = 0;  //This write will also update TMR1H with value written above to buffer

        //Blink SYSTEM LED every second.
        if (appcfgGetc(APPCFG_SYSFLAGS) & APPCFG_SYSFLAGS_BLINKB6) {
            if ( TickGetDiff8bit(t) >= ((TICK8)TICKS_PER_SECOND / (TICK8)2) )
            {
                t = TickGet8bit();
                TRISB_RB6 = 0;
                LATB6 ^= 1;
            }
        }
        
        //Enter each 10ms
        if ( TickGetDiff8bit(tmr10ms) >= ((TICK8)TICKS_PER_SECOND / (TICK8)100) )
        {
            tmr10ms = TickGet8bit();
        }
        
        //This task performs normal stack task including checking for incoming packet,
        //type of packet and calling appropriate stack entity to process it.
        StackTask();
        
        //Process "UDP Command Port" and "UDP Command Responce Port"
        cmdProcess();

#if defined(STACK_USE_HTTP_SERVER)
        //This is a TCP application.  It listens to TCP port 80
        //with one or more sockets and responds to remote requests.
        HTTPServer();
#endif

#if defined(STACK_USE_FTP_SERVER)
        FTPServer();
#endif

#if defined(STACK_USE_ANNOUNCE)
        DiscoveryTask();
#endif

#if defined(STACK_USE_NBNS)
        NBNSTask();
#endif

        //Add your application speicifc tasks here.
        ProcessIO();

        //For DHCP information, display how many times we have renewed the IP
        //configuration since last reset.
        if ( DHCPBindCount != myDHCPBindCount )
        {
            #if (DEBUG_MAIN >= LOG_INFO)
                debugPutMsg(2); //@mxd:2:DHCP Bind Count = %D
                debugPutByteHex(DHCPBindCount);
            #endif
            
            //Display new IP address
            #if (DEBUG_MAIN >= LOG_INFO)
                debugPutMsg(3); //@mxd:3:DHCP complete, IP = %D.%D.%D.%D
                debugPutByteHex(AppConfig.MyIPAddr.v[0]);
                debugPutByteHex(AppConfig.MyIPAddr.v[1]);
                debugPutByteHex(AppConfig.MyIPAddr.v[2]);
                debugPutByteHex(AppConfig.MyIPAddr.v[3]);
            #endif
            myDHCPBindCount = DHCPBindCount;
            
            #if defined(STACK_USE_ANNOUNCE)
                AnnounceIP();
            #endif             
        }
    }
}
Ejemplo n.º 8
0
/**
 * Must be called every couple of ms.
 */
void evtTask(void) {
    static TICK8 tEvt = 0;
    static BYTE heartbeat = 20;

    //Buffer
    char buf[64];
    BYTE buf2Tx;


    /////////////////////////////////////////////////
    //Events
    switch(smEvt) {
    //UDP Event port has not been initialized yet, still waiting for MAC and IP address of remote host
    case SM_EVT_INIT:
        //Is there any data waiting for us on the "UDP Event port"?
        //Because of the design of the Modtronix TCP/IP stack we have to consume all data sent to us
        //as soon as we detect it. Store all data to a buffer as soon as it is detected
        if (UDPIsGetReady(udpSocketEvt)) {
            UDPGetArray((BYTE *)buf, 2);    //Read first 2 bytes from UDP message, indicates what event ports are active. Bit0=UDP Event Port
            UDPDiscard();           //Not using receive, so discart msg
            if (hextob( (char *)buf, &activeEventPorts) == 0) {
                activeEventPorts = 0;     //If error, disable all event ports
            }

            smEvt = SM_EVT_INIT_MSG;
        }
        break;
    case SM_EVT_INIT_MSG:
        //UDP Event port is active
        if ( ((activeEventPorts & EVT_PORT_UDP)!=0) && UDPIsPutReady(udpSocketEvt) ) {
            strcpypgm2ram(buf, (ROM char*)"l40=1;");
            UDPPutArray((BYTE *)buf, strlen(buf));

            // Now transmit it.
            UDPFlush();
            smEvt = SM_EVT_IDLE;
        }
        break;
    case SM_EVT_IDLE:
        buf2Tx = 0;
        
        //Is there any data waiting for us on the "UDP Event port"?
        //Because of the design of the Modtronix TCP/IP stack we have to consume all data sent to us
        //as soon as we detect it. Store all data to a buffer as soon as it is detected
        if (UDPIsGetReady(udpSocketEvt)) {
            UDPGetArray((BYTE *)buf, 2);    //Read first 2 bytes from UDP message, indicates what event ports are active. Bit0=UDP Event Port
            UDPDiscard();           //Not using receive, so discart msg
            if (hextob( (char *)buf, &activeEventPorts) == 0) {
                activeEventPorts = 0;     //If error, disable all event ports
            }
            break;          //Have to break, so stack task can be called, and UDPDiscart is executed
        }

        //Enter every 50ms
        if ( TickGetDiff8bit(tEvt) >= ((TICK8)TICKS_PER_SECOND / (TICK8)20) )
        {
            tEvt = TickGet8bit();

            //Every second
            if (--heartbeat == 0) {
                heartbeat = 20;
                //UDP Event port is active
                if ( ((activeEventPorts & EVT_PORT_UDP)!=0) && UDPIsPutReady(udpSocketEvt) ) {
                    strcpypgm2ram(buf, (ROM char*)"l40=2;");
                    UDPPutArray((BYTE *)buf, strlen(buf));
                    buf2Tx |= EVT_PORT_UDP;     //Indicate that data was added to UDP event port, and it must be TXed
                }
            }

            //Check LCD display every 50ms
            buf2Tx |= chkLCD();

            //Check Expansion Board every 50ms
            buf2Tx |= chkXboard();
        }

        //Was anything added to UDP event port
        if (buf2Tx & EVT_PORT_UDP) {
            UDPFlush(); //Transmit contents of UDP buffer
        }
        break;
    }
}