Ejemplo n.º 1
0
bool UWorld::OverlapSingle(struct FOverlapResult& OutOverlap,const FVector& Pos, const FQuat& Rot, const struct FCollisionShape & CollisionShape, const struct FCollisionQueryParams& Params, const struct FCollisionObjectQueryParams& ObjectQueryParams) const
{
#if WITH_PHYSX
	switch (CollisionShape.ShapeType)
	{
	case ECollisionShape::Box:
		{
			PxBoxGeometry PBoxGeom( U2PVector(CollisionShape.GetBox()) );
			PxTransform PGeomPose = U2PTransform(FTransform(Rot, Pos));

			return GeomOverlapSingle(this, PBoxGeom, PGeomPose, OutOverlap, DefaultCollisionChannel, Params, FCollisionResponseParams::DefaultResponseParam, ObjectQueryParams);
		}
	case ECollisionShape::Sphere:
		{
			PxSphereGeometry PSphereGeom( CollisionShape.GetSphereRadius() );
			PxTransform PGeomPose(U2PVector(Pos), PxQuat::createIdentity());
			return GeomOverlapSingle(this, PSphereGeom, PGeomPose, OutOverlap, DefaultCollisionChannel, Params, FCollisionResponseParams::DefaultResponseParam, ObjectQueryParams);
		}

	case ECollisionShape::Capsule:
		{
			PxCapsuleGeometry PCapsuleGeom( CollisionShape.GetCapsuleRadius(), CollisionShape.GetCapsuleAxisHalfLength() );
			PxTransform PGeomPose = ConvertToPhysXCapsulePose( FTransform(Rot,Pos) );

			return GeomOverlapSingle(this, PCapsuleGeom, PGeomPose, OutOverlap, DefaultCollisionChannel, Params, FCollisionResponseParams::DefaultResponseParam, ObjectQueryParams);
		}
	default:
		// invalid point
		ensure(false);
	}
#endif //WITH_PHYSX
	return false;
}
Ejemplo n.º 2
0
void FConstraintInstance::SetRefOrientation(EConstraintFrame::Type Frame, const FVector& PriAxis, const FVector& SecAxis)
{
#if WITH_PHYSX
	PxJointActorIndex::Enum PxFrame = U2PConstraintFrame(Frame);
	FVector RefPos;
#endif
		
	if (Frame == EConstraintFrame::Frame1)
	{
		RefPos = Pos1;
		PriAxis1 = PriAxis;
		SecAxis1 = SecAxis;
	}
	else
	{
		RefPos = Pos2;
		PriAxis2 = PriAxis;
		SecAxis2 = SecAxis;
	}
	
#if WITH_PHYSX
	if (PxD6Joint* Joint = GetUnbrokenJoint())
	{
		FTransform URefTransform = FTransform(PriAxis1, SecAxis, PriAxis ^ SecAxis, RefPos);
		PxTransform PxRefFrame = U2PTransform(URefTransform);
		Joint->setLocalPose(PxFrame, PxRefFrame);
		}
#endif
}
Ejemplo n.º 3
0
	void AddBoxesToRigidActor_AssumesLocked() const
	{
		float ContactOffsetFactor, MaxContactOffset;
		GetContactOffsetParams(ContactOffsetFactor, MaxContactOffset);

		for (int32 i = 0; i < BodySetup->AggGeom.BoxElems.Num(); i++)
		{
			const FKBoxElem& BoxElem = BodySetup->AggGeom.BoxElems[i];

			PxBoxGeometry PBoxGeom;
			PBoxGeom.halfExtents.x = (0.5f * BoxElem.X * Scale3DAbs.X);
			PBoxGeom.halfExtents.y = (0.5f * BoxElem.Y * Scale3DAbs.Y);
			PBoxGeom.halfExtents.z = (0.5f * BoxElem.Z * Scale3DAbs.Z);

			FTransform BoxTransform = BoxElem.GetTransform() * RelativeTM;
			if (PBoxGeom.isValid() && BoxTransform.IsValid())
			{
				PxTransform PLocalPose(U2PTransform(BoxTransform));
				PLocalPose.p.x *= Scale3D.X;
				PLocalPose.p.y *= Scale3D.Y;
				PLocalPose.p.z *= Scale3D.Z;

				ensure(PLocalPose.isValid());
				{
					const float ContactOffset = FMath::Min(MaxContactOffset, ContactOffsetFactor * PBoxGeom.halfExtents.minElement());
					AttachShape_AssumesLocked(PBoxGeom, PLocalPose, ContactOffset);
				}
			}
			else
			{
				UE_LOG(LogPhysics, Warning, TEXT("AddBoxesToRigidActor: [%s] BoxElems[%d] invalid or has invalid transform"), *GetPathNameSafe(BodySetup->GetOuter()), i);
			}
		}
	}
Ejemplo n.º 4
0
/** Interpolates kinematic actor transform - Assumes caller has obtained writer lock */
void FPhysSubstepTask::InterpolateKinematicActor_AssumesLocked(const FPhysTarget& PhysTarget, FBodyInstance* BodyInstance, float InAlpha)
{
#if WITH_PHYSX
	PxRigidDynamic * PRigidDynamic = BodyInstance->GetPxRigidDynamic_AssumesLocked();
	InAlpha = FMath::Clamp(InAlpha, 0.f, 1.f);

	/** Interpolate kinematic actors */
	if (PhysTarget.bKinematicTarget)
	{
		//It's possible that the actor is no longer kinematic and is now simulating. In that case do nothing
		if (!BodyInstance->IsNonKinematic())
		{
			const FKinematicTarget& KinematicTarget = PhysTarget.KinematicTarget;
			const FTransform& TargetTM = KinematicTarget.TargetTM;
			const FTransform& StartTM = KinematicTarget.OriginalTM;
			FTransform InterTM = FTransform::Identity;

			InterTM.SetLocation(FMath::Lerp(StartTM.GetLocation(), TargetTM.GetLocation(), InAlpha));
			InterTM.SetRotation(FMath::Lerp(StartTM.GetRotation(), TargetTM.GetRotation(), InAlpha));

			const PxTransform PNewPose = U2PTransform(InterTM);
			check(PNewPose.isValid());
			PRigidDynamic->setKinematicTarget(PNewPose);
		}
	}
#endif
}
Ejemplo n.º 5
0
void FPhysScene::SetKinematicTarget(FBodyInstance * BodyInstance, const FTransform & TargetTransform)
{
	TargetTransform.DiagnosticCheckNaN_All();

#if WITH_PHYSX
	if (PxRigidDynamic * PRigidDynamic = BodyInstance->GetPxRigidDynamic())
	{
#if WITH_SUBSTEPPING
		if (IsSubstepping())
		{
			FPhysSubstepTask * PhysSubStepper = PhysSubSteppers[SceneType(BodyInstance)];
			PhysSubStepper->SetKinematicTarget(BodyInstance, TargetTransform);
		}
		else
#endif
		{
			const PxTransform PNewPose = U2PTransform(TargetTransform);
			check(PNewPose.isValid());

			SCOPED_SCENE_WRITE_LOCK(PRigidDynamic->getScene());
			PRigidDynamic->setKinematicTarget(PNewPose);
		}
	}
#endif
}
Ejemplo n.º 6
0
	void AddTriMeshToRigidActor_AssumesLocked() const
	{
		float ContactOffsetFactor, MaxContactOffset;
		GetContactOffsetParams(ContactOffsetFactor, MaxContactOffset);

		for(PxTriangleMesh* TriMesh : BodySetup->TriMeshes)
		{
		
			PxTriangleMeshGeometry PTriMeshGeom;
			PTriMeshGeom.triangleMesh = TriMesh;
			PTriMeshGeom.scale.scale = U2PVector(Scale3D);
			if (BodySetup->bDoubleSidedGeometry)
			{
				PTriMeshGeom.meshFlags |= PxMeshGeometryFlag::eDOUBLE_SIDED;
			}


			if (PTriMeshGeom.isValid())
			{
				PxTransform PElementTransform = U2PTransform(RelativeTM);
				// Create without 'sim shape' flag, problematic if it's kinematic, and it gets set later anyway.
				if (!AttachShape_AssumesLocked(PTriMeshGeom, PElementTransform, MaxContactOffset, PxShapeFlag::eSCENE_QUERY_SHAPE | PxShapeFlag::eVISUALIZATION))
				{
					UE_LOG(LogPhysics, Log, TEXT("Can't create new mesh shape in AddShapesToRigidActor"));
				}
			}
			else
			{
				UE_LOG(LogPhysics, Log, TEXT("AddTriMeshToRigidActor: TriMesh invalid"));
			}
		}
	}
Ejemplo n.º 7
0
void FConstraintInstance::SetRefFrame(EConstraintFrame::Type Frame, const FTransform& RefFrame)
{
#if WITH_PHYSX
	PxJointActorIndex::Enum PxFrame = U2PConstraintFrame(Frame);
#endif
	if(Frame == EConstraintFrame::Frame1)
	{
		Pos1 = RefFrame.GetTranslation();
		PriAxis1 = RefFrame.GetUnitAxis( EAxis::X );
		SecAxis1 = RefFrame.GetUnitAxis( EAxis::Y );
	}
	else
	{
		Pos2 = RefFrame.GetTranslation();
		PriAxis2 = RefFrame.GetUnitAxis( EAxis::X );
		SecAxis2 = RefFrame.GetUnitAxis( EAxis::Y );
	}

#if WITH_PHYSX
	if (PxD6Joint* Joint = GetUnbrokenJoint())
	{
		PxTransform PxRefFrame = U2PTransform(RefFrame);
		Joint->setLocalPose(PxFrame, PxRefFrame);
	}
#endif

}
Ejemplo n.º 8
0
/** Interpolates kinematic actor transform - Assumes caller has obtained writer lock */
void FPhysSubstepTask::InterpolateKinematicActor(const FPhysTarget & PhysTarget, FBodyInstance * BodyInstance, float Alpha)
{
#if WITH_PHYSX
    PxRigidDynamic * PRigidDynamic = BodyInstance->GetPxRigidDynamic();
    Alpha = FMath::Clamp(Alpha, 0.f, 1.f);

    /** Interpolate kinematic actors */
    if (PhysTarget.bKinematicTarget)
    {
        //We should only be interpolating kinematic actors
        check(!IsRigidDynamicNonKinematic(PRigidDynamic));
        const FKinematicTarget & KinematicTarget = PhysTarget.KinematicTarget;
        const FTransform & TargetTM = KinematicTarget.TargetTM;
        const FTransform & StartTM = KinematicTarget.OriginalTM;
        FTransform InterTM = FTransform::Identity;

        InterTM.SetLocation(FMath::Lerp(StartTM.GetLocation(), TargetTM.GetLocation(), Alpha));
        InterTM.SetRotation(FMath::Lerp(StartTM.GetRotation(), TargetTM.GetRotation(), Alpha));

        const PxTransform PNewPose = U2PTransform(InterTM);
        check(PNewPose.isValid());
        PRigidDynamic->setKinematicTarget(PNewPose);
    }
#endif
}
Ejemplo n.º 9
0
	void AddConvexElemsToRigidActor_AssumesLocked() const
	{
		float ContactOffsetFactor, MaxContactOffset;
		GetContactOffsetParams(ContactOffsetFactor, MaxContactOffset);

		for (int32 i = 0; i < BodySetup->AggGeom.ConvexElems.Num(); i++)
		{
			const FKConvexElem& ConvexElem = BodySetup->AggGeom.ConvexElems[i];

			if (ConvexElem.ConvexMesh)
			{
				PxTransform PLocalPose;
				bool bUseNegX = CalcMeshNegScaleCompensation(Scale3D, PLocalPose);

				PxConvexMeshGeometry PConvexGeom;
				PConvexGeom.convexMesh = bUseNegX ? ConvexElem.ConvexMeshNegX : ConvexElem.ConvexMesh;
				PConvexGeom.scale.scale = U2PVector(Scale3DAbs * ConvexElem.GetTransform().GetScale3D().GetAbs());
				FTransform ConvexTransform = ConvexElem.GetTransform();
				if (ConvexTransform.GetScale3D().X < 0 || ConvexTransform.GetScale3D().Y < 0 || ConvexTransform.GetScale3D().Z < 0)
				{
					UE_LOG(LogPhysics, Warning, TEXT("AddConvexElemsToRigidActor: [%s] ConvexElem[%d] has negative scale. Not currently supported"), *GetPathNameSafe(BodySetup->GetOuter()), i);
				}
				if (ConvexTransform.IsValid())
				{
					PxTransform PElementTransform = U2PTransform(ConvexTransform * RelativeTM);
					PLocalPose.q *= PElementTransform.q;
					PLocalPose.p = PElementTransform.p;
					PLocalPose.p.x *= Scale3D.X;
					PLocalPose.p.y *= Scale3D.Y;
					PLocalPose.p.z *= Scale3D.Z;

					if (PConvexGeom.isValid())
					{
						PxVec3 PBoundsExtents = PConvexGeom.convexMesh->getLocalBounds().getExtents();

						ensure(PLocalPose.isValid());
						{
							const float ContactOffset = FMath::Min(MaxContactOffset, ContactOffsetFactor * PBoundsExtents.minElement());
							AttachShape_AssumesLocked(PConvexGeom, PLocalPose, ContactOffset);
						}
					}
					else
					{
						UE_LOG(LogPhysics, Warning, TEXT("AddConvexElemsToRigidActor: [%s] ConvexElem[%d] invalid"), *GetPathNameSafe(BodySetup->GetOuter()), i);
					}
				}
				else
				{
					UE_LOG(LogPhysics, Warning, TEXT("AddConvexElemsToRigidActor: [%s] ConvexElem[%d] has invalid transform"), *GetPathNameSafe(BodySetup->GetOuter()), i);
				}
			}
			else
			{
				UE_LOG(LogPhysics, Warning, TEXT("AddConvexElemsToRigidActor: ConvexElem is missing ConvexMesh (%d: %s)"), i, *BodySetup->GetPathName());
			}
		}
	}
Ejemplo n.º 10
0
bool FConstraintInstance::CreatePxJoint(physx::PxRigidActor* PActor1, physx::PxRigidActor* PActor2, physx::PxScene* PScene, const float Scale)
{
	ConstraintData = nullptr;

	FTransform Local1 = GetRefFrame(EConstraintFrame::Frame1);
	Local1.ScaleTranslation(FVector(Scale));
	checkf(Local1.IsValid() && !Local1.ContainsNaN(), TEXT("%s"), *Local1.ToString());

	FTransform Local2 = GetRefFrame(EConstraintFrame::Frame2);
	Local2.ScaleTranslation(FVector(Scale));
	checkf(Local2.IsValid() && !Local2.ContainsNaN(), TEXT("%s"), *Local2.ToString());

	SCOPED_SCENE_WRITE_LOCK(PScene);

	// Because PhysX keeps limits/axes locked in the first body reference frame, whereas Unreal keeps them in the second body reference frame, we have to flip the bodies here.
	PxD6Joint* PD6Joint = PxD6JointCreate(*GPhysXSDK, PActor2, U2PTransform(Local2), PActor1, U2PTransform(Local1));

	if (PD6Joint == nullptr)
	{
		UE_LOG(LogPhysics, Log, TEXT("URB_ConstraintInstance::InitConstraint - Invalid 6DOF joint (%s)"), *JointName.ToString());
		return false;
	}

	///////// POINTERS
	PD6Joint->userData = &PhysxUserData;

	// Remember reference to scene index.
	FPhysScene* RBScene = FPhysxUserData::Get<FPhysScene>(PScene->userData);
	if (RBScene->GetPhysXScene(PST_Sync) == PScene)
	{
		SceneIndex = RBScene->PhysXSceneIndex[PST_Sync];
	}
	else
	if (RBScene->GetPhysXScene(PST_Async) == PScene)
	{
		SceneIndex = RBScene->PhysXSceneIndex[PST_Async];
	}
	else
	{
		UE_LOG(LogPhysics, Log, TEXT("URB_ConstraintInstance::InitConstraint: PxScene has inconsistent FPhysScene userData.  No joint created."));
		return false;
	}

	ConstraintData = PD6Joint;
	return true;
}
Ejemplo n.º 11
0
void UBodySetup::AddBoxesToRigidActor(PxRigidActor* PDestActor, const FTransform& RelativeTM, const FVector& Scale3D, const FVector& Scale3DAbs, TArray<PxShape*>* NewShapes) const
{
	float ContactOffsetFactor, MaxContactOffset;
	GetContactOffsetParams(ContactOffsetFactor, MaxContactOffset);
	PxMaterial* PDefaultMat = GetDefaultPhysMaterial();

	for (int32 i = 0; i < AggGeom.BoxElems.Num(); i++)
	{
		const FKBoxElem& BoxElem = AggGeom.BoxElems[i];

		PxBoxGeometry PBoxGeom;
		PBoxGeom.halfExtents.x = (0.5f * BoxElem.X * Scale3DAbs.X);
		PBoxGeom.halfExtents.y = (0.5f * BoxElem.Y * Scale3DAbs.Y);
		PBoxGeom.halfExtents.z = (0.5f * BoxElem.Z * Scale3DAbs.Z);

		FTransform BoxTransform = BoxElem.GetTransform() * RelativeTM;
		if (PBoxGeom.isValid() && BoxTransform.IsValid())
		{
			PxTransform PLocalPose(U2PTransform(BoxTransform));
			PLocalPose.p.x *= Scale3D.X;
			PLocalPose.p.y *= Scale3D.Y;
			PLocalPose.p.z *= Scale3D.Z;

			ensure(PLocalPose.isValid());
			PxShape* NewShape = PDestActor->createShape(PBoxGeom, *PDefaultMat, PLocalPose);

			if (NewShapes)
			{
				NewShapes->Add(NewShape);
			}

			const float ContactOffset = FMath::Min(MaxContactOffset, ContactOffsetFactor * PBoxGeom.halfExtents.minElement());
			NewShape->setContactOffset(ContactOffset);
		}
		else
		{
			UE_LOG(LogPhysics, Warning, TEXT("AddBoxesToRigidActor: [%s] BoxElems[%d] invalid or has invalid transform"), *GetPathNameSafe(GetOuter()), i);
		}
	}
}
Ejemplo n.º 12
0
void FPhysScene::SetKinematicTarget_AssumesLocked(FBodyInstance* BodyInstance, const FTransform& TargetTransform, bool bAllowSubstepping)
{
	TargetTransform.DiagnosticCheckNaN_All();

#if WITH_PHYSX
	if (PxRigidDynamic * PRigidDynamic = BodyInstance->GetPxRigidDynamic_AssumesLocked())
	{
#if WITH_SUBSTEPPING
		uint32 BodySceneType = SceneType_AssumesLocked(BodyInstance);
		if (bAllowSubstepping && IsSubstepping(BodySceneType))
		{
			FPhysSubstepTask * PhysSubStepper = PhysSubSteppers[BodySceneType];
			PhysSubStepper->SetKinematicTarget_AssumesLocked(BodyInstance, TargetTransform);
		}
		else
#endif
		{
			const PxTransform PNewPose = U2PTransform(TargetTransform);
			check(PNewPose.isValid());
			PRigidDynamic->setKinematicTarget(PNewPose);
		}
	}
#endif
}
Ejemplo n.º 13
0
bool UWorld::OverlapMulti(TArray<struct FOverlapResult>& OutOverlaps,const FVector& Pos, const FQuat& Rot, const struct FCollisionShape & CollisionShape, const struct FCollisionQueryParams& Params, const struct FCollisionObjectQueryParams& ObjectQueryParams) const
{
	// object query returns true if any hit is found, not only blocking hit
#if WITH_PHYSX
	switch (CollisionShape.ShapeType)
	{
	case ECollisionShape::Box:
		{
			PxBoxGeometry PBoxGeom( U2PVector(CollisionShape.GetBox()) );
			PxTransform PGeomPose = U2PTransform(FTransform(Rot, Pos));

			GeomOverlapMulti(this, PBoxGeom, PGeomPose, OutOverlaps, DefaultCollisionChannel, Params, FCollisionResponseParams::DefaultResponseParam, ObjectQueryParams);
		}
		break;
	case ECollisionShape::Sphere:
		{
			PxSphereGeometry PSphereGeom( CollisionShape.GetSphereRadius() );
			PxTransform PGeomPose(U2PVector(Pos), PxQuat::createIdentity());
			GeomOverlapMulti(this, PSphereGeom, PGeomPose, OutOverlaps, DefaultCollisionChannel, Params, FCollisionResponseParams::DefaultResponseParam, ObjectQueryParams);
		}
		break;
	case ECollisionShape::Capsule:
		{
			PxCapsuleGeometry PCapsuleGeom( CollisionShape.GetCapsuleRadius(), CollisionShape.GetCapsuleAxisHalfLength() );
			PxTransform PGeomPose = ConvertToPhysXCapsulePose( FTransform(Rot,Pos) );

			GeomOverlapMulti(this, PCapsuleGeom, PGeomPose, OutOverlaps, DefaultCollisionChannel, Params, FCollisionResponseParams::DefaultResponseParam, ObjectQueryParams);
		}
		break;
	default:
		// invalid point
		ensure(false);
	}
#endif //WITH_PHYSX
	return (OutOverlaps.Num() > 0);
}
Ejemplo n.º 14
0
void UBodySetup::AddConvexElemsToRigidActor(PxRigidActor* PDestActor, const FTransform& RelativeTM, const FVector& Scale3D, const FVector& Scale3DAbs, TArray<PxShape*>* NewShapes) const
{
	float ContactOffsetFactor, MaxContactOffset;
	GetContactOffsetParams(ContactOffsetFactor, MaxContactOffset);
	PxMaterial* PDefaultMat = GetDefaultPhysMaterial();

	for (int32 i = 0; i < AggGeom.ConvexElems.Num(); i++)
	{
		const FKConvexElem& ConvexElem = AggGeom.ConvexElems[i];

		if (ConvexElem.ConvexMesh)
		{
			PxTransform PLocalPose;
			bool bUseNegX = CalcMeshNegScaleCompensation(Scale3D, PLocalPose);

			PxConvexMeshGeometry PConvexGeom;
			PConvexGeom.convexMesh = bUseNegX ? ConvexElem.ConvexMeshNegX : ConvexElem.ConvexMesh;
			PConvexGeom.scale.scale = U2PVector(Scale3DAbs * ConvexElem.GetTransform().GetScale3D().GetAbs());
			FTransform ConvexTransform = ConvexElem.GetTransform();
			if (ConvexTransform.GetScale3D().X < 0 || ConvexTransform.GetScale3D().Y < 0 || ConvexTransform.GetScale3D().Z < 0)
			{
				UE_LOG(LogPhysics, Warning, TEXT("AddConvexElemsToRigidActor: [%s] ConvexElem[%d] has negative scale. Not currently supported"), *GetPathNameSafe(GetOuter()), i);
			}
			if (ConvexTransform.IsValid())
			{
				PxTransform PElementTransform = U2PTransform(ConvexTransform * RelativeTM);
				PLocalPose.q *= PElementTransform.q;
				PLocalPose.p = PElementTransform.p;
				PLocalPose.p.x *= Scale3D.X;
				PLocalPose.p.y *= Scale3D.Y;
				PLocalPose.p.z *= Scale3D.Z;

				if (PConvexGeom.isValid())
				{
					PxVec3 PBoundsExtents = PConvexGeom.convexMesh->getLocalBounds().getExtents();

					ensure(PLocalPose.isValid());
					PxShape* NewShape = PDestActor->createShape(PConvexGeom, *PDefaultMat, PLocalPose);

					if (NewShapes)
					{
						NewShapes->Add(NewShape);
					}

					const float ContactOffset = FMath::Min(MaxContactOffset, ContactOffsetFactor * PBoundsExtents.minElement());
					NewShape->setContactOffset(ContactOffset);
				}
				else
				{
					UE_LOG(LogPhysics, Warning, TEXT("AddConvexElemsToRigidActor: [%s] ConvexElem[%d] invalid"), *GetPathNameSafe(GetOuter()), i);
				}
			}
			else
			{
				UE_LOG(LogPhysics, Warning, TEXT("AddConvexElemsToRigidActor: [%s] ConvexElem[%d] has invalid transform"), *GetPathNameSafe(GetOuter()), i);
			}
		}
		else
		{
			UE_LOG(LogPhysics, Warning, TEXT("AddConvexElemsToRigidActor: ConvexElem is missing ConvexMesh (%d: %s)"), i, *GetPathName());
		}
	}
}
Ejemplo n.º 15
0
void USkeletalMeshComponent::UpdateKinematicBonesToAnim(const TArray<FTransform>& InSpaceBases, ETeleportType Teleport, bool bNeedsSkinning)
{
	SCOPE_CYCLE_COUNTER(STAT_UpdateRBBones);

	// This below code produces some interesting result here
	// - below codes update physics data, so if you don't update pose, the physics won't have the right result
	// - but if we just update physics bone without update current pose, it will have stale data
	// If desired, pass the animation data to the physics joints so they can be used by motors.
	// See if we are going to need to update kinematics
	const bool bUpdateKinematics = (KinematicBonesUpdateType != EKinematicBonesUpdateToPhysics::SkipAllBones);
	const bool bTeleport = Teleport == ETeleportType::TeleportPhysics;
	// If desired, update physics bodies associated with skeletal mesh component to match.
	if(!bUpdateKinematics && !(bTeleport && IsAnySimulatingPhysics()))
	{
		// nothing to do 
		return;
	}

	// Get the scene, and do nothing if we can't get one.
	FPhysScene* PhysScene = nullptr;
	if (GetWorld() != nullptr)
	{
		PhysScene = GetWorld()->GetPhysicsScene();
	}

	if(PhysScene == nullptr)
	{
		return;
	}

	const FTransform& CurrentLocalToWorld = ComponentToWorld;

	// Gracefully handle NaN
	if(CurrentLocalToWorld.ContainsNaN())
	{
		return;
	}

	// If desired, draw the skeleton at the point where we pass it to the physics.
	if (bShowPrePhysBones && SkeletalMesh && InSpaceBases.Num() == SkeletalMesh->RefSkeleton.GetNum())
	{
		for (int32 i = 1; i<InSpaceBases.Num(); i++)
		{
			FVector ThisPos = CurrentLocalToWorld.TransformPosition(InSpaceBases[i].GetLocation());

			int32 ParentIndex = SkeletalMesh->RefSkeleton.GetParentIndex(i);
			FVector ParentPos = CurrentLocalToWorld.TransformPosition(InSpaceBases[ParentIndex].GetLocation());

			GetWorld()->LineBatcher->DrawLine(ThisPos, ParentPos, AnimSkelDrawColor, SDPG_Foreground);
		}
	}

	// warn if it has non-uniform scale
	const FVector& MeshScale3D = CurrentLocalToWorld.GetScale3D();
#if !(UE_BUILD_SHIPPING || UE_BUILD_TEST)
	if( !MeshScale3D.IsUniform() )
	{
		UE_LOG(LogPhysics, Log, TEXT("USkeletalMeshComponent::UpdateKinematicBonesToAnim : Non-uniform scale factor (%s) can cause physics to mismatch for %s  SkelMesh: %s"), *MeshScale3D.ToString(), *GetFullName(), SkeletalMesh ? *SkeletalMesh->GetFullName() : TEXT("NULL"));
	}
#endif


	if (bEnablePerPolyCollision == false)
	{
		const UPhysicsAsset* const PhysicsAsset = GetPhysicsAsset();
		if (PhysicsAsset && SkeletalMesh && Bodies.Num() > 0)
		{
#if !(UE_BUILD_SHIPPING || UE_BUILD_TEST)
			if (!ensure(PhysicsAsset->BodySetup.Num() == Bodies.Num()))
			{
				// related to TTP 280315
				UE_LOG(LogPhysics, Warning, TEXT("Mesh (%s) has PhysicsAsset(%s), and BodySetup(%d) and Bodies(%d) don't match"),
					*SkeletalMesh->GetName(), *PhysicsAsset->GetName(), PhysicsAsset->BodySetup.Num(), Bodies.Num());
				return;
			}
#endif

#if WITH_PHYSX
			// Lock the scenes we need (flags set in InitArticulated)
			if(bHasBodiesInSyncScene)
			{
				SCENE_LOCK_WRITE(PhysScene->GetPhysXScene(PST_Sync))
			}

			if (bHasBodiesInAsyncScene)
			{
				SCENE_LOCK_WRITE(PhysScene->GetPhysXScene(PST_Async))
			}
#endif

			// Iterate over each body
			for (int32 i = 0; i < Bodies.Num(); i++)
			{
				// If we have a physics body, and its kinematic...
				FBodyInstance* BodyInst = Bodies[i];
				check(BodyInst);

				if (bTeleport || (BodyInst->IsValidBodyInstance() && !BodyInst->IsInstanceSimulatingPhysics()))
				{
					const int32 BoneIndex = BodyInst->InstanceBoneIndex;

					// If we could not find it - warn.
					if (BoneIndex == INDEX_NONE || BoneIndex >= GetNumSpaceBases())
					{
						const FName BodyName = PhysicsAsset->BodySetup[i]->BoneName;
						UE_LOG(LogPhysics, Log, TEXT("UpdateRBBones: WARNING: Failed to find bone '%s' need by PhysicsAsset '%s' in SkeletalMesh '%s'."), *BodyName.ToString(), *PhysicsAsset->GetName(), *SkeletalMesh->GetName());
					}
					else
					{
#if WITH_PHYSX
						// update bone transform to world
						const FTransform BoneTransform = InSpaceBases[BoneIndex] * CurrentLocalToWorld;
						if(BoneTransform.ContainsNaN())
						{
							const FName BodyName = PhysicsAsset->BodySetup[i]->BoneName;
							UE_LOG(LogPhysics, Warning, TEXT("UpdateKinematicBonesToAnim: Trying to set transform with bad data %s on PhysicsAsset '%s' in SkeletalMesh '%s' for bone '%s'"), *BoneTransform.ToHumanReadableString(), *PhysicsAsset->GetName(), *SkeletalMesh->GetName(), *BodyName.ToString());
							continue;
						}					

						// If kinematic and not teleporting, set kinematic target
						PxRigidDynamic* PRigidDynamic = BodyInst->GetPxRigidDynamic_AssumesLocked();
						if (!IsRigidBodyNonKinematic_AssumesLocked(PRigidDynamic) && !bTeleport)
						{
							PhysScene->SetKinematicTarget_AssumesLocked(BodyInst, BoneTransform, true);
						}
						// Otherwise, set global pose
						else
						{
							const PxTransform PNewPose = U2PTransform(BoneTransform);
							ensure(PNewPose.isValid());
							PRigidDynamic->setGlobalPose(PNewPose);
						}
#endif


						// now update scale
						// if uniform, we'll use BoneTranform
						if (MeshScale3D.IsUniform())
						{
							// @todo UE4 should we update scale when it's simulated?
							BodyInst->UpdateBodyScale(BoneTransform.GetScale3D());
						}
						else
						{
							// @note When you have non-uniform scale on mesh base,
							// hierarchical bone transform can update scale too often causing performance issue
							// So we just use mesh scale for all bodies when non-uniform
							// This means physics representation won't be accurate, but
							// it is performance friendly by preventing too frequent physics update
							BodyInst->UpdateBodyScale(MeshScale3D);
						}
					}
				}
				else
				{
					//make sure you have physics weight or blendphysics on, otherwise, you'll have inconsistent representation of bodies
					// @todo make this to be kismet log? But can be too intrusive
					if (!bBlendPhysics && BodyInst->PhysicsBlendWeight <= 0.f && BodyInst->BodySetup.IsValid())
					{
						UE_LOG(LogPhysics, Warning, TEXT("%s(Mesh %s, PhysicsAsset %s, Bone %s) is simulating, but no blending. "),
							*GetName(), *GetNameSafe(SkeletalMesh), *GetNameSafe(PhysicsAsset), *BodyInst->BodySetup.Get()->BoneName.ToString());
					}
				}
			}

#if WITH_PHYSX
			// Unlock the scenes 
			if (bHasBodiesInSyncScene)
			{
				SCENE_UNLOCK_WRITE(PhysScene->GetPhysXScene(PST_Sync))
			}

			if (bHasBodiesInAsyncScene)
			{
				SCENE_UNLOCK_WRITE(PhysScene->GetPhysXScene(PST_Async))
			}
#endif
		}
	}
	else
	{
		//per poly update requires us to update all vertex positions
		if (MeshObject)
Ejemplo n.º 16
0
bool UWorld::ComponentSweepMulti(TArray<struct FHitResult>& OutHits, class UPrimitiveComponent* PrimComp, const FVector& Start, const FVector& End, const FRotator& Rot, const struct FComponentQueryParams& Params) const
{
	if(GetPhysicsScene() == NULL)
	{
		return false;
	}

	if(PrimComp == NULL)
	{
		UE_LOG(LogCollision, Log, TEXT("ComponentSweepMulti : No PrimComp"));
		return false;
	}

	// if target is skeletalmeshcomponent and do not support singlebody physics
	if ( !PrimComp->ShouldTrackOverlaps() )
	{
		UE_LOG(LogCollision, Log, TEXT("ComponentSweepMulti : (%s) Does not support skeletalmesh with Physics Asset and destructibles."), *PrimComp->GetPathName());
		return false;
	}

	ECollisionChannel TraceChannel = PrimComp->GetCollisionObjectType();

#if WITH_PHYSX
	// if extent is 0, do line trace
	if (PrimComp->IsZeroExtent())
	{
		return RaycastMulti(this, OutHits, Start, End, TraceChannel, Params, FCollisionResponseParams(PrimComp->GetCollisionResponseToChannels()));
	}

	PxRigidActor* PRigidActor = PrimComp->BodyInstance.GetPxRigidActor();
	if(PRigidActor == NULL)
	{
		UE_LOG(LogCollision, Log, TEXT("ComponentSweepMulti : (%s) No physics data"), *PrimComp->GetPathName());
		return false;
	}
	PxScene * const PScene = PRigidActor->getScene();

	OutHits.Empty();

	// Get all the shapes from the actor
	TArray<PxShape*, TInlineAllocator<8>> PShapes;
	{
		SCOPED_SCENE_READ_LOCK(PScene);
		PShapes.AddZeroed(PRigidActor->getNbShapes());
		PRigidActor->getShapes(PShapes.GetData(), PShapes.Num());
	}

	// calculate the test global pose of the actor
	PxTransform PGlobalStartPose = U2PTransform(FTransform(Start));
	PxTransform PGlobalEndPose = U2PTransform(FTransform(End));

	bool bHaveBlockingHit = false;
	PxQuat PGeomRot = U2PQuat(Rot.Quaternion());

	// Iterate over each shape
	SCENE_LOCK_READ(PScene);
	for(int32 ShapeIdx=0; ShapeIdx<PShapes.Num(); ShapeIdx++)
	{
		PxShape* PShape = PShapes[ShapeIdx];
		check(PShape);

		TArray<struct FHitResult> Hits;

		// Calc shape global pose
		PxTransform PLocalShape = PShape->getLocalPose();
		PxTransform PShapeGlobalStartPose = PGlobalStartPose.transform(PLocalShape);
		PxTransform PShapeGlobalEndPose = PGlobalEndPose.transform(PLocalShape);
		// consider localshape rotation for shape rotation
		PxQuat PShapeRot = PGeomRot * PLocalShape.q;

		GET_GEOMETRY_FROM_SHAPE(PGeom, PShape);

		if(PGeom != NULL)
		{
			SCENE_UNLOCK_READ(PScene);
			if (GeomSweepMulti(this, *PGeom, PShapeRot, Hits, P2UVector(PShapeGlobalStartPose.p), P2UVector(PShapeGlobalEndPose.p), TraceChannel, Params, FCollisionResponseParams(PrimComp->GetCollisionResponseToChannels())))
			{
				bHaveBlockingHit = true;
			}

			OutHits.Append(Hits);
			SCENE_LOCK_READ(PScene);
		}
	}
	SCENE_UNLOCK_READ(PScene);

	return bHaveBlockingHit;
#endif //WITH_PHYSX
	return false;
}
Ejemplo n.º 17
0
bool UWorld::ComponentSweepSingle(struct FHitResult& OutHit,class UPrimitiveComponent* PrimComp, const FVector& Start, const FVector& End, const FRotator& Rot, const struct FComponentQueryParams& Params) const
{
	OutHit.TraceStart = Start;
	OutHit.TraceEnd = End;

	if(GetPhysicsScene() == NULL)
	{
		return false;
	}

	if(PrimComp == NULL)
	{
		UE_LOG(LogCollision, Log, TEXT("ComponentSweepSingle : No PrimComp"));
		return false;
	}

	// if target is skeletalmeshcomponent and do not support singlebody physics
	if ( !PrimComp->ShouldTrackOverlaps() )
	{
		UE_LOG(LogCollision, Log, TEXT("ComponentSweepSingle : (%s) Does not support skeletalmesh with Physics Asset and destructibles."), *PrimComp->GetPathName());
		return false;
	}

	ECollisionChannel TraceChannel = PrimComp->GetCollisionObjectType();
#if WITH_PHYSX
	// if extent is 0, do line trace
	if (PrimComp->IsZeroExtent())
	{
		return RaycastSingle(this, OutHit, Start, End, TraceChannel, Params, FCollisionResponseParams(PrimComp->GetCollisionResponseToChannels()));
	}

	PxRigidActor* PRigidActor = PrimComp->BodyInstance.GetPxRigidActor();
	if(PRigidActor == NULL)
	{
		UE_LOG(LogCollision, Log, TEXT("ComponentSweepMulti : (%s) No physics data"), *PrimComp->GetPathName());
		return false;
	}

	// Get all the shapes from the actor
	TArray<PxShape*, TInlineAllocator<8>> PShapes;
	PShapes.AddZeroed(PRigidActor->getNbShapes());
	int32 NumShapes = PRigidActor->getShapes(PShapes.GetData(), PShapes.Num());

	// calculate the test global pose of the actor
	PxTransform PGlobalStartPose = U2PTransform(FTransform(Start));
	PxTransform PGlobalEndPose = U2PTransform(FTransform(End));

	bool bHaveBlockingHit = false;
	PxQuat PGeomRot = U2PQuat(Rot.Quaternion());

	// Iterate over each shape
	for(int32 ShapeIdx=0; ShapeIdx<PShapes.Num(); ShapeIdx++)
	{
		PxShape* PShape = PShapes[ShapeIdx];
		check(PShape);

		// Calc shape global pose
		PxTransform PLocalShape = PShape->getLocalPose();
		PxTransform PShapeGlobalStartPose = PGlobalStartPose.transform(PLocalShape);
		PxTransform PShapeGlobalEndPose = PGlobalEndPose.transform(PLocalShape);
		// consider localshape rotation for shape rotation
		PxQuat PShapeRot = PGeomRot * PLocalShape.q;

		GET_GEOMETRY_FROM_SHAPE(PGeom, PShape);

		if(PGeom != NULL)
		{
			// @todo UE4, this might not be the best behavior. If we're looking for the most closest, this have to change to save the result, and find the closest one or 
			// any other options, right now if anything hits first, it will return
			if (GeomSweepSingle(this, *PGeom, PShapeRot, OutHit, P2UVector(PShapeGlobalStartPose.p), P2UVector(PShapeGlobalEndPose.p), TraceChannel, Params, FCollisionResponseParams(PrimComp->GetCollisionResponseToChannels())))
			{
				bHaveBlockingHit = true;
				break;
			}
		}
	}

	return bHaveBlockingHit;
#endif //WITH_PHYSX
	return false;
}
Ejemplo n.º 18
0
bool UWorld::ComponentOverlapTest(class UPrimitiveComponent* PrimComp, const FVector& Pos, const FRotator& Rot, const struct FComponentQueryParams& Params) const
{
	if(GetPhysicsScene() == NULL)
	{
		return false;
	}

	if(PrimComp == NULL)
	{
		UE_LOG(LogCollision, Log, TEXT("ComponentOverlapMulti : No PrimComp"));
		return false;
	}

	// if target is skeletalmeshcomponent and do not support singlebody physics, we don't support this yet
	// talk to @JG, SP, LH
	if ( !PrimComp->ShouldTrackOverlaps() )
	{
		UE_LOG(LogCollision, Log, TEXT("ComponentOverlapMulti : (%s) Does not support skeletalmesh with Physics Asset and destructibles."), *PrimComp->GetPathName());
		return false;
	}
#if WITH_PHYSX
	ECollisionChannel TraceChannel = PrimComp->GetCollisionObjectType();

	PxRigidActor* PRigidActor = PrimComp->BodyInstance.GetPxRigidActor();
	if(PRigidActor == NULL)
	{
		UE_LOG(LogCollision, Log, TEXT("ComponentOverlapMulti : (%s) No physics data"), *PrimComp->GetPathName());
		return false;
	}

	// calculate the test global pose of the actor
	PxTransform PTestGlobalPose = U2PTransform(FTransform(Rot, Pos));

	// Get all the shapes from the actor
	TArray<PxShape*, TInlineAllocator<8>> PShapes;
	PShapes.AddZeroed(PRigidActor->getNbShapes());
	int32 NumShapes = PRigidActor->getShapes(PShapes.GetData(), PShapes.Num());

	// Iterate over each shape
	for(int32 ShapeIdx=0; ShapeIdx<PShapes.Num(); ShapeIdx++)
	{
		PxShape* PShape = PShapes[ShapeIdx];
		check(PShape);
		// Calc shape global pose
		PxTransform PLocalPose = PShape->getLocalPose();
		PxTransform PShapeGlobalPose = PTestGlobalPose.transform(PLocalPose);

		GET_GEOMETRY_FROM_SHAPE(PGeom, PShape);

		if(PGeom != NULL)
		{
			if( GeomOverlapTest(this, *PGeom, PShapeGlobalPose, TraceChannel, Params, FCollisionResponseParams(PrimComp->GetCollisionResponseToChannels())))
			{
				// in this test, it only matters true or false. 
				// if we found first true, we don't care next test anymore. 
				return true;
			}
		}
	}

#endif //WITH_PHYSX
	return false;
}