Ejemplo n.º 1
0
// Filter data through filter
static af_data_t* play(struct af_instance_s* af, af_data_t* data)
{
  af_data_t*   	c   = data;	 // Current working data
  af_delay_t*  	s   = af->setup; // Setup for this instance
  int 		nch = c->nch;	 // Number of channels
  int		len = c->len/c->bps; // Number of sample in data chunk
  int		ri  = 0;
  int 		ch,i;
  for(ch=0;ch<nch;ch++){
    switch(c->bps){
    case 1:{
      int8_t* a = c->audio;
      int8_t* q = s->q[ch]; 
      int wi = s->wi[ch];
      ri = s->ri;
      for(i=ch;i<len;i+=nch){
	q[wi] = a[i];
	a[i]  = q[ri];
	UPDATEQI(wi);
	UPDATEQI(ri);
      }
      s->wi[ch] = wi;
      break;
    }
    case 2:{
      int16_t* a = c->audio;
      int16_t* q = s->q[ch]; 
      int wi = s->wi[ch];
      ri = s->ri;
      for(i=ch;i<len;i+=nch){
	q[wi] = a[i];
	a[i]  = q[ri];
	UPDATEQI(wi);
	UPDATEQI(ri);
      }
      s->wi[ch] = wi;
      break;
    }
    case 4:{
      int32_t* a = c->audio;
      int32_t* q = s->q[ch]; 
      int wi = s->wi[ch];
      ri = s->ri;
      for(i=ch;i<len;i+=nch){
	q[wi] = a[i];
	a[i]  = q[ri];
	UPDATEQI(wi);
	UPDATEQI(ri);
      }
      s->wi[ch] = wi;
      break;
    }
    }
  }
  s->ri = ri;
  return c;
}
Ejemplo n.º 2
0
Archivo: af_delay.c Proyecto: agiz/mpv
// Filter data through filter
static int filter(struct af_instance* af, struct mp_audio* data, int flags)
{
  struct mp_audio*   	c   = data;	 // Current working data
  af_delay_t*  	s   = af->priv; // Setup for this instance
  int 		nch = c->nch;	 // Number of channels
  int		len = mp_audio_psize(c)/c->bps; // Number of sample in data chunk
  int		ri  = 0;
  int 		ch,i;
  for(ch=0;ch<nch;ch++){
    switch(c->bps){
    case 1:{
      int8_t* a = c->planes[0];
      int8_t* q = s->q[ch];
      int wi = s->wi[ch];
      ri = s->ri;
      for(i=ch;i<len;i+=nch){
	q[wi] = a[i];
	a[i]  = q[ri];
	UPDATEQI(wi);
	UPDATEQI(ri);
      }
      s->wi[ch] = wi;
      break;
    }
    case 2:{
      int16_t* a = c->planes[0];
      int16_t* q = s->q[ch];
      int wi = s->wi[ch];
      ri = s->ri;
      for(i=ch;i<len;i+=nch){
	q[wi] = a[i];
	a[i]  = q[ri];
	UPDATEQI(wi);
	UPDATEQI(ri);
      }
      s->wi[ch] = wi;
      break;
    }
    case 4:{
      int32_t* a = c->planes[0];
      int32_t* q = s->q[ch];
      int wi = s->wi[ch];
      ri = s->ri;
      for(i=ch;i<len;i+=nch){
	q[wi] = a[i];
	a[i]  = q[ri];
	UPDATEQI(wi);
	UPDATEQI(ri);
      }
      s->wi[ch] = wi;
      break;
    }
    }
  }
  s->ri = ri;
  return 0;
}
Ejemplo n.º 3
0
// Filter data through filter
static af_data_t* play(struct af_instance_s* af, af_data_t* data){
  af_surround_t* s   = (af_surround_t*)af->setup;
  float*	 m   = steering_matrix[0]; 
  float*     	 in  = data->audio; 	// Input audio data
  float*     	 out = NULL;		// Output audio data
  float*	 end = in + data->len / sizeof(float); // Loop end
  int 		 i   = s->i;	// Filter queue index
  int 		 ri  = s->ri;	// Read index for delay queue
  int 		 wi  = s->wi;	// Write index for delay queue

  if (AF_OK != RESIZE_LOCAL_BUFFER(af, data))
    return NULL;

  out = af->data->audio;

  while(in < end){
    /* Dominance:
       abs(in[0])  abs(in[1]);
       abs(in[0]+in[1])  abs(in[0]-in[1]);
       10 * log( abs(in[0]) / (abs(in[1])|1) );
       10 * log( abs(in[0]+in[1]) / (abs(in[0]-in[1])|1) ); */

    /* About volume balancing...
       Surround encoding does the following:
           Lt=L+.707*C+.707*S, Rt=R+.707*C-.707*S
       So S should be extracted as:
           (Lt-Rt)
       But we are splitting the S to two output channels, so we
       must take 3dB off as we split it:
           Ls=Rs=.707*(Lt-Rt)
       Trouble is, Lt could be +1, Rt -1, so possibility that S will
       overflow. So to avoid that, we cut L/R by 3dB (*.707), and S by
       6dB (/2). This keeps the overall balance, but guarantees no
       overflow. */

    // Output front left and right
    out[0] = m[0]*in[0] + m[1]*in[1];
    out[1] = m[2]*in[0] + m[3]*in[1];

    // Low-pass output @ 7kHz
    FIR((&s->lq[i]), s->w, s->dl[wi]);

    // Delay output by d ms
    out[2] = s->dl[ri];

#ifdef SPLITREAR
    // Low-pass output @ 7kHz
    FIR((&s->rq[i]), s->w, s->dr[wi]);

    // Delay output by d ms
    out[3] = s->dr[ri];
#else
    out[3] = -out[2];
#endif

    // Update delay queues indexes
    UPDATEQI(ri);
    UPDATEQI(wi);

    // Calculate and save surround in circular queue
#ifdef SPLITREAR
    ADDQUE(i, s->rq, s->lq, m[6]*in[0]+m[7]*in[1], m[8]*in[0]+m[9]*in[1]);
#else
    ADDQUE(i, s->lq, m[4]*in[0]+m[5]*in[1]);
#endif

    // Next sample...
    in = &in[data->nch];  
    out = &out[af->data->nch];
  }
  
  // Save indexes
  s->i  = i; s->ri = ri; s->wi = wi;

  // Set output data
  data->audio = af->data->audio;
  data->len   = (data->len*af->mul.n)/af->mul.d;
  data->nch   = af->data->nch;

  return data;
}
Ejemplo n.º 4
0
static int filter_frame(struct af_instance *af, struct mp_audio *data)
{
  if (!data)
    return 0;
  struct mp_audio *outframe =
    mp_audio_pool_get(af->out_pool, &af->fmt_out, data->samples);
  if (!outframe) {
    talloc_free(data);
    return -1;
  }
  mp_audio_copy_attributes(outframe, data);

  af_surround_t* s   = (af_surround_t*)af->priv;
  const float*   m   = steering_matrix[0];
  float*         in  = data->planes[0];         // Input audio data
  float*         out = outframe->planes[0];     // Output audio data
  float*         end = in + data->samples * data->nch;
  int            i   = s->i;    // Filter queue index
  int            ri  = s->ri;   // Read index for delay queue
  int            wi  = s->wi;   // Write index for delay queue

  while(in < end){
    /* Dominance:
       abs(in[0])  abs(in[1]);
       abs(in[0]+in[1])  abs(in[0]-in[1]);
       10 * log( abs(in[0]) / (abs(in[1])|1) );
       10 * log( abs(in[0]+in[1]) / (abs(in[0]-in[1])|1) ); */

    /* About volume balancing...
       Surround encoding does the following:
           Lt=L+.707*C+.707*S, Rt=R+.707*C-.707*S
       So S should be extracted as:
           (Lt-Rt)
       But we are splitting the S to two output channels, so we
       must take 3dB off as we split it:
           Ls=Rs=.707*(Lt-Rt)
       Trouble is, Lt could be +1, Rt -1, so possibility that S will
       overflow. So to avoid that, we cut L/R by 3dB (*.707), and S by
       6dB (/2). This keeps the overall balance, but guarantees no
       overflow. */

    // Output front left and right
    out[0] = m[0]*in[0] + m[1]*in[1];
    out[1] = m[2]*in[0] + m[3]*in[1];

    // Low-pass output @ 7kHz
    FIR((&s->lq[i]), s->w, s->dl[wi]);

    // Delay output by d ms
    out[2] = s->dl[ri];

#ifdef SPLITREAR
    // Low-pass output @ 7kHz
    FIR((&s->rq[i]), s->w, s->dr[wi]);

    // Delay output by d ms
    out[3] = s->dr[ri];
#else
    out[3] = -out[2];
#endif

    // Update delay queues indexes
    UPDATEQI(ri);
    UPDATEQI(wi);

    // Calculate and save surround in circular queue
#ifdef SPLITREAR
    ADDQUE(i, s->rq, s->lq, m[6]*in[0]+m[7]*in[1], m[8]*in[0]+m[9]*in[1]);
#else
    ADDQUE(i, s->lq, m[4]*in[0]+m[5]*in[1]);
#endif

    // Next sample...
    in = &in[data->nch];
    out = &out[af->data->nch];
  }

  // Save indexes
  s->i  = i; s->ri = ri; s->wi = wi;

  talloc_free(data);
  af_add_output_frame(af, outframe);
  return 0;
}