void ReferenceSet::AddLine(size_t sentenceId, const StringPiece& line, Vocab& vocab) { //cerr << line << endl; NgramCounter ngramCounts; list<WordVec> openNgrams; size_t length = 0; //tokenize & count for (util::TokenIter<util::SingleCharacter, true> j(line, util::SingleCharacter(' ')); j; ++j) { const Vocab::Entry* nextTok = &(vocab.FindOrAdd(*j)); ++length; openNgrams.push_front(WordVec()); for (list<WordVec>::iterator k = openNgrams.begin(); k != openNgrams.end(); ++k) { k->push_back(nextTok); ++ngramCounts[*k]; } if (openNgrams.size() >= kBleuNgramOrder) openNgrams.pop_back(); } //merge into overall ngram map for (NgramCounter::const_iterator ni = ngramCounts.begin(); ni != ngramCounts.end(); ++ni) { size_t count = ni->second; //cerr << *ni << " " << count << endl; if (ngramCounts_.size() <= sentenceId) ngramCounts_.resize(sentenceId+1); NgramMap::iterator totalsIter = ngramCounts_[sentenceId].find(ni->first); if (totalsIter == ngramCounts_[sentenceId].end()) { ngramCounts_[sentenceId][ni->first] = pair<size_t,size_t>(count,count); } else { ngramCounts_[sentenceId][ni->first].first = max(count, ngramCounts_[sentenceId][ni->first].first); //clip ngramCounts_[sentenceId][ni->first].second += count; //no clip } } //length if (lengths_.size() <= sentenceId) lengths_.resize(sentenceId+1); //TODO - length strategy - this is MIN if (!lengths_[sentenceId]) { lengths_[sentenceId] = length; } else { lengths_[sentenceId] = min(length,lengths_[sentenceId]); } //cerr << endl; }
FeatureStatsType HgBleuScorer::Score(const Edge& edge, const Vertex& head, vector<FeatureStatsType>& bleuStats) { NgramCounter ngramCounts; size_t childId = 0; size_t wordId = 0; size_t contextId = 0; //position within left or right context const VertexState* vertexState = NULL; bool inLeftContext = false; bool inRightContext = false; list<WordVec> openNgrams; const Vocab::Entry* currentWord = NULL; while (wordId < edge.Words().size()) { currentWord = edge.Words()[wordId]; if (currentWord != NULL) { ++wordId; } else { if (!inLeftContext && !inRightContext) { //entering a vertex assert(!vertexState); vertexState = &(vertexStates_[edge.Children()[childId]]); ++childId; if (vertexState->leftContext.size()) { inLeftContext = true; contextId = 0; currentWord = vertexState->leftContext[contextId]; } else { //empty context vertexState = NULL; ++wordId; continue; } } else { //already in a vertex ++contextId; if (inLeftContext && contextId < vertexState->leftContext.size()) { //still in left context currentWord = vertexState->leftContext[contextId]; } else if (inLeftContext) { //at end of left context if (vertexState->leftContext.size() == kBleuNgramOrder-1) { //full size context, jump to right state openNgrams.clear(); inLeftContext = false; inRightContext = true; contextId = 0; currentWord = vertexState->rightContext[contextId]; } else { //short context, just ignore right context inLeftContext = false; vertexState = NULL; ++wordId; continue; } } else { //in right context if (contextId < vertexState->rightContext.size()) { currentWord = vertexState->rightContext[contextId]; } else { //leaving vertex inRightContext = false; vertexState = NULL; ++wordId; continue; } } } } assert(currentWord); if (graph_.IsBoundary(currentWord)) continue; openNgrams.push_front(WordVec()); openNgrams.front().reserve(kBleuNgramOrder); for (list<WordVec>::iterator k = openNgrams.begin(); k != openNgrams.end(); ++k) { k->push_back(currentWord); //Only insert ngrams that cross boundaries if (!vertexState || (inLeftContext && k->size() > contextId+1)) ++ngramCounts[*k]; } if (openNgrams.size() >= kBleuNgramOrder) openNgrams.pop_back(); } //Collect matches //This edge //cerr << "edge ngrams" << endl; UpdateMatches(ngramCounts, bleuStats); //Child vertexes for (size_t i = 0; i < edge.Children().size(); ++i) { //cerr << "vertex ngrams " << edge.Children()[i] << endl; for (size_t j = 0; j < bleuStats.size(); ++j) { bleuStats[j] += vertexStates_[edge.Children()[i]].bleuStats[j]; } } FeatureStatsType sourceLength = head.SourceCovered(); size_t referenceLength = references_.Length(sentenceId_); FeatureStatsType effectiveReferenceLength = sourceLength / totalSourceLength_ * referenceLength; bleuStats[bleuStats.size()-1] = effectiveReferenceLength; //backgroundBleu_[backgroundBleu_.size()-1] = // backgroundRefLength_ * sourceLength / totalSourceLength_; FeatureStatsType bleu = sentenceLevelBackgroundBleu(bleuStats, backgroundBleu_); return bleu; }
void Viterbi(const Graph& graph, const SparseVector& weights, float bleuWeight, const ReferenceSet& references , size_t sentenceId, const std::vector<FeatureStatsType>& backgroundBleu, HgHypothesis* bestHypo) { BackPointer init(NULL,kMinScore); vector<BackPointer> backPointers(graph.VertexSize(),init); HgBleuScorer bleuScorer(references, graph, sentenceId, backgroundBleu); vector<FeatureStatsType> winnerStats(kBleuNgramOrder*2+1); for (size_t vi = 0; vi < graph.VertexSize(); ++vi) { // cerr << "vertex id " << vi << endl; FeatureStatsType winnerScore = kMinScore; const Vertex& vertex = graph.GetVertex(vi); const vector<const Edge*>& incoming = vertex.GetIncoming(); if (!incoming.size()) { //UTIL_THROW(HypergraphException, "Vertex " << vi << " has no incoming edges"); //If no incoming edges, vertex is a dead end backPointers[vi].first = NULL; backPointers[vi].second = kMinScore; } else { //cerr << "\nVertex: " << vi << endl; for (size_t ei = 0; ei < incoming.size(); ++ei) { //cerr << "edge id " << ei << endl; FeatureStatsType incomingScore = incoming[ei]->GetScore(weights); for (size_t i = 0; i < incoming[ei]->Children().size(); ++i) { size_t childId = incoming[ei]->Children()[i]; //UTIL_THROW_IF(backPointers[childId].second == kMinScore, // HypergraphException, "Graph was not topologically sorted. curr=" << vi << " prev=" << childId); incomingScore = max(incomingScore + backPointers[childId].second, kMinScore); } vector<FeatureStatsType> bleuStats(kBleuNgramOrder*2+1); // cerr << "Score: " << incomingScore << " Bleu: "; // if (incomingScore > nonbleuscore) {nonbleuscore = incomingScore; nonbleuid = ei;} FeatureStatsType totalScore = incomingScore; if (bleuWeight) { FeatureStatsType bleuScore = bleuScorer.Score(*(incoming[ei]), vertex, bleuStats); if (isnan(bleuScore)) { cerr << "WARN: bleu score undefined" << endl; cerr << "\tVertex id : " << vi << endl; cerr << "\tBleu stats : "; for (size_t i = 0; i < bleuStats.size(); ++i) { cerr << bleuStats[i] << ","; } cerr << endl; bleuScore = 0; } //UTIL_THROW_IF(isnan(bleuScore), util::Exception, "Bleu score undefined, smoothing problem?"); totalScore += bleuWeight * bleuScore; // cerr << bleuScore << " Total: " << incomingScore << endl << endl; //cerr << "is " << incomingScore << " bs " << bleuScore << endl; } if (totalScore >= winnerScore) { //We only store the feature score (not the bleu score) with the vertex, //since the bleu score is always cumulative, ie from counts for the whole span. winnerScore = totalScore; backPointers[vi].first = incoming[ei]; backPointers[vi].second = incomingScore; winnerStats = bleuStats; } } //update with winner //if (bleuWeight) { //TODO: Not sure if we need this when computing max-model solution if (backPointers[vi].first) { bleuScorer.UpdateState(*(backPointers[vi].first), vi, winnerStats); } } // cerr << "backpointer[" << vi << "] = (" << backPointers[vi].first << "," << backPointers[vi].second << ")" << endl; } //expand back pointers GetBestHypothesis(graph.VertexSize()-1, graph, backPointers, bestHypo); //bleu stats and fv //Need the actual (clipped) stats //TODO: This repeats code in bleu scorer - factor out bestHypo->bleuStats.resize(kBleuNgramOrder*2+1); NgramCounter counts; list<WordVec> openNgrams; for (size_t i = 0; i < bestHypo->text.size(); ++i) { const Vocab::Entry* entry = bestHypo->text[i]; if (graph.IsBoundary(entry)) continue; openNgrams.push_front(WordVec()); for (list<WordVec>::iterator k = openNgrams.begin(); k != openNgrams.end(); ++k) { k->push_back(entry); ++counts[*k]; } if (openNgrams.size() >= kBleuNgramOrder) openNgrams.pop_back(); } for (NgramCounter::const_iterator ngi = counts.begin(); ngi != counts.end(); ++ngi) { size_t order = ngi->first.size(); size_t count = ngi->second; bestHypo->bleuStats[(order-1)*2 + 1] += count; bestHypo->bleuStats[(order-1) * 2] += min(count, references.NgramMatches(sentenceId,ngi->first,true)); } bestHypo->bleuStats[kBleuNgramOrder*2] = references.Length(sentenceId); }
int set_LL_data_IQ(int deviceID, int channelNum, int length, unsigned short* addr, unsigned short* count, unsigned short* trigger1, unsigned short * trigger2, unsigned short* repeat){ //Convert data pointers to vectors and passed through return APSRack_.set_LL_data(deviceID, channelNum, WordVec(addr, addr+length), WordVec(count, count+length), WordVec(trigger1, trigger1+length), WordVec(trigger2, trigger2+length), WordVec(repeat, repeat+length)); }