Ejemplo n.º 1
0
///
/// Create coherent input data
///
WeaveCohInput *XLALWeaveCohInputCreate(
  const LALStringVector *setup_detectors,
  const WeaveSimulationLevel simulation_level,
  const SFTCatalog *sft_catalog,
  const UINT4 segment_index,
  const LALSeg *segment,
  const PulsarDopplerParams *min_phys,
  const PulsarDopplerParams *max_phys,
  const double dfreq,
  const EphemerisData *ephemerides,
  const LALStringVector *sft_noise_sqrtSX,
  const LALStringVector *Fstat_assume_sqrtSX,
  FstatOptionalArgs *Fstat_opt_args,
  const WeaveStatisticsParams *statistics_params,
  BOOLEAN recalc_stage
  )
{

  // Check input
  XLAL_CHECK_NULL( setup_detectors != NULL, XLAL_EFAULT );
  XLAL_CHECK_NULL( ( simulation_level & WEAVE_SIMULATE_MIN_MEM ) || ( sft_catalog != NULL ), XLAL_EFAULT );
  XLAL_CHECK_NULL( segment != NULL, XLAL_EFAULT );
  XLAL_CHECK_NULL( min_phys != NULL, XLAL_EFAULT );
  XLAL_CHECK_NULL( max_phys != NULL, XLAL_EFAULT );
  XLAL_CHECK_NULL( dfreq >= 0, XLAL_EINVAL );
  XLAL_CHECK_NULL( ephemerides != NULL, XLAL_EFAULT );
  XLAL_CHECK_NULL( Fstat_opt_args != NULL, XLAL_EFAULT );
  XLAL_CHECK_NULL( statistics_params != NULL, XLAL_EFAULT );

  // Allocate memory
  WeaveCohInput *coh_input = XLALCalloc( 1, sizeof( *coh_input ) );
  XLAL_CHECK_NULL( coh_input != NULL, XLAL_ENOMEM );

  // Set fields
  coh_input->setup_detectors = setup_detectors;
  coh_input->simulation_level = simulation_level;
  coh_input->seg_info_have_sft_info = ( sft_catalog != NULL );
  coh_input->Fstat_collect_timing = Fstat_opt_args->collectTiming;

  // Record information from segment
  coh_input->seg_info.segment_start = segment->start;
  coh_input->seg_info.segment_end = segment->end;

  // Decide what F-statistic quantities to compute
  WeaveStatisticType requested_stats = ( recalc_stage ) ? statistics_params->completionloop_statistics[1] : statistics_params->mainloop_statistics;
  if ( requested_stats & WEAVE_STATISTIC_COH2F ) {
    coh_input->Fstat_what_to_compute |= FSTATQ_2F;
  }
  if ( requested_stats & WEAVE_STATISTIC_COH2F_DET ) {
    coh_input->Fstat_what_to_compute |= FSTATQ_2F_PER_DET;
  }

  // Return now if simulating search with minimal memory allocation
  if ( coh_input->simulation_level & WEAVE_SIMULATE_MIN_MEM ) {
    return coh_input;
  }

  // Get a timeslice of SFT catalog restricted to the given segment
  SFTCatalog XLAL_INIT_DECL( sft_catalog_seg );
  XLAL_CHECK_NULL( XLALSFTCatalogTimeslice( &sft_catalog_seg, sft_catalog, &segment->start, &segment->end ) == XLAL_SUCCESS, XLAL_EFUNC );
  XLAL_CHECK_NULL( sft_catalog_seg.length > 0, XLAL_EINVAL, "No SFTs found in segment %u", segment_index );

  // Check that the number of SFTs in each segment matches the number provided by the segment list in the setup file, if nonzero
  const UINT4 sft_count = ( UINT4 ) segment->id;
  XLAL_CHECK_NULL( sft_count == 0 || sft_catalog_seg.length == sft_count, XLAL_EFAILED, "Number of SFTs found for segment %u (%u) is inconsistent with expected number of SFTs given by segment list (%u)", segment_index, sft_catalog_seg.length, sft_count );

  // Get list of detectors of SFT catalog in this segment
  LALStringVector *sft_catalog_seg_detectors = XLALListIFOsInCatalog( &sft_catalog_seg );
  XLAL_CHECK_NULL( sft_catalog_seg_detectors != NULL, XLAL_EFUNC );

  // Compute frequency range covered by spindown range over in the given segment
  LIGOTimeGPS sft_start = sft_catalog_seg.data[0].header.epoch;
  LIGOTimeGPS sft_end = sft_catalog_seg.data[sft_catalog_seg.length - 1].header.epoch;
  const double sft_end_timebase = 1.0 / sft_catalog_seg.data[sft_catalog_seg.length - 1].header.deltaF;
  XLALGPSAdd( &sft_end, sft_end_timebase );
  PulsarSpinRange XLAL_INIT_DECL( spin_range );
  XLAL_CHECK_NULL( XLALInitPulsarSpinRangeFromSpins( &spin_range, &min_phys->refTime, min_phys->fkdot, max_phys->fkdot ) == XLAL_SUCCESS, XLAL_EFUNC );
  double sft_min_cover_freq = 0, sft_max_cover_freq = 0;
  XLAL_CHECK_NULL( XLALCWSignalCoveringBand( &sft_min_cover_freq, &sft_max_cover_freq, &sft_start, &sft_end, &spin_range, 0, 0, 0 ) == XLAL_SUCCESS, XLAL_EFUNC );

  // Parse SFT noise sqrt(Sh) string vector for detectors in this segment
  // - This is important when segments contain data from a subset of detectors
  MultiNoiseFloor Fstat_injectSqrtSX;
  if ( sft_noise_sqrtSX != NULL ) {
    XLAL_CHECK_NULL( XLALParseMultiNoiseFloorMapped( &Fstat_injectSqrtSX, sft_catalog_seg_detectors, sft_noise_sqrtSX, setup_detectors ) == XLAL_SUCCESS, XLAL_EFUNC );
    Fstat_opt_args->injectSqrtSX = &Fstat_injectSqrtSX;
  }

  // Parse F-statistic assumed sqrt(Sh) string vector for detectors in this segment
  // - This is important when segments contain data from a subset of detectors
  MultiNoiseFloor Fstat_assumeSqrtSX;
  if ( Fstat_assume_sqrtSX != NULL ) {
    XLAL_CHECK_NULL( XLALParseMultiNoiseFloorMapped( &Fstat_assumeSqrtSX, sft_catalog_seg_detectors, Fstat_assume_sqrtSX, setup_detectors ) == XLAL_SUCCESS, XLAL_EFUNC );
    Fstat_opt_args->assumeSqrtSX = &Fstat_assumeSqrtSX;
  }

  // Load F-statistic input data
  coh_input->Fstat_input = XLALCreateFstatInput( &sft_catalog_seg, sft_min_cover_freq, sft_max_cover_freq, dfreq, ephemerides, Fstat_opt_args );
  XLAL_CHECK_NULL( coh_input->Fstat_input != NULL, XLAL_EFUNC );
  Fstat_opt_args->prevInput = coh_input->Fstat_input;

  // Map detectors in F-statistic data in the given segment to their index in the coherent results
  // - This is important when segments contain data from a subset of detectors
  // - Map entry 'i' in 'Fstat_detector_info' (F-statistic data) to entry 'idx' in 'detectors' (coherent results)
  if ( coh_input->Fstat_what_to_compute & FSTATQ_2F_PER_DET ) {
    const MultiLALDetector *Fstat_detector_info = XLALGetFstatInputDetectors( coh_input->Fstat_input );
    coh_input->Fstat_ndetectors = Fstat_detector_info->length;
    char *statistics_detectors_string = XLALConcatStringVector( statistics_params->detectors, "," );
    for ( size_t i = 0; i < coh_input->Fstat_ndetectors; ++i ) {
      const char *prefix = Fstat_detector_info->sites[i].frDetector.prefix;
      const int idx = XLALFindStringInVector( prefix, statistics_params->detectors );
      XLAL_CHECK_NULL( idx >= 0, XLAL_EFAILED, "Detector '%s' from F-statistic data not found in list of detectors '%s'", prefix, statistics_detectors_string );
      coh_input->Fstat_res_idx[i] = idx;
    }
    XLALFree( statistics_detectors_string );
  }

  // Record information from SFTs in the given segment
  {
    MultiSFTCatalogView *sft_catalog_seg_view = XLALGetMultiSFTCatalogView( &sft_catalog_seg );
    XLAL_CHECK_NULL( sft_catalog_seg_view != NULL, XLAL_EINVAL );
    for ( size_t j = 0; j < sft_catalog_seg_view->length; ++j ) {
      XLAL_CHECK_NULL( sft_catalog_seg_view->data[j].length > 0, XLAL_EINVAL );
      char *detector_name = XLALGetChannelPrefix( sft_catalog_seg_view->data[j].data[0].header.name );
      XLAL_CHECK_NULL( detector_name != NULL, XLAL_EFUNC );
      const int k = XLALFindStringInVector( detector_name, sft_catalog_seg_detectors );
      if ( k >= 0 ) {
        const UINT4 length = sft_catalog_seg_view->data[j].length;
        coh_input->seg_info.sft_first[k] = sft_catalog_seg_view->data[j].data[0].header.epoch;
        coh_input->seg_info.sft_last[k] = sft_catalog_seg_view->data[j].data[length - 1].header.epoch;
        coh_input->seg_info.sft_count[k] = length;
      }
      XLALFree( detector_name );
    }
    XLALDestroyMultiSFTCatalogView( sft_catalog_seg_view );
  }
  XLAL_CHECK_NULL( XLALGetFstatInputSFTBand( coh_input->Fstat_input, &coh_input->seg_info.sft_min_freq, &coh_input->seg_info.sft_max_freq ) == XLAL_SUCCESS, XLAL_EFUNC );


  // Cleanup
  XLALDestroyStringVector( sft_catalog_seg_detectors );

  return coh_input;

}
Ejemplo n.º 2
0
// ---------- main ----------
int
main ( int argc, char *argv[] )
{
  // ---------- handle user input ----------
  UserInput_t XLAL_INIT_DECL(uvar_s);
  UserInput_t *uvar = &uvar_s;

  uvar->FstatMethod = XLALStringDuplicate("ResampBest");
  uvar->Freq = 100;
  uvar->f1dot = -3e-9;
  uvar->FreqResolution = XLALCreateREAL8Vector ( 2 );
  uvar->FreqResolution->data[0] = 1;
  uvar->FreqResolution->data[1] = 10;
  uvar->numFreqBins = XLALCreateINT4Vector ( 2 );
  uvar->numFreqBins->data[0] = 1000;
  uvar->numFreqBins->data[1] = 100000;
  uvar->Tseg = 60 * 3600;
  uvar->numSegments = 90;
  uvar->numTrials = 1;

  uvar->Tsft = 1800;
  uvar->runBuffered = 0;

  XLAL_CHECK ( (uvar->IFOs = XLALCreateStringVector ( "H1", NULL )) != NULL, XLAL_EFUNC );
  uvar->outputInfo = NULL;

  XLAL_CHECK ( XLALRegisterUvarMember ( help,           BOOLEAN,        'h', HELP,    "Print help message" ) == XLAL_SUCCESS, XLAL_EFUNC );
  XLAL_CHECK ( XLALRegisterUvarMember ( FstatMethod,    STRING,         0, OPTIONAL,  XLALFstatMethodHelpString() ) == XLAL_SUCCESS, XLAL_EFUNC );
  XLAL_CHECK ( XLALRegisterUvarMember ( Freq,           REAL8,          0, OPTIONAL,  "Search frequency in Hz" ) == XLAL_SUCCESS, XLAL_EFUNC );
  XLAL_CHECK ( XLALRegisterUvarMember ( f1dot,          REAL8,          0, OPTIONAL,  "Search spindown f1dot in Hz/s" ) == XLAL_SUCCESS, XLAL_EFUNC );
  XLAL_CHECK ( XLALRegisterUvarMember ( FreqResolution, REAL8Vector,    0, OPTIONAL,  "Range of frequency resolution factor 'r' (st dFreq = 1/(r*T)) [2-number range input]" ) == XLAL_SUCCESS, XLAL_EFUNC );
  XLAL_CHECK ( XLALRegisterUvarMember ( Tseg,           REAL8,          0, OPTIONAL,  "Coherent segment length" ) == XLAL_SUCCESS, XLAL_EFUNC );
  XLAL_CHECK ( XLALRegisterUvarMember ( numSegments,    INT4,           0, OPTIONAL,  "Number of semi-coherent segment" ) == XLAL_SUCCESS, XLAL_EFUNC );
  XLAL_CHECK ( XLALRegisterUvarMember ( numFreqBins,    INT4Vector,     0, OPTIONAL,  "Range of number of frequency bins to search [2-number range input]" ) == XLAL_SUCCESS, XLAL_EFUNC );
  XLAL_CHECK ( XLALRegisterUvarMember ( IFOs,    	STRINGVector,   0, OPTIONAL,  "IFOs to use" ) == XLAL_SUCCESS, XLAL_EFUNC );
  XLAL_CHECK ( XLALRegisterUvarMember ( numTrials,    	INT4,           0, OPTIONAL,  "Number of repeated trials to run (with potentially randomized parameters)" ) == XLAL_SUCCESS, XLAL_EFUNC );

  XLAL_CHECK ( XLALRegisterUvarMember ( outputInfo,     STRING,         0, OPTIONAL, "Append Resampling internal info into this file") == XLAL_SUCCESS, XLAL_EFUNC );

  XLAL_CHECK ( XLALRegisterUvarMember ( Tsft,           REAL8,          0, DEVELOPER, "SFT length" ) == XLAL_SUCCESS, XLAL_EFUNC );
  XLAL_CHECK ( XLALRegisterUvarMember ( runBuffered,    BOOLEAN,        0, DEVELOPER, "Explicitly time buffered Fstat call (only useful for double-checking and Demod timing)" ) == XLAL_SUCCESS, XLAL_EFUNC );

  XLAL_CHECK ( XLALUserVarReadAllInput(argc, argv) == XLAL_SUCCESS, XLAL_EFUNC );
  if (uvar->help) {	// if help was requested, we're done here
    return XLAL_SUCCESS;
  }
  // check user input
  XLAL_CHECK ( uvar->numSegments >= 1, XLAL_EINVAL );
  XLAL_CHECK ( (uvar->FreqResolution->length == 1) || (uvar->FreqResolution->length == 2), XLAL_EINVAL );
  XLAL_CHECK ( uvar->FreqResolution->data[0] > 0, XLAL_EINVAL );
  REAL8 FreqResolutionMin, FreqResolutionMax;
  FreqResolutionMin = FreqResolutionMax = uvar->FreqResolution->data[0];
  if ( uvar->FreqResolution->length == 2 )
    {
      XLAL_CHECK ( uvar->FreqResolution->data[1] > 0, XLAL_EINVAL );
      XLAL_CHECK ( uvar->FreqResolution->data[1] > uvar->FreqResolution->data[0], XLAL_EINVAL );
      FreqResolutionMax = uvar->FreqResolution->data[1];
    }

  XLAL_CHECK ( uvar->Freq > 0, XLAL_EINVAL );
  XLAL_CHECK ( uvar->Tseg > uvar->Tsft, XLAL_EINVAL );
  XLAL_CHECK ( uvar->Tsft > 1, XLAL_EINVAL );
  XLAL_CHECK ( (uvar->numFreqBins->length == 1) || (uvar->numFreqBins->length == 2), XLAL_EINVAL );
  XLAL_CHECK ( uvar->numFreqBins->data[0] > 0, XLAL_EINVAL );
  UINT4 numFreqBinsMax, numFreqBinsMin;
  numFreqBinsMin = numFreqBinsMax = uvar->numFreqBins->data[0];
  if ( uvar->numFreqBins->length == 2 )
    {
      XLAL_CHECK ( uvar->numFreqBins->data[1] > 0, XLAL_EINVAL );
      XLAL_CHECK ( uvar->numFreqBins->data[1] > uvar->numFreqBins->data[0], XLAL_EINVAL );
      numFreqBinsMax = uvar->numFreqBins->data[1];
    }

  XLAL_CHECK ( uvar->numTrials >= 1, XLAL_EINVAL );
  // ---------- end: handle user input ----------

  // common setup over repeated trials
  FstatMethodType FstatMethod;
  XLAL_CHECK ( XLALParseFstatMethodString ( &FstatMethod, uvar->FstatMethod ) == XLAL_SUCCESS, XLAL_EFUNC );

  EphemerisData *ephem;
  XLAL_CHECK ( (ephem = XLALInitBarycenter ( TEST_DATA_DIR "earth00-19-DE405.dat.gz", TEST_DATA_DIR "sun00-19-DE405.dat.gz" )) != NULL, XLAL_EFUNC );
  REAL8 memBase = XLALGetPeakHeapUsageMB();

  UINT4 numDetectors = uvar->IFOs->length;
  // ----- setup injection and data parameters
  LIGOTimeGPS startTime = {711595934, 0};
  LIGOTimeGPS startTime_l = startTime;
  LIGOTimeGPS endTime_l;
  SFTCatalog **catalogs;
  XLAL_CHECK ( (catalogs = XLALCalloc ( uvar->numSegments, sizeof( catalogs[0] ))) != NULL, XLAL_ENOMEM );

  for ( INT4 l = 0; l < uvar->numSegments; l ++ )
    {
      endTime_l = startTime_l;
      XLALGPSAdd( &endTime_l, uvar->Tseg );
      MultiLIGOTimeGPSVector *multiTimestamps;
      XLAL_CHECK ( (multiTimestamps = XLALMakeMultiTimestamps ( startTime_l, uvar->Tseg, uvar->Tsft, 0, numDetectors )) != NULL, XLAL_EFUNC );
      XLAL_CHECK ( (catalogs[l] = XLALMultiAddToFakeSFTCatalog ( NULL, uvar->IFOs, multiTimestamps )) != NULL, XLAL_EFUNC );
      XLALDestroyMultiTimestamps ( multiTimestamps );
      startTime_l = endTime_l;
    } // for l < numSegments
  LIGOTimeGPS endTime = endTime_l;
  UINT4 numSFTsPerSeg = catalogs[0]->length;

  FILE *fpInfo = NULL;
  if ( (uvar->outputInfo != NULL) && (FstatMethod == FMETHOD_RESAMP_GENERIC) )
    {
      XLAL_CHECK ( (fpInfo = fopen (uvar->outputInfo, "ab")) != NULL, XLAL_ESYS, "Failed to open '%s' for appending\n", uvar->outputInfo );
      XLALAppendResampInfo2File ( fpInfo, NULL ); // create header comment line
    }

  PulsarSpinRange XLAL_INIT_DECL(spinRange);
  LIGOTimeGPS refTime = { startTime.gpsSeconds - 2.3 * uvar->Tseg, 0 };
  spinRange.refTime = refTime;
  spinRange.fkdot[0] = uvar->Freq;
  spinRange.fkdot[1] = uvar->f1dot;
  spinRange.fkdotBand[1] = 0;
  REAL8 asini = 0, Period = 0, ecc = 0;
  REAL8 minCoverFreq, maxCoverFreq;

  PulsarDopplerParams XLAL_INIT_DECL(Doppler);
  Doppler.refTime = refTime;
  Doppler.Alpha = 0.5;
  Doppler.Delta = 0.5;
  memcpy ( &Doppler.fkdot, &spinRange.fkdot, sizeof(Doppler.fkdot) );;
  Doppler.period = Period;
  Doppler.ecc = ecc;
  Doppler.asini = asini;

  // ----- setup optional Fstat arguments
  FstatOptionalArgs optionalArgs = FstatOptionalArgsDefaults;
  MultiNoiseFloor XLAL_INIT_DECL(injectSqrtSX);
  injectSqrtSX.length = numDetectors;
  for ( UINT4 X=0; X < numDetectors; X ++ ) {
    injectSqrtSX.sqrtSn[X] = 1;
  }
  optionalArgs.injectSqrtSX = &injectSqrtSX;
  optionalArgs.FstatMethod = FstatMethod;

  FstatWorkspace *sharedWorkspace = NULL;
  FstatInputVector *inputs;
  FstatQuantities whatToCompute = (FSTATQ_2F | FSTATQ_2F_PER_DET);
  FstatResults *results = NULL;
  REAL8 tauF1NoBuf = 0;
  REAL8 tauF1Buf = 0;
  // ---------- main loop over repeated trials ----------
  for ( INT4 i = 0; i < uvar->numTrials; i ++ )
    {
      // randomize numFreqBins
      UINT4 numFreqBins_i = numFreqBinsMin + (UINT4)round ( 1.0 * (numFreqBinsMax - numFreqBinsMin) * rand() / RAND_MAX );
      // randomize FreqResolution
      REAL8 FreqResolution_i = FreqResolutionMin + 1.0 * ( FreqResolutionMax - FreqResolutionMin ) * rand() / RAND_MAX;

      XLAL_CHECK ( (inputs = XLALCreateFstatInputVector ( uvar->numSegments )) != NULL, XLAL_EFUNC );

      REAL8 dFreq = 1.0 / ( FreqResolution_i * uvar->Tseg );

      REAL8 FreqBand = numFreqBins_i * dFreq;
      fprintf ( stderr, "trial %d/%d: Tseg = %.1f d, numSegments = %d, Freq = %.1f Hz, f1dot = %.1e Hz/s, FreqResolution r = %f, numFreqBins = %d [dFreq = %.2e Hz, FreqBand = %.2e Hz]\n",
                i+1, uvar->numTrials, uvar->Tseg / 86400.0, uvar->numSegments, uvar->Freq, uvar->f1dot, FreqResolution_i, numFreqBins_i, dFreq, FreqBand );

      spinRange.fkdotBand[0] = FreqBand;
      XLAL_CHECK ( XLALCWSignalCoveringBand ( &minCoverFreq, &maxCoverFreq, &startTime, &endTime, &spinRange, asini, Period, ecc ) == XLAL_SUCCESS, XLAL_EFUNC );

      UINT4 numBinsSFT = ceil ( (maxCoverFreq - minCoverFreq) * uvar->Tsft + 2 * 8 );
      REAL8 memSFTs = uvar->numSegments * numSFTsPerSeg * ( sizeof(SFTtype) + numBinsSFT * sizeof(COMPLEX8)) / 1e6;

      // create per-segment input structs
      for ( INT4 l = 0; l < uvar->numSegments; l ++ )
        {
          XLAL_CHECK ( (inputs->data[l] = XLALCreateFstatInput ( catalogs[l], minCoverFreq, maxCoverFreq, dFreq, ephem, &optionalArgs )) != NULL, XLAL_EFUNC );
          if ( l == 0 ) {
            sharedWorkspace = XLALGetSharedFstatWorkspace ( inputs->data[0] );
          }
          optionalArgs.sharedWorkspace = sharedWorkspace;
        }

      // ----- compute Fstatistics over segments
      REAL8 tauF1NoBuf_i = 0;
      REAL8 tauF1Buf_i = 0;
      for ( INT4 l = 0; l < uvar->numSegments; l ++ )
        {
          XLAL_CHECK ( XLALComputeFstat ( &results, inputs->data[l], &Doppler, numFreqBins_i, whatToCompute ) == XLAL_SUCCESS, XLAL_EFUNC );

          // ----- output timing details if requested
          if ( (fpInfo != NULL) ) {
            XLALAppendResampInfo2File ( fpInfo, inputs->data[l] );
          }
          REAL8 tauF1NoBuf_il, tauF1Buf_il;
          XLAL_CHECK ( XLALGetResampTimingInfo ( &tauF1NoBuf_il, &tauF1Buf_il, inputs->data[l] ) == XLAL_SUCCESS, XLAL_EFUNC );
          tauF1NoBuf_i += tauF1NoBuf_il;
          tauF1Buf_i   += tauF1Buf_il;
        } // for l < numSegments

      tauF1NoBuf_i /= uvar->numSegments;
      tauF1Buf_i   /= uvar->numSegments;
      REAL8 memMaxCompute = XLALGetPeakHeapUsageMB() - memBase;

      tauF1Buf   += tauF1Buf_i;
      tauF1NoBuf += tauF1NoBuf_i;

      fprintf (stderr, "%-15s: tauF1Buf = %.2g s, tauF1NoBuf = %.2g s, memSFTs = %.1f MB, memMaxCompute = %.1f MB\n",
               XLALGetFstatMethodName ( FstatMethod ), tauF1Buf_i, tauF1NoBuf_i, memSFTs, memMaxCompute  );

      XLALDestroyFstatInputVector ( inputs );
      XLALDestroyFstatWorkspace ( sharedWorkspace );
      optionalArgs.sharedWorkspace = NULL;

    } // for i < numTrials

  tauF1Buf   /= uvar->numTrials;
  tauF1NoBuf /= uvar->numTrials;

  fprintf (stderr, "\nAveraged timings: <tauF1Buf> = %.2g s, <tauF1NoBuf> = %.2g s\n", tauF1Buf, tauF1NoBuf );

  // ----- free memory ----------
  if ( fpInfo != NULL ) {
    fclose ( fpInfo );
  }

  for ( INT4 l = 0; l < uvar->numSegments; l ++ )
    {
      XLALDestroySFTCatalog ( catalogs[l] );
    }
  XLALFree ( catalogs );
  XLALDestroyFstatResults ( results );
  XLALDestroyUserVars();
  XLALDestroyEphemerisData ( ephem );

  LALCheckMemoryLeaks();

  return XLAL_SUCCESS;

} // main()
Ejemplo n.º 3
0
// ---------- main ----------
int
main ( int argc, char *argv[] )
{
  XLAL_CHECK ( argc == 1, XLAL_EINVAL, "No input arguments allowed.\n" );
  XLAL_CHECK ( argv != NULL, XLAL_EINVAL );

  // ----- load ephemeris
  EphemerisData *ephem;
  XLAL_CHECK ( (ephem = XLALInitBarycenter ( TEST_DATA_DIR "earth00-19-DE405.dat.gz", TEST_DATA_DIR "sun00-19-DE405.dat.gz" )) != NULL, XLAL_EFUNC );

  // ----- setup injection and data parameters
  LALStringVector *detNames = NULL;
  XLAL_CHECK ( (detNames = XLALCreateStringVector ( "H1", "L1", NULL )) != NULL, XLAL_EFUNC );
  UINT4 numDetectors = detNames->length;

  // generate and assume some gaussian noise floors
  MultiNoiseFloor XLAL_INIT_DECL(injectSqrtSX);
  MultiNoiseFloor XLAL_INIT_DECL(assumeSqrtSX);
  injectSqrtSX.length = numDetectors;
  assumeSqrtSX.length = numDetectors;
  for ( UINT4 X = 0; X < numDetectors; X ++ )
    {
      injectSqrtSX.sqrtSn[X] = 0; // don't inject random noise to keep errors deterministic and informative (resampling differs much more on noise)
      assumeSqrtSX.sqrtSn[X] = 1.0 + 2.0*X;
    }

  LIGOTimeGPS startTime = {711595934, 0};
  REAL8 Tspan = 20 * 3600;
  LIGOTimeGPS endTime = startTime;
  XLALGPSAdd( &endTime, Tspan );
  REAL8 Tsft = 1800;

  LIGOTimeGPS refTime = { startTime.gpsSeconds - 2.3 * Tspan, 0 };

  MultiLIGOTimeGPSVector *multiTimestamps;
  XLAL_CHECK ( ( multiTimestamps = XLALCalloc ( 1, sizeof(*multiTimestamps))) != NULL, XLAL_ENOMEM );
  XLAL_CHECK ( ( multiTimestamps->data = XLALCalloc ( numDetectors, sizeof(multiTimestamps->data[0]) )) != NULL, XLAL_ENOMEM );
  multiTimestamps->length = numDetectors;
  LIGOTimeGPS startTimeX = startTime;
  for ( UINT4 X=0; X < numDetectors; X ++ )
    {
      XLAL_CHECK ( (multiTimestamps->data[X] = XLALMakeTimestamps ( startTimeX, Tspan, Tsft, 0 ) ) != NULL, XLAL_EFUNC );
      XLALGPSAdd ( &startTimeX, 0.5 * Tspan );	// shift start-times by 1/2 Tspan for each detector
      Tspan *= 2.0;
    } // for X < numDetectors

  // shift a few timestamps around to create gaps
  UINT4 numSFTsPerDet = multiTimestamps->data[0]->length;
  multiTimestamps->data[0]->data[numSFTsPerDet-1].gpsSeconds += 10000;
  multiTimestamps->data[0]->data[numSFTsPerDet-2].gpsSeconds += 5000;
  multiTimestamps->data[1]->data[0].gpsSeconds -= 10000;
  multiTimestamps->data[1]->data[1].gpsSeconds -=  5000;

  SFTCatalog *catalog;
  XLAL_CHECK ( (catalog = XLALMultiAddToFakeSFTCatalog ( NULL, detNames, multiTimestamps )) != NULL, XLAL_EFUNC );

  // ----- CW sources to injet ----------
  REAL8 Freq = 100.0;

  PulsarParamsVector *injectSources;
  XLAL_CHECK ( (injectSources = XLALCreatePulsarParamsVector(1)) != NULL, XLAL_EFUNC );

  injectSources->data[0].Amp.h0   = 1;
  injectSources->data[0].Amp.cosi = 0.5;
  injectSources->data[0].Amp.psi  = 0.1;
  injectSources->data[0].Amp.phi0 = 1.2;

  REAL8 asini = 0; // 1.4;	// sco-X1 like
  REAL8 Period = 0; // 19 * 3600;// sco-X1 like
  REAL8 ecc = 0; // 0.1;	// much larger than ScoX1
  PulsarDopplerParams XLAL_INIT_DECL(Doppler);
  Doppler.Alpha = 0.5;
  Doppler.Delta = -0.5;
  Doppler.fkdot[0] = Freq;
  Doppler.fkdot[1] = -1e-9;
  Doppler.refTime = refTime;

  Doppler.asini = asini;
  Doppler.ecc = ecc;
  Doppler.tp = startTime;
  Doppler.period = Period;
  Doppler.argp = 0.5;

  injectSources->data[0].Doppler = Doppler;

  REAL8 dFreq = 0.1 / Tspan;		// 10x finer than native FFT resolution
  REAL8 mis = 0.5;
  REAL8 df1dot = sqrt( 720.0 * mis ) / (LAL_PI * Tspan * Tspan);	// metric (f-projected) stepsize for given mismatch mis
  REAL8 dSky = 1e4 / (Freq * Tspan);	// rough estimate of a 'metric' sky step, eg. Eq.(118) in \cite Prix07

  REAL8 dPeriod = 3600;
  UINT4 numFreqBins = 1000;

  UINT4 numf1dotPoints  = 2;
  UINT4 numSkyPoints    = 2;
  UINT4 numPeriodPoints = 2;

  PulsarSpinRange XLAL_INIT_DECL(spinRange);
  spinRange.refTime = refTime;
  memcpy ( &spinRange.fkdot, &injectSources->data[0].Doppler.fkdot, sizeof(spinRange.fkdot) );
  spinRange.fkdotBand[0] = (numFreqBins - 1)*dFreq - 10*LAL_REAL8_EPS;
  spinRange.fkdotBand[1] = (numf1dotPoints - 1)*df1dot - 10*LAL_REAL8_EPS;

  Doppler.fkdot[0] -= 0.4 * spinRange.fkdotBand[0];

  REAL8 minCoverFreq, maxCoverFreq;
  XLAL_CHECK ( XLALCWSignalCoveringBand ( &minCoverFreq, &maxCoverFreq, &startTime, &endTime, &spinRange, asini, Period, ecc ) == XLAL_SUCCESS, XLAL_EFUNC );

  // ----- setup optional Fstat arguments
  FstatOptionalArgs optionalArgs = FstatOptionalArgsDefaults;
  optionalArgs.injectSources = injectSources;
  optionalArgs.injectSqrtSX = &injectSqrtSX;
  optionalArgs.assumeSqrtSX = &assumeSqrtSX;

  // ----- prepare input data with injection for all available methods
  FstatInput *input[FMETHOD_END];
  FstatResults *results[FMETHOD_END];
  for ( UINT4 iMethod = FMETHOD_START; iMethod < FMETHOD_END; iMethod ++ )
    {
      results[iMethod] = NULL;
      if ( !XLALFstatMethodIsAvailable(iMethod) ) {
        continue;
      }
      optionalArgs.FstatMethod = iMethod;
      XLAL_CHECK ( (input[iMethod] = XLALCreateFstatInput ( catalog, minCoverFreq, maxCoverFreq, dFreq, ephem, &optionalArgs )) != NULL, XLAL_EFUNC );
    }

  FstatQuantities whatToCompute = (FSTATQ_2F | FSTATQ_FAFB);
  // ----- loop over all templates {sky, f1dot, period}
  for ( UINT4 iSky = 0; iSky < numSkyPoints; iSky ++ )
    {
      for ( UINT4 if1dot = 0; if1dot < numf1dotPoints; if1dot ++ )
        {
          for ( UINT4 iPeriod = 0; iPeriod < numPeriodPoints; iPeriod ++ )
            {
              // ----- loop over all available methods and compare Fstat results
              FstatMethodType firstMethod = FMETHOD_START;
              for ( UINT4 iMethod = FMETHOD_START; iMethod < FMETHOD_END; iMethod ++ )
                {
                  if ( !XLALFstatMethodIsAvailable(iMethod) ) {
                    continue;
                  }
                  if ( firstMethod == FMETHOD_START ) {	// keep track of first available method found
                    firstMethod = iMethod;
                  }

                  XLAL_CHECK ( XLALComputeFstat ( &results[iMethod], input[iMethod], &Doppler, numFreqBins, whatToCompute ) == XLAL_SUCCESS, XLAL_EFUNC );

                  if ( lalDebugLevel & LALINFOBIT )
                    {
                      FILE *fp;
                      char fname[1024]; XLAL_INIT_MEM ( fname );
                      snprintf ( fname, sizeof(fname)-1, "twoF%s-iSky%02d-if1dot%02d-iPeriod%02d.dat", XLALGetFstatMethodName(iMethod), iSky, if1dot, iPeriod );
                      XLAL_CHECK ( (fp = fopen ( fname, "wb" )) != NULL, XLAL_EFUNC );
                      for ( UINT4 k = 0; k < results[iMethod]->numFreqBins; k ++ )
                        {
                          REAL8 Freq0 = results[iMethod]->doppler.fkdot[0];
                          REAL8 Freq_k = Freq0 + k * results[iMethod]->dFreq;
                          if ( whatToCompute & FSTATQ_FAFB ) {
                            fprintf ( fp, "%20.16g %10.4g   %10.4g %10.4g   %10.4g %10.4g\n",
                                      Freq_k, results[iMethod]->twoF[k],
                                      crealf(results[iMethod]->Fa[k]), cimagf(results[iMethod]->Fa[k]),
                                      crealf(results[iMethod]->Fb[k]), cimagf(results[iMethod]->Fb[k])
                                      );
                          } else {
                            fprintf ( fp, "%20.16g %10.4g\n",
                                      Freq_k, results[iMethod]->twoF[k] );
                          }
                        } // for k < numFreqBins
                      fclose(fp);
                    } // if info

                  // compare to first result
                  if ( iMethod != firstMethod )
                    {
                      XLALPrintInfo ("Comparing results between method '%s' and '%s'\n", XLALGetFstatMethodName(firstMethod), XLALGetFstatMethodName(iMethod) );
                      if ( compareFstatResults ( results[firstMethod], results[iMethod] ) != XLAL_SUCCESS )
                        {
                          XLALPrintError ("Comparison between method '%s' and '%s' failed\n", XLALGetFstatMethodName(firstMethod), XLALGetFstatMethodName(iMethod) );
                          XLAL_ERROR ( XLAL_EFUNC );
                        }
                    }

                }  // for i < FMETHOD_END

              Doppler.period += dPeriod;

            } // for iPeriod < numPeriodPoints

          Doppler.fkdot[1] += df1dot;

        } // for if1dot < numf1dotPoints

      Doppler.Alpha += dSky;

    } // for iSky < numSkyPoints

  // free remaining memory
  for ( UINT4 iMethod=FMETHOD_START; iMethod < FMETHOD_END; iMethod ++ )
    {
      if ( !XLALFstatMethodIsAvailable(iMethod) ) {
        continue;
      }
      XLALDestroyFstatInput ( input[iMethod] );
      XLALDestroyFstatResults ( results[iMethod] );
    } // for i < FMETHOD_END

  XLALDestroyPulsarParamsVector ( injectSources );
  XLALDestroySFTCatalog ( catalog );
  XLALDestroyMultiTimestamps ( multiTimestamps );
  XLALDestroyStringVector ( detNames );
  XLALDestroyEphemerisData ( ephem );

  LALCheckMemoryLeaks();

  return XLAL_SUCCESS;

} // main()