Ejemplo n.º 1
0
int main(int argc, char *argv[])
{
    LALFrStream *stream;
    REAL8TimeSeries *series;
    LIGOTimeGPS start;

    XLALSetErrorHandler(XLALAbortErrorHandler);

    parseargs(argc, argv);

    /* get the data */
    stream = XLALFrStreamCacheOpen(cache);
    XLALGPSSetREAL8(&start, t0 - pad);
    series = XLALFrStreamInputREAL8TimeSeries(stream, channel, &start, dt + 2.0 * pad, 0);
    XLALFrStreamClose(stream);

    /* manipulate the data */
    if (srate > 0)
        XLALResampleREAL8TimeSeries(series, 1.0 / srate);
    if (minfreq > 0)
        XLALHighPassREAL8TimeSeries(series, minfreq, 0.9, 8);
    if (maxfreq > 0)
        XLALLowPassREAL8TimeSeries(series, maxfreq, 0.9, 8);
    if (pad > 0)
        series = XLALResizeREAL8TimeSeries(series, pad / series->deltaT, dt / series->deltaT);

    if (df > 0) { /* we are computing a spectrum */
        REAL8FrequencySeries *spectrum;
        REAL8FFTPlan *plan;
        REAL8Window *window;
        size_t seglen = 1.0 / (df * series->deltaT);

        /* make sure that the time series length is commensurate with seglen */
        if (((2 * series->data->length) % seglen) != 0) {
            size_t newlen = ((2 * series->data->length) / seglen) * seglen;
            series = XLALResizeREAL8TimeSeries(series, 0, newlen);
        }

        spectrum = XLALCreateREAL8FrequencySeries(series->name, &series->epoch, 0.0, df, &lalDimensionlessUnit, seglen/2 + 1);
        plan = XLALCreateForwardREAL8FFTPlan(seglen, 0);
        window = XLALCreateHannREAL8Window(seglen);
        XLALREAL8AverageSpectrumWelch(spectrum, series, seglen, seglen/2, window, plan);
        if (minfreq > 0 || maxfreq > 0) {
            size_t first = minfreq / spectrum->deltaF;
            size_t last = maxfreq > 0 ? maxfreq / spectrum->deltaF : spectrum->data->length;
            spectrum = XLALResizeREAL8FrequencySeries(spectrum, first, last - first);
        }
        output_fs(outfile, spectrum);
        XLALDestroyREAL8Window(window);
        XLALDestroyREAL8FFTPlan(plan);
        XLALDestroyREAL8FrequencySeries(spectrum);
    } else { /* we are outputting a time series */
        output_ts(outfile, series);
    }

    XLALDestroyREAL8TimeSeries(series);
    return 0;
}
Ejemplo n.º 2
0
static void __del__(PyObject *self)
{
	pylal_REAL8Window *obj = (pylal_REAL8Window *) self;

	if(obj->owner)
		Py_DECREF(obj->owner);
	else
		/* we are the owner */
		XLALDestroyREAL8Window(obj->window);

	self->ob_type->tp_free(self);
}
Ejemplo n.º 3
0
REAL8 calculate_lalsim_snr(SimInspiralTable *inj, char *IFOname, REAL8FrequencySeries *psd, REAL8 start_freq)
{
  /* Calculate and return the single IFO SNR
   *
   * Required options:
   *
   * inj:     SimInspiralTable entry for which the SNR has to be calculated
   * IFOname: The canonical name (e.g. H1, L1, V1) name of the IFO for which the SNR must be calculated
   * PSD:     PSD curve to be used for the overlap integrap
   * start_freq: lower cutoff of the overlap integral
   *
   * */

  int ret=0;
  INT4 errnum=0;
  UINT4 j=0;
  /* Fill detector site info */
  LALDetector*  detector=NULL;
  detector=calloc(1,sizeof(LALDetector));
  if(!strcmp(IFOname,"H1"))
    memcpy(detector,&lalCachedDetectors[LALDetectorIndexLHODIFF],sizeof(LALDetector));
  if(!strcmp(IFOname,"H2"))
    memcpy(detector,&lalCachedDetectors[LALDetectorIndexLHODIFF],sizeof(LALDetector));
  if(!strcmp(IFOname,"LLO")||!strcmp(IFOname,"L1"))
    memcpy(detector,&lalCachedDetectors[LALDetectorIndexLLODIFF],sizeof(LALDetector));
  if(!strcmp(IFOname,"V1")||!strcmp(IFOname,"VIRGO"))
    memcpy(detector,&lalCachedDetectors[LALDetectorIndexVIRGODIFF],sizeof(LALDetector));

  Approximant approx=TaylorF2;
  approx=XLALGetApproximantFromString(inj->waveform);
  LALSimulationDomain modelDomain;

  if(XLALSimInspiralImplementedFDApproximants(approx)) modelDomain = LAL_SIM_DOMAIN_FREQUENCY;
  else if(XLALSimInspiralImplementedTDApproximants(approx)) modelDomain = LAL_SIM_DOMAIN_TIME;
  else
  {
      fprintf(stderr,"ERROR. Unknown approximant number %i. Unable to choose time or frequency domain model.",approx);
      exit(1);
  }

  REAL8 m1,m2, s1x,s1y,s1z,s2x,s2y,s2z,phi0,f_min,f_max,iota,polarization;

  /* No tidal PN terms until injtable is able to get them */

  LALDict *LALpars= XLALCreateDict();

  /* Spin and tidal interactions at the highest level (default) until injtable stores them.
   * When spinO and tideO are added to injtable we can un-comment those lines and should be ok
   *
  int spinO = inj->spinO;
  int tideO = inj->tideO;
  XLALSimInspiralSetSpinOrder(waveFlags, *(LALSimInspiralSpinOrder*) spinO);
  XLALSimInspiralSetTidalOrder(waveFlags, *(LALSimInspiralTidalOrder*) tideO);
  */

  XLALSimInspiralWaveformParamsInsertPNPhaseOrder(LALpars,XLALGetOrderFromString(inj->waveform));
  XLALSimInspiralWaveformParamsInsertPNAmplitudeOrder(LALpars,inj->amp_order);
  /* Read parameters */
  m1=inj->mass1*LAL_MSUN_SI;
  m2=inj->mass2*LAL_MSUN_SI;
  s1x=inj->spin1x;
  s1y=inj->spin1y;
  s1z=inj->spin1z;
  s2x=inj->spin2x;
  s2y=inj->spin2y;
  s2z=inj->spin2z;
  iota=inj->inclination;
  f_min=XLALSimInspiralfLow2fStart(inj->f_lower,XLALSimInspiralWaveformParamsLookupPNAmplitudeOrder(LALpars),XLALGetApproximantFromString(inj->waveform));
  phi0=inj->coa_phase;
  polarization=inj->polarization;
  REAL8 latitude=inj->latitude;
  REAL8 longitude=inj->longitude;

  LIGOTimeGPS epoch;
  memcpy(&epoch,&(inj->geocent_end_time),sizeof(LIGOTimeGPS));

  /* Hardcoded values of srate and segment length. If changed here they must also be changed in inspinj.c */
  REAL8 srate=4096.0;
  const CHAR *WF=inj->waveform;
  /* Increase srate for EOB WFs */
  if (strstr(WF,"EOB"))
    srate=8192.0;
  REAL8 segment=64.0;

  f_max=(srate/2.0-(1.0/segment));
  size_t seglen=(size_t) segment*srate;
  REAL8 deltaF=1.0/segment;
  REAL8 deltaT=1.0/srate;

  /* Frequency domain h+ and hx. They are going to be filled either by a FD WF or by the FFT of a TD WF*/
  COMPLEX16FrequencySeries *freqHplus;
  COMPLEX16FrequencySeries *freqHcross;
  freqHplus=  XLALCreateCOMPLEX16FrequencySeries("fhplus",
    &epoch,
    0.0,
    deltaF,
    &lalDimensionlessUnit,
    seglen/2+1
  );

  freqHcross=XLALCreateCOMPLEX16FrequencySeries("fhcross",
    &epoch,
    0.0,
    deltaF,
    &lalDimensionlessUnit,
    seglen/2+1
  );

  /* If the approximant is on the FD call XLALSimInspiralChooseFDWaveform */
  if (modelDomain == LAL_SIM_DOMAIN_FREQUENCY)
  {

    COMPLEX16FrequencySeries *hptilde=NULL;
    COMPLEX16FrequencySeries *hctilde=NULL;
    //We do not pass the polarization here, we assume it is taken into account when projecting h+,x onto the detector.
    XLAL_TRY(ret=XLALSimInspiralChooseFDWaveform(&hptilde,&hctilde, m1, m2,
						 s1x, s1y, s1z, s2x, s2y, s2z,
						 LAL_PC_SI * 1.0e6, iota, phi0, 0., 0., 0.,
						 deltaF, f_min, 0.0, 0.0,
						 LALpars,approx),errnum);
    XLALDestroyDict(LALpars);

    if(!hptilde|| hptilde->data==NULL || hptilde->data->data==NULL ||!hctilde|| hctilde->data==NULL || hctilde->data->data==NULL)
    {
      XLALPrintError(" ERROR in XLALSimInspiralChooseFDWaveform(): error generating waveform. errnum=%d. Exiting...\n",errnum );
      exit(1);
    }

    COMPLEX16 *dataPtr = hptilde->data->data;
    for (j=0; j<(UINT4) freqHplus->data->length; ++j)
    {
      if(j < hptilde->data->length)
      {
        freqHplus->data->data[j] = dataPtr[j];
      }
      else
      {
        freqHplus->data->data[j]=0.0 + I*0.0;
      }
    }
    dataPtr = hctilde->data->data;
    for (j=0; j<(UINT4) freqHplus->data->length; ++j)
    {
      if(j < hctilde->data->length)
      {
        freqHcross->data->data[j] = dataPtr[j];
      }
      else
      {
        freqHcross->data->data[j]=0.0+0.0*I;
      }
    }
    /* Clean */
    if(hptilde) XLALDestroyCOMPLEX16FrequencySeries(hptilde);
    if(hctilde) XLALDestroyCOMPLEX16FrequencySeries(hctilde);

  }
  else
  {

    /* Otherwise use XLALSimInspiralChooseTDWaveform */
    REAL8FFTPlan *timeToFreqFFTPlan = XLALCreateForwardREAL8FFTPlan((UINT4) seglen, 0 );
    REAL8TimeSeries *hplus=NULL;
    REAL8TimeSeries *hcross=NULL;
    REAL8TimeSeries *timeHplus=NULL;
    REAL8TimeSeries *timeHcross=NULL;
    REAL8 padding =0.4;//seconds
    REAL8Window *window=XLALCreateTukeyREAL8Window(seglen,(REAL8)2.0*padding*srate/(REAL8)seglen);
    REAL4 WinNorm = sqrt(window->sumofsquares/window->data->length);
    timeHcross=XLALCreateREAL8TimeSeries("timeModelhCross",
      &epoch,
      0.0,
      deltaT,
      &lalStrainUnit,
      seglen
    );
    timeHplus=XLALCreateREAL8TimeSeries("timeModelhplus",
      &epoch,
      0.0,
      deltaT,
      &lalStrainUnit,
      seglen
    );
    for (j=0;j<(UINT4) timeHcross->data->length;++j)
      timeHcross->data->data[j]=0.0;
    for (j=0;j<(UINT4) timeHplus->data->length;++j)
      timeHplus->data->data[j]=0.0;
    XLAL_TRY(ret=XLALSimInspiralChooseTDWaveform(&hplus, &hcross, m1, m2,
						 s1x, s1y, s1z, s2x, s2y, s2z,
						 LAL_PC_SI*1.0e6, iota,
						 phi0, 0., 0., 0., deltaT, f_min, 0.,
						 LALpars, approx),
        errnum);

    if (ret == XLAL_FAILURE || hplus == NULL || hcross == NULL)
    {
      XLALPrintError(" ERROR in XLALSimInspiralChooseTDWaveform(): error generating waveform. errnum=%d. Exiting...\n",errnum );
      exit(1);
    }

    hplus->epoch  = timeHplus->epoch;
    hcross->epoch = timeHcross->epoch;

    XLALSimAddInjectionREAL8TimeSeries(timeHplus, hplus, NULL);
    XLALSimAddInjectionREAL8TimeSeries(timeHcross, hcross, NULL);
    for (j=0; j<(UINT4) timeHplus->data->length; ++j)
      timeHplus->data->data[j]*=window->data->data[j];
    for (j=0; j<(UINT4) timeHcross->data->length; ++j)
      timeHcross->data->data[j]*=window->data->data[j];
      
    for (j=0; j<(UINT4) freqHplus->data->length; ++j)
    {
      freqHplus->data->data[j]=0.0+I*0.0;
      freqHcross->data->data[j]=0.0+I*0.0;
    }

    /* FFT into freqHplus and freqHcross */
    XLALREAL8TimeFreqFFT(freqHplus,timeHplus,timeToFreqFFTPlan);
    XLALREAL8TimeFreqFFT(freqHcross,timeHcross,timeToFreqFFTPlan);
    for (j=0; j<(UINT4) freqHplus->data->length; ++j)
    {
      freqHplus->data->data[j]/=WinNorm;
      freqHcross->data->data[j]/=WinNorm;
    }
    /* Clean... */
    if ( hplus ) XLALDestroyREAL8TimeSeries(hplus);
    if ( hcross ) XLALDestroyREAL8TimeSeries(hcross);
    if ( timeHplus ) XLALDestroyREAL8TimeSeries(timeHplus);
    if ( timeHcross ) XLALDestroyREAL8TimeSeries(timeHcross);
    if (timeToFreqFFTPlan) LALFree(timeToFreqFFTPlan);
    if (window) XLALDestroyREAL8Window(window);
  }

  /* The WF has been generated and is in freqHplus/cross. Now project into the IFO frame */
  double Fplus, Fcross;
  double FplusScaled, FcrossScaled;
  double HSquared;
  double GPSdouble=(REAL8) inj->geocent_end_time.gpsSeconds+ (REAL8) inj->geocent_end_time.gpsNanoSeconds*1.0e-9;
  double gmst;
  LIGOTimeGPS GPSlal;
  XLALGPSSetREAL8(&GPSlal, GPSdouble);
  gmst=XLALGreenwichMeanSiderealTime(&GPSlal);

  /* Fill Fplus and Fcross*/
  XLALComputeDetAMResponse(&Fplus, &Fcross, (const REAL4 (*)[3])detector->response,longitude, latitude, polarization, gmst);
  /* And take the distance into account */
  FplusScaled  = Fplus  / (inj->distance);
  FcrossScaled = Fcross / (inj->distance);

  REAL8 timedelay = XLALTimeDelayFromEarthCenter(detector->location,longitude, latitude, &GPSlal);
  REAL8 timeshift =  timedelay;
  REAL8 twopit    = LAL_TWOPI * timeshift;

  UINT4 lower = (UINT4)ceil(start_freq / deltaF);
  UINT4 upper = (UINT4)floor(f_max / deltaF);
  REAL8 re = cos(twopit*deltaF*lower);
  REAL8 im = -sin(twopit*deltaF*lower);

  /* Incremental values, using cos(theta) - 1 = -2*sin(theta/2)^2 */
  REAL8 dim = -sin(twopit*deltaF);
  REAL8 dre = -2.0*sin(0.5*twopit*deltaF)*sin(0.5*twopit*deltaF);
  REAL8 TwoDeltaToverN = 2.0 *deltaT / ((double) seglen);

  REAL8 plainTemplateReal,  plainTemplateImag,templateReal,templateImag;
  REAL8 newRe, newIm,temp;
  REAL8 this_snr=0.0;
  if ( psd )
  {
    psd = XLALInterpolatePSD(psd,  deltaF);
  } 
  for (j=lower; j<=(UINT4) upper; ++j)
  {
    /* derive template (involving location/orientation parameters) from given plus/cross waveforms: */
    plainTemplateReal = FplusScaled * creal(freqHplus->data->data[j])
                        +  FcrossScaled *creal(freqHcross->data->data[j]);
    plainTemplateImag = FplusScaled * cimag(freqHplus->data->data[j])
                        +  FcrossScaled * cimag(freqHcross->data->data[j]);

    /* do time-shifting...             */
    /* (also un-do 1/deltaT scaling): */
    templateReal = (plainTemplateReal*re - plainTemplateImag*im) / deltaT;
    templateImag = (plainTemplateReal*im + plainTemplateImag*re) / deltaT;
    HSquared  = templateReal*templateReal + templateImag*templateImag ;
    temp = ((TwoDeltaToverN * HSquared) / psd->data->data[j]);
    this_snr  += temp;
    /* Now update re and im for the next iteration. */
    newRe = re + re*dre - im*dim;
    newIm = im + re*dim + im*dre;

    re = newRe;
    im = newIm;
  }

  /* Clean */
  if (freqHcross) XLALDestroyCOMPLEX16FrequencySeries(freqHcross);
  if (freqHplus) XLALDestroyCOMPLEX16FrequencySeries(freqHplus);
  if (detector) free(detector);

  return sqrt(this_snr*2.0);

}
Ejemplo n.º 4
0
///
/// Make SFTs from given REAL8TimeSeries at given timestamps, potentially applying a time-domain window on each timestretch first
///
SFTVector *
XLALMakeSFTsFromREAL8TimeSeries ( const REAL8TimeSeries *timeseries,	//!< input time-series
                                  const LIGOTimeGPSVector *timestamps, 	//!< timestamps to produce SFTs for (can be NULL), if given must all lies within timeseries' time-span
                                  const char *windowType,		//!< optional time-domain window function to apply before FFTing
                                  REAL8 windowBeta			//!< window parameter, if any
                                  )
{
  XLAL_CHECK_NULL ( timeseries != NULL, XLAL_EINVAL, "Invalid NULL input 'timeseries'\n");
  XLAL_CHECK_NULL ( timestamps != NULL, XLAL_EINVAL, "Invalid NULL input 'timestamps'\n");

  REAL8 dt = timeseries->deltaT;	// timeseries timestep */
  REAL8 Tsft = timestamps->deltaT;
  REAL8 df = 1.0 / Tsft;		// SFT frequency spacing

  // make sure that number of timesamples/SFT is an integer (up to possible rounding error 'eps')
  REAL8 timestepsSFT0 = Tsft / dt;
  UINT4 timestepsSFT  = lround ( timestepsSFT0 );
  XLAL_CHECK_NULL ( fabs ( timestepsSFT0 - timestepsSFT ) / timestepsSFT0 < eps, XLAL_ETOL,
                    "Inconsistent sampling-step (dt=%g) and Tsft=%g: must be integer multiple Tsft/dt = %g >= %g\n",
                    dt, Tsft, timestepsSFT0, eps );

  // prepare window function if requested
  REAL8Window *window = NULL;
  if ( windowType != NULL ) {
    XLAL_CHECK_NULL ( (window = XLALCreateNamedREAL8Window ( windowType, windowBeta, timestepsSFT )) != NULL, XLAL_EFUNC );
  }

  // ---------- Prepare FFT ----------
  REAL8Vector *timeStretchCopy;	// input array of length N
  XLAL_CHECK_NULL ( (timeStretchCopy = XLALCreateREAL8Vector ( timestepsSFT )) != NULL, XLAL_EFUNC, "XLALCreateREAL4Vector(%d) failed.\n", timestepsSFT );
  UINT4 numSFTBins = timestepsSFT / 2 + 1;	// number of positive frequency-bins + 'DC' to be stored in SFT
  fftw_complex *fftOut;	// output array of length N/2 + 1
  XLAL_CHECK_NULL ( (fftOut = fftw_malloc ( numSFTBins * sizeof(fftOut[0]) )) != NULL, XLAL_ENOMEM, "fftw_malloc(%d*sizeof(complex)) failed\n", numSFTBins );
  fftw_plan fftplan;	// FFTW plan
  LAL_FFTW_WISDOM_LOCK;
  XLAL_CHECK_NULL ( (fftplan = fftw_plan_dft_r2c_1d ( timestepsSFT, timeStretchCopy->data, fftOut, FFTW_ESTIMATE)) != NULL, XLAL_EFUNC );	// FIXME: or try FFTW_MEASURE
  LAL_FFTW_WISDOM_UNLOCK;

  LIGOTimeGPS tStart = timeseries->epoch;

  // get last possible start-time for an SFT
  REAL8 duration =  round ( timeseries->data->length * dt ); // rounded to seconds
  LIGOTimeGPS tLast = tStart;
  XLALGPSAdd( &tLast, duration - Tsft );

  // check that all timestamps lie within [tStart, tLast]
  for ( UINT4 i = 0; i < timestamps->length; i ++ )
    {
      char buf1[256], buf2[256];
      XLAL_CHECK_NULL ( XLALGPSDiff ( &tStart, &(timestamps->data[i]) ) <= 0, XLAL_EDOM, "Timestamp i=%d: %s before start-time %s\n",
                        i, XLALGPSToStr ( buf1, &(timestamps->data[i]) ), XLALGPSToStr ( buf2, &tStart ) );
      XLAL_CHECK_NULL ( XLALGPSDiff ( &tLast,   &(timestamps->data[i]) ) >=0, XLAL_EDOM, "Timestamp i=%d: %s after last start-time %s\n",
                        i, XLALGPSToStr ( buf1, &(timestamps->data[i]) ), XLALGPSToStr ( buf2, &tLast ) );
    }

  UINT4 numSFTs = timestamps->length;

  // prepare output SFT-vector
  SFTVector *sftvect;
  XLAL_CHECK_NULL ( (sftvect = XLALCreateSFTVector ( numSFTs, numSFTBins )) != NULL, XLAL_EFUNC,
                    "XLALCreateSFTVector(numSFTs=%d, numBins=%d) failed.\n", numSFTs, numSFTBins );

  // main loop: apply FFT to the requested time-stretches and store in output SFTs
  for ( UINT4 iSFT = 0; iSFT < numSFTs; iSFT++ )
    {
      SFTtype *thisSFT = &(sftvect->data[iSFT]);	// point to current SFT-slot to store output in

      // find the start-bin for this SFT in the time-series
      REAL8 offset = XLALGPSDiff ( &(timestamps->data[iSFT]), &tStart );
      INT4 offsetBins = lround ( offset / dt );

      // copy timeseries-data for that SFT into local buffer
      memcpy ( timeStretchCopy->data, timeseries->data->data + offsetBins, timeStretchCopy->length * sizeof(timeStretchCopy->data[0]) );

      // window the current time series stretch if required
      REAL8 sigma_window = 1;
      if ( window != NULL )
        {
	  sigma_window = sqrt ( window->sumofsquares / window->data->length );
	  for( UINT4 iBin = 0; iBin < timeStretchCopy->length; iBin++ ) {
            timeStretchCopy->data[iBin] *= window->data->data[iBin];
          }
        } // if window

      // FFT this time-stretch
      fftw_execute ( fftplan );

      // fill the header of the i'th output SFT */
      strcpy ( thisSFT->name, timeseries->name );
      thisSFT->epoch = timestamps->data[iSFT];
      thisSFT->f0 = timeseries->f0;			// SFT starts at heterodyning frequency
      thisSFT->deltaF = df;

      // normalize DFT-data to conform to v2 specification ==> multiply DFT by (dt/sigma{window})
      // the SFT normalization in case of windowing follows the conventions detailed in the SFTv2 specification,
      // namely LIGO-T040164, and in particular Eqs.(3),(4) and (6) in T010095-00.pdf
      // https://dcc.ligo.org/cgi-bin/private/DocDB/ShowDocument?.submit=Number&docid=T010095
      // https://dcc.ligo.org/DocDB/0026/T010095/000/T010095-00.pdf
      REAL8 norm = dt / sigma_window;
      for ( UINT4 k = 0; k < numSFTBins ; k ++ ) {
        thisSFT->data->data[k] = (COMPLEX8) ( norm * fftOut[k] );
      }

      // correct heterodyning-phase, IF NECESSARY: ie if (fHet * tStart) is not an integer, such that phase-corr = multiple of 2pi
      if ( ( (INT4)timeseries->f0 != timeseries->f0  ) || (timeseries->epoch.gpsNanoSeconds != 0) || (thisSFT->epoch.gpsNanoSeconds != 0) ) {
        XLAL_CHECK_NULL ( XLALcorrect_phase ( thisSFT, timeseries->epoch) == XLAL_SUCCESS, XLAL_EFUNC );
      }

    } // for iSFT < numSFTs

  // free memory
  fftw_free ( fftOut );
  LAL_FFTW_WISDOM_LOCK;
  fftw_destroy_plan ( fftplan );
  LAL_FFTW_WISDOM_UNLOCK;
  XLALDestroyREAL8Vector ( timeStretchCopy );
  XLALDestroyREAL8Window ( window );

  return sftvect;

} // XLALMakeSFTsFromREAL8TimeSeries()
Ejemplo n.º 5
0
static void _display(int n, double kaiser_beta, double creighton_beta, double tukey_beta, double gauss_beta)
{
	REAL8Window *rectangle = XLALCreateRectangularREAL8Window(n);
	REAL8Window *hann = XLALCreateHannREAL8Window(n);
	REAL8Window *welch = XLALCreateWelchREAL8Window(n);
	REAL8Window *bartlett = XLALCreateBartlettREAL8Window(n);
	REAL8Window *parzen = XLALCreateParzenREAL8Window(n);
	REAL8Window *papoulis = XLALCreatePapoulisREAL8Window(n);
	REAL8Window *hamming = XLALCreateHammingREAL8Window(n);
	REAL8Window *kaiser = XLALCreateKaiserREAL8Window(n, kaiser_beta);
	REAL8Window *creighton = XLALCreateCreightonREAL8Window(n, creighton_beta);
	REAL8Window *tukey = XLALCreateTukeyREAL8Window(n, tukey_beta);
	REAL8Window *gauss = XLALCreateGaussREAL8Window(n, gauss_beta);
	REAL8Window *lanczos = XLALCreateLanczosREAL8Window(n);
	int i;

	printf("n = %d\n", n);
	printf("kaiser beta = %g\n", kaiser_beta);
	printf("creighton beta = %g\n", creighton_beta);
	printf("tukey beta = %g\n", tukey_beta);
	printf("gaussian beta = %g\n", gauss_beta);

	printf("  rect     hann     welch  bartlett  parzen  papoulis  hamming  kaiser   creight   tukey    gauss  lanczos\n");
	for(i = 0; i < n; i++) {
		printf("%8.6f", rectangle->data->data[i]);
		printf(" %8.6f", hann->data->data[i]);
		printf(" %8.6f", welch->data->data[i]);
		printf(" %8.6f", bartlett->data->data[i]);
		printf(" %8.6f", parzen->data->data[i]);
		printf(" %8.6f", papoulis->data->data[i]);
		printf(" %8.6f", hamming->data->data[i]);
		printf(" %8.6f", kaiser->data->data[i]);
		printf(" %8.6f", creighton->data->data[i]);
		printf(" %8.6f", tukey->data->data[i]);
		printf(" %8.6f", gauss->data->data[i]);
		printf(" %8.6f", lanczos->data->data[i]);
		printf("\n");
	}
	printf("\n");

	XLALDestroyREAL8Window(rectangle);
	XLALDestroyREAL8Window(hann);
	XLALDestroyREAL8Window(welch);
	XLALDestroyREAL8Window(bartlett);
	XLALDestroyREAL8Window(parzen);
	XLALDestroyREAL8Window(papoulis);
	XLALDestroyREAL8Window(hamming);
	XLALDestroyREAL8Window(kaiser);
	XLALDestroyREAL8Window(creighton);
	XLALDestroyREAL8Window(tukey);
	XLALDestroyREAL8Window(gauss);
	XLALDestroyREAL8Window(lanczos);
}
Ejemplo n.º 6
0
static int test_parameter_safety(void)
{
	REAL4Window *window1;
	REAL8Window *window2;
	int fail = 0;

	window1 = XLALCreateKaiserREAL4Window(10, -1);
	if(window1) {
		fprintf(stderr, "error: single-precision Kaiser window accepted out-of-range parameter\n");
		XLALDestroyREAL4Window(window1);
		fail = 1;
	}

	window2 = XLALCreateKaiserREAL8Window(10, -1);
	if(window1) {
		fprintf(stderr, "error: double-precision Kaiser window accepted out-of-range parameter\n");
		XLALDestroyREAL8Window(window2);
		fail = 1;
	}

	window1 = XLALCreateCreightonREAL4Window(10, -1);
	if(window1) {
		fprintf(stderr, "error: single-precision Creighton window accepted out-of-range parameter\n");
		XLALDestroyREAL4Window(window1);
		fail = 1;
	}

	window2 = XLALCreateCreightonREAL8Window(10, -1);
	if(window1) {
		fprintf(stderr, "error: double-precision Creighton window accepted out-of-range parameter\n");
		XLALDestroyREAL8Window(window2);
		fail = 1;
	}

	window1 = XLALCreateTukeyREAL4Window(10, -1);
	if(window1) {
		fprintf(stderr, "error: single-precision Tukey window accepted out-of-range parameter\n");
		XLALDestroyREAL4Window(window1);
		fail = 1;
	}

	window1 = XLALCreateTukeyREAL4Window(10, 2);
	if(window1) {
		fprintf(stderr, "error: single-precision Tukey window accepted out-of-range parameter\n");
		XLALDestroyREAL4Window(window1);
		fail = 1;
	}

	window2 = XLALCreateTukeyREAL8Window(10, -1);
	if(window1) {
		fprintf(stderr, "error: double-precision Tukey window accepted out-of-range parameter\n");
		XLALDestroyREAL8Window(window2);
		fail = 1;
	}

	window2 = XLALCreateTukeyREAL8Window(10, 2);
	if(window1) {
		fprintf(stderr, "error: double-precision Tukey window accepted out-of-range parameter\n");
		XLALDestroyREAL8Window(window2);
		fail = 1;
	}

	window1 = XLALCreateGaussREAL4Window(10, -1);
	if(window1) {
		fprintf(stderr, "error: single-precision Gauss window accepted out-of-range parameter\n");
		XLALDestroyREAL4Window(window1);
		fail = 1;
	}

	window2 = XLALCreateGaussREAL8Window(10, -1);
	if(window1) {
		fprintf(stderr, "error: double-precision Gauss window accepted out-of-range parameter\n");
		XLALDestroyREAL8Window(window2);
		fail = 1;
	}

	return fail;
}
Ejemplo n.º 7
0
static void free_double_windows(REAL8Window **windows)
{
	int i;
	for(i = 0; i < NWINDOWS; i++)
		XLALDestroyREAL8Window(windows[i]);
}