Ejemplo n.º 1
0
/** register all "user-variables" */
int
XLALInitUserVars ( UserVariables_t *uvar )
{
  XLAL_CHECK ( uvar != NULL, XLAL_EINVAL );

  /* set a few defaults */
  uvar->help = 0;

  XLAL_CHECK ( (uvar->IFOs = XLALCreateStringVector ( "H1", NULL )) != NULL, XLAL_ENOMEM, "Call to XLALCreateStringVector() failed." );

  uvar->ephemEarth = XLALStringDuplicate("earth00-19-DE405.dat.gz");
  uvar->ephemSun = XLALStringDuplicate("sun00-19-DE405.dat.gz");

  uvar->Alpha     = 0.0;
  uvar->Delta     = 0.0;
  uvar->skyGridFile = NULL;

  uvar->timeGPS = NULL;
  uvar->timeStampsFile = NULL;
  uvar->outab = 0;
  uvar->outABCD = 0;
  uvar->Tsft = 1800;

  uvar->noiseSqrtShX = NULL;

  /* register all user-variables */
  XLALregBOOLUserStruct(	help,		'h', UVAR_HELP,		"Print this help/usage message");
  XLALregLISTUserStruct( IFOs,                  'I', UVAR_OPTIONAL, "Comma-separated list of detectors, eg. \"H1,H2,L1,G1, ...\" [only 1 detector supported at the moment] ");

  XLALregREALUserStruct(	Alpha,		'a', UVAR_OPTIONAL,	"single skyposition Alpha in radians, equatorial coords.");
  XLALregREALUserStruct(	Delta, 		'd', UVAR_OPTIONAL,	"single skyposition Delta in radians, equatorial coords.");

  XLALregSTRINGUserStruct( skyGridFile,		's', UVAR_OPTIONAL,	"Alternatively: sky-grid file");

  XLALregLISTUserStruct( 	timeGPS,        't', UVAR_OPTIONAL, 	"GPS time at which to compute detector states (separate multiple timestamps by commata)");
  XLALregLISTUserStruct(	timeStampsFiles, 'T', UVAR_OPTIONAL,	"Alternative: time-stamps file(s) (comma-separated list per IFO, or one for all)");
  XLALregINTUserStruct(		Tsft,		 0, UVAR_OPTIONAL,	"Assumed length of one SFT in seconds; needed for timestamps offset consistency with F-stat based codes");

  XLALregLISTUserStruct ( noiseSqrtShX,		 0, UVAR_OPTIONAL, "Per-detector noise PSD sqrt(SX). Only ratios relevant to compute noise weights. Defaults to 1,1,...");

  XLALregSTRINGUserStruct (	ephemEarth,	 0,  UVAR_OPTIONAL,	"Earth ephemeris file to use");
  XLALregSTRINGUserStruct (	ephemSun,	 0,  UVAR_OPTIONAL,	"Sun ephemeris file to use");

  XLALregSTRINGUserStruct(	outab,		'o', UVAR_OPTIONAL,	"output file for antenna pattern functions a(t), b(t) at each timestamp");
  XLALregSTRINGUserStruct(	outABCD,	'O', UVAR_OPTIONAL,	"output file for antenna pattern matrix elements A, B, C, D averaged over timestamps");

  XLALregBOOLUserStruct(	version,        'V', UVAR_SPECIAL,      "Output code version");

  /* developer user variables */
  XLALregSTRINGUserStruct(	timeStampsFile,	  0, UVAR_OPTIONAL,	"Alternative: single time-stamps file (deprecated, use --timeStampsFiles instead");

  return XLAL_SUCCESS;

} /* XLALInitUserVars() */
Ejemplo n.º 2
0
INT4 InitUserVars(UserVariables_t *uvar, int argc, char *argv[])
{
   XLAL_CHECK ( uvar != NULL, XLAL_EINVAL, "Invalid NULL input 'uvar'\n");
   XLAL_CHECK ( argv != NULL, XLAL_EINVAL, "Invalid NULL input 'argv'\n");

   uvar->ephemEarth = XLALStringDuplicate("earth00-19-DE405.dat.gz");
   uvar->ephemSun = XLALStringDuplicate("sun00-19-DE405.dat.gz");
   uvar->outfilename = XLALStringDuplicate("output.dat");
   uvar->Tsft = 1800;
   uvar->SFToverlap = 900;
   uvar->skylocations = 1;

   XLALregBOOLUserStruct(  help,        'h', UVAR_HELP     , "Print this help/usage message");
   XLALregREALUserStruct(  Tsft,         0 , UVAR_OPTIONAL , "SFT coherence time");
   XLALregREALUserStruct(  SFToverlap,   0 , UVAR_OPTIONAL , "SFT overlap in seconds, usually Tsft/2");
   XLALregREALUserStruct(  t0,           0 , UVAR_OPTIONAL , "GPS start time of the search");
   XLALregREALUserStruct(  Tobs,         0 , UVAR_OPTIONAL , "Duration of the search (in seconds)");
   XLALregREALUserStruct(  cosi,         0 , UVAR_OPTIONAL , "Cosine of NS inclinaiont angle");
   XLALregREALUserStruct(  psi,          0 , UVAR_OPTIONAL , "Polarization angle of GW");
   XLALregREALUserStruct(  alpha,        0 , UVAR_OPTIONAL , "Right ascension of source (in radians)");
   XLALregREALUserStruct(  delta,        0 , UVAR_OPTIONAL , "Declination of source (in radians)");
   XLALregINTUserStruct(   skylocations, 0 , UVAR_OPTIONAL , "Number of sky locations");
   XLALregLISTUserStruct(  IFO,          0 , UVAR_REQUIRED , "CSV list of detectors, eg. \"H1,H2,L1,G1, ...\" ");
   XLALregSTRINGUserStruct(outfilename,  0 , UVAR_OPTIONAL , "Output filename");
   XLALregSTRINGUserStruct(ephemEarth,   0 , UVAR_OPTIONAL , "Earth ephemeris file");
   XLALregSTRINGUserStruct(ephemSun,     0 , UVAR_OPTIONAL , "Sun ephemeris file");

   XLAL_CHECK( XLALUserVarReadAllInput(argc, argv) == XLAL_SUCCESS, XLAL_EFUNC );

   if ( uvar->help ) exit (0);

   return XLAL_SUCCESS;
}
Ejemplo n.º 3
0
/** register all "user-variables" */
int
initUserVars ( int argc, char *argv[], UserVariables_t *uvar )
{
  XLAL_CHECK ( argc > 0 && (argv != NULL) && (uvar != NULL), XLAL_EINVAL );

  /* set a few defaults */
  uvar->help = FALSE;

  uvar->RAJ  = NULL;
  uvar->DECJ = NULL;

  uvar->TstartUTCMJD = 53400;
  uvar->TrefTDBMJD = 53400;
  uvar->DeltaTMJD = 1;
  uvar->DurationMJD = 1800;

  uvar->f0 = 1.0;
  uvar->fdot = 0.0;

  uvar->PSRJ = XLALStringDuplicate ( "TEMPOcomparison" );

  uvar->Observatory = XLALStringDuplicate ( "JODRELL" );

  uvar->randSeed = 1;

  uvar->ephemEarth = XLALStringDuplicate("earth00-19-DE405.dat.gz");
  uvar->ephemSun = XLALStringDuplicate("sun00-19-DE405.dat.gz");

  /* register user input variables */
  XLALregBOOLUserStruct   ( help, 		'h', UVAR_HELP,    	"Print this message" );
  XLALregSTRINGUserStruct ( RAJ, 	        'r', UVAR_OPTIONAL, 	"Right ascension hh:mm.ss.ssss [Default=random]");
  XLALregSTRINGUserStruct ( DECJ, 	        'j', UVAR_OPTIONAL, 	"Declination deg:mm.ss.ssss [Default=random]");
  XLALregSTRINGUserStruct ( ephemEarth, 	 0,  UVAR_OPTIONAL, 	"Earth ephemeris file to use");
  XLALregSTRINGUserStruct ( ephemSun, 	 	 0,  UVAR_OPTIONAL, 	"Sun ephemeris file to use");
  XLALregREALUserStruct   ( f0,     		'f', UVAR_OPTIONAL, 	"The signal frequency in Hz at SSB at the reference time");
  XLALregREALUserStruct   ( fdot,     		'p', UVAR_OPTIONAL, 	"The signal frequency derivitive in Hz at SSB at the reference time");
  XLALregREALUserStruct   ( TrefTDBMJD, 	'R', UVAR_OPTIONAL, 	"Reference time at the SSB in TDB in MJD");
  XLALregREALUserStruct   ( TstartUTCMJD, 	'T', UVAR_OPTIONAL, 	"Start time of output TOAs in UTC");
  XLALregREALUserStruct   ( DeltaTMJD, 		't', UVAR_OPTIONAL, 	"Time inbetween TOAs (in days)");
  XLALregREALUserStruct   ( DurationMJD, 	'D', UVAR_OPTIONAL, 	"Full duration of TOAs (in days)");
  XLALregSTRINGUserStruct ( PSRJ,           	'n', UVAR_OPTIONAL, 	"Name of pulsar");
  XLALregSTRINGUserStruct ( Observatory,    	'O', UVAR_OPTIONAL, 	"TEMPO observatory name (GBT,ARECIBO,NARRABRI,NANSHAN,DSS_43,PARKES,JODRELL,VLA,NANCAY,COE,SSB)");
  XLALregINTUserStruct    ( randSeed,  		 0,  UVAR_OPTIONAL, 	"The random seed [0 = clock]");

  /* read all command line variables */
  XLAL_CHECK ( XLALUserVarReadAllInput( argc, argv ) == XLAL_SUCCESS, XLAL_EFUNC );

  return XLAL_SUCCESS;
} /* initUserVars() */
Ejemplo n.º 4
0
/* register all our "user-variables" */
int
initUserVars ( UserInput_t *uvar )
{
  XLAL_CHECK ( uvar != NULL, XLAL_EINVAL );

  /* set defaults */
  uvar->outputDir = NULL;
  uvar->outputSingleSFT = NULL;

  uvar->extraComment = NULL;
  uvar->descriptionMisc = NULL;
  uvar->IFO = NULL;

  uvar->minStartTime = 0;
  uvar->maxStartTime = LAL_INT4_MAX;

  uvar->mysteryFactor = 1.0;

  uvar->timestampsFile = NULL;

  /* now register all our user-variable */
  XLALregBOOLUserStruct(   help,		'h', UVAR_HELP,     "Print this help/usage message");
  XLALregSTRINGUserStruct( inputSFTs,	'i', UVAR_REQUIRED, "File-pattern for input SFTs");
  XLALregSTRINGUserStruct( IFO,		'I', UVAR_OPTIONAL, "IFO of input SFTs: 'G1', 'H1', 'H2', ...(required for v1-SFTs)");

  XLALregSTRINGUserStruct( outputSingleSFT,	'O', UVAR_OPTIONAL, "Output all SFTs into a single concatenated SFT-file with this name");
  XLALregSTRINGUserStruct( outputDir,	'o', UVAR_OPTIONAL, "Output directory for SFTs");

  XLALregSTRINGUserStruct( extraComment,	'C', UVAR_OPTIONAL, "Additional comment to be added to output-SFTs");

  XLALregSTRINGUserStruct( descriptionMisc,	'D', UVAR_OPTIONAL, "'Misc' entry in the SFT filename description-field (see SFTv2 naming convention)");
  XLALregREALUserStruct(   fmin,		'f', UVAR_OPTIONAL, "Lowest frequency to extract from SFTs. [Default: lowest in inputSFTs]");
  XLALregREALUserStruct(   fmax,		'F', UVAR_OPTIONAL, "Highest frequency to extract from SFTs. [Default: highest in inputSFTs]");


  XLALregINTUserStruct (  	minStartTime, 	 0,  UVAR_OPTIONAL, "Only use SFTs with timestamps starting from (including) this GPS time");
  XLALregINTUserStruct (  	maxStartTime, 	 0,  UVAR_OPTIONAL, "Only use SFTs with timestamps up to (excluding) this GPS time");

  XLALregSTRINGUserStruct( timestampsFile,	 0, UVAR_OPTIONAL, "Timestamps file to use as a constraint for SFT loading");

  /* developer-options */
  XLALregREALUserStruct(   mysteryFactor,	 0, UVAR_DEVELOPER, "Change data-normalization by applying this factor (for E@H)");

  return XLAL_SUCCESS;

} /* initUserVars() */
Ejemplo n.º 5
0
/* ----- function definitions ---------- */
int
main ( int argc, char *argv[] )
{
  LALStatus status;
  UserInput_t uvar_s;
  UserInput_t *uvar = &uvar_s;

  INIT_MEM ( status );
  INIT_MEM ( uvar_s );

  struct tms buf;
  uvar->randSeed = times(&buf);

  // ---------- register all our user-variable ----------
  XLALregBOOLUserStruct (  help,                'h', UVAR_HELP    , "Print this help/usage message");
  XLALregINTUserStruct (   randSeed,             's', UVAR_OPTIONAL, "Specify random-number seed for reproducible noise.");

  /* read cmdline & cfgfile  */
  XLAL_CHECK ( XLALUserVarReadAllInput ( argc, argv ) == XLAL_SUCCESS, XLAL_EFUNC );
  if ( uvar->help ) {	/* if help was requested, we're done */
    exit (0);
  }

  srand ( uvar->randSeed );

  REAL8 startTimeREAL8 	= 714180733;
  REAL8 duration 	= 180000;	/* 50 hours */
  REAL8 Tsft 		= 1800;		/* assume 30min SFTs */
  char earthEphem[] 	= TEST_DATA_DIR "earth00-19-DE200.dat.gz";
  char sunEphem[]   	= TEST_DATA_DIR "sun00-19-DE200.dat.gz";

  //REAL8 tolerance = 2e-10;	/* same algorithm, should be basically identical results */

  LIGOTimeGPS startTime, refTime;
  XLALGPSSetREAL8 ( &startTime, startTimeREAL8 );
  refTime = startTime;

  // pick skyposition at random ----- */
  SkyPosition skypos;
  skypos.longitude = LAL_TWOPI * (1.0 * rand() / ( RAND_MAX + 1.0 ) );  // alpha uniform in [0, 2pi)
  skypos.latitude = LAL_PI_2 - acos ( 1 - 2.0 * rand()/RAND_MAX );	// sin(delta) uniform in [-1,1]
  skypos.system = COORDINATESYSTEM_EQUATORIAL;

  // pick binary orbital parameters:
  // somewhat inspired by Sco-X1 parameters from S2-paper (PRD76, 082001 (2007), gr-qc/0605028)
  // but with a more extreme eccentricity, and random argp
  REAL8 argp = LAL_TWOPI * (1.0 * rand() / ( RAND_MAX + 1.0 ) );	// uniform in [0, 2pi)
  BinaryOrbitParams orbit;
  XLALGPSSetREAL8 ( &orbit.tp, 731163327 ); 	// time of observed periapsis passage (in SSB)
  orbit.argp = argp;		// argument of periapsis (radians)
  orbit.asini = 1.44;           // projected, normalized orbital semi-major axis (s) */
  orbit.ecc = 1e-2;             // relatively large value, for better testing
  orbit.period = 68023;		// period (s) : about ~18.9h

  // ----- step 0: prepare test-case input for calling the BinarySSB-functions
  // setup detectors
  const char *sites[3] = { "H1", "L1", "V1" };
  UINT4 numDetectors = sizeof( sites ) / sizeof ( sites[0] );

  MultiLALDetector multiIFO;
  multiIFO.length = numDetectors;
  for ( UINT4 X = 0; X < numDetectors; X ++ )
    {
      LALDetector *det = XLALGetSiteInfo ( sites[X] );
      XLAL_CHECK ( det != NULL, XLAL_EFUNC, "XLALGetSiteInfo ('%s') failed for detector X=%d\n", sites[X], X );
      multiIFO.sites[X] = (*det);	 // struct copy
      XLALFree ( det );
    }

  // load ephemeris
  EphemerisData *edat = XLALInitBarycenter ( earthEphem, sunEphem );
  XLAL_CHECK ( edat != NULL, XLAL_EFUNC, "XLALInitBarycenter('%s','%s') failed\n", earthEphem, sunEphem );

  // setup multi-timeseries
  MultiLIGOTimeGPSVector *multiTS;

  XLAL_CHECK ( (multiTS = XLALCalloc ( 1, sizeof(*multiTS))) != NULL, XLAL_ENOMEM );
  XLAL_CHECK ( (multiTS->data = XLALCalloc (numDetectors, sizeof(*multiTS->data))) != NULL, XLAL_ENOMEM );
  multiTS->length = numDetectors;

  for ( UINT4 X = 0; X < numDetectors; X ++ )
    {
      multiTS->data[X] = XLALMakeTimestamps ( startTime, duration, Tsft, 0 );
      XLAL_CHECK ( multiTS->data[X] != NULL, XLAL_EFUNC, "XLALMakeTimestamps() failed.\n");
    } /* for X < numIFOs */

  // generate detector-states
  MultiDetectorStateSeries *multiDetStates = XLALGetMultiDetectorStates ( multiTS, &multiIFO, edat, 0 );
  XLAL_CHECK ( multiDetStates != NULL, XLAL_EFUNC, "XLALGetMultiDetectorStates() failed.\n");

  // generate isolated-NS SSB times
  MultiSSBtimes *multiSSBIn = XLALGetMultiSSBtimes ( multiDetStates, skypos, refTime, SSBPREC_RELATIVISTICOPT );
  XLAL_CHECK ( multiSSBIn != NULL, XLAL_EFUNC, "XLALGetMultiSSBtimes() failed.\n");

  // ----- step 1: compute reference-result using old LALGetMultiBinarytimes()
  MultiSSBtimes *multiBinary_ref = NULL;
  LALGetMultiBinarytimes (&status, &(multiBinary_ref), multiSSBIn, multiDetStates, &orbit, refTime );
  XLAL_CHECK ( status.statusCode == 0, XLAL_EFAILED, "LALGetMultiBinarytimes() failed with status = %d : '%s'\n", status.statusCode, status.statusDescription );

  // ----- step 2: compute test-result using new XLALAddMultiBinaryTimes()
  MultiSSBtimes *multiBinary_test = NULL;
  PulsarDopplerParams doppler;
  memset(&doppler, 0, sizeof(doppler));
  doppler.tp = orbit.tp;
  doppler.argp = orbit.argp;
  doppler.asini = orbit.asini;
  doppler.ecc = orbit.ecc;
  doppler.period = orbit.period;
  XLAL_CHECK ( XLALAddMultiBinaryTimes ( &multiBinary_test, multiSSBIn, &doppler ) == XLAL_SUCCESS, XLAL_EFUNC );

  // ----- step 3: compare results
  REAL8 err_DeltaT, err_Tdot;
  REAL8 tolerance = 1e-10;
  int ret = XLALCompareMultiSSBtimes ( &err_DeltaT, &err_Tdot, multiBinary_ref, multiBinary_test );
  XLAL_CHECK ( ret == XLAL_SUCCESS, XLAL_EFUNC, "XLALCompareMultiSSBtimes() failed.\n");

  XLALPrintWarning ( "INFO: err(DeltaT) = %g, err(Tdot) = %g\n", err_DeltaT, err_Tdot );

  XLAL_CHECK ( err_DeltaT < tolerance, XLAL_ETOL, "error(DeltaT) = %g exceeds tolerance of %g\n", err_DeltaT, tolerance );
  XLAL_CHECK ( err_Tdot   < tolerance, XLAL_ETOL, "error(Tdot) = %g exceeds tolerance of %g\n", err_Tdot, tolerance );

  // ---- step 4: clean-up memory
  XLALDestroyUserVars();
  XLALDestroyEphemerisData ( edat );
  XLALDestroyMultiSSBtimes ( multiBinary_test );
  XLALDestroyMultiSSBtimes ( multiBinary_ref );
  XLALDestroyMultiSSBtimes ( multiSSBIn );
  XLALDestroyMultiTimestamps ( multiTS );
  XLALDestroyMultiDetectorStateSeries ( multiDetStates );

  // check for memory-leaks
  LALCheckMemoryLeaks();

  return XLAL_SUCCESS;

} // main()
Ejemplo n.º 6
0
int main(int argc, char *argv[]){

  UserInput_t XLAL_INIT_DECL(uvar);
  static ConfigVariables config;

  /* sft related variables */
  MultiSFTVector *inputSFTs = NULL;
  MultiPSDVector *multiPSDs = NULL;
  MultiNoiseWeights *multiWeights = NULL;
  MultiLIGOTimeGPSVector *multiTimes = NULL;
  MultiLALDetector multiDetectors;
  MultiDetectorStateSeries *multiStates = NULL;
  MultiAMCoeffs *multiCoeffs = NULL;
  SFTIndexList *sftIndices = NULL;
  SFTPairIndexList *sftPairs = NULL;
  REAL8Vector *shiftedFreqs = NULL;
  UINT4Vector *lowestBins = NULL;
  COMPLEX8Vector *expSignalPhases = NULL;
  REAL8VectorSequence *sincList = NULL;
  PulsarDopplerParams XLAL_INIT_DECL(dopplerpos);
  PulsarDopplerParams thisBinaryTemplate, binaryTemplateSpacings;
  PulsarDopplerParams minBinaryTemplate, maxBinaryTemplate;
  SkyPosition XLAL_INIT_DECL(skyPos);
  MultiSSBtimes *multiBinaryTimes = NULL;

  INT4  k;
  UINT4 j;
  REAL8 fMin, fMax; /* min and max frequencies read from SFTs */
  REAL8 deltaF; /* frequency resolution associated with time baseline of SFTs */

  REAL8 diagff = 0; /*diagonal metric components*/
  REAL8 diagaa = 0;
  REAL8 diagTT = 0;
  REAL8 diagpp = 1;
  REAL8 ccStat = 0;
  REAL8 evSquared=0;
  REAL8 estSens=0; /*estimated sensitivity(4.13)*/
  BOOLEAN dopplerShiftFlag = TRUE;
  toplist_t *ccToplist=NULL;
  CrossCorrBinaryOutputEntry thisCandidate;
  UINT4 checksum;

  LogPrintf (LOG_CRITICAL, "Starting time\n"); /*for debug convenience to record calculating time*/
  /* initialize and register user variables */
  LIGOTimeGPS computingStartGPSTime, computingEndGPSTime;
  XLALGPSTimeNow (&computingStartGPSTime); /* record the rough starting GPS time*/

  if ( XLALInitUserVars( &uvar ) != XLAL_SUCCESS ) {
    LogPrintf ( LOG_CRITICAL, "%s: XLALInitUserVars() failed with errno=%d\n", __func__, xlalErrno );
    XLAL_ERROR( XLAL_EFUNC );
  }

  /* read user input from the command line or config file */
  if ( XLALUserVarReadAllInput ( argc, argv ) != XLAL_SUCCESS ) {
    LogPrintf ( LOG_CRITICAL, "%s: XLALUserVarReadAllInput() failed with errno=%d\n", __func__, xlalErrno );
    XLAL_ERROR( XLAL_EFUNC );
  }

  if (uvar.help)	/* if help was requested, then exit */
    return 0;

  CHAR *VCSInfoString = XLALGetVersionString(0);     /**<LAL + LALapps Vsersion string*/
  /*If the version information was requested, output it and exit*/
  if ( uvar.version ){
    XLAL_CHECK ( VCSInfoString != NULL, XLAL_EFUNC, "XLALGetVersionString(0) failed.\n" );
    printf ("%s\n", VCSInfoString );
    exit (0);
  }

  /* configure useful variables based on user input */
  if ( XLALInitializeConfigVars ( &config, &uvar) != XLAL_SUCCESS ) {
    LogPrintf ( LOG_CRITICAL, "%s: XLALInitUserVars() failed with errno=%d\n", __func__, xlalErrno );
    XLAL_ERROR( XLAL_EFUNC );
  }

  deltaF = config.catalog->data[0].header.deltaF;
  REAL8 Tsft = 1.0 / deltaF;

  if (XLALUserVarWasSet(&uvar.spacingF) && XLALUserVarWasSet(&uvar.mismatchF))
    LogPrintf (LOG_CRITICAL, "spacingF and mismatchF are both set, use spacingF %.9g by default\n\n", uvar.spacingF);
  if (XLALUserVarWasSet(&uvar.spacingA) && XLALUserVarWasSet(&uvar.mismatchA))
    LogPrintf (LOG_CRITICAL, "spacingA and mismatchA are both set, use spacingA %.9g by default\n\n", uvar.spacingA);
  if (XLALUserVarWasSet(&uvar.spacingT) && XLALUserVarWasSet(&uvar.mismatchT))
    LogPrintf (LOG_CRITICAL, "spacingT and mismatchT are both set, use spacingT %.9g by default\n\n", uvar.spacingT);
  if (XLALUserVarWasSet(&uvar.spacingP) && XLALUserVarWasSet(&uvar.mismatchP))
    LogPrintf (LOG_CRITICAL, "spacingP and mismatchP are both set, use spacingP %.9g by default\n\n", uvar.spacingP);

  /* create the toplist */
  create_crossCorrBinary_toplist( &ccToplist, uvar.numCand);
  /* now read the data */

  /* /\* get SFT parameters so that we can initialise search frequency resolutions *\/ */
  /* /\* calculate deltaF_SFT *\/ */
  /* deltaF_SFT = catalog->data[0].header.deltaF;  /\* frequency resolution *\/ */
  /* timeBase= 1.0/deltaF_SFT; /\* sft baseline *\/ */

  /* /\* catalog is ordered in time so we can get start, end time and tObs *\/ */
  /* firstTimeStamp = catalog->data[0].header.epoch; */
  /* lastTimeStamp = catalog->data[catalog->length - 1].header.epoch; */
  /* tObs = XLALGPSDiff( &lastTimeStamp, &firstTimeStamp ) + timeBase; */

  /* /\*set pulsar reference time *\/ */
  /* if (LALUserVarWasSet ( &uvar_refTime )) { */
  /*   XLALGPSSetREAL8(&refTime, uvar_refTime); */
  /* }  */
  /* else {	/\*if refTime is not set, set it to midpoint of sfts*\/ */
  /*   XLALGPSSetREAL8(&refTime, (0.5*tObs) + XLALGPSGetREAL8(&firstTimeStamp));  */
  /* } */

  /* /\* set frequency resolution defaults if not set by user *\/ */
  /* if (!(LALUserVarWasSet (&uvar_fResolution))) { */
  /*   uvar_fResolution = 1/tObs; */
  /* } */

  /* { */
  /*   /\* block for calculating frequency range to read from SFTs *\/ */
  /*   /\* user specifies freq and fdot range at reftime */
  /*      we translate this range of fdots to start and endtime and find */
  /*      the largest frequency band required to cover the  */
  /*      frequency evolution  *\/ */
  /*   PulsarSpinRange spinRange_startTime; /\**< freq and fdot range at start-time of observation *\/ */
  /*   PulsarSpinRange spinRange_endTime;   /\**< freq and fdot range at end-time of observation *\/ */
  /*   PulsarSpinRange spinRange_refTime;   /\**< freq and fdot range at the reference time *\/ */

  /*   REAL8 startTime_freqLo, startTime_freqHi, endTime_freqLo, endTime_freqHi, freqLo, freqHi; */

  /*   REAL8Vector *fdotsMin=NULL; */
  /*   REAL8Vector *fdotsMax=NULL; */

  /*   UINT4 k; */

  /*   fdotsMin = (REAL8Vector *)LALCalloc(1, sizeof(REAL8Vector)); */
  /*   fdotsMin->length = N_SPINDOWN_DERIVS; */
  /*   fdotsMin->data = (REAL8 *)LALCalloc(fdotsMin->length, sizeof(REAL8)); */

  /*   fdotsMax = (REAL8Vector *)LALCalloc(1, sizeof(REAL8Vector)); */
  /*   fdotsMax->length = N_SPINDOWN_DERIVS; */
  /*   fdotsMax->data = (REAL8 *)LALCalloc(fdotsMax->length, sizeof(REAL8)); */

  /*   XLAL_INIT_MEM(spinRange_startTime); */
  /*   XLAL_INIT_MEM(spinRange_endTime); */
  /*   XLAL_INIT_MEM(spinRange_refTime); */

  /*   spinRange_refTime.refTime = refTime; */
  /*   spinRange_refTime.fkdot[0] = uvar_f0; */
  /*   spinRange_refTime.fkdotBand[0] = uvar_fBand; */
  /* } */

  /* FIXME: need to correct fMin and fMax for Doppler shift, rngmedian bins and spindown range */
  /* this is essentially just a place holder for now */
  /* FIXME: this running median buffer is overkill, since the running median block need not be centered on the search frequency */
  REAL8 vMax = LAL_TWOPI * (uvar.orbitAsiniSec + uvar.orbitAsiniSecBand) / uvar.orbitPSec + LAL_TWOPI * LAL_REARTH_SI / (LAL_DAYSID_SI * LAL_C_SI) + LAL_TWOPI * LAL_AU_SI/(LAL_YRSID_SI * LAL_C_SI); /*calculate the maximum relative velocity in speed of light*/
  fMin = uvar.fStart * (1 - vMax) - 0.5 * uvar.rngMedBlock * deltaF;
  fMax = (uvar.fStart + uvar.fBand) * (1 + vMax) + 0.5 * uvar.rngMedBlock * deltaF;

  /* read the SFTs*/
  if ((inputSFTs = XLALLoadMultiSFTs ( config.catalog, fMin, fMax)) == NULL){
    LogPrintf ( LOG_CRITICAL, "%s: XLALLoadMultiSFTs() failed with errno=%d\n", __func__, xlalErrno );
    XLAL_ERROR( XLAL_EFUNC );
  }

  /* calculate the psd and normalize the SFTs */
  if (( multiPSDs =  XLALNormalizeMultiSFTVect ( inputSFTs, uvar.rngMedBlock, NULL )) == NULL){
    LogPrintf ( LOG_CRITICAL, "%s: XLALNormalizeMultiSFTVect() failed with errno=%d\n", __func__, xlalErrno );
    XLAL_ERROR( XLAL_EFUNC );
  }

  /* compute the noise weights for the AM coefficients */
  if (( multiWeights = XLALComputeMultiNoiseWeights ( multiPSDs, uvar.rngMedBlock, 0 )) == NULL){
    LogPrintf ( LOG_CRITICAL, "%s: XLALComputeMultiNoiseWeights() failed with errno=%d\n", __func__, xlalErrno );
    XLAL_ERROR( XLAL_EFUNC );
  }

  /* read the timestamps from the SFTs */
  if ((multiTimes = XLALExtractMultiTimestampsFromSFTs ( inputSFTs )) == NULL){
    LogPrintf ( LOG_CRITICAL, "%s: XLALExtractMultiTimestampsFromSFTs() failed with errno=%d\n", __func__, xlalErrno );
    XLAL_ERROR( XLAL_EFUNC );
  }

  /* read the detector information from the SFTs */
  if ( XLALMultiLALDetectorFromMultiSFTs ( &multiDetectors, inputSFTs ) != XLAL_SUCCESS){
    LogPrintf ( LOG_CRITICAL, "%s: XLALMultiLALDetectorFromMultiSFTs() failed with errno=%d\n", __func__, xlalErrno );
    XLAL_ERROR( XLAL_EFUNC );
  }

  /* Find the detector state for each SFT */
  /* Offset by Tsft/2 to get midpoint as timestamp */
  if ((multiStates = XLALGetMultiDetectorStates ( multiTimes, &multiDetectors, config.edat, 0.5 * Tsft )) == NULL){
    LogPrintf ( LOG_CRITICAL, "%s: XLALGetMultiDetectorStates() failed with errno=%d\n", __func__, xlalErrno );
    XLAL_ERROR( XLAL_EFUNC );
  }

  /* Note this is specialized to a single sky position */
  /* This might need to be moved into the config variables */
  skyPos.system = COORDINATESYSTEM_EQUATORIAL;
  skyPos.longitude = uvar.alphaRad;
  skyPos.latitude  = uvar.deltaRad;

  /* Calculate the AM coefficients (a,b) for each SFT */
  if ((multiCoeffs = XLALComputeMultiAMCoeffs ( multiStates, multiWeights, skyPos )) == NULL){
    LogPrintf ( LOG_CRITICAL, "%s: XLALComputeMultiAMCoeffs() failed with errno=%d\n", __func__, xlalErrno );
    XLAL_ERROR( XLAL_EFUNC );
  }

  /* Construct the flat list of SFTs (this sort of replicates the
     catalog, but there's not an obvious way to get the information
     back) */

  if ( ( XLALCreateSFTIndexListFromMultiSFTVect( &sftIndices, inputSFTs ) != XLAL_SUCCESS ) ) {
    LogPrintf ( LOG_CRITICAL, "%s: XLALCreateSFTIndexListFromMultiSFTVect() failed with errno=%d\n", __func__, xlalErrno );
    XLAL_ERROR( XLAL_EFUNC );
  }

  /* Construct the list of SFT pairs */
#define PCC_SFTPAIR_HEADER "# The length of SFT-pair list is %u #\n"
#define PCC_SFTPAIR_BODY "%u %u\n"
#define PCC_SFT_HEADER "# The length of SFT list is %u #\n"
#define PCC_SFT_BODY "%s %d %d\n"
  FILE *fp = NULL;

  if (XLALUserVarWasSet(&uvar.pairListInputFilename)) { /* If the user provided a list for reading, use it */
    if((sftPairs = XLALCalloc(1, sizeof(sftPairs))) == NULL){
      XLAL_ERROR(XLAL_ENOMEM);
    }
    if((fp = fopen(uvar.pairListInputFilename, "r")) == NULL){
      LogPrintf ( LOG_CRITICAL, "didn't find SFT-pair list file with given input name\n");
      XLAL_ERROR( XLAL_EFUNC );
    }
    if(fscanf(fp,PCC_SFTPAIR_HEADER,&sftPairs->length)==EOF){
      LogPrintf ( LOG_CRITICAL, "can't read the length of SFT-pair list from the header\n");
      XLAL_ERROR( XLAL_EFUNC );
    }

    if((sftPairs->data = XLALCalloc(sftPairs->length, sizeof(*sftPairs->data)))==NULL){
      XLALFree(sftPairs);
      XLAL_ERROR(XLAL_ENOMEM);
    }

    for(j = 0; j < sftPairs->length; j++){ /*read in  the SFT-pair list */
      if(fscanf(fp,PCC_SFTPAIR_BODY, &sftPairs->data[j].sftNum[0], &sftPairs->data[j].sftNum[1])==EOF){
	LogPrintf ( LOG_CRITICAL, "The length of SFT-pair list doesn't match!");
	XLAL_ERROR( XLAL_EFUNC );
      }
    }
    fclose(fp);

  }

  else { /* if not, construct the list of pairs */
    if ( ( XLALCreateSFTPairIndexList( &sftPairs, sftIndices, inputSFTs, uvar.maxLag, uvar.inclAutoCorr ) != XLAL_SUCCESS ) ) {
      LogPrintf ( LOG_CRITICAL, "%s: XLALCreateSFTPairIndexList() failed with errno=%d\n", __func__, xlalErrno );
      XLAL_ERROR( XLAL_EFUNC );
    }
  }

  if (XLALUserVarWasSet(&uvar.pairListOutputFilename)) { /* Write the list of pairs to a file, if a name was provided */
    if((fp = fopen(uvar.pairListOutputFilename, "w")) == NULL){
      LogPrintf ( LOG_CRITICAL, "Can't write in SFT-pair list \n");
      XLAL_ERROR( XLAL_EFUNC );
    }
    fprintf(fp,PCC_SFTPAIR_HEADER, sftPairs->length ); /*output the length of SFT-pair list to the header*/
    for(j = 0; j < sftPairs->length; j++){
      fprintf(fp,PCC_SFTPAIR_BODY, sftPairs->data[j].sftNum[0], sftPairs->data[j].sftNum[1]);
    }
    fclose(fp);
  }

  if (XLALUserVarWasSet(&uvar.sftListOutputFilename)) { /* Write the list of SFTs to a file for sanity-checking purposes */
    if((fp = fopen(uvar.sftListOutputFilename, "w")) == NULL){
      LogPrintf ( LOG_CRITICAL, "Can't write in flat SFT list \n");
      XLAL_ERROR( XLAL_EFUNC );
    }
    fprintf(fp,PCC_SFT_HEADER, sftIndices->length ); /*output the length of SFT list to the header*/
    for(j = 0; j < sftIndices->length; j++){ /*output the SFT list */
      fprintf(fp,PCC_SFT_BODY, inputSFTs->data[sftIndices->data[j].detInd]->data[sftIndices->data[j].sftInd].name, inputSFTs->data[sftIndices->data[j].detInd]->data[sftIndices->data[j].sftInd].epoch.gpsSeconds, inputSFTs->data[sftIndices->data[j].detInd]->data[sftIndices->data[j].sftInd].epoch.gpsNanoSeconds);
    }
    fclose(fp);
  }

  else if(XLALUserVarWasSet(&uvar.sftListInputFilename)){ /*do a sanity check of the order of SFTs list if the name of input SFT list is given*/
    UINT4 numofsft=0;
    if((fp = fopen(uvar.sftListInputFilename, "r")) == NULL){
      LogPrintf ( LOG_CRITICAL, "Can't read in flat SFT list \n");
      XLAL_ERROR( XLAL_EFUNC );
    }
    if (fscanf(fp, PCC_SFT_HEADER, &numofsft)==EOF){
      LogPrintf ( LOG_CRITICAL, "can't read in the length of SFT list from header\n");
      XLAL_ERROR( XLAL_EFUNC );
    }

    CHARVectorSequence *checkDet=NULL;
    if ((checkDet = XLALCreateCHARVectorSequence (numofsft, LALNameLength) ) == NULL){
      LogPrintf ( LOG_CRITICAL, "%s: XLALCreateCHARVector() failed with errno=%d\n", __func__, xlalErrno );
      XLAL_ERROR( XLAL_EFUNC );
    }
    INT4 checkGPS[numofsft], checkGPSns[numofsft];
    if(numofsft == sftIndices->length){
      for (j=0; j<numofsft; j++){
	if( fscanf(fp,PCC_SFT_BODY,&checkDet->data[j * LALNameLength], &checkGPS[j], &checkGPSns[j])==EOF){
	  LogPrintf ( LOG_CRITICAL, "The length of SFT list doesn't match\n");
	  XLAL_ERROR( XLAL_EFUNC );
	}
	if(strcmp( inputSFTs->data[sftIndices->data[j].detInd]->data[sftIndices->data[j].sftInd].name, &checkDet->data[j * LALNameLength] ) != 0
	   ||inputSFTs->data[sftIndices->data[j].detInd]->data[sftIndices->data[j].sftInd].epoch.gpsSeconds != checkGPS[j]
	   ||inputSFTs->data[sftIndices->data[j].detInd]->data[sftIndices->data[j].sftInd].epoch.gpsNanoSeconds != checkGPSns[j] ){
	  LogPrintf ( LOG_CRITICAL, "The order of SFTs has been changed, it's the end of civilization\n");
	  XLAL_ERROR( XLAL_EFUNC );
	}
      }
      fclose(fp);
      XLALDestroyCHARVectorSequence(checkDet);
    }
    else{
      LogPrintf ( LOG_CRITICAL, "Run for your life, the length of SFT list doesn't match");
      XLAL_ERROR( XLAL_EFUNC );
    }
  }
  else
    {

    }

  /* Get weighting factors for calculation of metric */
  /* note that the sigma-squared is now absorbed into the curly G
     because the AM coefficients are noise-weighted. */
  REAL8Vector *GammaAve = NULL;
  REAL8Vector *GammaCirc = NULL;
  if ( ( XLALCalculateCrossCorrGammas( &GammaAve, &GammaCirc, sftPairs, sftIndices, multiCoeffs)  != XLAL_SUCCESS ) ) {
    LogPrintf ( LOG_CRITICAL, "%s: XLALCalculateCrossCorrGammas() failed with errno=%d\n", __func__, xlalErrno );
    XLAL_ERROR( XLAL_EFUNC );
  }

#define PCC_GAMMA_HEADER "# The normalization Sinv_Tsft is %g #\n"
#define PCC_GAMMA_BODY "%.10g\n"
  if (XLALUserVarWasSet(&uvar.gammaAveOutputFilename)) { /* Write the aa+bb weight for each pair to a file, if a name was provided */
    if((fp = fopen(uvar.gammaAveOutputFilename, "w")) == NULL) {
      LogPrintf ( LOG_CRITICAL, "Can't write in Gamma_ave list \n");
      XLAL_ERROR( XLAL_EFUNC );
    }
    fprintf(fp,PCC_GAMMA_HEADER, multiWeights->Sinv_Tsft); /*output the normalization factor to the header*/
    for(j = 0; j < sftPairs->length; j++){
      fprintf(fp,PCC_GAMMA_BODY, GammaAve->data[j]);
    }
    fclose(fp);
  }
  if (XLALUserVarWasSet(&uvar.gammaCircOutputFilename)) { /* Write the ab-ba weight for each pair to a file, if a name was provided */
    if((fp = fopen(uvar.gammaCircOutputFilename, "w")) == NULL) {
      LogPrintf ( LOG_CRITICAL, "Can't write in Gamma_circ list \n");
      XLAL_ERROR( XLAL_EFUNC );
    }
    fprintf(fp,PCC_GAMMA_HEADER, multiWeights->Sinv_Tsft); /*output the normalization factor to the header*/
    for(j = 0; j < sftPairs->length; j++){
      fprintf(fp,PCC_GAMMA_BODY, GammaCirc->data[j]);
    }
    fclose(fp);
  }

  /*initialize binary parameters structure*/
  XLAL_INIT_MEM(minBinaryTemplate);
  XLAL_INIT_MEM(maxBinaryTemplate);
  XLAL_INIT_MEM(thisBinaryTemplate);
  XLAL_INIT_MEM(binaryTemplateSpacings);
  /*fill in minbinaryOrbitParams*/
  XLALGPSSetREAL8( &minBinaryTemplate.tp, uvar.orbitTimeAsc);
  minBinaryTemplate.argp = 0.0;
  minBinaryTemplate.asini = uvar.orbitAsiniSec;
  minBinaryTemplate.ecc = 0.0;
  minBinaryTemplate.period = uvar.orbitPSec;
  minBinaryTemplate.fkdot[0] = uvar.fStart;
  /*fill in maxBinaryParams*/
  XLALGPSSetREAL8( &maxBinaryTemplate.tp, uvar.orbitTimeAsc + uvar.orbitTimeAscBand);
  maxBinaryTemplate.argp = 0.0;
  maxBinaryTemplate.asini = uvar.orbitAsiniSec + uvar.orbitAsiniSecBand;
  maxBinaryTemplate.ecc = 0.0;
  maxBinaryTemplate.period = uvar.orbitPSec;
  maxBinaryTemplate.fkdot[0] = uvar.fStart + uvar.fBand;
  /*fill in thisBinaryTemplate*/
  XLALGPSSetREAL8( &thisBinaryTemplate.tp, uvar.orbitTimeAsc + 0.5 * uvar.orbitTimeAscBand);
  thisBinaryTemplate.argp = 0.0;
  thisBinaryTemplate.asini = 0.5*(minBinaryTemplate.asini + maxBinaryTemplate.asini);
  thisBinaryTemplate.ecc = 0.0;
  thisBinaryTemplate.period =0.5*(minBinaryTemplate.period + maxBinaryTemplate.period);
  thisBinaryTemplate.fkdot[0]=0.5*(minBinaryTemplate.fkdot[0] + maxBinaryTemplate.fkdot[0]);

  /*Get metric diagonal components, also estimate sensitivity i.e. E[rho]/(h0)^2 (4.13)*/
  if ( (XLALCalculateLMXBCrossCorrDiagMetric(&estSens, &diagff, &diagaa, &diagTT, thisBinaryTemplate, GammaAve, sftPairs, sftIndices, inputSFTs, multiWeights /*, kappaValues*/)  != XLAL_SUCCESS ) ) {
    LogPrintf ( LOG_CRITICAL, "%s: XLALCalculateLMXBCrossCorrDiagMetric() failed with errno=%d\n", __func__, xlalErrno );
    XLAL_ERROR( XLAL_EFUNC );
  }

  /* spacing in frequency from diagff */ /* set spacings in new dopplerparams struct */
  if (XLALUserVarWasSet(&uvar.spacingF)) /* If spacing was given by CMD line, use it, else calculate spacing by mismatch*/
    binaryTemplateSpacings.fkdot[0] = uvar.spacingF;
  else
    binaryTemplateSpacings.fkdot[0] = sqrt(uvar.mismatchF / diagff);

  if (XLALUserVarWasSet(&uvar.spacingA))
    binaryTemplateSpacings.asini = uvar.spacingA;
  else
    binaryTemplateSpacings.asini = sqrt(uvar.mismatchA / diagaa);
  /* this is annoying: tp is a GPS time while we want a difference
     in time which should be just REAL8 */
  if (XLALUserVarWasSet(&uvar.spacingT))
    XLALGPSSetREAL8( &binaryTemplateSpacings.tp, uvar.spacingT);
  else
    XLALGPSSetREAL8( &binaryTemplateSpacings.tp, sqrt(uvar.mismatchT / diagTT));

  if (XLALUserVarWasSet(&uvar.spacingP))
    binaryTemplateSpacings.period = uvar.spacingP;
  else
    binaryTemplateSpacings.period = sqrt(uvar.mismatchP / diagpp);

  /* metric elements for eccentric case not considered? */

  UINT8 fCount = 0, aCount = 0, tCount = 0 , pCount = 0;
  const UINT8 fSpacingNum = floor( uvar.fBand / binaryTemplateSpacings.fkdot[0]);
  const UINT8 aSpacingNum = floor( uvar.orbitAsiniSecBand / binaryTemplateSpacings.asini);
  const UINT8 tSpacingNum = floor( uvar.orbitTimeAscBand / XLALGPSGetREAL8(&binaryTemplateSpacings.tp));
  const UINT8 pSpacingNum = floor( uvar.orbitPSecBand / binaryTemplateSpacings.period);

  /*reset minbinaryOrbitParams to shift the first point a factor so as to make the center of all seaching points centers at the center of searching band*/
  minBinaryTemplate.fkdot[0] = uvar.fStart + 0.5 * (uvar.fBand - fSpacingNum * binaryTemplateSpacings.fkdot[0]);
  minBinaryTemplate.asini = uvar.orbitAsiniSec + 0.5 * (uvar.orbitAsiniSecBand - aSpacingNum * binaryTemplateSpacings.asini);
  XLALGPSSetREAL8( &minBinaryTemplate.tp, uvar.orbitTimeAsc + 0.5 * (uvar.orbitTimeAscBand - tSpacingNum * XLALGPSGetREAL8(&binaryTemplateSpacings.tp)));
  minBinaryTemplate.period = uvar.orbitPSec + 0.5 * (uvar.orbitPSecBand - pSpacingNum * binaryTemplateSpacings.period);

  /* initialize the doppler scan struct which stores the current template information */
  XLALGPSSetREAL8(&dopplerpos.refTime, config.refTime);
  dopplerpos.Alpha = uvar.alphaRad;
  dopplerpos.Delta = uvar.deltaRad;
  dopplerpos.fkdot[0] = minBinaryTemplate.fkdot[0];
  /* set all spindowns to zero */
  for (k=1; k < PULSAR_MAX_SPINS; k++)
    dopplerpos.fkdot[k] = 0.0;
  dopplerpos.asini = minBinaryTemplate.asini;
  dopplerpos.period = minBinaryTemplate.period;
  dopplerpos.tp = minBinaryTemplate.tp;
  dopplerpos.ecc = minBinaryTemplate.ecc;
  dopplerpos.argp = minBinaryTemplate.argp;

  /* now set the initial values of binary parameters */
  /*  thisBinaryTemplate.asini = uvar.orbitAsiniSec;
  thisBinaryTemplate.period = uvar.orbitPSec;
  XLALGPSSetREAL8( &thisBinaryTemplate.tp, uvar.orbitTimeAsc);
  thisBinaryTemplate.ecc = 0.0;
  thisBinaryTemplate.argp = 0.0;*/
  /* copy to dopplerpos */

  /* Calculate SSB times (can do this once since search is currently only for one sky position, and binary doppler shift is added later) */
  MultiSSBtimes *multiSSBTimes = NULL;
  if ((multiSSBTimes = XLALGetMultiSSBtimes ( multiStates, skyPos, dopplerpos.refTime, SSBPREC_RELATIVISTICOPT )) == NULL){
    LogPrintf ( LOG_CRITICAL, "%s: XLALGetMultiSSBtimes() failed with errno=%d\n", __func__, xlalErrno );
    XLAL_ERROR( XLAL_EFUNC );
  }

  /* "New" general metric computation */
  /* For now hard-code circular parameter space */

  const DopplerCoordinateSystem coordSys = {
    .dim = 4,
    .coordIDs = { DOPPLERCOORD_FREQ,
		  DOPPLERCOORD_ASINI,
		  DOPPLERCOORD_TASC,
		  DOPPLERCOORD_PORB, },
  };

  REAL8VectorSequence *phaseDerivs = NULL;
  if ( ( XLALCalculateCrossCorrPhaseDerivatives ( &phaseDerivs, &thisBinaryTemplate, config.edat, sftIndices, multiSSBTimes, &coordSys )  != XLAL_SUCCESS ) ) {
    LogPrintf ( LOG_CRITICAL, "%s: XLALCalculateCrossCorrPhaseDerivatives() failed with errno=%d\n", __func__, xlalErrno );
    XLAL_ERROR( XLAL_EFUNC );
  }

  /* fill in metric and parameter offsets */
  gsl_matrix *g_ij = NULL;
  gsl_vector *eps_i = NULL;
  REAL8 sumGammaSq = 0;
  if ( ( XLALCalculateCrossCorrPhaseMetric ( &g_ij, &eps_i, &sumGammaSq, phaseDerivs, sftPairs, GammaAve, GammaCirc, &coordSys ) != XLAL_SUCCESS ) ) {
    LogPrintf ( LOG_CRITICAL, "%s: XLALCalculateCrossCorrPhaseMetric() failed with errno=%d\n", __func__, xlalErrno );
    XLAL_ERROR( XLAL_EFUNC );
  }
  XLALDestroyREAL8VectorSequence ( phaseDerivs );
  XLALDestroyREAL8Vector ( GammaCirc );

  if ((fp = fopen("gsldata.dat","w"))==NULL){
    LogPrintf ( LOG_CRITICAL, "Can't write in gsl matrix file");
    XLAL_ERROR( XLAL_EFUNC );
  }

  XLALfprintfGSLvector(fp, "%g", eps_i);
  XLALfprintfGSLmatrix(fp, "%g", g_ij);

  /* Allocate structure for binary doppler-shifting information */
  if ((multiBinaryTimes = XLALDuplicateMultiSSBtimes ( multiSSBTimes )) == NULL){
    LogPrintf ( LOG_CRITICAL, "%s: XLALDuplicateMultiSSBtimes() failed with errno=%d\n", __func__, xlalErrno );
    XLAL_ERROR( XLAL_EFUNC );
  }

  UINT8 numSFTs = sftIndices->length;
  if ((shiftedFreqs = XLALCreateREAL8Vector ( numSFTs ) ) == NULL){
    LogPrintf ( LOG_CRITICAL, "%s: XLALCreateREAL8Vector() failed with errno=%d\n", __func__, xlalErrno );
    XLAL_ERROR( XLAL_EFUNC );
  }
  if ((lowestBins = XLALCreateUINT4Vector ( numSFTs ) ) == NULL){
    LogPrintf ( LOG_CRITICAL, "%s: XLALCreateUINT4Vector() failed with errno=%d\n", __func__, xlalErrno );
    XLAL_ERROR( XLAL_EFUNC );
  }

  if ((expSignalPhases = XLALCreateCOMPLEX8Vector ( numSFTs ) ) == NULL){
    LogPrintf ( LOG_CRITICAL, "%s: XLALCreateREAL8Vector() failed with errno=%d\n", __func__, xlalErrno );
    XLAL_ERROR( XLAL_EFUNC );
  }
  if ((sincList = XLALCreateREAL8VectorSequence ( numSFTs, uvar.numBins ) ) == NULL){
    LogPrintf ( LOG_CRITICAL, "%s: XLALCreateREAL8VectorSequence() failed with errno=%d\n", __func__, xlalErrno );
    XLAL_ERROR( XLAL_EFUNC );
  }

  /* args should be : spacings, min and max doppler params */
  BOOLEAN firstPoint = TRUE; /* a boolean to help to search at the beginning point in parameter space, after the search it is set to be FALSE to end the loop*/
  if ( (XLALAddMultiBinaryTimes( &multiBinaryTimes, multiSSBTimes, &dopplerpos )  != XLAL_SUCCESS ) ) {
    LogPrintf ( LOG_CRITICAL, "%s: XLALAddMultiBinaryTimes() failed with errno=%d\n", __func__, xlalErrno );
    XLAL_ERROR( XLAL_EFUNC );
  } /*Need to apply additional doppler shifting before the loop, or the first point in parameter space will be lost and return a wrong SNR when fBand!=0*/

  while ( GetNextCrossCorrTemplate(&dopplerShiftFlag, &firstPoint, &dopplerpos, &binaryTemplateSpacings, &minBinaryTemplate, &maxBinaryTemplate, &fCount, &aCount, &tCount, &pCount, fSpacingNum, aSpacingNum, tSpacingNum, pSpacingNum) == 0)
    {
      /* do useful stuff here*/

      /* Apply additional Doppler shifting using current binary orbital parameters */
      /* Might want to be clever about checking whether we've changed the orbital parameters or only the frequency */
      if (dopplerShiftFlag == TRUE)
	{
	  if ( (XLALAddMultiBinaryTimes( &multiBinaryTimes, multiSSBTimes, &dopplerpos )  != XLAL_SUCCESS ) ) {
	    LogPrintf ( LOG_CRITICAL, "%s: XLALAddMultiBinaryTimes() failed with errno=%d\n", __func__, xlalErrno );
	    XLAL_ERROR( XLAL_EFUNC );
	  }
	}

      if ( (XLALGetDopplerShiftedFrequencyInfo( shiftedFreqs, lowestBins, expSignalPhases, sincList, uvar.numBins, &dopplerpos, sftIndices, inputSFTs, multiBinaryTimes, Tsft )  != XLAL_SUCCESS ) ) {
	LogPrintf ( LOG_CRITICAL, "%s: XLALGetDopplerShiftedFrequencyInfo() failed with errno=%d\n", __func__, xlalErrno );
	XLAL_ERROR( XLAL_EFUNC );
      }

      if ( (XLALCalculatePulsarCrossCorrStatistic( &ccStat, &evSquared, GammaAve, expSignalPhases, lowestBins, sincList, sftPairs, sftIndices, inputSFTs, multiWeights, uvar.numBins)  != XLAL_SUCCESS ) ) {
	LogPrintf ( LOG_CRITICAL, "%s: XLALCalculatePulsarCrossCorrStatistic() failed with errno=%d\n", __func__, xlalErrno );
	XLAL_ERROR( XLAL_EFUNC );
      }

      /* fill candidate struct and insert into toplist if necessary */
      thisCandidate.freq = dopplerpos.fkdot[0];
      thisCandidate.tp = XLALGPSGetREAL8( &dopplerpos.tp );
      thisCandidate.argp = dopplerpos.argp;
      thisCandidate.asini = dopplerpos.asini;
      thisCandidate.ecc = dopplerpos.ecc;
      thisCandidate.period = dopplerpos.period;
      thisCandidate.rho = ccStat;
      thisCandidate.evSquared = evSquared;
      thisCandidate.estSens = estSens;

      insert_into_crossCorrBinary_toplist(ccToplist, thisCandidate);

    } /* end while loop over templates */

  /* write candidates to file */
  sort_crossCorrBinary_toplist( ccToplist );
  /* add error checking */

  final_write_crossCorrBinary_toplist_to_file( ccToplist, uvar.toplistFilename, &checksum);

  REAL8 h0Sens = sqrt((10 / sqrt(estSens))); /*for a SNR=10 signal, the h0 we can detect*/

  XLALGPSTimeNow (&computingEndGPSTime); /*record the rough end time*/
  UINT4 computingTime = computingEndGPSTime.gpsSeconds - computingStartGPSTime.gpsSeconds;
  /* make a meta-data file*/
  if(XLALUserVarWasSet(&uvar.logFilename)){
    CHAR *CMDInputStr = XLALUserVarGetLog ( UVAR_LOGFMT_CFGFILE );
    if ((fp = fopen(uvar.logFilename,"w"))==NULL){
    LogPrintf ( LOG_CRITICAL, "Can't write in logfile");
    XLAL_ERROR( XLAL_EFUNC );
    }
    fprintf(fp, "[UserInput]\n\n");
    fprintf(fp, "%s\n", CMDInputStr);
    fprintf(fp, "[CalculatedValues]\n\n");
    fprintf(fp, "g_ff = %.9f\n", diagff );
    fprintf(fp, "g_aa = %.9f\n", diagaa );
    fprintf(fp, "g_TT = %.9f\n", diagTT );
    fprintf(fp, "FSpacing = %.9g\n", binaryTemplateSpacings.fkdot[0]);
    fprintf(fp, "ASpacing = %.9g\n", binaryTemplateSpacings.asini);
    fprintf(fp, "TSpacing = %.9g\n", XLALGPSGetREAL8(&binaryTemplateSpacings.tp));
    /* fprintf(fp, "PSpacing = %.9g\n", binaryTemplateSpacings.period );*/
    fprintf(fp, "TemplatenumF = %" LAL_UINT8_FORMAT "\n", (fSpacingNum + 1));
    fprintf(fp, "TemplatenumA = %" LAL_UINT8_FORMAT "\n", (aSpacingNum + 1));
    fprintf(fp, "TemplatenumT = %" LAL_UINT8_FORMAT "\n", (tSpacingNum + 1));
    fprintf(fp, "TemplatenumP = %" LAL_UINT8_FORMAT "\n", (pSpacingNum + 1));
    fprintf(fp, "TemplatenumTotal = %" LAL_UINT8_FORMAT "\n",(fSpacingNum + 1) * (aSpacingNum + 1) * (tSpacingNum + 1) * (pSpacingNum + 1));
    fprintf(fp, "Sens = %.9g\n", estSens);/*(E[rho]/h0^2)^2*/
    fprintf(fp, "h0_min_SNR10 = %.9g\n", h0Sens);/*for rho = 10 in our pipeline*/
    fprintf(fp, "startTime = %" LAL_INT4_FORMAT "\n", computingStartGPSTime.gpsSeconds );/*start time in GPS-time*/
    fprintf(fp, "endTime = %" LAL_INT4_FORMAT "\n", computingEndGPSTime.gpsSeconds );/*end time in GPS-time*/
    fprintf(fp, "computingTime = %" LAL_UINT4_FORMAT "\n", computingTime );/*total time in sec*/
    fprintf(fp, "SFTnum = %" LAL_UINT4_FORMAT "\n", sftIndices->length);/*total number of SFT*/
    fprintf(fp, "pairnum = %" LAL_UINT4_FORMAT "\n", sftPairs->length);/*total number of pair of SFT*/
    fprintf(fp, "Tsft = %.6g\n", Tsft);/*SFT duration*/
    fprintf(fp, "\n[Version]\n\n");
    fprintf(fp, "%s",  VCSInfoString);
    fclose(fp);
    XLALFree(CMDInputStr);
  }

  XLALFree(VCSInfoString);
  XLALDestroyCOMPLEX8Vector ( expSignalPhases );
  XLALDestroyUINT4Vector ( lowestBins );
  XLALDestroyREAL8Vector ( shiftedFreqs );
  XLALDestroyREAL8VectorSequence ( sincList );
  XLALDestroyMultiSSBtimes ( multiBinaryTimes );
  XLALDestroyMultiSSBtimes ( multiSSBTimes );
  XLALDestroyREAL8Vector ( GammaAve );
  XLALDestroySFTPairIndexList( sftPairs );
  XLALDestroySFTIndexList( sftIndices );
  XLALDestroyMultiAMCoeffs ( multiCoeffs );
  XLALDestroyMultiDetectorStateSeries ( multiStates );
  XLALDestroyMultiTimestamps ( multiTimes );
  XLALDestroyMultiNoiseWeights ( multiWeights );
  XLALDestroyMultiPSDVector ( multiPSDs );
  XLALDestroyMultiSFTVector ( inputSFTs );

  /* de-allocate memory for configuration variables */
  XLALDestroyConfigVars ( &config );

  /* de-allocate memory for user input variables */
  XLALDestroyUserVars();

  /* free toplist memory */
  free_crossCorr_toplist(&ccToplist);

  /* check memory leaks if we forgot to de-allocate anything */
  LALCheckMemoryLeaks();

  LogPrintf (LOG_CRITICAL, "End time\n");/*for debug convenience to record calculating time*/

  return 0;


} /* main */


/* initialize and register user variables */
int XLALInitUserVars (UserInput_t *uvar)
{

  /* initialize with some defaults */
  uvar->help = FALSE;
  uvar->maxLag = 0.0;
  uvar->inclAutoCorr = FALSE;
  uvar->fStart = 100.0;
  uvar->fBand = 0.1;
  /* uvar->fdotStart = 0.0; */
  /* uvar->fdotBand = 0.0; */
  uvar->alphaRad = 0.0;
  uvar->deltaRad = 0.0;
  uvar->refTime = 0.0;
  uvar->rngMedBlock = 50;
  uvar->numBins = 1;

  /* zero binary orbital parameters means not a binary */
  uvar->orbitAsiniSec = 0.0;
  uvar->orbitAsiniSecBand = 0.0;
  uvar->orbitPSec = 0.0;
  uvar->orbitPSecBand = 0.0;
  uvar->orbitTimeAsc = 0;
  uvar->orbitTimeAscBand = 0;

  /*default mismatch values */
  /* set to 0.1 by default -- for no real reason */
  /* make 0.1 a macro? */
  uvar->mismatchF = 0.1;
  uvar->mismatchA = 0.1;
  uvar->mismatchT = 0.1;
  uvar->mismatchP = 0.1;

  uvar->ephemEarth = XLALStringDuplicate("earth00-19-DE405.dat.gz");
  uvar->ephemSun = XLALStringDuplicate("sun00-19-DE405.dat.gz");

  uvar->sftLocation = XLALCalloc(1, MAXFILENAMELENGTH+1);

  /* initialize number of candidates in toplist -- default is just to return the single best candidate */
  uvar->numCand = 1;
  uvar->toplistFilename = XLALStringDuplicate("toplist_crosscorr.dat");
  uvar->version = FALSE;

  /* register  user-variables */
  XLALregBOOLUserStruct  ( help, 	   'h',  UVAR_HELP, "Print this message");
  XLALregINTUserStruct   ( startTime,       0,  UVAR_REQUIRED, "Desired start time of analysis in GPS seconds");
  XLALregINTUserStruct   ( endTime,         0,  UVAR_REQUIRED, "Desired end time of analysis in GPS seconds");
  XLALregREALUserStruct  ( maxLag,          0,  UVAR_OPTIONAL, "Maximum lag time in seconds between SFTs in correlation");
  XLALregBOOLUserStruct  ( inclAutoCorr,    0,  UVAR_OPTIONAL, "Include auto-correlation terms (an SFT with itself)");
  XLALregREALUserStruct  ( fStart,          0,  UVAR_OPTIONAL, "Start frequency in Hz");
  XLALregREALUserStruct  ( fBand,           0,  UVAR_OPTIONAL, "Frequency band to search over in Hz ");
  /* XLALregREALUserStruct  ( fdotStart,     0,  UVAR_OPTIONAL, "Start value of spindown in Hz/s"); */
  /* XLALregREALUserStruct  ( fdotBand,      0,  UVAR_OPTIONAL, "Band for spindown values in Hz/s"); */
  XLALregREALUserStruct  ( alphaRad,        0,  UVAR_OPTIONAL, "Right ascension for directed search (radians)");
  XLALregREALUserStruct  ( deltaRad,        0,  UVAR_OPTIONAL, "Declination for directed search (radians)");
  XLALregREALUserStruct  ( refTime,         0,  UVAR_OPTIONAL, "SSB reference time for pulsar-parameters [Default: midPoint]");
  XLALregREALUserStruct  ( orbitAsiniSec,   0,  UVAR_OPTIONAL, "Start of search band for projected semimajor axis (seconds) [0 means not a binary]");
  XLALregREALUserStruct  ( orbitAsiniSecBand, 0,  UVAR_OPTIONAL, "Width of search band for projected semimajor axis (seconds)");
  XLALregREALUserStruct  ( orbitPSec,       0,  UVAR_OPTIONAL, "Binary orbital period (seconds) [0 means not a binary]");
  XLALregREALUserStruct  ( orbitPSecBand,       0,  UVAR_OPTIONAL, "Band for binary orbital period (seconds) ");
  XLALregREALUserStruct  ( orbitTimeAsc,    0,  UVAR_OPTIONAL, "Start of orbital time-of-ascension band in GPS seconds");
  XLALregREALUserStruct  ( orbitTimeAscBand, 0,  UVAR_OPTIONAL, "Width of orbital time-of-ascension band (seconds)");
  XLALregSTRINGUserStruct( ephemEarth,      0,  UVAR_OPTIONAL, "Earth ephemeris file to use");
  XLALregSTRINGUserStruct( ephemSun,        0,  UVAR_OPTIONAL, "Sun ephemeris file to use");
  XLALregSTRINGUserStruct( sftLocation,     0,  UVAR_REQUIRED, "Filename pattern for locating SFT data");
  XLALregINTUserStruct   ( rngMedBlock,     0,  UVAR_OPTIONAL, "Running median block size for PSD estimation");
  XLALregINTUserStruct   ( numBins,         0,  UVAR_OPTIONAL, "Number of frequency bins to include in calculation");
  XLALregREALUserStruct  ( mismatchF,       0,  UVAR_OPTIONAL, "Desired mismatch for frequency spacing");
  XLALregREALUserStruct  ( mismatchA,       0,  UVAR_OPTIONAL, "Desired mismatch for asini spacing");
  XLALregREALUserStruct  ( mismatchT,       0,  UVAR_OPTIONAL, "Desired mismatch for periapse passage time spacing");
  XLALregREALUserStruct  ( mismatchP,       0,  UVAR_OPTIONAL, "Desired mismatch for period spacing");
  XLALregREALUserStruct  ( spacingF,       0,  UVAR_OPTIONAL, "Desired frequency spacing");
  XLALregREALUserStruct  ( spacingA,       0,  UVAR_OPTIONAL, "Desired asini spacing");
  XLALregREALUserStruct  ( spacingT,       0,  UVAR_OPTIONAL, "Desired periapse passage time spacing");
  XLALregREALUserStruct  ( spacingP,       0,  UVAR_OPTIONAL, "Desired period spacing");
  XLALregINTUserStruct   ( numCand,         0,  UVAR_OPTIONAL, "Number of candidates to keep in toplist");
  XLALregSTRINGUserStruct( pairListInputFilename, 0,  UVAR_OPTIONAL, "Name of file from which to read list of SFT pairs");
  XLALregSTRINGUserStruct( pairListOutputFilename, 0,  UVAR_OPTIONAL, "Name of file to which to write list of SFT pairs");
  XLALregSTRINGUserStruct( sftListOutputFilename, 0,  UVAR_OPTIONAL, "Name of file to which to write list of SFTs (for sanity checks)");
  XLALregSTRINGUserStruct( sftListInputFilename, 0,  UVAR_OPTIONAL, "Name of file to which to read in list of SFTs (for sanity checks)");
  XLALregSTRINGUserStruct( gammaAveOutputFilename, 0,  UVAR_OPTIONAL, "Name of file to which to write aa+bb weights (for e.g., false alarm estimation)");
  XLALregSTRINGUserStruct( gammaCircOutputFilename, 0,  UVAR_OPTIONAL, "Name of file to which to write ab-ba weights (for e.g., systematic error)");
  XLALregSTRINGUserStruct( toplistFilename, 0,  UVAR_OPTIONAL, "Output filename containing candidates in toplist");
  XLALregSTRINGUserStruct( logFilename, 0,  UVAR_OPTIONAL, "Output a meta-data file for the search");
  XLALregBOOLUserStruct  ( version, 	   'V',  UVAR_SPECIAL, "Output version(VCS) information");
  if ( xlalErrno ) {
    XLALPrintError ("%s: user variable initialization failed with errno = %d.\n", __func__, xlalErrno );
    XLAL_ERROR ( XLAL_EFUNC );
  }

  return XLAL_SUCCESS;
}
Ejemplo n.º 7
0
/**
 * Register all our "user-variables" that can be specified from cmd-line and/or config-file.
 * Here we set defaults for some user-variables and register them with the UserInput module.
 */
int
XLALInitUserVars ( UserInput_t *uvar )
{
  /* set a few defaults */
  uvar->help = 0;
  uvar->outputStats = NULL;

  uvar->Alpha = -1;	/* Alpha < 0 indicates "allsky" */
  uvar->Delta = 0;

  uvar->phi0 = 0;
  uvar->psi = 0;

  uvar->dataStartGPS = 814838413;	/* 1 Nov 2005, ~ start of S5 */
  uvar->dataDuration = (INT4) round ( LAL_YRSID_SI );	/* 1 year of data */

  uvar->ephemEarth = XLALStringDuplicate("earth00-19-DE405.dat.gz");
  uvar->ephemSun = XLALStringDuplicate("sun00-19-DE405.dat.gz");

  uvar->numDraws = 1;
  uvar->TAtom = 1800;

  uvar->computeFtotal = 0;
  uvar->useFReg = 0;

  uvar->fixedh0Nat = -1;
  uvar->fixedSNR = -1;
  uvar->fixedh0NatMax = -1;
  uvar->fixedRhohMax = -1;

#define DEFAULT_IFO "H1"
  uvar->IFO = XLALMalloc ( strlen(DEFAULT_IFO)+1 );
  strcpy ( uvar->IFO, DEFAULT_IFO );

  /* ---------- transient window defaults ---------- */
#define DEFAULT_TRANSIENT "rect"
  uvar->injectWindow_type = XLALMalloc(strlen(DEFAULT_TRANSIENT)+1);
  strcpy ( uvar->injectWindow_type, DEFAULT_TRANSIENT );
  uvar->searchWindow_type = XLALMalloc(strlen(DEFAULT_TRANSIENT)+1);
  strcpy ( uvar->searchWindow_type, DEFAULT_TRANSIENT );

  uvar->injectWindow_tauDays     = 1.0;
  uvar->injectWindow_tauDaysBand = 13.0;

  REAL8 tauMaxDays = ( uvar->injectWindow_tauDays +  uvar->injectWindow_tauDaysBand );
  /* default window-ranges are t0 in [dataStartTime, dataStartTime - 3 * tauMax] */
  uvar->injectWindow_t0Days     = 0; // offset in days from uvar->dataStartGPS
  uvar->injectWindow_t0DaysBand = fmax ( 0.0, 1.0*uvar->dataDuration/DAY24 - TRANSIENT_EXP_EFOLDING * tauMaxDays );	/* make sure it's >= 0 */

  /* search-windows by default identical to inject-windows */
  uvar->searchWindow_t0Days = uvar->injectWindow_t0Days;
  uvar->searchWindow_t0DaysBand = uvar->injectWindow_t0DaysBand;
  uvar->searchWindow_tauDays = uvar->injectWindow_tauDays;
  uvar->searchWindow_tauDaysBand = uvar->injectWindow_tauDaysBand;

  uvar->searchWindow_dt0  = uvar->TAtom;
  uvar->searchWindow_dtau = uvar->TAtom;

  /* register all our user-variables */
  XLALregBOOLUserStruct ( help, 		'h',     UVAR_HELP, "Print this message");

  /* signal Doppler parameters */
  XLALregREALUserStruct ( Alpha, 		'a', UVAR_OPTIONAL, "Sky position alpha (equatorial coordinates) in radians [Default:allsky]");
  XLALregREALUserStruct ( Delta, 		'd', UVAR_OPTIONAL, "Sky position delta (equatorial coordinates) in radians [Default:allsky]");

  /* signal amplitude parameters */
  XLALregREALUserStruct ( fixedh0Nat,		 0, UVAR_OPTIONAL, "Alternative 1: if >=0 fix the GW amplitude: h0/sqrt(Sn)");
  XLALregREALUserStruct ( fixedSNR, 		 0, UVAR_OPTIONAL, "Alternative 2: if >=0 fix the optimal SNR of the injected signals");
  XLALregREALUserStruct ( fixedh0NatMax,	 0, UVAR_OPTIONAL, "Alternative 3: if >=0 draw GW amplitude h0 in [0, h0NatMax ] (FReg prior)");
  XLALregREALUserStruct ( fixedRhohMax, 	 0, UVAR_OPTIONAL, "Alternative 4: if >=0 draw rhoh=h0*(detM)^(1/8) in [0, rhohMax] (canonical F-stat prior)");

  XLALregREALUserStruct ( cosi,			'i', UVAR_OPTIONAL, "cos(inclination angle). If not set: randomize within [-1,1].");
  XLALregREALUserStruct ( psi,			 0,  UVAR_OPTIONAL, "polarization angle psi. If not set: randomize within [-pi/4,pi/4].");
  XLALregREALUserStruct ( phi0,		 	 0,  UVAR_OPTIONAL, "initial GW phase phi_0. If not set: randomize within [0, 2pi]");

  XLALregINTUserStruct  ( AmpPriorType,	 	 0,  UVAR_OPTIONAL, "Enumeration of types of amplitude-priors: 0=physical, 1=canonical");

  XLALregSTRINGUserStruct ( IFO,	        'I', UVAR_OPTIONAL, "Detector: 'G1','L1','H1,'H2', 'V1', ... ");
  XLALregINTUserStruct ( dataStartGPS,	 	 0,  UVAR_OPTIONAL, "data start-time in GPS seconds");
  XLALregINTUserStruct ( dataDuration,	 	 0,  UVAR_OPTIONAL, "data-span to generate (in seconds)");

  /* transient window ranges: for injection ... */
  XLALregSTRINGUserStruct( injectWindow_type,    0, UVAR_OPTIONAL, "Type of transient window to inject ('none', 'rect', 'exp')");
  XLALregREALUserStruct  ( injectWindow_tauDays, 0, UVAR_OPTIONAL, "Shortest transient-window timescale to inject, in days");
  XLALregREALUserStruct  ( injectWindow_tauDaysBand,0,UVAR_OPTIONAL,"Range of transient-window timescale to inject, in days");
  XLALregREALUserStruct  ( injectWindow_t0Days,  0, UVAR_OPTIONAL, "Earliest start-time of transient window to inject, as offset in days from dataStartGPS");
  XLALregREALUserStruct  ( injectWindow_t0DaysBand,0,UVAR_OPTIONAL,"Range of GPS start-time of transient window to inject, in days [Default:dataDuration-3*tauMax]");
  /* ... and for search */
  XLALregSTRINGUserStruct( searchWindow_type,    0, UVAR_OPTIONAL, "Type of transient window to search with ('none', 'rect', 'exp') [Default:injectWindow]");
  XLALregREALUserStruct  ( searchWindow_tauDays, 0, UVAR_OPTIONAL, "Shortest transient-window timescale to search, in days [Default:injectWindow]");
  XLALregREALUserStruct  ( searchWindow_tauDaysBand,0,UVAR_OPTIONAL, "Range of transient-window timescale to search, in days [Default:injectWindow]");
  XLALregREALUserStruct  ( searchWindow_t0Days,  0, UVAR_OPTIONAL, "Earliest start-time of transient window to search, as offset in days from dataStartGPS [Default:injectWindow]");
  XLALregREALUserStruct  ( searchWindow_t0DaysBand,0,UVAR_OPTIONAL, "Range of GPS start-time of transient window to search, in days [Default:injectWindow]");

  XLALregINTUserStruct   ( searchWindow_dtau, 	 0, UVAR_OPTIONAL, "Step-size for search/marginalization over transient-window timescale, in seconds [Default:TAtom]");
  XLALregINTUserStruct   ( searchWindow_dt0, 	 0, UVAR_OPTIONAL, "Step-size for search/marginalization over transient-window start-time, in seconds [Default:TAtom]");

  /* misc params */
  XLALregBOOLUserStruct ( computeFtotal,	 0, UVAR_OPTIONAL, "Also compute 'total' F-statistic over the full data-span" );

  XLALregINTUserStruct  ( numDraws,		'N', UVAR_OPTIONAL,"Number of random 'draws' to simulate");
  XLALregINTUserStruct  ( randSeed,		 0, UVAR_OPTIONAL, "GSL random-number generator seed value to use");

  XLALregSTRINGUserStruct ( outputStats,	'o', UVAR_OPTIONAL, "Output file containing 'numDraws' random draws of stats");
  XLALregSTRINGUserStruct ( outputAtoms,	 0,  UVAR_OPTIONAL, "Output F-statistic atoms into a file with this basename");
  XLALregSTRINGUserStruct ( outputFstatMap,	 0,  UVAR_OPTIONAL, "Output F-statistic over 2D parameter space {t0, tau} into file with this basename");

  XLALregSTRINGUserStruct ( outputInjParams,	 0,  UVAR_OPTIONAL,  "Output injection parameters into this file");
  XLALregSTRINGUserStruct ( outputPosteriors,	 0,  UVAR_OPTIONAL,  "output posterior pdfs on t0 and tau (in octave format) into this file ");

  XLALregBOOLUserStruct ( SignalOnly,        	'S', UVAR_OPTIONAL, "Signal only: generate pure signal without noise");
  XLALregBOOLUserStruct ( useFReg,        	 0,  UVAR_OPTIONAL, "use 'regularized' Fstat (1/D)*e^F (if TRUE) for marginalization, or 'standard' e^F (if FALSE)");

  XLALregSTRINGUserStruct ( ephemEarth, 	 0,  UVAR_OPTIONAL, "Earth ephemeris file to use");
  XLALregSTRINGUserStruct ( ephemSun, 	 	 0,  UVAR_OPTIONAL, "Sun ephemeris file to use");

  XLALregBOOLUserStruct ( version,        	'V', UVAR_SPECIAL,  "Output code version");

  /* 'hidden' stuff */
  XLALregINTUserStruct ( TAtom,		  	  0, UVAR_DEVELOPER, "Time baseline for Fstat-atoms (typically Tsft) in seconds." );


  if ( xlalErrno ) {
    XLALPrintError ("%s: something failed in initializing user variabels .. errno = %d.\n", __func__, xlalErrno );
    XLAL_ERROR ( XLAL_EFUNC );
  }

  return XLAL_SUCCESS;

} /* XLALInitUserVars() */
Ejemplo n.º 8
0
/**
 * some basic consistency checks of the (XLAL) UserInput module, far from exhaustive,
 * but should be enough to catch big obvious malfunctions
 */
int
main(int argc, char *argv[])
{
  int i, my_argc = 8;
  char **my_argv;
  const char *argv_in[] = { "progname", "--argNum=1", "--argStr=xyz", "--argBool=true", "-a", "1", "-b", "@" TEST_DATA_DIR "ConfigFileSample.cfg" };
  UserInput_t XLAL_INIT_DECL(my_uvars);

  XLAL_CHECK ( argc == 1, XLAL_EINVAL, "No input arguments allowed.\n");

  my_argv = XLALCalloc ( my_argc, sizeof(char*) );
  for (i=0; i < my_argc; i ++ )
    {
      my_argv[i] = XLALCalloc ( 1, strlen(argv_in[i])+1);
      strcpy ( my_argv[i], argv_in[i] );
    }

  /* ---------- Register all test user-variables ---------- */
  UserInput_t *uvar = &my_uvars;
  XLAL_CHECK ( XLALregREALUserStruct( argNum, 0, UVAR_REQUIRED, "Testing float argument") == XLAL_SUCCESS, XLAL_EFUNC );
  XLAL_CHECK ( XLALregSTRINGUserStruct( argStr, 0, UVAR_REQUIRED, "Testing string argument") == XLAL_SUCCESS, XLAL_EFUNC );
  XLAL_CHECK ( XLALregBOOLUserStruct( argBool, 0, UVAR_REQUIRED, "Testing bool argument") == XLAL_SUCCESS, XLAL_EFUNC );
  XLAL_CHECK ( XLALregINTUserStruct( argInt, 'a', UVAR_REQUIRED, "Testing INT argument") == XLAL_SUCCESS, XLAL_EFUNC );
  XLAL_CHECK ( XLALregINTUserStruct( dummy,  'c', UVAR_OPTIONAL, "Testing INT argument") == XLAL_SUCCESS, XLAL_EFUNC );
  XLAL_CHECK ( XLALregBOOLUserStruct( argB2, 'b', UVAR_REQUIRED, "Testing short-option bool argument") == XLAL_SUCCESS, XLAL_EFUNC );
  XLAL_CHECK ( XLALregSTRINGUserStruct( string2, 0, UVAR_REQUIRED, "Testing another string argument") == XLAL_SUCCESS, XLAL_EFUNC );
  XLAL_CHECK ( XLALregEPOCHUserStruct( epochGPS, 0, UVAR_REQUIRED, "Testing epoch given as GPS time") == XLAL_SUCCESS, XLAL_EFUNC );
  XLAL_CHECK ( XLALregEPOCHUserStruct( epochMJDTT, 0, UVAR_REQUIRED, "Testing epoch given as MJD(TT) time") == XLAL_SUCCESS, XLAL_EFUNC );
  XLAL_CHECK ( XLALregRAJUserStruct( longHMS, 0, UVAR_REQUIRED, "Testing RAJ(HMS) argument") == XLAL_SUCCESS, XLAL_EFUNC );
  XLAL_CHECK ( XLALregRAJUserStruct( longRad, 0, UVAR_REQUIRED, "Testing RAJ(rad) argument") == XLAL_SUCCESS, XLAL_EFUNC );
  XLAL_CHECK ( XLALregDECJUserStruct( latDMS, 0, UVAR_REQUIRED, "Testing DECJ(DMS) argument") == XLAL_SUCCESS, XLAL_EFUNC );
  XLAL_CHECK ( XLALregDECJUserStruct( latRad, 0, UVAR_REQUIRED, "Testing DECJ(rad) argument") == XLAL_SUCCESS, XLAL_EFUNC );

  /* ---------- now read all input from commandline and config-file ---------- */
  XLAL_CHECK ( XLALUserVarReadAllInput ( my_argc, my_argv ) == XLAL_SUCCESS, XLAL_EFUNC );

  /* ---------- test help-string generation */
  CHAR *helpstr;
  XLAL_CHECK ( (helpstr = XLALUserVarHelpString ( argv[0])) != NULL, XLAL_EFUNC );
  XLALFree ( helpstr );

  /* ---------- test log-generation */
  CHAR *logstr;
  XLAL_CHECK ( ( logstr = XLALUserVarGetLog (   UVAR_LOGFMT_CFGFILE )) != NULL, XLAL_EFUNC );
  XLALFree ( logstr );

  /* ---------- test values were read in correctly ---------- */
  XLAL_CHECK ( uvar->argNum == 1, XLAL_EFAILED, "Failed to read in argNum\n" );
  XLAL_CHECK ( strcmp ( uvar->argStr, "xyz" ) == 0, XLAL_EFAILED, "Failed to read in argStr\n" );
  XLAL_CHECK ( uvar->argBool, XLAL_EFAILED, "Failed to read in argBool\n" );
  XLAL_CHECK ( uvar->argInt == 1, XLAL_EFAILED, "Failed to read in argInt\n" );
  XLAL_CHECK ( uvar->argB2, XLAL_EFAILED, "Failed to read in argB2\n" );
  XLAL_CHECK ( strcmp ( uvar->string2, "this is also possible, and # here does nothing; and neither does semi-colon " ) == 0, XLAL_EFAILED, "Failed to read in string2\n" );

  char buf1[256], buf2[256];
  XLAL_CHECK ( XLALGPSCmp ( &uvar->epochGPS, &uvar->epochMJDTT ) == 0, XLAL_EFAILED, "GPS epoch %s differs from MJD(TT) epoch %s\n",
               XLALGPSToStr ( buf1, &uvar->epochGPS), XLALGPSToStr ( buf2, &uvar->epochMJDTT ) );

  REAL8 diff, tol = 3e-15;
  XLAL_CHECK ( (diff = fabs(uvar->longHMS - uvar->longRad)) < tol, XLAL_EFAILED, "longitude(HMS) = %.16g differs from longitude(rad) = %.16g by %g > tolerance\n", uvar->longHMS, uvar->longRad, diff, tol );
  XLAL_CHECK ( (diff = fabs(uvar->latDMS - uvar->latRad)) < tol, XLAL_EFAILED, "latitude(HMS) = %.16g differs from latitude(rad) = %.16g by %g > tolerance\n", uvar->latDMS, uvar->latRad, diff, tol );

  /* ----- cleanup ---------- */
  XLALDestroyUserVars();
  for (i=0; i < my_argc; i ++ ) {
    XLALFree ( my_argv[i] );
  }
  XLALFree ( my_argv );

  LALCheckMemoryLeaks();

  return XLAL_SUCCESS;

} // main()