/* * Apply any intra-module relocations to the value. p is the load address * of the value and val/len is the value to be modified. This does NOT modify * the image in-place, because this is done by kern_linker later on. * * Returns EOPNOTSUPP if no relocation method is supplied. */ static int __elfN(reloc_ptr)(struct preloaded_file *mp, elf_file_t ef, Elf_Addr p, void *val, size_t len) { size_t n; Elf_Rela a; Elf_Rel r; int error; /* * The kernel is already relocated, but we still want to apply * offset adjustments. */ if (ef->kernel) return (EOPNOTSUPP); for (n = 0; n < ef->relsz / sizeof(r); n++) { COPYOUT(ef->rel + n, &r, sizeof(r)); error = __elfN(reloc)(ef, __elfN(symaddr), &r, ELF_RELOC_REL, ef->off, p, val, len); if (error != 0) return (error); } for (n = 0; n < ef->relasz / sizeof(a); n++) { COPYOUT(ef->rela + n, &a, sizeof(a)); error = __elfN(reloc)(ef, __elfN(symaddr), &a, ELF_RELOC_RELA, ef->off, p, val, len); if (error != 0) return (error); } return (0); }
/* * Apply any intra-module relocations to the value. p is the load address * of the value and val/len is the value to be modified. This does NOT modify * the image in-place, because this is done by kern_linker later on. */ static int __elfN(obj_reloc_ptr)(struct preloaded_file *mp, elf_file_t ef, Elf_Addr p, void *val, size_t len) { Elf_Ehdr *hdr; Elf_Shdr *shdr; Elf_Addr off = p; Elf_Addr base; Elf_Rela a, *abase; Elf_Rel r, *rbase; int error, i, j, nrel, nrela; hdr = &ef->hdr; shdr = ef->e_shdr; for (i = 0; i < hdr->e_shnum; i++) { if (shdr[i].sh_type != SHT_RELA && shdr[i].sh_type != SHT_REL) continue; base = shdr[shdr[i].sh_info].sh_addr; if (base == 0 || shdr[i].sh_addr == 0) continue; if (off < base || off + len > base + shdr[shdr[i].sh_info].sh_size) continue; switch (shdr[i].sh_type) { case SHT_RELA: abase = (Elf_Rela *)(intptr_t)shdr[i].sh_addr; nrela = shdr[i].sh_size / sizeof(Elf_Rela); for (j = 0; j < nrela; j++) { COPYOUT(abase + j, &a, sizeof(a)); error = __elfN(reloc)(ef, __elfN(obj_symaddr), &a, ELF_RELOC_RELA, base, off, val, len); if (error != 0) return (error); } break; case SHT_REL: rbase = (Elf_Rel *)(intptr_t)shdr[i].sh_addr; nrel = shdr[i].sh_size / sizeof(Elf_Rel); for (j = 0; j < nrel; j++) { COPYOUT(rbase + j, &r, sizeof(r)); error = __elfN(reloc)(ef, __elfN(obj_symaddr), &r, ELF_RELOC_REL, base, off, val, len); if (error != 0) return (error); } break; } } return (0); }
static int __elfN(arm_exec)(struct preloaded_file *fp) { struct file_metadata *fmp; vm_offset_t modulep, kernend; Elf_Ehdr *e; int error; void (*entry)(void *); if ((fmp = file_findmetadata(fp, MODINFOMD_ELFHDR)) == NULL) return (EFTYPE); e = (Elf_Ehdr *)&fmp->md_data; if ((error = bi_load(fp->f_args, &modulep, &kernend)) != 0) return (error); entry = efi_translate(e->e_entry); printf("Kernel entry at 0x%x...\n", (unsigned)entry); printf("Kernel args: %s\n", fp->f_args); printf("modulep: %#x\n", modulep); printf("relocation_offset %llx\n", __elfN(relocation_offset)); dev_cleanup(); (*entry)((void *)modulep); panic("exec returned"); }
static vm_offset_t md_copymodules(vm_offset_t addr) { struct preloaded_file *fp; struct file_metadata *md; int c; vm_offset_t a; c = addr != 0; /* start with the first module on the list, should be the kernel */ for (fp = file_findfile(NULL, NULL); fp != NULL; fp = fp->f_next) { MOD_NAME(addr, fp->f_name, c); /* this field must be first */ MOD_TYPE(addr, fp->f_type, c); if (fp->f_args) MOD_ARGS(addr, fp->f_args, c); a = fp->f_addr - __elfN(relocation_offset); MOD_ADDR(addr, a, c); MOD_SIZE(addr, fp->f_size, c); for (md = fp->f_metadata; md != NULL; md = md->md_next) { if (!(md->md_type & MODINFOMD_NOCOPY)) MOD_METADATA(addr, md, c); } } MOD_END(addr, c); return(addr); }
static int beri_elf64_loadfile(char *filename, uint64_t dest, struct preloaded_file **result) { /* * Some platforms require invalidation of instruction caches here; we * don't need that currently. */ return (__elfN(loadfile)(filename, dest, result)); }
static int __elfN(arm_load)(char *filename, u_int64_t dest, struct preloaded_file **result) { int r; r = __elfN(loadfile)(filename, dest, result); if (r != 0) return (r); return (0); }
int __elfN(lookup_symbol)(struct preloaded_file *fp, elf_file_t ef, const char* name, Elf_Sym *symp) { Elf_Hashelt symnum; Elf_Sym sym; char *strp; unsigned long hash; hash = elf_hash(name); COPYOUT(&ef->buckets[hash % ef->nbuckets], &symnum, sizeof(symnum)); while (symnum != STN_UNDEF) { if (symnum >= ef->nchains) { printf(__elfN(bad_symtable)); return ENOENT; } COPYOUT(ef->symtab + symnum, &sym, sizeof(sym)); if (sym.st_name == 0) { printf(__elfN(bad_symtable)); return ENOENT; } strp = strdupout((vm_offset_t)(ef->strtab + sym.st_name)); if (strcmp(name, strp) == 0) { free(strp); if (sym.st_shndx != SHN_UNDEF || (sym.st_value != 0 && ELF_ST_TYPE(sym.st_info) == STT_FUNC)) { *symp = sym; return 0; } return ENOENT; } free(strp); COPYOUT(&ef->chains[symnum], &symnum, sizeof(symnum)); } return ENOENT; }
static void linux_vdso_install(void *param) { linux_szsigcode = (&_binary_linux_locore_o_end - &_binary_linux_locore_o_start); if (linux_szsigcode > elf_linux_sysvec.sv_shared_page_len) panic("Linux invalid vdso size\n"); __elfN(linux_vdso_fixup)(&elf_linux_sysvec); linux_shared_page_obj = __elfN(linux_shared_page_init) (&linux_shared_page_mapping); __elfN(linux_vdso_reloc)(&elf_linux_sysvec, SHAREDPAGE); bcopy(elf_linux_sysvec.sv_sigcode, linux_shared_page_mapping, linux_szsigcode); elf_linux_sysvec.sv_shared_page_obj = linux_shared_page_obj; linux_kplatform = linux_shared_page_mapping + (linux_platform - (caddr_t)SHAREDPAGE); }
int ppc64_ofw_elf_loadfile(char *filename, u_int64_t dest, struct preloaded_file **result) { int r; r = __elfN(loadfile)(filename, dest, result); if (r != 0) return (r); /* * No need to sync the icache for modules: this will * be done by the kernel after relocation. */ if (!strcmp((*result)->f_type, "elf kernel")) __syncicache((void *) (*result)->f_addr, (*result)->f_size); return (0); }
int __elfN(uboot_load)(char *filename, u_int64_t dest, struct preloaded_file **result) { int r; r = __elfN(loadfile)(filename, dest, result); if (r != 0) return (r); #if defined(__powerpc__) /* * No need to sync the icache for modules: this will * be done by the kernel after relocation. */ if (!strcmp((*result)->f_type, "elf kernel")) __syncicache((void *) (*result)->f_addr, (*result)->f_size); #endif return (0); }
struct devsw *devsw[] = { #ifdef LOADER_DISK_SUPPORT &ofwdisk, #endif #ifdef LOADER_NET_SUPPORT &netdev, #endif #ifdef LOADER_ZFS_SUPPORT &zfs_dev, #endif 0 }; struct arch_switch archsw; static struct file_format sparc64_elf = { __elfN(loadfile), __elfN(exec) }; struct file_format *file_formats[] = { &sparc64_elf, 0 }; struct fs_ops *file_system[] = { #ifdef LOADER_UFS_SUPPORT &ufs_fsops, #endif #ifdef LOADER_CD9660_SUPPORT &cd9660_fsops, #endif #ifdef LOADER_ZFS_SUPPORT
/* * Attempt to load the file (file) as an ELF module. It will be stored at * (dest), and a pointer to a module structure describing the loaded object * will be saved in (result). */ int __elfN(obj_loadfile)(char *filename, u_int64_t dest, struct preloaded_file **result) { struct preloaded_file *fp, *kfp; struct elf_file ef; Elf_Ehdr *hdr; int err; ssize_t bytes_read; fp = NULL; bzero(&ef, sizeof(struct elf_file)); /* * Open the image, read and validate the ELF header */ if (filename == NULL) /* can't handle nameless */ return(EFTYPE); if ((ef.fd = open(filename, O_RDONLY)) == -1) return(errno); hdr = &ef.hdr; bytes_read = read(ef.fd, hdr, sizeof(*hdr)); if (bytes_read != sizeof(*hdr)) { err = EFTYPE; /* could be EIO, but may be small file */ goto oerr; } /* Is it ELF? */ if (!IS_ELF(*hdr)) { err = EFTYPE; goto oerr; } if (hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS || /* Layout ? */ hdr->e_ident[EI_DATA] != ELF_TARG_DATA || hdr->e_ident[EI_VERSION] != EV_CURRENT || /* Version ? */ hdr->e_version != EV_CURRENT || hdr->e_machine != ELF_TARG_MACH || /* Machine ? */ hdr->e_type != ET_REL) { err = EFTYPE; goto oerr; } if (hdr->e_shnum * hdr->e_shentsize == 0 || hdr->e_shoff == 0 || hdr->e_shentsize != sizeof(Elf_Shdr)) { err = EFTYPE; goto oerr; } kfp = file_findfile(NULL, NULL); if (kfp == NULL) { printf("elf" __XSTRING(__ELF_WORD_SIZE) "_obj_loadfile: can't load module before kernel\n"); err = EPERM; goto oerr; } if (strcmp(__elfN(obj_kerneltype), kfp->f_type)) { printf("elf" __XSTRING(__ELF_WORD_SIZE) "_obj_loadfile: can't load module with kernel type '%s'\n", kfp->f_type); err = EPERM; goto oerr; } if (archsw.arch_loadaddr != NULL) dest = archsw.arch_loadaddr(LOAD_ELF, hdr, dest); else dest = roundup(dest, PAGE_SIZE); /* * Ok, we think we should handle this. */ fp = file_alloc(); if (fp == NULL) { printf("elf" __XSTRING(__ELF_WORD_SIZE) "_obj_loadfile: cannot allocate module info\n"); err = EPERM; goto out; } fp->f_name = strdup(filename); fp->f_type = strdup(__elfN(obj_moduletype)); printf("%s ", filename); fp->f_size = __elfN(obj_loadimage)(fp, &ef, dest); if (fp->f_size == 0 || fp->f_addr == 0) goto ioerr; /* save exec header as metadata */ file_addmetadata(fp, MODINFOMD_ELFHDR, sizeof(*hdr), hdr); /* Load OK, return module pointer */ *result = (struct preloaded_file *)fp; err = 0; goto out; ioerr: err = EIO; oerr: file_discard(fp); out: close(ef.fd); if (ef.e_shdr != NULL) free(ef.e_shdr); return(err); }
/* * With the file (fd) open on the image, and (ehdr) containing * the Elf header, load the image at (off) */ static int __elfN(loadimage)(struct preloaded_file *fp, elf_file_t ef, u_int64_t off) { int i; u_int j; Elf_Ehdr *ehdr; Elf_Phdr *phdr, *php; Elf_Shdr *shdr; int ret; vm_offset_t firstaddr; vm_offset_t lastaddr; size_t chunk; ssize_t result; Elf_Addr ssym, esym; Elf_Dyn *dp; Elf_Addr adp; int ndp; int symstrindex; int symtabindex; Elf_Size size; u_int fpcopy; dp = NULL; shdr = NULL; ret = 0; firstaddr = lastaddr = 0; ehdr = ef->ehdr; if (ef->kernel) { #if defined(__i386__) || defined(__amd64__) #if __ELF_WORD_SIZE == 64 off = - (off & 0xffffffffff000000ull);/* x86_64 relocates after locore */ #else off = - (off & 0xff000000u); /* i386 relocates after locore */ #endif #elif defined(__powerpc__) /* * On the purely virtual memory machines like e500, the kernel is * linked against its final VA range, which is most often not * available at the loader stage, but only after kernel initializes * and completes its VM settings. In such cases we cannot use p_vaddr * field directly to load ELF segments, but put them at some * 'load-time' locations. */ if (off & 0xf0000000u) { off = -(off & 0xf0000000u); /* * XXX the physical load address should not be hardcoded. Note * that the Book-E kernel assumes that it's loaded at a 16MB * boundary for now... */ off += 0x01000000; ehdr->e_entry += off; #ifdef ELF_VERBOSE printf("Converted entry 0x%08x\n", ehdr->e_entry); #endif } else off = 0; #elif defined(__arm__) /* * The elf headers in some kernels specify virtual addresses in all * header fields. More recently, the e_entry and p_paddr fields are the * proper physical addresses. Even when the p_paddr fields are correct, * the MI code below uses the p_vaddr fields with an offset added for * loading (doing so is arguably wrong). To make loading work, we need * an offset that represents the difference between physical and virtual * addressing. ARM kernels are always linked at 0xCnnnnnnn. Depending * on the headers, the offset value passed in may be physical or virtual * (because it typically comes from e_entry), but we always replace * whatever is passed in with the va<->pa offset. On the other hand, we * always remove the high-order part of the entry address whether it's * physical or virtual, because it will be adjusted later for the actual * physical entry point based on where the image gets loaded. */ off = -0xc0000000; ehdr->e_entry &= ~0xf0000000; #ifdef ELF_VERBOSE printf("ehdr->e_entry 0x%08x, va<->pa off %llx\n", ehdr->e_entry, off); #endif #else off = 0; /* other archs use direct mapped kernels */ #endif __elfN(relocation_offset) = off; } ef->off = off; if ((ehdr->e_phoff + ehdr->e_phnum * sizeof(*phdr)) > ef->firstlen) { printf("elf" __XSTRING(__ELF_WORD_SIZE) "_loadimage: program header not within first page\n"); goto out; } phdr = (Elf_Phdr *)(ef->firstpage + ehdr->e_phoff); for (i = 0; i < ehdr->e_phnum; i++) { /* We want to load PT_LOAD segments only.. */ if (phdr[i].p_type != PT_LOAD) continue; #ifdef ELF_VERBOSE printf("Segment: 0x%lx@0x%lx -> 0x%lx-0x%lx", (long)phdr[i].p_filesz, (long)phdr[i].p_offset, (long)(phdr[i].p_vaddr + off), (long)(phdr[i].p_vaddr + off + phdr[i].p_memsz - 1)); #else if ((phdr[i].p_flags & PF_W) == 0) { printf("text=0x%lx ", (long)phdr[i].p_filesz); } else { printf("data=0x%lx", (long)phdr[i].p_filesz); if (phdr[i].p_filesz < phdr[i].p_memsz) printf("+0x%lx", (long)(phdr[i].p_memsz -phdr[i].p_filesz)); printf(" "); } #endif fpcopy = 0; if (ef->firstlen > phdr[i].p_offset) { fpcopy = ef->firstlen - phdr[i].p_offset; archsw.arch_copyin(ef->firstpage + phdr[i].p_offset, phdr[i].p_vaddr + off, fpcopy); } if (phdr[i].p_filesz > fpcopy) { if (kern_pread(ef->fd, phdr[i].p_vaddr + off + fpcopy, phdr[i].p_filesz - fpcopy, phdr[i].p_offset + fpcopy) != 0) { printf("\nelf" __XSTRING(__ELF_WORD_SIZE) "_loadimage: read failed\n"); goto out; } } /* clear space from oversized segments; eg: bss */ if (phdr[i].p_filesz < phdr[i].p_memsz) { #ifdef ELF_VERBOSE printf(" (bss: 0x%lx-0x%lx)", (long)(phdr[i].p_vaddr + off + phdr[i].p_filesz), (long)(phdr[i].p_vaddr + off + phdr[i].p_memsz - 1)); #endif kern_bzero(phdr[i].p_vaddr + off + phdr[i].p_filesz, phdr[i].p_memsz - phdr[i].p_filesz); } #ifdef ELF_VERBOSE printf("\n"); #endif if (archsw.arch_loadseg != NULL) archsw.arch_loadseg(ehdr, phdr + i, off); if (firstaddr == 0 || firstaddr > (phdr[i].p_vaddr + off)) firstaddr = phdr[i].p_vaddr + off; if (lastaddr == 0 || lastaddr < (phdr[i].p_vaddr + off + phdr[i].p_memsz)) lastaddr = phdr[i].p_vaddr + off + phdr[i].p_memsz; } lastaddr = roundup(lastaddr, sizeof(long)); /* * Now grab the symbol tables. This isn't easy if we're reading a * .gz file. I think the rule is going to have to be that you must * strip a file to remove symbols before gzipping it so that we do not * try to lseek() on it. */ chunk = ehdr->e_shnum * ehdr->e_shentsize; if (chunk == 0 || ehdr->e_shoff == 0) goto nosyms; shdr = alloc_pread(ef->fd, ehdr->e_shoff, chunk); if (shdr == NULL) { printf("\nelf" __XSTRING(__ELF_WORD_SIZE) "_loadimage: failed to read section headers"); goto nosyms; } file_addmetadata(fp, MODINFOMD_SHDR, chunk, shdr); symtabindex = -1; symstrindex = -1; for (i = 0; i < ehdr->e_shnum; i++) { if (shdr[i].sh_type != SHT_SYMTAB) continue; for (j = 0; j < ehdr->e_phnum; j++) { if (phdr[j].p_type != PT_LOAD) continue; if (shdr[i].sh_offset >= phdr[j].p_offset && (shdr[i].sh_offset + shdr[i].sh_size <= phdr[j].p_offset + phdr[j].p_filesz)) { shdr[i].sh_offset = 0; shdr[i].sh_size = 0; break; } } if (shdr[i].sh_offset == 0 || shdr[i].sh_size == 0) continue; /* alread loaded in a PT_LOAD above */ /* Save it for loading below */ symtabindex = i; symstrindex = shdr[i].sh_link; } if (symtabindex < 0 || symstrindex < 0) goto nosyms; /* Ok, committed to a load. */ #ifndef ELF_VERBOSE printf("syms=["); #endif ssym = lastaddr; for (i = symtabindex; i >= 0; i = symstrindex) { #ifdef ELF_VERBOSE char *secname; switch(shdr[i].sh_type) { case SHT_SYMTAB: /* Symbol table */ secname = "symtab"; break; case SHT_STRTAB: /* String table */ secname = "strtab"; break; default: secname = "WHOA!!"; break; } #endif size = shdr[i].sh_size; archsw.arch_copyin(&size, lastaddr, sizeof(size)); lastaddr += sizeof(size); #ifdef ELF_VERBOSE printf("\n%s: 0x%jx@0x%jx -> 0x%jx-0x%jx", secname, (uintmax_t)shdr[i].sh_size, (uintmax_t)shdr[i].sh_offset, (uintmax_t)lastaddr, (uintmax_t)(lastaddr + shdr[i].sh_size)); #else if (i == symstrindex) printf("+"); printf("0x%lx+0x%lx", (long)sizeof(size), (long)size); #endif if (lseek(ef->fd, (off_t)shdr[i].sh_offset, SEEK_SET) == -1) { printf("\nelf" __XSTRING(__ELF_WORD_SIZE) "_loadimage: could not seek for symbols - skipped!"); lastaddr = ssym; ssym = 0; goto nosyms; } result = archsw.arch_readin(ef->fd, lastaddr, shdr[i].sh_size); if (result < 0 || (size_t)result != shdr[i].sh_size) { printf("\nelf" __XSTRING(__ELF_WORD_SIZE) "_loadimage: could not read symbols - skipped! (%ju != %ju)", (uintmax_t)result, (uintmax_t)shdr[i].sh_size); lastaddr = ssym; ssym = 0; goto nosyms; } /* Reset offsets relative to ssym */ lastaddr += shdr[i].sh_size; lastaddr = roundup(lastaddr, sizeof(size)); if (i == symtabindex) symtabindex = -1; else if (i == symstrindex) symstrindex = -1; } esym = lastaddr; #ifndef ELF_VERBOSE printf("]"); #endif file_addmetadata(fp, MODINFOMD_SSYM, sizeof(ssym), &ssym); file_addmetadata(fp, MODINFOMD_ESYM, sizeof(esym), &esym); nosyms: printf("\n"); ret = lastaddr - firstaddr; fp->f_addr = firstaddr; php = NULL; for (i = 0; i < ehdr->e_phnum; i++) { if (phdr[i].p_type == PT_DYNAMIC) { php = phdr + i; adp = php->p_vaddr; file_addmetadata(fp, MODINFOMD_DYNAMIC, sizeof(adp), &adp); break; } } if (php == NULL) /* this is bad, we cannot get to symbols or _DYNAMIC */ goto out; ndp = php->p_filesz / sizeof(Elf_Dyn); if (ndp == 0) goto out; dp = malloc(php->p_filesz); if (dp == NULL) goto out; archsw.arch_copyout(php->p_vaddr + off, dp, php->p_filesz); ef->strsz = 0; for (i = 0; i < ndp; i++) { if (dp[i].d_tag == 0) break; switch (dp[i].d_tag) { case DT_HASH: ef->hashtab = (Elf_Hashelt*)(uintptr_t)(dp[i].d_un.d_ptr + off); break; case DT_STRTAB: ef->strtab = (char *)(uintptr_t)(dp[i].d_un.d_ptr + off); break; case DT_STRSZ: ef->strsz = dp[i].d_un.d_val; break; case DT_SYMTAB: ef->symtab = (Elf_Sym*)(uintptr_t)(dp[i].d_un.d_ptr + off); break; case DT_REL: ef->rel = (Elf_Rel *)(uintptr_t)(dp[i].d_un.d_ptr + off); break; case DT_RELSZ: ef->relsz = dp[i].d_un.d_val; break; case DT_RELA: ef->rela = (Elf_Rela *)(uintptr_t)(dp[i].d_un.d_ptr + off); break; case DT_RELASZ: ef->relasz = dp[i].d_un.d_val; break; default: break; } } if (ef->hashtab == NULL || ef->symtab == NULL || ef->strtab == NULL || ef->strsz == 0) goto out; COPYOUT(ef->hashtab, &ef->nbuckets, sizeof(ef->nbuckets)); COPYOUT(ef->hashtab + 1, &ef->nchains, sizeof(ef->nchains)); ef->buckets = ef->hashtab + 2; ef->chains = ef->buckets + ef->nbuckets; if (__elfN(parse_modmetadata)(fp, ef) == 0) goto out; if (ef->kernel) /* kernel must not depend on anything */ goto out; out: if (dp) free(dp); if (shdr) free(shdr); return ret; }
int __elfN(obj_parse_modmetadata)(struct preloaded_file *fp, elf_file_t ef) { struct mod_metadata md; #if defined(__i386__) && __ELF_WORD_SIZE == 64 struct mod_metadata64 md64; #endif struct mod_depend *mdepend; struct mod_version mver; char *s; int error, modcnt, minfolen; Elf_Addr v, p, p_stop; if (__elfN(obj_lookup_set)(fp, ef, "modmetadata_set", &p, &p_stop, &modcnt) != 0) return 0; modcnt = 0; while (p < p_stop) { COPYOUT(p, &v, sizeof(v)); error = __elfN(obj_reloc_ptr)(fp, ef, p, &v, sizeof(v)); if (error != 0) return (error); #if defined(__i386__) && __ELF_WORD_SIZE == 64 COPYOUT(v, &md64, sizeof(md64)); error = __elfN(obj_reloc_ptr)(fp, ef, v, &md64, sizeof(md64)); if (error != 0) return (error); md.md_version = md64.md_version; md.md_type = md64.md_type; md.md_cval = (const char *)(uintptr_t)md64.md_cval; md.md_data = (void *)(uintptr_t)md64.md_data; #else COPYOUT(v, &md, sizeof(md)); error = __elfN(obj_reloc_ptr)(fp, ef, v, &md, sizeof(md)); if (error != 0) return (error); #endif p += sizeof(Elf_Addr); switch(md.md_type) { case MDT_DEPEND: s = strdupout((vm_offset_t)md.md_cval); minfolen = sizeof(*mdepend) + strlen(s) + 1; mdepend = malloc(minfolen); if (mdepend == NULL) return ENOMEM; COPYOUT((vm_offset_t)md.md_data, mdepend, sizeof(*mdepend)); strcpy((char*)(mdepend + 1), s); free(s); file_addmetadata(fp, MODINFOMD_DEPLIST, minfolen, mdepend); free(mdepend); break; case MDT_VERSION: s = strdupout((vm_offset_t)md.md_cval); COPYOUT((vm_offset_t)md.md_data, &mver, sizeof(mver)); file_addmodule(fp, s, mver.mv_version, NULL); free(s); modcnt++; break; case MDT_MODULE: break; default: printf("unknown type %d\n", md.md_type); break; } } return 0; }
/* * Attempt to load the file (file) as an ELF module. It will be stored at * (dest), and a pointer to a module structure describing the loaded object * will be saved in (result). */ int __elfN(loadfile)(char *filename, u_int64_t dest, struct preloaded_file **result) { struct preloaded_file *fp, *kfp; struct elf_file ef; Elf_Ehdr *ehdr; int err; ssize_t bytes_read; fp = NULL; bzero(&ef, sizeof(struct elf_file)); /* * Open the image, read and validate the ELF header */ if (filename == NULL) /* can't handle nameless */ return(EFTYPE); if ((ef.fd = open(filename, O_RDONLY)) == -1) return(errno); ef.firstpage = malloc(PAGE_SIZE); if (ef.firstpage == NULL) { close(ef.fd); return(ENOMEM); } bytes_read = read(ef.fd, ef.firstpage, PAGE_SIZE); ef.firstlen = (size_t)bytes_read; if (bytes_read < 0 || ef.firstlen <= sizeof(Elf_Ehdr)) { err = EFTYPE; /* could be EIO, but may be small file */ goto oerr; } ehdr = ef.ehdr = (Elf_Ehdr *)ef.firstpage; /* Is it ELF? */ if (!IS_ELF(*ehdr)) { err = EFTYPE; goto oerr; } if (ehdr->e_ident[EI_CLASS] != ELF_TARG_CLASS || /* Layout ? */ ehdr->e_ident[EI_DATA] != ELF_TARG_DATA || ehdr->e_ident[EI_VERSION] != EV_CURRENT || /* Version ? */ ehdr->e_version != EV_CURRENT || ehdr->e_machine != ELF_TARG_MACH) { /* Machine ? */ err = EFTYPE; goto oerr; } /* * Check to see what sort of module we are. */ kfp = file_findfile(NULL, NULL); if (ehdr->e_type == ET_DYN) { /* Looks like a kld module */ if (kfp == NULL) { printf("elf" __XSTRING(__ELF_WORD_SIZE) "_loadfile: can't load module before kernel\n"); err = EPERM; goto oerr; } if (strcmp(__elfN(kerneltype), kfp->f_type)) { printf("elf" __XSTRING(__ELF_WORD_SIZE) "_loadfile: can't load module with kernel type '%s'\n", kfp->f_type); err = EPERM; goto oerr; } /* Looks OK, got ahead */ ef.kernel = 0; } else if (ehdr->e_type == ET_EXEC) { /* Looks like a kernel */ if (kfp != NULL) { printf("elf" __XSTRING(__ELF_WORD_SIZE) "_loadfile: kernel already loaded\n"); err = EPERM; goto oerr; } /* * Calculate destination address based on kernel entrypoint */ dest = (ehdr->e_entry & ~PAGE_MASK); if (dest == 0) { printf("elf" __XSTRING(__ELF_WORD_SIZE) "_loadfile: not a kernel (maybe static binary?)\n"); err = EPERM; goto oerr; } ef.kernel = 1; } else { err = EFTYPE; goto oerr; } if (archsw.arch_loadaddr != NULL) dest = archsw.arch_loadaddr(LOAD_ELF, ehdr, dest); else dest = roundup(dest, PAGE_SIZE); /* * Ok, we think we should handle this. */ fp = file_alloc(); if (fp == NULL) { printf("elf" __XSTRING(__ELF_WORD_SIZE) "_loadfile: cannot allocate module info\n"); err = EPERM; goto out; } if (ef.kernel) setenv("kernelname", filename, 1); fp->f_name = strdup(filename); fp->f_type = strdup(ef.kernel ? __elfN(kerneltype) : __elfN(moduletype)); #ifdef ELF_VERBOSE if (ef.kernel) printf("%s entry at 0x%jx\n", filename, (uintmax_t)ehdr->e_entry); #else printf("%s ", filename); #endif fp->f_size = __elfN(loadimage)(fp, &ef, dest); if (fp->f_size == 0 || fp->f_addr == 0) goto ioerr; /* save exec header as metadata */ file_addmetadata(fp, MODINFOMD_ELFHDR, sizeof(*ehdr), ehdr); /* Load OK, return module pointer */ *result = (struct preloaded_file *)fp; err = 0; goto out; ioerr: err = EIO; oerr: file_discard(fp); out: if (ef.firstpage) free(ef.firstpage); close(ef.fd); return(err); }
int __elfN(load_modmetadata)(struct preloaded_file *fp, u_int64_t dest) { struct elf_file ef; int err, i, j; Elf_Shdr *sh_meta, *shdr = NULL; Elf_Shdr *sh_data[2]; char *shstrtab = NULL; size_t size; Elf_Addr p_start, p_end; bzero(&ef, sizeof(struct elf_file)); ef.fd = -1; err = __elfN(load_elf_header)(fp->f_name, &ef); if (err != 0) goto out; if (ef.kernel == 1 || ef.ehdr->e_type == ET_EXEC) { ef.kernel = 1; } else if (ef.ehdr->e_type != ET_DYN) { err = EFTYPE; goto out; } size = ef.ehdr->e_shnum * ef.ehdr->e_shentsize; shdr = alloc_pread(ef.fd, ef.ehdr->e_shoff, size); if (shdr == NULL) { err = ENOMEM; goto out; } /* Load shstrtab. */ shstrtab = alloc_pread(ef.fd, shdr[ef.ehdr->e_shstrndx].sh_offset, shdr[ef.ehdr->e_shstrndx].sh_size); if (shstrtab == NULL) { printf("\nelf" __XSTRING(__ELF_WORD_SIZE) "load_modmetadata: unable to load shstrtab\n"); err = EFTYPE; goto out; } /* Find set_modmetadata_set and data sections. */ sh_data[0] = sh_data[1] = sh_meta = NULL; for (i = 0, j = 0; i < ef.ehdr->e_shnum; i++) { if (strcmp(&shstrtab[shdr[i].sh_name], "set_modmetadata_set") == 0) { sh_meta = &shdr[i]; } if ((strcmp(&shstrtab[shdr[i].sh_name], ".data") == 0) || (strcmp(&shstrtab[shdr[i].sh_name], ".rodata") == 0)) { sh_data[j++] = &shdr[i]; } } if (sh_meta == NULL || sh_data[0] == NULL || sh_data[1] == NULL) { printf("\nelf" __XSTRING(__ELF_WORD_SIZE) "load_modmetadata: unable to find set_modmetadata_set or data sections\n"); err = EFTYPE; goto out; } /* Load set_modmetadata_set into memory */ err = kern_pread(ef.fd, dest, sh_meta->sh_size, sh_meta->sh_offset); if (err != 0) { printf("\nelf" __XSTRING(__ELF_WORD_SIZE) "load_modmetadata: unable to load set_modmetadata_set: %d\n", err); goto out; } p_start = dest; p_end = dest + sh_meta->sh_size; dest += sh_meta->sh_size; /* Load data sections into memory. */ err = kern_pread(ef.fd, dest, sh_data[0]->sh_size, sh_data[0]->sh_offset); if (err != 0) { printf("\nelf" __XSTRING(__ELF_WORD_SIZE) "load_modmetadata: unable to load data: %d\n", err); goto out; } /* * We have to increment the dest, so that the offset is the same into * both the .rodata and .data sections. */ ef.off = -(sh_data[0]->sh_addr - dest); dest += (sh_data[1]->sh_addr - sh_data[0]->sh_addr); err = kern_pread(ef.fd, dest, sh_data[1]->sh_size, sh_data[1]->sh_offset); if (err != 0) { printf("\nelf" __XSTRING(__ELF_WORD_SIZE) "load_modmetadata: unable to load data: %d\n", err); goto out; } err = __elfN(parse_modmetadata)(fp, &ef, p_start, p_end); if (err != 0) { printf("\nelf" __XSTRING(__ELF_WORD_SIZE) "load_modmetadata: unable to parse metadata: %d\n", err); goto out; } out: if (shstrtab != NULL) free(shstrtab); if (shdr != NULL) free(shdr); if (ef.firstpage != NULL) free(ef.firstpage); if (ef.fd != -1) close(ef.fd); return (err); }
/* * With the file (fd) open on the image, and (ehdr) containing * the Elf header, load the image at (off) */ static int __elfN(obj_loadimage)(struct preloaded_file *fp, elf_file_t ef, u_int64_t off) { Elf_Ehdr *hdr; Elf_Shdr *shdr, *cshdr, *lshdr; vm_offset_t firstaddr, lastaddr; int i, nsym, res, ret, shdrbytes, symstrindex; ret = 0; firstaddr = lastaddr = (vm_offset_t)off; hdr = &ef->hdr; ef->off = (vm_offset_t)off; /* Read in the section headers. */ shdrbytes = hdr->e_shnum * hdr->e_shentsize; shdr = alloc_pread(ef->fd, (off_t)hdr->e_shoff, shdrbytes); if (shdr == NULL) { printf("\nelf" __XSTRING(__ELF_WORD_SIZE) "_obj_loadimage: read section headers failed\n"); goto out; } ef->e_shdr = shdr; /* * Decide where to load everything, but don't read it yet. * We store the load address as a non-zero sh_addr value. * Start with the code/data and bss. */ for (i = 0; i < hdr->e_shnum; i++) shdr[i].sh_addr = 0; for (i = 0; i < hdr->e_shnum; i++) { if (shdr[i].sh_size == 0) continue; switch (shdr[i].sh_type) { case SHT_PROGBITS: case SHT_NOBITS: lastaddr = roundup(lastaddr, shdr[i].sh_addralign); shdr[i].sh_addr = (Elf_Addr)lastaddr; lastaddr += shdr[i].sh_size; break; } } /* Symbols. */ nsym = 0; for (i = 0; i < hdr->e_shnum; i++) { switch (shdr[i].sh_type) { case SHT_SYMTAB: nsym++; ef->symtabindex = i; shdr[i].sh_addr = (Elf_Addr)lastaddr; lastaddr += shdr[i].sh_size; break; } } if (nsym != 1) { printf("\nelf" __XSTRING(__ELF_WORD_SIZE) "_obj_loadimage: file has no valid symbol table\n"); goto out; } lastaddr = roundup(lastaddr, shdr[ef->symtabindex].sh_addralign); shdr[ef->symtabindex].sh_addr = (Elf_Addr)lastaddr; lastaddr += shdr[ef->symtabindex].sh_size; symstrindex = shdr[ef->symtabindex].sh_link; if (symstrindex < 0 || symstrindex >= hdr->e_shnum || shdr[symstrindex].sh_type != SHT_STRTAB) { printf("\nelf" __XSTRING(__ELF_WORD_SIZE) "_obj_loadimage: file has invalid symbol strings\n"); goto out; } lastaddr = roundup(lastaddr, shdr[symstrindex].sh_addralign); shdr[symstrindex].sh_addr = (Elf_Addr)lastaddr; lastaddr += shdr[symstrindex].sh_size; /* Section names. */ if (hdr->e_shstrndx == 0 || hdr->e_shstrndx >= hdr->e_shnum || shdr[hdr->e_shstrndx].sh_type != SHT_STRTAB) { printf("\nelf" __XSTRING(__ELF_WORD_SIZE) "_obj_loadimage: file has no section names\n"); goto out; } ef->shstrindex = hdr->e_shstrndx; lastaddr = roundup(lastaddr, shdr[ef->shstrindex].sh_addralign); shdr[ef->shstrindex].sh_addr = (Elf_Addr)lastaddr; lastaddr += shdr[ef->shstrindex].sh_size; /* Relocation tables. */ for (i = 0; i < hdr->e_shnum; i++) { switch (shdr[i].sh_type) { case SHT_REL: case SHT_RELA: lastaddr = roundup(lastaddr, shdr[i].sh_addralign); shdr[i].sh_addr = (Elf_Addr)lastaddr; lastaddr += shdr[i].sh_size; break; } } /* Clear the whole area, including bss regions. */ kern_bzero(firstaddr, lastaddr - firstaddr); /* Figure section with the lowest file offset we haven't loaded yet. */ for (cshdr = NULL; /* none */; /* none */) { /* * Find next section to load. The complexity of this loop is * O(n^2), but with the number of sections being typically * small, we do not care. */ lshdr = cshdr; for (i = 0; i < hdr->e_shnum; i++) { if (shdr[i].sh_addr == 0 || shdr[i].sh_type == SHT_NOBITS) continue; /* Skip sections that were loaded already. */ if (lshdr != NULL && lshdr->sh_offset >= shdr[i].sh_offset) continue; /* Find section with smallest offset. */ if (cshdr == lshdr || cshdr->sh_offset > shdr[i].sh_offset) cshdr = &shdr[i]; } if (cshdr == lshdr) break; if (kern_pread(ef->fd, (vm_offset_t)cshdr->sh_addr, cshdr->sh_size, (off_t)cshdr->sh_offset) != 0) { printf("\nelf" __XSTRING(__ELF_WORD_SIZE) "_obj_loadimage: read failed\n"); goto out; } } file_addmetadata(fp, MODINFOMD_SHDR, shdrbytes, shdr); res = __elfN(obj_parse_modmetadata)(fp, ef); if (res != 0) goto out; ret = lastaddr - firstaddr; fp->f_addr = firstaddr; printf("size 0x%lx at 0x%lx", (u_long)ret, (u_long)firstaddr); out: printf("\n"); return ret; }
/* * Attempt to load the file (file) as an ELF module. It will be stored at * (dest), and a pointer to a module structure describing the loaded object * will be saved in (result). */ int __elfN(loadfile)(char *filename, u_int64_t dest, struct preloaded_file **result) { return (__elfN(loadfile_raw)(filename, dest, result, 0)); }
static vm_offset_t fdt_find_static_dtb() { Elf_Ehdr *ehdr; Elf_Shdr *shdr; Elf_Sym sym; vm_offset_t strtab, symtab, fdt_start; uint64_t offs; struct preloaded_file *kfp; struct file_metadata *md; char *strp; int i, sym_count; debugf("fdt_find_static_dtb()\n"); sym_count = symtab = strtab = 0; strp = NULL; offs = __elfN(relocation_offset); kfp = file_findfile(NULL, NULL); if (kfp == NULL) return (0); /* Locate the dynamic symbols and strtab. */ md = file_findmetadata(kfp, MODINFOMD_ELFHDR); if (md == NULL) return (0); ehdr = (Elf_Ehdr *)md->md_data; md = file_findmetadata(kfp, MODINFOMD_SHDR); if (md == NULL) return (0); shdr = (Elf_Shdr *)md->md_data; for (i = 0; i < ehdr->e_shnum; ++i) { if (shdr[i].sh_type == SHT_DYNSYM && symtab == 0) { symtab = shdr[i].sh_addr + offs; sym_count = shdr[i].sh_size / sizeof(Elf_Sym); } else if (shdr[i].sh_type == SHT_STRTAB && strtab == 0) { strtab = shdr[i].sh_addr + offs; } } /* * The most efficent way to find a symbol would be to calculate a * hash, find proper bucket and chain, and thus find a symbol. * However, that would involve code duplication (e.g. for hash * function). So we're using simpler and a bit slower way: we're * iterating through symbols, searching for the one which name is * 'equal' to 'fdt_static_dtb'. To speed up the process a little bit, * we are eliminating symbols type of which is not STT_NOTYPE, or(and) * those which binding attribute is not STB_GLOBAL. */ fdt_start = 0; while (sym_count > 0 && fdt_start == 0) { COPYOUT(symtab, &sym, sizeof(sym)); symtab += sizeof(sym); --sym_count; if (ELF_ST_BIND(sym.st_info) != STB_GLOBAL || ELF_ST_TYPE(sym.st_info) != STT_NOTYPE) continue; strp = strdupout(strtab + sym.st_name); if (strcmp(strp, FDT_STATIC_DTB_SYMBOL) == 0) fdt_start = (vm_offset_t)sym.st_value + offs; free(strp); } return (fdt_start); }
int __elfN(loadfile_raw)(char *filename, u_int64_t dest, struct preloaded_file **result, int multiboot) { struct preloaded_file *fp, *kfp; struct elf_file ef; Elf_Ehdr *ehdr; int err; fp = NULL; bzero(&ef, sizeof(struct elf_file)); ef.fd = -1; err = __elfN(load_elf_header)(filename, &ef); if (err != 0) return (err); ehdr = ef.ehdr; /* * Check to see what sort of module we are. */ kfp = file_findfile(NULL, __elfN(kerneltype)); #ifdef __powerpc__ /* * Kernels can be ET_DYN, so just assume the first loaded object is the * kernel. This assumption will be checked later. */ if (kfp == NULL) ef.kernel = 1; #endif if (ef.kernel || ehdr->e_type == ET_EXEC) { /* Looks like a kernel */ if (kfp != NULL) { printf("elf" __XSTRING(__ELF_WORD_SIZE) "_loadfile: kernel already loaded\n"); err = EPERM; goto oerr; } /* * Calculate destination address based on kernel entrypoint. * * For ARM, the destination address is independent of any values in the * elf header (an ARM kernel can be loaded at any 2MB boundary), so we * leave dest set to the value calculated by archsw.arch_loadaddr() and * passed in to this function. */ #ifndef __arm__ if (ehdr->e_type == ET_EXEC) dest = (ehdr->e_entry & ~PAGE_MASK); #endif if ((ehdr->e_entry & ~PAGE_MASK) == 0) { printf("elf" __XSTRING(__ELF_WORD_SIZE) "_loadfile: not a kernel (maybe static binary?)\n"); err = EPERM; goto oerr; } ef.kernel = 1; } else if (ehdr->e_type == ET_DYN) { /* Looks like a kld module */ if (multiboot != 0) { printf("elf" __XSTRING(__ELF_WORD_SIZE) "_loadfile: can't load module as multiboot\n"); err = EPERM; goto oerr; } if (kfp == NULL) { printf("elf" __XSTRING(__ELF_WORD_SIZE) "_loadfile: can't load module before kernel\n"); err = EPERM; goto oerr; } if (strcmp(__elfN(kerneltype), kfp->f_type)) { printf("elf" __XSTRING(__ELF_WORD_SIZE) "_loadfile: can't load module with kernel type '%s'\n", kfp->f_type); err = EPERM; goto oerr; } /* Looks OK, got ahead */ ef.kernel = 0; } else { err = EFTYPE; goto oerr; } if (archsw.arch_loadaddr != NULL) dest = archsw.arch_loadaddr(LOAD_ELF, ehdr, dest); else dest = roundup(dest, PAGE_SIZE); /* * Ok, we think we should handle this. */ fp = file_alloc(); if (fp == NULL) { printf("elf" __XSTRING(__ELF_WORD_SIZE) "_loadfile: cannot allocate module info\n"); err = EPERM; goto out; } if (ef.kernel == 1 && multiboot == 0) setenv("kernelname", filename, 1); fp->f_name = strdup(filename); if (multiboot == 0) fp->f_type = strdup(ef.kernel ? __elfN(kerneltype) : __elfN(moduletype)); else fp->f_type = strdup("elf multiboot kernel"); #ifdef ELF_VERBOSE if (ef.kernel) printf("%s entry at 0x%jx\n", filename, (uintmax_t)ehdr->e_entry); #else printf("%s ", filename); #endif fp->f_size = __elfN(loadimage)(fp, &ef, dest); if (fp->f_size == 0 || fp->f_addr == 0) goto ioerr; /* save exec header as metadata */ file_addmetadata(fp, MODINFOMD_ELFHDR, sizeof(*ehdr), ehdr); /* Load OK, return module pointer */ *result = (struct preloaded_file *)fp; err = 0; goto out; ioerr: err = EIO; oerr: file_discard(fp); out: if (ef.firstpage) free(ef.firstpage); if (ef.fd != -1) close(ef.fd); return(err); }
static vm_offset_t fdt_find_static_dtb(void) { Elf_Sym sym; vm_offset_t dyntab, esym; uint64_t offs; struct preloaded_file *kfp; struct file_metadata *md; Elf_Sym *symtab; Elf_Dyn *dyn; char *strtab, *strp; int i, sym_count; symtab = NULL; dyntab = esym = 0; strtab = strp = NULL; offs = __elfN(relocation_offset); kfp = file_findfile(NULL, NULL); if (kfp == NULL) return (0); md = file_findmetadata(kfp, MODINFOMD_ESYM); if (md == NULL) return (0); COPYOUT(md->md_data, &esym, sizeof(esym)); md = file_findmetadata(kfp, MODINFOMD_DYNAMIC); if (md == NULL) return (0); COPYOUT(md->md_data, &dyntab, sizeof(dyntab)); dyntab += offs; /* Locate STRTAB and DYNTAB */ for (dyn = (Elf_Dyn *)dyntab; dyn->d_tag != DT_NULL; dyn++) { if (dyn->d_tag == DT_STRTAB) { strtab = (char *)(uintptr_t)(dyn->d_un.d_ptr + offs); continue; } else if (dyn->d_tag == DT_SYMTAB) { symtab = (Elf_Sym *)(uintptr_t) (dyn->d_un.d_ptr + offs); continue; } } if (symtab == NULL || strtab == NULL) { /* * No symtab? No strtab? That should not happen here, * and should have been verified during __elfN(loadimage). * This must be some kind of a bug. */ return (0); } sym_count = (int)((Elf_Sym *)esym - symtab) / sizeof(Elf_Sym); /* * The most efficent way to find a symbol would be to calculate a * hash, find proper bucket and chain, and thus find a symbol. * However, that would involve code duplication (e.g. for hash * function). So we're using simpler and a bit slower way: we're * iterating through symbols, searching for the one which name is * 'equal' to 'fdt_static_dtb'. To speed up the process a little bit, * we are eliminating symbols type of which is not STT_NOTYPE, or(and) * those which binding attribute is not STB_GLOBAL. */ for (i = 0; i < sym_count; i++) { COPYOUT(symtab + i, &sym, sizeof(sym)); if (ELF_ST_BIND(sym.st_info) != STB_GLOBAL || ELF_ST_TYPE(sym.st_info) != STT_NOTYPE) continue; strp = strdupout((vm_offset_t)(strtab + sym.st_name)); if (strcmp(strp, FDT_STATIC_DTB_SYMBOL) == 0) { /* Found a match ! */ free(strp); return ((vm_offset_t)(sym.st_value + offs)); } free(strp); } return (0); }
struct file_metadata *fmp; vm_offset_t mdp; Elf_Ehdr *e; int error; intptr_t entry; if ((fmp = file_findmetadata(fp, MODINFOMD_ELFHDR)) == NULL) { return(EFTYPE); } e = (Elf_Ehdr *)&fmp->md_data; entry = e->e_entry; if ((error = md_load(fp->f_args, &mdp)) != 0) return (error); printf("Kernel entry at 0x%lx ...\n", e->e_entry); dev_cleanup(); ofw_release_heap(); OF_chain((void *)reloc, end - (char *)reloc, (void *)entry, (void *)mdp, sizeof(mdp)); panic("exec returned"); } struct file_format ofw_elf = { __elfN(ofw_loadfile), __elfN(ofw_exec) };
Elf_Brandnote *checknote, int32_t *osrel); static vm_prot_t __elfN(trans_prot)(Elf_Word); static Elf_Word __elfN(untrans_prot)(vm_prot_t); SYSCTL_NODE(_kern, OID_AUTO, __CONCAT(elf, __ELF_WORD_SIZE), CTLFLAG_RW, 0, ""); #ifdef COMPRESS_USER_CORES static int compress_core(gzFile, char *, char *, unsigned int, struct thread * td); #define CORE_BUF_SIZE (16 * 1024) #endif int __elfN(fallback_brand) = -1; SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, fallback_brand, CTLFLAG_RW, &__elfN(fallback_brand), 0, __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) " brand of last resort"); TUNABLE_INT("kern.elf" __XSTRING(__ELF_WORD_SIZE) ".fallback_brand", &__elfN(fallback_brand)); static int elf_legacy_coredump = 0; SYSCTL_INT(_debug, OID_AUTO, __elfN(legacy_coredump), CTLFLAG_RW, &elf_legacy_coredump, 0, ""); int __elfN(nxstack) = #if defined(__amd64__) || defined(__powerpc64__) /* both 64 and 32 bit */ 1; #else 0; #endif SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO,
int __elfN(parse_modmetadata)(struct preloaded_file *fp, elf_file_t ef, Elf_Addr p_start, Elf_Addr p_end) { struct mod_metadata md; #if (defined(__i386__) || defined(__powerpc__)) && __ELF_WORD_SIZE == 64 struct mod_metadata64 md64; #elif defined(__amd64__) && __ELF_WORD_SIZE == 32 struct mod_metadata32 md32; #endif struct mod_depend *mdepend; struct mod_version mver; char *s; int error, modcnt, minfolen; Elf_Addr v, p; modcnt = 0; p = p_start; while (p < p_end) { COPYOUT(p, &v, sizeof(v)); error = __elfN(reloc_ptr)(fp, ef, p, &v, sizeof(v)); if (error == EOPNOTSUPP) v += ef->off; else if (error != 0) return (error); #if (defined(__i386__) || defined(__powerpc__)) && __ELF_WORD_SIZE == 64 COPYOUT(v, &md64, sizeof(md64)); error = __elfN(reloc_ptr)(fp, ef, v, &md64, sizeof(md64)); if (error == EOPNOTSUPP) { md64.md_cval += ef->off; md64.md_data += ef->off; } else if (error != 0) return (error); md.md_version = md64.md_version; md.md_type = md64.md_type; md.md_cval = (const char *)(uintptr_t)md64.md_cval; md.md_data = (void *)(uintptr_t)md64.md_data; #elif defined(__amd64__) && __ELF_WORD_SIZE == 32 COPYOUT(v, &md32, sizeof(md32)); error = __elfN(reloc_ptr)(fp, ef, v, &md32, sizeof(md32)); if (error == EOPNOTSUPP) { md32.md_cval += ef->off; md32.md_data += ef->off; } else if (error != 0) return (error); md.md_version = md32.md_version; md.md_type = md32.md_type; md.md_cval = (const char *)(uintptr_t)md32.md_cval; md.md_data = (void *)(uintptr_t)md32.md_data; #else COPYOUT(v, &md, sizeof(md)); error = __elfN(reloc_ptr)(fp, ef, v, &md, sizeof(md)); if (error == EOPNOTSUPP) { md.md_cval += ef->off; md.md_data = (void *)((uintptr_t)md.md_data + (uintptr_t)ef->off); } else if (error != 0) return (error); #endif p += sizeof(Elf_Addr); switch(md.md_type) { case MDT_DEPEND: if (ef->kernel) /* kernel must not depend on anything */ break; s = strdupout((vm_offset_t)md.md_cval); minfolen = sizeof(*mdepend) + strlen(s) + 1; mdepend = malloc(minfolen); if (mdepend == NULL) return ENOMEM; COPYOUT((vm_offset_t)md.md_data, mdepend, sizeof(*mdepend)); strcpy((char*)(mdepend + 1), s); free(s); file_addmetadata(fp, MODINFOMD_DEPLIST, minfolen, mdepend); free(mdepend); break; case MDT_VERSION: s = strdupout((vm_offset_t)md.md_cval); COPYOUT((vm_offset_t)md.md_data, &mver, sizeof(mver)); file_addmodule(fp, s, mver.mv_version, NULL); free(s); modcnt++; break; } } if (modcnt == 0) { s = fake_modname(fp->f_name); file_addmodule(fp, s, 1, NULL); free(s); } return 0; }
} int __elfN(uboot_exec)(struct preloaded_file *fp) { struct file_metadata *fmp; vm_offset_t mdp; Elf_Ehdr *e; int error; if ((fmp = file_findmetadata(fp, MODINFOMD_ELFHDR)) == NULL) return (EFTYPE); e = (Elf_Ehdr *)&fmp->md_data; if ((error = md_load(fp->f_args, &mdp)) != 0) return (error); printf("Kernel entry at 0x%x ...\n", e->e_entry); dev_cleanup(); (*(void (*)())e->e_entry)((void *)mdp); panic("exec returned"); } struct file_format uboot_elf = { __elfN(uboot_load), __elfN(uboot_exec) };
static void linux_vdso_deinstall(void *param) { __elfN(linux_shared_page_fini)(linux_shared_page_obj); };
int read_header_elf( const char *exec_hdr, /* executable header */ vir_bytes *text_addr, /* text virtual address */ vir_bytes *text_filebytes, /* text segment size (in the file) */ vir_bytes *text_membytes, /* text segment size (in memory) */ vir_bytes *data_addr, /* data virtual address */ vir_bytes *data_filebytes, /* data segment size (in the file) */ vir_bytes *data_membytes, /* data segment size (in memory) */ phys_bytes *tot_bytes, /* total size */ vir_bytes *pc, /* program entry point (initial PC) */ off_t *text_offset, /* file offset to text segment */ off_t *data_offset /* file offset to data segment */ ) { const Elf_Ehdr *hdr = NULL; const Elf_Phdr *phdr = NULL; unsigned long seg_filebytes, seg_membytes, seg_addr; int i = 0; assert(exec_hdr != NULL); *text_addr = *text_filebytes = *text_membytes = 0; *data_addr = *data_filebytes = *data_membytes = 0; *tot_bytes = *pc = *text_offset = *data_offset = 0; hdr = (const Elf_Ehdr *)exec_hdr; if (__elfN(check_header)(hdr) != OK || (hdr->e_type != ET_EXEC)) { return ENOEXEC; } if ((hdr->e_phoff > PAGE_SIZE) || (hdr->e_phoff + hdr->e_phentsize * hdr->e_phnum) > PAGE_SIZE) { return ENOEXEC; } phdr = (const Elf_Phdr *)(exec_hdr + hdr->e_phoff); if (!aligned(phdr, Elf_Addr)) { return ENOEXEC; } #if ELF_DEBUG printf("Program header file offset (phoff): %d\n", hdr->e_phoff); printf("Section header file offset (shoff): %d\n", hdr->e_shoff); printf("Program header entry size (phentsize): %d\n", hdr->e_phentsize); printf("Program header entry num (phnum): %d\n", hdr->e_phnum); printf("Section header entry size (shentsize): %d\n", hdr->e_shentsize); printf("Section header entry num (shnum): %d\n", hdr->e_shnum); printf("Section name strings index (shstrndx): %d\n", hdr->e_shstrndx); printf("Entry Point: 0x%x\n", hdr->e_entry); #endif for (i = 0; i < hdr->e_phnum; i++) { switch (phdr[i].p_type) { case PT_LOAD: if (phdr[i].p_memsz == 0) break; seg_addr = phdr[i].p_vaddr; seg_filebytes = phdr[i].p_filesz; seg_membytes = round_page(phdr[i].p_memsz + phdr[i].p_vaddr - trunc_page(phdr[i].p_vaddr)); if (hdr->e_entry >= phdr[i].p_vaddr && hdr->e_entry < (phdr[i].p_vaddr + phdr[i].p_memsz)) { *text_addr = seg_addr; *text_filebytes = seg_filebytes; *text_membytes = seg_membytes; *pc = (vir_bytes)hdr->e_entry; *text_offset = phdr[i].p_offset; } else { *data_addr = seg_addr; *data_filebytes = seg_filebytes; *data_membytes = seg_membytes; *data_offset = phdr[i].p_offset; } break; default: break; } } *tot_bytes = 0; /* Use default stack size */ #if ELF_DEBUG printf("Text addr: 0x%x\n", *text_addr); printf("Text filebytes: 0x%x\n", *text_filebytes); printf("Text membytes: 0x%x\n", *text_membytes); printf("Data addr: 0x%x\n", *data_addr); printf("Data filebyte: 0x%x\n", *data_filebytes); printf("Data membytes: 0x%x\n", *data_membytes); printf("Tot bytes: 0x%x\n", *tot_bytes); printf("PC: 0x%x\n", *pc); printf("Text offset: 0x%x\n", *text_offset); printf("Data offset: 0x%x\n", *data_offset); #endif return OK; }
/* * With the file (fd) open on the image, and (ehdr) containing * the Elf header, load the image at (off) */ static int __elfN(loadimage)(struct preloaded_file *fp, elf_file_t ef, u_int64_t off) { int i; u_int j; Elf_Ehdr *ehdr; Elf_Phdr *phdr, *php; Elf_Shdr *shdr; char *shstr; int ret; vm_offset_t firstaddr; vm_offset_t lastaddr; size_t chunk; ssize_t result; Elf_Addr ssym, esym; Elf_Dyn *dp; Elf_Addr adp; Elf_Addr ctors; int ndp; int symstrindex; int symtabindex; Elf_Size size; u_int fpcopy; Elf_Sym sym; Elf_Addr p_start, p_end; dp = NULL; shdr = NULL; ret = 0; firstaddr = lastaddr = 0; ehdr = ef->ehdr; if (ehdr->e_type == ET_EXEC) { #if defined(__i386__) || defined(__amd64__) #if __ELF_WORD_SIZE == 64 off = - (off & 0xffffffffff000000ull);/* x86_64 relocates after locore */ #else off = - (off & 0xff000000u); /* i386 relocates after locore */ #endif #elif defined(__powerpc__) /* * On the purely virtual memory machines like e500, the kernel is * linked against its final VA range, which is most often not * available at the loader stage, but only after kernel initializes * and completes its VM settings. In such cases we cannot use p_vaddr * field directly to load ELF segments, but put them at some * 'load-time' locations. */ if (off & 0xf0000000u) { off = -(off & 0xf0000000u); /* * XXX the physical load address should not be hardcoded. Note * that the Book-E kernel assumes that it's loaded at a 16MB * boundary for now... */ off += 0x01000000; ehdr->e_entry += off; #ifdef ELF_VERBOSE printf("Converted entry 0x%08x\n", ehdr->e_entry); #endif } else off = 0; #elif defined(__arm__) && !defined(EFI) /* * The elf headers in arm kernels specify virtual addresses in all * header fields, even the ones that should be physical addresses. * We assume the entry point is in the first page, and masking the page * offset will leave us with the virtual address the kernel was linked * at. We subtract that from the load offset, making 'off' into the * value which, when added to a virtual address in an elf header, * translates it to a physical address. We do the va->pa conversion on * the entry point address in the header now, so that later we can * launch the kernel by just jumping to that address. * * When booting from UEFI the copyin and copyout functions handle * adjusting the location relative to the first virtual address. * Because of this there is no need to adjust the offset or entry * point address as these will both be handled by the efi code. */ off -= ehdr->e_entry & ~PAGE_MASK; ehdr->e_entry += off; #ifdef ELF_VERBOSE printf("ehdr->e_entry 0x%08x, va<->pa off %llx\n", ehdr->e_entry, off); #endif #else off = 0; /* other archs use direct mapped kernels */ #endif } ef->off = off; if (ehdr->e_ident[EI_OSABI] == ELFOSABI_SOLARIS) { /* use entry address from header */ fp->f_addr = ehdr->e_entry; } if (ef->kernel) __elfN(relocation_offset) = off; if ((ehdr->e_phoff + ehdr->e_phnum * sizeof(*phdr)) > ef->firstlen) { printf("elf" __XSTRING(__ELF_WORD_SIZE) "_loadimage: program header not within first page\n"); goto out; } phdr = (Elf_Phdr *)(ef->firstpage + ehdr->e_phoff); for (i = 0; i < ehdr->e_phnum; i++) { /* We want to load PT_LOAD segments only.. */ if (phdr[i].p_type != PT_LOAD) continue; #ifdef ELF_VERBOSE if (ehdr->e_ident[EI_OSABI] == ELFOSABI_SOLARIS) { printf("Segment: 0x%lx@0x%lx -> 0x%lx-0x%lx", (long)phdr[i].p_filesz, (long)phdr[i].p_offset, (long)(phdr[i].p_paddr + off), (long)(phdr[i].p_paddr + off + phdr[i].p_memsz - 1)); } else { printf("Segment: 0x%lx@0x%lx -> 0x%lx-0x%lx", (long)phdr[i].p_filesz, (long)phdr[i].p_offset, (long)(phdr[i].p_vaddr + off), (long)(phdr[i].p_vaddr + off + phdr[i].p_memsz - 1)); } #else if ((phdr[i].p_flags & PF_W) == 0) { printf("text=0x%lx ", (long)phdr[i].p_filesz); } else { printf("data=0x%lx", (long)phdr[i].p_filesz); if (phdr[i].p_filesz < phdr[i].p_memsz) printf("+0x%lx", (long)(phdr[i].p_memsz -phdr[i].p_filesz)); printf(" "); } #endif fpcopy = 0; if (ef->firstlen > phdr[i].p_offset) { fpcopy = ef->firstlen - phdr[i].p_offset; if (ehdr->e_ident[EI_OSABI] == ELFOSABI_SOLARIS) { archsw.arch_copyin(ef->firstpage + phdr[i].p_offset, phdr[i].p_paddr + off, fpcopy); } else { archsw.arch_copyin(ef->firstpage + phdr[i].p_offset, phdr[i].p_vaddr + off, fpcopy); } } if (phdr[i].p_filesz > fpcopy) { if (ehdr->e_ident[EI_OSABI] == ELFOSABI_SOLARIS) { if (kern_pread(ef->fd, phdr[i].p_paddr + off + fpcopy, phdr[i].p_filesz - fpcopy, phdr[i].p_offset + fpcopy) != 0) { printf("\nelf" __XSTRING(__ELF_WORD_SIZE) "_loadimage: read failed\n"); goto out; } } else { if (kern_pread(ef->fd, phdr[i].p_vaddr + off + fpcopy, phdr[i].p_filesz - fpcopy, phdr[i].p_offset + fpcopy) != 0) { printf("\nelf" __XSTRING(__ELF_WORD_SIZE) "_loadimage: read failed\n"); goto out; } } } /* clear space from oversized segments; eg: bss */ if (phdr[i].p_filesz < phdr[i].p_memsz) { #ifdef ELF_VERBOSE if (ehdr->e_ident[EI_OSABI] == ELFOSABI_SOLARIS) { printf(" (bss: 0x%lx-0x%lx)", (long)(phdr[i].p_paddr + off + phdr[i].p_filesz), (long)(phdr[i].p_paddr + off + phdr[i].p_memsz - 1)); } else { printf(" (bss: 0x%lx-0x%lx)", (long)(phdr[i].p_vaddr + off + phdr[i].p_filesz), (long)(phdr[i].p_vaddr + off + phdr[i].p_memsz - 1)); } #endif if (ehdr->e_ident[EI_OSABI] == ELFOSABI_SOLARIS) { kern_bzero(phdr[i].p_paddr + off + phdr[i].p_filesz, phdr[i].p_memsz - phdr[i].p_filesz); } else { kern_bzero(phdr[i].p_vaddr + off + phdr[i].p_filesz, phdr[i].p_memsz - phdr[i].p_filesz); } } #ifdef ELF_VERBOSE printf("\n"); #endif if (archsw.arch_loadseg != NULL) archsw.arch_loadseg(ehdr, phdr + i, off); if (ehdr->e_ident[EI_OSABI] == ELFOSABI_SOLARIS) { if (firstaddr == 0 || firstaddr > (phdr[i].p_paddr + off)) firstaddr = phdr[i].p_paddr + off; if (lastaddr == 0 || lastaddr < (phdr[i].p_paddr + off + phdr[i].p_memsz)) lastaddr = phdr[i].p_paddr + off + phdr[i].p_memsz; } else { if (firstaddr == 0 || firstaddr > (phdr[i].p_vaddr + off)) firstaddr = phdr[i].p_vaddr + off; if (lastaddr == 0 || lastaddr < (phdr[i].p_vaddr + off + phdr[i].p_memsz)) lastaddr = phdr[i].p_vaddr + off + phdr[i].p_memsz; } } lastaddr = roundup(lastaddr, sizeof(long)); /* * Get the section headers. We need this for finding the .ctors * section as well as for loading any symbols. Both may be hard * to do if reading from a .gz file as it involves seeking. I * think the rule is going to have to be that you must strip a * file to remove symbols before gzipping it. */ chunk = ehdr->e_shnum * ehdr->e_shentsize; if (chunk == 0 || ehdr->e_shoff == 0) goto nosyms; shdr = alloc_pread(ef->fd, ehdr->e_shoff, chunk); if (shdr == NULL) { printf("\nelf" __XSTRING(__ELF_WORD_SIZE) "_loadimage: failed to read section headers"); goto nosyms; } file_addmetadata(fp, MODINFOMD_SHDR, chunk, shdr); /* * Read the section string table and look for the .ctors section. * We need to tell the kernel where it is so that it can call the * ctors. */ chunk = shdr[ehdr->e_shstrndx].sh_size; if (chunk) { shstr = alloc_pread(ef->fd, shdr[ehdr->e_shstrndx].sh_offset, chunk); if (shstr) { for (i = 0; i < ehdr->e_shnum; i++) { if (strcmp(shstr + shdr[i].sh_name, ".ctors") != 0) continue; ctors = shdr[i].sh_addr; file_addmetadata(fp, MODINFOMD_CTORS_ADDR, sizeof(ctors), &ctors); size = shdr[i].sh_size; file_addmetadata(fp, MODINFOMD_CTORS_SIZE, sizeof(size), &size); break; } free(shstr); } } /* * Now load any symbols. */ symtabindex = -1; symstrindex = -1; for (i = 0; i < ehdr->e_shnum; i++) { if (shdr[i].sh_type != SHT_SYMTAB) continue; for (j = 0; j < ehdr->e_phnum; j++) { if (phdr[j].p_type != PT_LOAD) continue; if (shdr[i].sh_offset >= phdr[j].p_offset && (shdr[i].sh_offset + shdr[i].sh_size <= phdr[j].p_offset + phdr[j].p_filesz)) { shdr[i].sh_offset = 0; shdr[i].sh_size = 0; break; } } if (shdr[i].sh_offset == 0 || shdr[i].sh_size == 0) continue; /* alread loaded in a PT_LOAD above */ /* Save it for loading below */ symtabindex = i; symstrindex = shdr[i].sh_link; } if (symtabindex < 0 || symstrindex < 0) goto nosyms; /* Ok, committed to a load. */ #ifndef ELF_VERBOSE printf("syms=["); #endif ssym = lastaddr; for (i = symtabindex; i >= 0; i = symstrindex) { #ifdef ELF_VERBOSE char *secname; switch(shdr[i].sh_type) { case SHT_SYMTAB: /* Symbol table */ secname = "symtab"; break; case SHT_STRTAB: /* String table */ secname = "strtab"; break; default: secname = "WHOA!!"; break; } #endif size = shdr[i].sh_size; archsw.arch_copyin(&size, lastaddr, sizeof(size)); lastaddr += sizeof(size); #ifdef ELF_VERBOSE printf("\n%s: 0x%jx@0x%jx -> 0x%jx-0x%jx", secname, (uintmax_t)shdr[i].sh_size, (uintmax_t)shdr[i].sh_offset, (uintmax_t)lastaddr, (uintmax_t)(lastaddr + shdr[i].sh_size)); #else if (i == symstrindex) printf("+"); printf("0x%lx+0x%lx", (long)sizeof(size), (long)size); #endif if (lseek(ef->fd, (off_t)shdr[i].sh_offset, SEEK_SET) == -1) { printf("\nelf" __XSTRING(__ELF_WORD_SIZE) "_loadimage: could not seek for symbols - skipped!"); lastaddr = ssym; ssym = 0; goto nosyms; } result = archsw.arch_readin(ef->fd, lastaddr, shdr[i].sh_size); if (result < 0 || (size_t)result != shdr[i].sh_size) { printf("\nelf" __XSTRING(__ELF_WORD_SIZE) "_loadimage: could not read symbols - skipped! (%ju != %ju)", (uintmax_t)result, (uintmax_t)shdr[i].sh_size); lastaddr = ssym; ssym = 0; goto nosyms; } /* Reset offsets relative to ssym */ lastaddr += shdr[i].sh_size; lastaddr = roundup(lastaddr, sizeof(size)); if (i == symtabindex) symtabindex = -1; else if (i == symstrindex) symstrindex = -1; } esym = lastaddr; #ifndef ELF_VERBOSE printf("]"); #endif file_addmetadata(fp, MODINFOMD_SSYM, sizeof(ssym), &ssym); file_addmetadata(fp, MODINFOMD_ESYM, sizeof(esym), &esym); nosyms: printf("\n"); ret = lastaddr - firstaddr; if (ehdr->e_ident[EI_OSABI] != ELFOSABI_SOLARIS) fp->f_addr = firstaddr; php = NULL; for (i = 0; i < ehdr->e_phnum; i++) { if (phdr[i].p_type == PT_DYNAMIC) { php = phdr + i; adp = php->p_vaddr; file_addmetadata(fp, MODINFOMD_DYNAMIC, sizeof(adp), &adp); break; } } if (php == NULL) /* this is bad, we cannot get to symbols or _DYNAMIC */ goto out; ndp = php->p_filesz / sizeof(Elf_Dyn); if (ndp == 0) goto out; dp = malloc(php->p_filesz); if (dp == NULL) goto out; if (ehdr->e_ident[EI_OSABI] == ELFOSABI_SOLARIS) archsw.arch_copyout(php->p_paddr + off, dp, php->p_filesz); else archsw.arch_copyout(php->p_vaddr + off, dp, php->p_filesz); ef->strsz = 0; for (i = 0; i < ndp; i++) { if (dp[i].d_tag == 0) break; switch (dp[i].d_tag) { case DT_HASH: ef->hashtab = (Elf_Hashelt*)(uintptr_t)(dp[i].d_un.d_ptr + off); break; case DT_STRTAB: ef->strtab = (char *)(uintptr_t)(dp[i].d_un.d_ptr + off); break; case DT_STRSZ: ef->strsz = dp[i].d_un.d_val; break; case DT_SYMTAB: ef->symtab = (Elf_Sym*)(uintptr_t)(dp[i].d_un.d_ptr + off); break; case DT_REL: ef->rel = (Elf_Rel *)(uintptr_t)(dp[i].d_un.d_ptr + off); break; case DT_RELSZ: ef->relsz = dp[i].d_un.d_val; break; case DT_RELA: ef->rela = (Elf_Rela *)(uintptr_t)(dp[i].d_un.d_ptr + off); break; case DT_RELASZ: ef->relasz = dp[i].d_un.d_val; break; default: break; } } if (ef->hashtab == NULL || ef->symtab == NULL || ef->strtab == NULL || ef->strsz == 0) goto out; COPYOUT(ef->hashtab, &ef->nbuckets, sizeof(ef->nbuckets)); COPYOUT(ef->hashtab + 1, &ef->nchains, sizeof(ef->nchains)); ef->buckets = ef->hashtab + 2; ef->chains = ef->buckets + ef->nbuckets; if (__elfN(lookup_symbol)(fp, ef, "__start_set_modmetadata_set", &sym) != 0) return 0; p_start = sym.st_value + ef->off; if (__elfN(lookup_symbol)(fp, ef, "__stop_set_modmetadata_set", &sym) != 0) return ENOENT; p_end = sym.st_value + ef->off; if (__elfN(parse_modmetadata)(fp, ef, p_start, p_end) == 0) goto out; if (ef->kernel) /* kernel must not depend on anything */ goto out; out: if (dp) free(dp); if (shdr) free(shdr); return ret; }
#include <vm/vm_param.h> #include <machine/acle-compat.h> #include <machine/elf.h> #include <machine/md_var.h> static boolean_t elf32_arm_abi_supported(struct image_params *); struct sysentvec elf32_freebsd_sysvec = { .sv_size = SYS_MAXSYSCALL, .sv_table = sysent, .sv_mask = 0, .sv_errsize = 0, .sv_errtbl = NULL, .sv_transtrap = NULL, .sv_fixup = __elfN(freebsd_fixup), .sv_sendsig = sendsig, .sv_sigcode = sigcode, .sv_szsigcode = &szsigcode, .sv_name = "FreeBSD ELF32", .sv_coredump = __elfN(coredump), .sv_imgact_try = NULL, .sv_minsigstksz = MINSIGSTKSZ, .sv_pagesize = PAGE_SIZE, .sv_minuser = VM_MIN_ADDRESS, .sv_maxuser = VM_MAXUSER_ADDRESS, .sv_usrstack = USRSTACK, .sv_psstrings = PS_STRINGS, .sv_stackprot = VM_PROT_ALL, .sv_copyout_strings = exec_copyout_strings, .sv_setregs = exec_setregs,
u_long); extern const char *cheriabi_syscallnames[]; struct sysentvec elf_freebsd_cheriabi_sysvec = { .sv_size = CHERIABI_SYS_MAXSYSCALL, .sv_table = cheriabi_sysent, .sv_mask = 0, .sv_errsize = 0, .sv_errtbl = NULL, .sv_fixup = cheriabi_elf_fixup, .sv_sendsig = cheriabi_sendsig, .sv_sigcode = cheri_sigcode, .sv_szsigcode = &szcheri_sigcode, .sv_name = "FreeBSD-CHERI ELF64", .sv_coredump = __elfN(coredump), .sv_imgact_try = NULL, .sv_minsigstksz = MINSIGSTKSZ, /* XXXBD: or something bigger? */ .sv_pagesize = PAGE_SIZE, .sv_minuser = VM_MIN_ADDRESS, .sv_maxuser = VM_MAXUSER_ADDRESS, .sv_usrstack = USRSTACK, .sv_psstrings = CHERIABI_PS_STRINGS, .sv_stackprot = VM_PROT_ALL, .sv_copyout_strings = cheriabi_copyout_strings, .sv_setregs = cheriabi_exec_setregs, .sv_fixlimit = NULL, .sv_maxssiz = NULL, .sv_flags = SV_ABI_FREEBSD | SV_LP64 | SV_CHERI, .sv_set_syscall_retval = cheriabi_set_syscall_retval, .sv_fetch_syscall_args = cheriabi_fetch_syscall_args,