Ejemplo n.º 1
0
/* wrapper powl */
long double
__powl (long double x, long double y)
{
  long double z = __ieee754_powl (x, y);
  if (__builtin_expect (!__finitel (z), 0))
    {
      if (_LIB_VERSION != _IEEE_)
	{
	  if (__isnanl (x))
	    {
	      if (y == 0.0L)
		/* pow(NaN,0.0) */
		return __kernel_standard_l (x, y, 242);
	    }
	  else if (__finitel (x) && __finitel (y))
	    {
	      if (__isnanl (z))
		/* pow neg**non-int */
		return __kernel_standard_l (x, y, 224);
	      else if (x == 0.0L && y < 0.0L)
		{
		  if (signbit (x) && signbit (z))
		    /* pow(-0.0,negative) */
		    return __kernel_standard_l (x, y, 223);
		  else
		    /* pow(+0.0,negative) */
		    return __kernel_standard_l (x, y, 243);
		}
	      else
		/* pow overflow */
		return __kernel_standard_l (x, y, 221);
	    }
	}
    }
  else if (__builtin_expect (z == 0.0L, 0) && __finitel (x) && __finitel (y)
	   && _LIB_VERSION != _IEEE_)
    {
      if (x == 0.0L)
	{
	  if (y == 0.0L)
	    /* pow(0.0,0.0) */
	    return __kernel_standard_l (x, y, 220);
	}
      else
	/* pow underflow */
	return __kernel_standard_l (x, y, 222);
    }

  return z;
}
Ejemplo n.º 2
0
/* wrapper powl */
long double
__powl (long double x, long double y)
{
  long double z = __ieee754_powl (x, y);
  if (__glibc_unlikely (!isfinite (z)))
    {
      if (_LIB_VERSION != _IEEE_)
	{
	  if (isfinite (x) && isfinite (y))
	    {
	      if (isnan (z))
		/* pow neg**non-int */
		return __kernel_standard_l (x, y, 224);
	      else if (x == 0.0L && y < 0.0L)
		{
		  if (signbit (x) && signbit (z))
		    /* pow(-0.0,negative) */
		    return __kernel_standard_l (x, y, 223);
		  else
		    /* pow(+0.0,negative) */
		    return __kernel_standard_l (x, y, 243);
		}
	      else
		/* pow overflow */
		return __kernel_standard_l (x, y, 221);
	    }
	}
    }
  else if (__builtin_expect (z == 0.0L, 0)
	   && isfinite (x) && x != 0 && isfinite (y)
	   && _LIB_VERSION != _IEEE_)
    /* pow underflow */
    return __kernel_standard_l (x, y, 222);

  return z;
}
Ejemplo n.º 3
0
static long double
gammal_positive (long double x, int *exp2_adj)
{
  int local_signgam;
  if (x < 0.5L)
    {
      *exp2_adj = 0;
      return __ieee754_expl (__ieee754_lgammal_r (x + 1, &local_signgam)) / x;
    }
  else if (x <= 1.5L)
    {
      *exp2_adj = 0;
      return __ieee754_expl (__ieee754_lgammal_r (x, &local_signgam));
    }
  else if (x < 12.5L)
    {
      /* Adjust into the range for using exp (lgamma).  */
      *exp2_adj = 0;
      long double n = __ceill (x - 1.5L);
      long double x_adj = x - n;
      long double eps;
      long double prod = __gamma_productl (x_adj, 0, n, &eps);
      return (__ieee754_expl (__ieee754_lgammal_r (x_adj, &local_signgam))
	      * prod * (1.0L + eps));
    }
  else
    {
      long double eps = 0;
      long double x_eps = 0;
      long double x_adj = x;
      long double prod = 1;
      if (x < 24.0L)
	{
	  /* Adjust into the range for applying Stirling's
	     approximation.  */
	  long double n = __ceill (24.0L - x);
	  x_adj = x + n;
	  x_eps = (x - (x_adj - n));
	  prod = __gamma_productl (x_adj - n, x_eps, n, &eps);
	}
      /* The result is now gamma (X_ADJ + X_EPS) / (PROD * (1 + EPS)).
	 Compute gamma (X_ADJ + X_EPS) using Stirling's approximation,
	 starting by computing pow (X_ADJ, X_ADJ) with a power of 2
	 factored out.  */
      long double exp_adj = -eps;
      long double x_adj_int = __roundl (x_adj);
      long double x_adj_frac = x_adj - x_adj_int;
      int x_adj_log2;
      long double x_adj_mant = __frexpl (x_adj, &x_adj_log2);
      if (x_adj_mant < M_SQRT1_2l)
	{
	  x_adj_log2--;
	  x_adj_mant *= 2.0L;
	}
      *exp2_adj = x_adj_log2 * (int) x_adj_int;
      long double ret = (__ieee754_powl (x_adj_mant, x_adj)
			 * __ieee754_exp2l (x_adj_log2 * x_adj_frac)
			 * __ieee754_expl (-x_adj)
			 * __ieee754_sqrtl (2 * M_PIl / x_adj)
			 / prod);
      exp_adj += x_eps * __ieee754_logl (x_adj);
      long double bsum = gamma_coeff[NCOEFF - 1];
      long double x_adj2 = x_adj * x_adj;
      for (size_t i = 1; i <= NCOEFF - 1; i++)
	bsum = bsum / x_adj2 + gamma_coeff[NCOEFF - 1 - i];
      exp_adj += bsum / x_adj;
      return ret + ret * __expm1l (exp_adj);
    }
}