Ejemplo n.º 1
0
/* Invert *X and store in *Y.  Relative error bound:
   - For P = 2: 1.001 * R ^ (1 - P)
   - For P = 3: 1.063 * R ^ (1 - P)
   - For P > 3: 2.001 * R ^ (1 - P)

   *X = 0 is not permissible.  */
static void
SECTION
__inv (const mp_no *x, mp_no *y, int p)
{
  long i;
  double t;
  mp_no z, w;
  static const int np1[] =
    { 0, 0, 0, 0, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3,
    4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
  };

  __cpy (x, &z, p);
  z.e = 0;
  __mp_dbl (&z, &t, p);
  t = 1 / t;
  __dbl_mp (t, y, p);
  EY -= EX;

  for (i = 0; i < np1[p]; i++)
    {
      __cpy (y, &w, p);
      __mul (x, &w, y, p);
      __sub (&__mptwo, y, &z, p);
      __mul (&w, &z, y, p);
    }
}
Ejemplo n.º 2
0
static void
SECTION
cc32(mp_no *x, mp_no *y, int p) {
  int i;
  double a;
#if 0
  double b;
  static const mp_no mpone = {1,{1.0,1.0}};
#endif
  mp_no mpt1,x2,gor,sum ,mpk={1,{1.0}};
#if 0
  mp_no mpt2;
#endif
  for (i=1;i<=p;i++) mpk.d[i]=0;

  __mul(x,x,&x2,p);
  mpk.d[1]=27.0;
  __mul(&oofac27,&mpk,&gor,p);
  __cpy(&gor,&sum,p);
  for (a=26.0;a>2.0;a-=2.0) {
    mpk.d[1]=a*(a-1.0);
    __mul(&gor,&mpk,&mpt1,p);
    __cpy(&mpt1,&gor,p);
    __mul(&x2,&sum,&mpt1,p);
    __sub(&gor,&mpt1,&sum,p);
  }
  __mul(&x2,&sum,y,p);
}
Ejemplo n.º 3
0
void
SECTION
__mpsqrt (mp_no *x, mp_no *y, int p)
{
  int i, m, ey;
  double dx, dy;
  static const mp_no mphalf = {0, {1.0, HALFRAD}};
  static const mp_no mp3halfs = {1, {1.0, 1.0, HALFRAD}};
  mp_no mpxn, mpz, mpu, mpt1, mpt2;

  ey = EX / 2;
  __cpy (x, &mpxn, p);
  mpxn.e -= (ey + ey);
  __mp_dbl (&mpxn, &dx, p);
  dy = fastiroot (dx);
  __dbl_mp (dy, &mpu, p);
  __mul (&mpxn, &mphalf, &mpz, p);

  m = __mpsqrt_mp[p];
  for (i = 0; i < m; i++)
    {
      __sqr (&mpu, &mpt1, p);
      __mul (&mpt1, &mpz, &mpt2, p);
      __sub (&mp3halfs, &mpt2, &mpt1, p);
      __mul (&mpu, &mpt1, &mpt2, p);
      __cpy (&mpt2, &mpu, p);
    }
  __mul (&mpxn, &mpu, y, p);
  EY += ey;
}
void __inv(const mp_no *x, mp_no *y, int p) {
  int i;
#if 0
  int l;
#endif
  double t;
  mp_no z,w;
  static const int np1[] = {0,0,0,0,1,2,2,2,2,3,3,3,3,3,3,3,3,3,
                            4,4,4,4,4,4,4,4,4,4,4,4,4,4,4};
  const mp_no mptwo = {1,{1.0,2.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
                         0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
                         0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
                         0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0}};

  __cpy(x,&z,p);  z.e=0;  __mp_dbl(&z,&t,p);
  t=ONE/t;   __dbl_mp(t,y,p);    EY -= EX;

  for (i=0; i<np1[p]; i++) {
    __cpy(y,&w,p);
    __mul(x,&w,y,p);
    __sub(&mptwo,y,&z,p);
    __mul(&w,&z,y,p);
  }
  return;
}
double __slowpow(double x, double y, double z) {
  double res,res1;
  mp_no mpx, mpy, mpz,mpw,mpp,mpr,mpr1;
  static const mp_no eps = {-3,{1.0,4.0}};
  int p;

  res = __halfulp(x,y);        /* halfulp() returns -10 or x^y             */
  if (res >= 0) return res;  /* if result was really computed by halfulp */
                  /*  else, if result was not really computed by halfulp */
  p = 10;         /*  p=precision   */
  __dbl_mp(x,&mpx,p);
  __dbl_mp(y,&mpy,p);
  __dbl_mp(z,&mpz,p);
  __mplog(&mpx, &mpz, p);     /* log(x) = z   */
  __mul(&mpy,&mpz,&mpw,p);    /*  y * z =w    */
  __mpexp(&mpw, &mpp, p);     /*  e^w =pp     */
  __add(&mpp,&eps,&mpr,p);    /*  pp+eps =r   */
  __mp_dbl(&mpr, &res, p);
  __sub(&mpp,&eps,&mpr1,p);   /*  pp -eps =r1 */
  __mp_dbl(&mpr1, &res1, p);  /*  converting into double precision */
  if (res == res1) return res;

  p = 32;     /* if we get here result wasn't calculated exactly, continue */
  __dbl_mp(x,&mpx,p);                          /* for more exact calculation */
  __dbl_mp(y,&mpy,p);
  __dbl_mp(z,&mpz,p);
  __mplog(&mpx, &mpz, p);   /* log(c)=z  */
  __mul(&mpy,&mpz,&mpw,p);  /* y*z =w    */
  __mpexp(&mpw, &mpp, p);   /* e^w=pp    */
  __mp_dbl(&mpp, &res, p);  /* converting into double precision */
  return res;
}
Ejemplo n.º 6
0
/* Perform range reduction of a double number x into multi precision number y,
   such that y = x - n * pi / 2, abs (y) < pi / 4, n = 0, +-1, +-2, ...
   Return int which indicates in which quarter of circle x is.  */
int
SECTION
__mpranred (double x, mp_no *y, int p)
{
  number v;
  double t, xn;
  int i, k, n;
  mp_no a, b, c;

  if (ABS (x) < 2.8e14)
    {
      t = (x * hpinv.d + toint.d);
      xn = t - toint.d;
      v.d = t;
      n = v.i[LOW_HALF] & 3;
      __dbl_mp (xn, &a, p);
      __mul (&a, &hp, &b, p);
      __dbl_mp (x, &c, p);
      __sub (&c, &b, y, p);
      return n;
    }
  else
    {
      /* If x is very big more precision required.  */
      __dbl_mp (x, &a, p);
      a.d[0] = 1.0;
      k = a.e - 5;
      if (k < 0)
	k = 0;
      b.e = -k;
      b.d[0] = 1.0;
      for (i = 0; i < p; i++)
	b.d[i + 1] = toverp[i + k];
      __mul (&a, &b, &c, p);
      t = c.d[c.e];
      for (i = 1; i <= p - c.e; i++)
	c.d[i] = c.d[i + c.e];
      for (i = p + 1 - c.e; i <= p; i++)
	c.d[i] = 0;
      c.e = 0;
      if (c.d[1] >= HALFRAD)
	{
	  t += 1.0;
	  __sub (&c, &__mpone, &b, p);
	  __mul (&b, &hp, y, p);
	}
      else
	__mul (&c, &hp, y, p);
      n = (int) t;
      if (x < 0)
	{
	  y->d[0] = -y->d[0];
	  n = -n;
	}
      return (n & 3);
    }
}
Ejemplo n.º 7
0
/* Stage 3: Perform a multi-Precision computation */
static double
SECTION
atan2Mp (double x, double y, const int pr[])
{
  double z1, z2;
  int i, p;
  mp_no mpx, mpy, mpz, mpz1, mpz2, mperr, mpt1;
  for (i = 0; i < MM; i++)
    {
      p = pr[i];
      __dbl_mp (x, &mpx, p);
      __dbl_mp (y, &mpy, p);
      __mpatan2 (&mpy, &mpx, &mpz, p);
      __dbl_mp (ud[i].d, &mpt1, p);
      __mul (&mpz, &mpt1, &mperr, p);
      __add (&mpz, &mperr, &mpz1, p);
      __sub (&mpz, &mperr, &mpz2, p);
      __mp_dbl (&mpz1, &z1, p);
      __mp_dbl (&mpz2, &z2, p);
      if (z1 == z2)
	{
	  LIBC_PROBE (slowatan2, 4, &p, &x, &y, &z1);
	  return z1;
	}
    }
  LIBC_PROBE (slowatan2_inexact, 4, &p, &x, &y, &z1);
  return z1;			/*if impossible to do exact computing */
}
Ejemplo n.º 8
0
/*Converting from double precision to Multi-precision and calculating  e^x */
double
SECTION
__slowexp (double x)
{
#ifndef USE_LONG_DOUBLE_FOR_MP
  double w, z, res, eps = 3.0e-26;
  int p;
  mp_no mpx, mpy, mpz, mpw, mpeps, mpcor;

  /* Use the multiple precision __MPEXP function to compute the exponential
     First at 144 bits and if it is not accurate enough, at 768 bits.  */
  p = 6;
  __dbl_mp (x, &mpx, p);
  __mpexp (&mpx, &mpy, p);
  __dbl_mp (eps, &mpeps, p);
  __mul (&mpeps, &mpy, &mpcor, p);
  __add (&mpy, &mpcor, &mpw, p);
  __sub (&mpy, &mpcor, &mpz, p);
  __mp_dbl (&mpw, &w, p);
  __mp_dbl (&mpz, &z, p);
  if (w == z)
    return w;
  else
    {
      p = 32;
      __dbl_mp (x, &mpx, p);
      __mpexp (&mpx, &mpy, p);
      __mp_dbl (&mpy, &res, p);
      return res;
    }
#else
  return (double) __ieee754_expl((long double)x);
#endif
}
Ejemplo n.º 9
0
/*Converting from double precision to Multi-precision and calculating  e^x */
double
SECTION
__slowexp(double x) {
  double w,z,res,eps=3.0e-26;
#if 0
  double y;
#endif
  int p;
#if 0
  int orig,i;
#endif
  mp_no mpx, mpy, mpz,mpw,mpeps,mpcor;

  p=6;
  __dbl_mp(x,&mpx,p); /* Convert a double precision number  x               */
		    /* into a multiple precision number mpx with prec. p. */
  __mpexp(&mpx, &mpy, p); /* Multi-Precision exponential function */
  __dbl_mp(eps,&mpeps,p);
  __mul(&mpeps,&mpy,&mpcor,p);
  __add(&mpy,&mpcor,&mpw,p);
  __sub(&mpy,&mpcor,&mpz,p);
  __mp_dbl(&mpw, &w, p);
  __mp_dbl(&mpz, &z, p);
  if (w == z) return w;
  else  {                   /* if calculating is not exactly   */
    p = 32;
    __dbl_mp(x,&mpx,p);
    __mpexp(&mpx, &mpy, p);
    __mp_dbl(&mpy, &res, p);
    return res;
  }
}
Ejemplo n.º 10
0
void __mplog(mp_no *x, mp_no *y, int p) {
#include "mplog.h"
  int i,m;
#if 0
  int j,k,m1,m2,n;
  double a,b;
#endif
  static const int mp[33] = {0,0,0,0,0,1,1,2,2,2,2,3,3,3,3,3,3,3,3,
                             4,4,4,4,4,4,4,4,4,4,4,4,4,4};
  mp_no mpone = {0,{0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
                    0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
                    0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0}};
  mp_no mpt1,mpt2;

  /* Choose m and initiate mpone */
  m = mp[p];  mpone.e = 1;  mpone.d[0]=mpone.d[1]=ONE;

  /* Perform m newton iterations to solve for y: exp(y)-x=0.     */
  /* The iterations formula is:  y(n+1)=y(n)+(x*exp(-y(n))-1).   */
  __cpy(y,&mpt1,p);
  for (i=0; i<m; i++) {
    mpt1.d[0]=-mpt1.d[0];
    __mpexp(&mpt1,&mpt2,p);
    __mul(x,&mpt2,&mpt1,p);
    __sub(&mpt1,&mpone,&mpt2,p);
    __add(y,&mpt2,&mpt1,p);
    __cpy(&mpt1,y,p);
  }
  return;
}
Ejemplo n.º 11
0
/*Converting from double precision to Multi-precision and calculating  e^x */
double __slowexp(double x) {
#ifdef NO_LONG_DOUBLE
  double w,z,res,eps=3.0e-26;
  int p;
  mp_no mpx, mpy, mpz,mpw,mpeps,mpcor;

  p=6;
  __dbl_mp(x,&mpx,p); /* Convert a double precision number  x               */
                    /* into a multiple precision number mpx with prec. p. */
  __mpexp(&mpx, &mpy, p); /* Multi-Precision exponential function */
  __dbl_mp(eps,&mpeps,p);
  __mul(&mpeps,&mpy,&mpcor,p);
  __add(&mpy,&mpcor,&mpw,p);
  __sub(&mpy,&mpcor,&mpz,p);
  __mp_dbl(&mpw, &w, p);
  __mp_dbl(&mpz, &z, p);
  if (w == z) return w;
  else  {                   /* if calculating is not exactly   */
    p = 32;
    __dbl_mp(x,&mpx,p);
    __mpexp(&mpx, &mpy, p);
    __mp_dbl(&mpy, &res, p);
    return res;
  }
#else
  return (double) __ieee754_expl((long double)x);
#endif
}
Ejemplo n.º 12
0
/* y=0 is not permitted if x<=0. No error messages are given.     */
void __mpatan2(mp_no *y, mp_no *x, mp_no *z, int p) {

  static const double ZERO = 0.0, ONE = 1.0;

  mp_no mpone = {0,{0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
                    0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
                    0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0}};
  mp_no mpt1,mpt2,mpt3;


  if (X[0] <= ZERO) {
    mpone.e = 1;                 mpone.d[0] = mpone.d[1] = ONE;
    __dvd(x,y,&mpt1,p);          __mul(&mpt1,&mpt1,&mpt2,p);
    if (mpt1.d[0] != ZERO)       mpt1.d[0] = ONE;
    __add(&mpt2,&mpone,&mpt3,p); __mpsqrt(&mpt3,&mpt2,p);
    __add(&mpt1,&mpt2,&mpt3,p);  mpt3.d[0]=Y[0];
    __mpatan(&mpt3,&mpt1,p);     __add(&mpt1,&mpt1,z,p);
  }
  else
  { __dvd(y,x,&mpt1,p);
    __mpatan(&mpt1,z,p);
  }

  return;
}
Ejemplo n.º 13
0
 /* Final stages. Compute atan(x) by multiple precision arithmetic */
static double
atanMp (double x, const int pr[])
{
  mp_no mpx, mpy, mpy2, mperr, mpt1, mpy1;
  double y1, y2;
  int i, p;

  for (i = 0; i < M; i++)
    {
      p = pr[i];
      __dbl_mp (x, &mpx, p);
      __mpatan (&mpx, &mpy, p);
      __dbl_mp (u9[i].d, &mpt1, p);
      __mul (&mpy, &mpt1, &mperr, p);
      __add (&mpy, &mperr, &mpy1, p);
      __sub (&mpy, &mperr, &mpy2, p);
      __mp_dbl (&mpy1, &y1, p);
      __mp_dbl (&mpy2, &y2, p);
      if (y1 == y2)
	{
	  LIBC_PROBE (slowatan, 3, &p, &x, &y1);
	  return y1;
	}
    }
  LIBC_PROBE (slowatan_inexact, 3, &p, &x, &y1);
  return y1;			/*if impossible to do exact computing */
}
void __dvd(const mp_no *x, const mp_no *y, mp_no *z, int p) {

  mp_no w;

  if (X[0] == ZERO)    Z[0] = ZERO;
  else                {__inv(y,&w,p);   __mul(x,&w,z,p);}
  return;
}
Ejemplo n.º 15
0
void __c32(mp_no *x, mp_no *y, mp_no *z, int p) {
  static const mp_no mpt={1,{1.0,2.0}}, one={1,{1.0,1.0}};
  mp_no u,t,t1,t2,c,s;
  int i;
  __cpy(x,&u,p);
  u.e=u.e-1;
  cc32(&u,&c,p);
  ss32(&u,&s,p);
  for (i=0;i<24;i++) {
    __mul(&c,&s,&t,p);
    __sub(&s,&t,&t1,p);
    __add(&t1,&t1,&s,p);
    __sub(&mpt,&c,&t1,p);
    __mul(&t1,&c,&t2,p);
    __add(&t2,&t2,&c,p);
  }
  __sub(&one,&c,y,p);
  __cpy(&s,z,p);
}
Ejemplo n.º 16
0
static void
SECTION
ss32(mp_no *x, mp_no *y, int p) {
  int i;
  double a;
  mp_no mpt1,x2,gor,sum ,mpk={1,{1.0}};
  for (i=1;i<=p;i++) mpk.d[i]=0;

  __sqr(x,&x2,p);
  __cpy(&oofac27,&gor,p);
  __cpy(&gor,&sum,p);
  for (a=27.0;a>1.0;a-=2.0) {
    mpk.d[1]=a*(a-1.0);
    __mul(&gor,&mpk,&mpt1,p);
    __cpy(&mpt1,&gor,p);
    __mul(&x2,&sum,&mpt1,p);
    __sub(&gor,&mpt1,&sum,p);
  }
  __mul(x,&sum,y,p);
}
Ejemplo n.º 17
0
void
SECTION
__c32(mp_no *x, mp_no *y, mp_no *z, int p) {
  mp_no u,t,t1,t2,c,s;
  int i;
  __cpy(x,&u,p);
  u.e=u.e-1;
  cc32(&u,&c,p);
  ss32(&u,&s,p);
  for (i=0;i<24;i++) {
    __mul(&c,&s,&t,p);
    __sub(&s,&t,&t1,p);
    __add(&t1,&t1,&s,p);
    __sub(&mptwo,&c,&t1,p);
    __mul(&t1,&c,&t2,p);
    __add(&t2,&t2,&c,p);
  }
  __sub(&mpone,&c,y,p);
  __cpy(&s,z,p);
}
Ejemplo n.º 18
0
/* Divide *X by *Y and store result in *Z.  X and Y may overlap but not X and Z
   or Y and Z.  Relative error bound:
   - For P = 2: 2.001 * R ^ (1 - P)
   - For P = 3: 2.063 * R ^ (1 - P)
   - For P > 3: 3.001 * R ^ (1 - P)

   *X = 0 is not permissible.  */
void
SECTION
__dvd (const mp_no *x, const mp_no *y, mp_no *z, int p)
{
  mp_no w;

  if (X[0] == 0)
    Z[0] = 0;
  else
    {
      __inv (y, &w, p);
      __mul (x, &w, z, p);
    }
}
Ejemplo n.º 19
0
/* Treat the Denormalized case */
static double
SECTION
normalized (double ax, double ay, double y, double z)
{
  int p;
  mp_no mpx, mpy, mpz, mperr, mpz2, mpt1;
  p = 6;
  __dbl_mp (ax, &mpx, p);
  __dbl_mp (ay, &mpy, p);
  __dvd (&mpy, &mpx, &mpz, p);
  __dbl_mp (ue.d, &mpt1, p);
  __mul (&mpz, &mpt1, &mperr, p);
  __sub (&mpz, &mperr, &mpz2, p);
  __mp_dbl (&mpz2, &z, p);
  return signArctan2 (y, z);
}
Ejemplo n.º 20
0
/*Converting from double precision to Multi-precision and calculating  e^x */
double
SECTION
__slowexp (double x)
{
#ifndef USE_LONG_DOUBLE_FOR_MP
  double w, z, res, eps = 3.0e-26;
  int p;
  mp_no mpx, mpy, mpz, mpw, mpeps, mpcor;

  /* Use the multiple precision __MPEXP function to compute the exponential
     First at 144 bits and if it is not accurate enough, at 768 bits.  */
  p = 6;
  __dbl_mp (x, &mpx, p);
  __mpexp (&mpx, &mpy, p);
  __dbl_mp (eps, &mpeps, p);
  __mul (&mpeps, &mpy, &mpcor, p);
  __add (&mpy, &mpcor, &mpw, p);
  __sub (&mpy, &mpcor, &mpz, p);
  __mp_dbl (&mpw, &w, p);
  __mp_dbl (&mpz, &z, p);
  if (w == z)
    {
      /* Track how often we get to the slow exp code plus
	 its input/output values.  */
      LIBC_PROBE (slowexp_p6, 2, &x, &w);
      return w;
    }
  else
    {
      p = 32;
      __dbl_mp (x, &mpx, p);
      __mpexp (&mpx, &mpy, p);
      __mp_dbl (&mpy, &res, p);

      /* Track how often we get to the uber-slow exp code plus
	 its input/output values.  */
      LIBC_PROBE (slowexp_p32, 2, &x, &res);
      return res;
    }
#else
  return (double) __ieee754_expl((long double)x);
#endif
}
Ejemplo n.º 21
0
/*Converting from double precision to Multi-precision and calculating  e^x */
double __slowexp(double x) {
  double w,z,res,eps=3.0e-26;
#if 0
  double y;
#endif
  int p;
#if 0
  int orig,i;
#endif
  mp_no mpx, mpy, mpz,mpw,mpeps,mpcor;

  p=6;
  __dbl_mp(x,&mpx,p); /* Convert a double precision number  x               */
                    /* into a multiple precision number mpx with prec. p. */
  __mpexp(&mpx, &mpy, p); /* Multi-Precision exponential function */
  __dbl_mp(eps,&mpeps,p);
  __mul(&mpeps,&mpy,&mpcor,p);
  __add(&mpy,&mpcor,&mpw,p);
  __sub(&mpy,&mpcor,&mpz,p);
  __mp_dbl(&mpw, &w, p);
  __mp_dbl(&mpz, &z, p);
  if (w == z) {
    /* Track how often we get to the slow exp code plus
       its input/output values.  */
    LIBC_PROBE (slowexp_p6, 2, &x, &w);
    return w;
  }
  else  {                   /* if calculating is not exactly   */
    p = 32;
    __dbl_mp(x,&mpx,p);
    __mpexp(&mpx, &mpy, p);
    __mp_dbl(&mpy, &res, p);
 
    /* Track how often we get to the uber-slow exp code plus
       its input/output values.  */
    LIBC_PROBE (slowexp_p32, 2, &x, &res);
    return res;
  }
}
Ejemplo n.º 22
0
void __mpexp(mp_no *x, mp_no *y, int p) {

  int i,j,k,m,m1,m2,n;
  Double a,b;
  static const int np[33] = {0,0,0,0,3,3,4,4,5,4,4,5,5,5,6,6,6,6,6,6,
                             6,6,6,6,7,7,7,7,8,8,8,8,8};
  static const int m1p[33]= {0,0,0,0,17,23,23,28,27,38,42,39,43,47,43,47,50,54,
                               57,60,64,67,71,74,68,71,74,77,70,73,76,78,81};
  static const int m1np[7][18] = {
                 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
                 { 0, 0, 0, 0,36,48,60,72, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
                 { 0, 0, 0, 0,24,32,40,48,56,64,72, 0, 0, 0, 0, 0, 0, 0},
                 { 0, 0, 0, 0,17,23,29,35,41,47,53,59,65, 0, 0, 0, 0, 0},
                 { 0, 0, 0, 0, 0, 0,23,28,33,38,42,47,52,57,62,66, 0, 0},
                 { 0, 0, 0, 0, 0, 0, 0, 0,27, 0, 0,39,43,47,51,55,59,63},
                 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,43,47,50,54}};
  mp_no mpone = {0,{0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
                    0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
                    0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0}};
  mp_no mpk   = {0,{0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
                    0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
                    0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0}};
  mp_no mps,mpak,mpt1,mpt2;

  /* Choose m,n and compute a=2**(-m) */
  n = np[p];    m1 = m1p[p];    a = twomm1[p].d();
  for (i=0; i<EX; i++)  a *= RADIXI;
  for (   ; i>EX; i--)  a *= RADIX;
  b = X[1]*RADIXI;   m2 = 24*EX;
  for (; b<HALF; m2--)  { a *= TWO;   b *= TWO; }
  if (b == HALF) {
    for (i=2; i<=p; i++) { if (X[i]!=ZERO)  break; }
    if (i==p+1)  { m2--;  a *= TWO; }
  }
  if ((m=m1+m2) <= 0) {
    m=0;  a=ONE;
    for (i=n-1; i>0; i--,n--) { if (m1np[i][p]+m2>0)  break; }
  }

  /* Compute s=x*2**(-m). Put result in mps */
  __dbl_mp(a,&mpt1,p);
  __mul(x,&mpt1,&mps,p);

  /* Evaluate the polynomial. Put result in mpt2 */
  mpone.e=1;   mpone.d(0)=ONE;   mpone.d(1)=ONE;
  mpk.e = 1;   mpk.d(0) = ONE;   mpk.d(1)=nn[n].d();
  __dvd(&mps,&mpk,&mpt1,p);
  __add(&mpone,&mpt1,&mpak,p);
  for (k=n-1; k>1; k--) {
    __mul(&mps,&mpak,&mpt1,p);
    mpk.d(1)=nn[k].d();
    __dvd(&mpt1,&mpk,&mpt2,p);
    __add(&mpone,&mpt2,&mpak,p);
  }
  __mul(&mps,&mpak,&mpt1,p);
  __add(&mpone,&mpt1,&mpt2,p);

  /* Raise polynomial value to the power of 2**m. Put result in y */
  for (k=0,j=0; k<m; ) {
    __mul(&mpt2,&mpt2,&mpt1,p);  k++;
    if (k==m)  { j=1;  break; }
    __mul(&mpt1,&mpt1,&mpt2,p);  k++;
  }
  if (j)  __cpy(&mpt1,y,p);
  else    __cpy(&mpt2,y,p);
  return;
}
Ejemplo n.º 23
0
Archivo: mpatan.c Proyecto: dreal/tai
void
SECTION
__mpatan(mp_no *x, mp_no *y, int p) {

  int i,m,n;
  double dx;
  mp_no
    mpone    = {0,{0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
		0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
		0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0}},
    mptwo    = {0,{0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
		0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
		0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0}},
    mptwoim1 = {0,{0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
		0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
		0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0}};

  mp_no mps,mpsm,mpt,mpt1,mpt2,mpt3;

		      /* Choose m and initiate mpone, mptwo & mptwoim1 */
    if      (EX>0) m=7;
    else if (EX<0) m=0;
    else {
      __mp_dbl(x,&dx,p);  dx=ABS(dx);
      for (m=6; m>0; m--)
	{if (dx>__atan_xm[m].d) break;}
    }
    mpone.e    = mptwo.e    = mptwoim1.e = 1;
    mpone.d[0] = mpone.d[1] = mptwo.d[0] = mptwoim1.d[0] = ONE;
    mptwo.d[1] = TWO;

				 /* Reduce x m times */
    __mul(x,x,&mpsm,p);
    if (m==0) __cpy(x,&mps,p);
    else {
      for (i=0; i<m; i++) {
	__add(&mpone,&mpsm,&mpt1,p);
	__mpsqrt(&mpt1,&mpt2,p);
	__add(&mpt2,&mpt2,&mpt1,p);
	__add(&mptwo,&mpsm,&mpt2,p);
	__add(&mpt1,&mpt2,&mpt3,p);
	__dvd(&mpsm,&mpt3,&mpt1,p);
	__cpy(&mpt1,&mpsm,p);
      }
      __mpsqrt(&mpsm,&mps,p);    mps.d[0] = X[0];
    }

		    /* Evaluate a truncated power series for Atan(s) */
    n=__atan_np[p];    mptwoim1.d[1] = __atan_twonm1[p].d;
    __dvd(&mpsm,&mptwoim1,&mpt,p);
    for (i=n-1; i>1; i--) {
      mptwoim1.d[1] -= TWO;
      __dvd(&mpsm,&mptwoim1,&mpt1,p);
      __mul(&mpsm,&mpt,&mpt2,p);
      __sub(&mpt1,&mpt2,&mpt,p);
    }
    __mul(&mps,&mpt,&mpt1,p);
    __sub(&mps,&mpt1,&mpt,p);

			  /* Compute Atan(x) */
    mptwoim1.d[1] = __atan_twom[m].d;
    __mul(&mptwoim1,&mpt,y,p);

  return;
}
Ejemplo n.º 24
0
slong _nmod_poly_xgcd_hgcd(mp_ptr G, mp_ptr S, mp_ptr T, 
                          mp_srcptr A, slong lenA, mp_srcptr B, slong lenB, 
                          nmod_t mod)
{
	const slong cutoff = FLINT_BIT_COUNT(mod.n) <= 8 ? 
                        NMOD_POLY_SMALL_GCD_CUTOFF : NMOD_POLY_GCD_CUTOFF;

    slong lenG, lenS, lenT;

    if (lenB == 1)
    {
        G[0] = B[0];
        T[0] = 1;
        lenG = 1;
        lenS = 0;
        lenT = 1;
    }
    else
    {
        mp_ptr q = _nmod_vec_init(lenA + lenB);
        mp_ptr r = q + lenA;

        slong lenq, lenr;

        __divrem(q, lenq, r, lenr, A, lenA, B, lenB);

        if (lenr == 0)
        {
            __set(G, lenG, B, lenB);
            T[0] = 1;
            lenS = 0;
            lenT = 1;
        }
        else
        {
            mp_ptr h, j, v, w, R[4], X;
            slong lenh, lenj, lenv, lenw, lenR[4];
            int sgnR;

            lenh = lenj = lenB;
            lenv = lenw = lenA + lenB - 2;
            lenR[0] = lenR[1] = lenR[2] = lenR[3] = (lenB + 1) / 2;

            X = _nmod_vec_init(2 * lenh + 2 * lenv + 4 * lenR[0]);
            h = X;
            j = h + lenh;
            v = j + lenj;
            w = v + lenv;
            R[0] = w + lenw;
            R[1] = R[0] + lenR[0];
            R[2] = R[1] + lenR[1];
            R[3] = R[2] + lenR[2];

            sgnR = _nmod_poly_hgcd(R, lenR, h, &lenh, j, &lenj, B, lenB, r, lenr, mod);

            if (sgnR > 0)
            {
                _nmod_vec_neg(S, R[1], lenR[1], mod);
                _nmod_vec_set(T, R[0], lenR[0]);
            }
            else
            {
                _nmod_vec_set(S, R[1], lenR[1]);
                _nmod_vec_neg(T, R[0], lenR[0], mod);
            }
            lenS = lenR[1];
            lenT = lenR[0];

            while (lenj != 0)
            {
                __divrem(q, lenq, r, lenr, h, lenh, j, lenj);
                __mul(v, lenv, q, lenq, T, lenT);
                {
                    slong l;
                    _nmod_vec_swap(S, T, FLINT_MAX(lenS, lenT));
                    l = lenS; lenS = lenT; lenT = l;
                }
                __sub(T, lenT, T, lenT, v, lenv);

                if (lenr == 0)
                {
                    __set(G, lenG, j, lenj);

                    goto cofactor;
                }
                if (lenj < cutoff)
                {
                    mp_ptr u0 = R[0], u1 = R[1];
                    slong lenu0 = lenr - 1, lenu1 = lenj - 1;

                    lenG = _nmod_poly_xgcd_euclidean(G, u0, u1, j, lenj, r, lenr, mod);
                    MPN_NORM(u0, lenu0);
                    MPN_NORM(u1, lenu1);

                    __mul(v, lenv, S, lenS, u0, lenu0);
                    __mul(w, lenw, T, lenT, u1, lenu1);
                    __add(S, lenS, v, lenv, w, lenw);

                    goto cofactor;
                }

                sgnR = _nmod_poly_hgcd(R, lenR, h, &lenh, j, &lenj, j,lenj, r, lenr, mod);

                __mul(v, lenv, R[1], lenR[1], T, lenT);
                __mul(w, lenw, R[2], lenR[2], S, lenS);

                __mul(q, lenq, S, lenS, R[3], lenR[3]);
                if (sgnR > 0)
                    __sub(S, lenS, q, lenq, v, lenv);
                else
                    __sub(S, lenS, v, lenv, q, lenq);

                __mul(q, lenq, T, lenT, R[0], lenR[0]);
                if (sgnR > WORD(0))
                    __sub(T, lenT, q, lenq, w, lenw);
                else
                    __sub(T, lenT, w, lenw, q, lenq);
            }
            __set(G, lenG, h, lenh);

            cofactor:

            __mul(v, lenv, S, lenS, A, lenA);
            __sub(w, lenw, G, lenG, v, lenv);
            __div(T, lenT, w, lenw, B, lenB);

            _nmod_vec_clear(X);
        }
        _nmod_vec_clear(q);
    }
    flint_mpn_zero(S + lenS, lenB - 1 - lenS);
    flint_mpn_zero(T + lenT, lenA - 1 - lenT);

    return lenG;
}
Ejemplo n.º 25
0
/* Multi-Precision exponential function subroutine (for p >= 4,
   2**(-55) <= abs(x) <= 1024).  */
void
SECTION
__mpexp (mp_no *x, mp_no *y, int p)
{
  int i, j, k, m, m1, m2, n;
  mantissa_t b;
  static const int np[33] =
    {
      0, 0, 0, 0, 3, 3, 4, 4, 5, 4, 4, 5, 5, 5, 6, 6, 6, 6, 6, 6,
      6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8
    };

  static const int m1p[33] =
    {
      0, 0, 0, 0,
      17, 23, 23, 28,
      27, 38, 42, 39,
      43, 47, 43, 47,
      50, 54, 57, 60,
      64, 67, 71, 74,
      68, 71, 74, 77,
      70, 73, 76, 78,
      81
    };
  static const int m1np[7][18] =
    {
      {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
      {0, 0, 0, 0, 36, 48, 60, 72, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
      {0, 0, 0, 0, 24, 32, 40, 48, 56, 64, 72, 0, 0, 0, 0, 0, 0, 0},
      {0, 0, 0, 0, 17, 23, 29, 35, 41, 47, 53, 59, 65, 0, 0, 0, 0, 0},
      {0, 0, 0, 0, 0, 0, 23, 28, 33, 38, 42, 47, 52, 57, 62, 66, 0, 0},
      {0, 0, 0, 0, 0, 0, 0, 0, 27, 0, 0, 39, 43, 47, 51, 55, 59, 63},
      {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 43, 47, 50, 54}
    };
  mp_no mps, mpk, mpt1, mpt2;

  /* Choose m,n and compute a=2**(-m).  */
  n = np[p];
  m1 = m1p[p];
  b = X[1];
  m2 = 24 * EX;
  for (; b < HALFRAD; m2--)
    b *= 2;
  if (b == HALFRAD)
    {
      for (i = 2; i <= p; i++)
	{
	  if (X[i] != 0)
	    break;
	}
      if (i == p + 1)
	m2--;
    }

  m = m1 + m2;
  if (__glibc_unlikely (m <= 0))
    {
      /* The m1np array which is used to determine if we can reduce the
	 polynomial expansion iterations, has only 18 elements.  Besides,
	 numbers smaller than those required by p >= 18 should not come here
	 at all since the fast phase of exp returns 1.0 for anything less
	 than 2^-55.  */
      assert (p < 18);
      m = 0;
      for (i = n - 1; i > 0; i--, n--)
	if (m1np[i][p] + m2 > 0)
	  break;
    }

  /* Compute s=x*2**(-m). Put result in mps.  This is the range-reduced input
     that we will use to compute e^s.  For the final result, simply raise it
     to 2^m.  */
  __pow_mp (-m, &mpt1, p);
  __mul (x, &mpt1, &mps, p);

  /* Compute the Taylor series for e^s:

         1 + x/1! + x^2/2! + x^3/3! ...

     for N iterations.  We compute this as:

         e^x = 1 + (x * n!/1! + x^2 * n!/2! + x^3 * n!/3!) / n!
             = 1 + (x * (n!/1! + x * (n!/2! + x * (n!/3! + x ...)))) / n!

     k! is computed on the fly as KF and at the end of the polynomial loop, KF
     is n!, which can be used directly.  */
  __cpy (&mps, &mpt2, p);

  double kf = 1.0;

  /* Evaluate the rest.  The result will be in mpt2.  */
  for (k = n - 1; k > 0; k--)
    {
      /* n! / k! = n * (n - 1) ... * (n - k + 1) */
      kf *= k + 1;

      __dbl_mp (kf, &mpk, p);
      __add (&mpt2, &mpk, &mpt1, p);
      __mul (&mps, &mpt1, &mpt2, p);
    }
  __dbl_mp (kf, &mpk, p);
  __dvd (&mpt2, &mpk, &mpt1, p);
  __add (&__mpone, &mpt1, &mpt2, p);

  /* Raise polynomial value to the power of 2**m. Put result in y.  */
  for (k = 0, j = 0; k < m;)
    {
      __sqr (&mpt2, &mpt1, p);
      k++;
      if (k == m)
	{
	  j = 1;
	  break;
	}
      __sqr (&mpt1, &mpt2, p);
      k++;
    }
  if (j)
    __cpy (&mpt1, y, p);
  else
    __cpy (&mpt2, y, p);
  return;
}