Ejemplo n.º 1
0
/* Does the given edge contain the given point. The point must already
 * be known to be contained within the line determined by the edge,
 * (most likely the point results from an intersection of this edge
 * with another).
 *
 * If we had exact arithmetic, then this function would simply be a
 * matter of examining whether the y value of the point lies within
 * the range of y values of the edge. But since intersection points
 * are not exact due to being rounded to the nearest integer within
 * the available precision, we must also examine the x value of the
 * point.
 *
 * The definition of "contains" here is that the given intersection
 * point will be seen by the sweep line after the start event for the
 * given edge and before the stop event for the edge. See the comments
 * in the implementation for more details.
 */
static cairo_bool_t
_cairo_bo_edge_contains_intersect_point (cairo_bo_edge_t		*edge,
					 cairo_bo_intersect_point_t	*point)
{
    int cmp_top, cmp_bottom;

    /* XXX: When running the actual algorithm, we don't actually need to
     * compare against edge->top at all here, since any intersection above
     * top is eliminated early via a slope comparison. We're leaving these
     * here for now only for the sake of the quadratic-time intersection
     * finder which needs them.
     */

    cmp_top = _cairo_bo_intersect_ordinate_32_compare (point->y,
						       edge->edge.top);
    cmp_bottom = _cairo_bo_intersect_ordinate_32_compare (point->y,
							  edge->edge.bottom);

    if (cmp_top < 0 || cmp_bottom > 0)
    {
	return FALSE;
    }

    if (cmp_top > 0 && cmp_bottom < 0)
    {
	return TRUE;
    }

    /* At this stage, the point lies on the same y value as either
     * edge->top or edge->bottom, so we have to examine the x value in
     * order to properly determine containment. */

    /* If the y value of the point is the same as the y value of the
     * top of the edge, then the x value of the point must be greater
     * to be considered as inside the edge. Similarly, if the y value
     * of the point is the same as the y value of the bottom of the
     * edge, then the x value of the point must be less to be
     * considered as inside. */

    if (cmp_top == 0) {
	cairo_fixed_t top_x;

	top_x = _line_compute_intersection_x_for_y (&edge->edge.line,
						    edge->edge.top);
	return _cairo_bo_intersect_ordinate_32_compare (point->x, top_x) > 0;
    } else { /* cmp_bottom == 0 */
	cairo_fixed_t bot_x;

	bot_x = _line_compute_intersection_x_for_y (&edge->edge.line,
						    edge->edge.bottom);
	return _cairo_bo_intersect_ordinate_32_compare (point->x, bot_x) < 0;
    }
}
Ejemplo n.º 2
0
/* Does the given edge contain the given point. The point must already
 * be known to be contained within the line determined by the edge,
 * (most likely the point results from an intersection of this edge
 * with another).
 *
 * If we had exact arithmetic, then this function would simply be a
 * matter of examining whether the y value of the point lies within
 * the range of y values of the edge. But since intersection points
 * are not exact due to being rounded to the nearest integer within
 * the available precision, we must also examine the x value of the
 * point.
 *
 * The definition of "contains" here is that the given intersection
 * point will be seen by the sweep line after the start event for the
 * given edge and before the stop event for the edge. See the comments
 * in the implementation for more details.
 */
static cairo_bool_t
_cairo_bo_edge_contains_intersect_point (cairo_bo_edge_t		*edge,
					 cairo_bo_intersect_point_t	*point)
{
    return _cairo_bo_intersect_ordinate_32_compare (point->y,
						    edge->edge.bottom) < 0;
}