Ejemplo n.º 1
0
int
main(void)
{
    int i, result;
    flint_rand_t state;

    printf("is_zero....");
    fflush(stdout);

    flint_randinit(state);

    /* Check zero vector */
    for (i = 0; i < 10000; i++)
    {
        fmpz *a;
        long len = n_randint(state, 100);

        a = _fmpz_vec_init(len);
        _fmpz_vec_randtest(a, state, len, 200);
        _fmpz_vec_zero(a, len);

        result = (_fmpz_vec_is_zero(a, len));
        if (!result)
        {
            printf("FAIL1:\n");
            _fmpz_vec_print(a, len), printf("\n\n");
            abort();
        }

        _fmpz_vec_clear(a, len);
    }

    /* Check non-zero vector */
    for (i = 0; i < 10000; i++)
    {
        fmpz *a;
        long len = n_randint(state, 100) + 1;

        a = _fmpz_vec_init(len);
        _fmpz_vec_randtest(a, state, len, 200);
        fmpz_set_ui(a + (len - 1), 1UL);

        result = (!_fmpz_vec_is_zero(a, len));
        if (!result)
        {
            printf("FAIL2:\n");
            _fmpz_vec_print(a, len), printf("\n\n");
            abort();
        }

        _fmpz_vec_clear(a, len);
    }

    flint_randclear(state);
    _fmpz_cleanup();
    printf("PASS\n");
    return 0;
}
Ejemplo n.º 2
0
int
main(void)
{
    int i, result;
    FLINT_TEST_INIT(state);

    flint_printf("scalar_submul_si_2exp....");
    fflush(stdout);

    

    /* Compare with alternative method of computation */
    for (i = 0; i < 1000 * flint_test_multiplier(); i++)
    {
        fmpz *a, *b, *c, *d;
        slong len = n_randint(state, 100), x;
        mp_bitcnt_t exp;

        a = _fmpz_vec_init(len);
        b = _fmpz_vec_init(len);
        c = _fmpz_vec_init(len);
        d = _fmpz_vec_init(len);

        _fmpz_vec_randtest(a, state, len, 200);
        _fmpz_vec_randtest(b, state, len, 200);
        _fmpz_vec_set(c, b, len);

        x = z_randtest(state);
        exp = n_randint(state, 200);

        _fmpz_vec_scalar_submul_si_2exp(b, a, len, x, exp);
        _fmpz_vec_scalar_mul_2exp(d, a, len, exp);
        _fmpz_vec_scalar_submul_si(c, d, len, x);

        result = (_fmpz_vec_equal(b, c, len));
        if (!result)
        {
            flint_printf("FAIL:\n");
            flint_printf("x = %wd, exp = %wu\n", x, exp);
            _fmpz_vec_print(b, len), flint_printf("\n\n");
            _fmpz_vec_print(c, len), flint_printf("\n\n");
            abort();
        }

        _fmpz_vec_clear(a, len);
        _fmpz_vec_clear(b, len);
        _fmpz_vec_clear(c, len);
        _fmpz_vec_clear(d, len);
    }

    FLINT_TEST_CLEANUP(state);
    
    flint_printf("PASS\n");
    return 0;
}
Ejemplo n.º 3
0
int
main(void)
{
    int i, result;
    flint_rand_t state;

    printf("prod....");
    fflush(stdout);

    flint_randinit(state);

    for (i = 0; i < 10000; i++)
    {
        fmpz *a, *b;
        fmpz_t x, y, z;

        long len1 = n_randint(state, 100);
        long len2 = n_randint(state, 100);

        a = _fmpz_vec_init(len1 + len2);
        b = a + len1;

        _fmpz_vec_randtest(a, state, len1 + len2, 200);

        fmpz_init(x);
        fmpz_init(y);
        fmpz_init(z);

        _fmpz_vec_prod(x, a, len1);
        _fmpz_vec_prod(y, b, len2);
        fmpz_mul(x, x, y);
        _fmpz_vec_prod(z, a, len1 + len2);

        result = (fmpz_equal(x, z));
        if (!result)
        {
            printf("FAIL:\n");
            _fmpz_vec_print(a, len1), printf("\n\n");
            _fmpz_vec_print(b, len2), printf("\n\n");
            abort();
        }

        _fmpz_vec_clear(a, len1 + len2);

        fmpz_clear(x);
        fmpz_clear(y);
        fmpz_clear(z);
    }

    flint_randclear(state);
    _fmpz_cleanup();
    printf("PASS\n");
    return 0;
}
int main() {

	slong i;
	mp_limb_t p, w;
	nmod_poly_t f;
	mp_ptr res, res2, vect;

	// p premier
	// Le cardinal du groupe multiplicatif doit être une puissance de 2
	// Ne marche que pour p = 0, 1, 2, 3, 5, 17, 257, 65537.
	p = 17;

	nmod_poly_init(f, p);
	nmod_poly_set_coeff_ui(f, 0, 0);
	nmod_poly_set_coeff_ui(f, 1, 1);
	nmod_poly_set_coeff_ui(f, 2, 2);
	nmod_poly_set_coeff_ui(f, 3, 1);
	nmod_poly_set_coeff_ui(f, 4, 1);

	w = n_primitive_root_prime(p);

	res = _nmod_vec_init(p);
	nmod_poly_fft_pow2(res, f, w);

	flint_printf("w : %d\n", w);
	_fmpz_vec_print(res, p);
	flint_printf("\n");


	vect = _nmod_vec_init(p);
	for(i = 0 ; i < p ; i++) {
		vect[i] = i;
	}
	res2 = _nmod_vec_init(p);
	nmod_poly_evaluate_nmod_vec(res2, f, vect, p);

	_fmpz_vec_print(res2, p);
	flint_printf("\nBooléen d'égalité : %d\n", _nmod_vec_equal(res,res2,p));

	nmod_poly_clear(f);
	_nmod_vec_clear(res);
	_nmod_vec_clear(res2);
	_nmod_vec_clear(vect);

	return 0;
}
Ejemplo n.º 5
0
int
main(void)
{
    int i;
    flint_rand_t state;
    flint_randinit(state);

    printf("set_cfrac....");
    fflush(stdout);

    for (i = 0; i < 10000; i++)
    {
        fmpq_t x, y, r;
        fmpz * c;
        long n, bound;

        fmpq_init(x);
        fmpq_init(y);
        fmpq_init(r);

        fmpq_randtest(x, state, 1 + n_randint(state, 1000));
        bound = fmpq_cfrac_bound(x);

        c = _fmpz_vec_init(bound);

        n = fmpq_get_cfrac(c, r, x, bound);
        fmpq_set_cfrac(y, c, n);

        if (!fmpq_equal(x, y))
        {
            printf("FAIL: x != y\n");
            printf("x = "); fmpq_print(x); printf("\n");
            printf("y = "); fmpq_print(y); printf("\n");
            printf("c = "); _fmpz_vec_print(c, n); printf("\n\n");
            abort();
        }

        _fmpz_vec_clear(c, bound);
        fmpq_clear(x);
        fmpq_clear(y);
        fmpq_clear(r);
    }

    flint_randclear(state);

    _fmpz_cleanup();
    printf("PASS\n");
    return 0;
}
int main() {

	slong n = 7;
	fmpz_t mod;
	fmpz* xs = _fmpz_vec_init(n);
	fmpz* ys = _fmpz_vec_init(n);
	fmpz_mod_poly_t res;
	fmpz_poly_t res2;


	fmpz_init(mod);
	fmpz_set_ui(mod, 11);


	fmpz_set_ui(xs, 0);
	fmpz_set_ui(xs+1, 1);
	fmpz_set_ui(xs+2, 2);
	fmpz_set_ui(xs+3, 3);
	fmpz_set_ui(xs+4, 4);
	fmpz_set_ui(xs+5, 5);
	fmpz_set_ui(xs+6, 6);

	fmpz_set_si(ys, 5);
	fmpz_set_si(ys+1, 1);
	fmpz_set_si(ys+2, 4);
	fmpz_set_si(ys+3, 8);
	fmpz_set_si(ys+4, 4);
	fmpz_set_si(ys+5, 1);
	fmpz_set_si(ys+6, 5);

	printf("xs :\n");
	_fmpz_vec_print(xs,n);
	printf("\n");	

	printf("ys :\n");
	_fmpz_vec_print(ys,n);
	printf("\n");

	fmpz_mod_poly_init(res,mod);
	fmpz_mod_poly_interpolate_fmpz_vec_fast(res, xs, ys, n, mod);

	fmpz_poly_init(res2);
	fmpz_poly_interpolate_fmpz_vec(res2, xs, ys, n);

	printf("Nouvelle interpolation (f(xs) = ys) :\n");
	fmpz_mod_poly_print(res);
	printf("\n");

	fmpz* zs = _fmpz_vec_init(n);
	fmpz_poly_evaluate_fmpz_vec(zs, res2, xs, n);

	fmpz* as = _fmpz_vec_init(n);
	fmpz_mod_poly_evaluate_fmpz_vec(as, res, xs, n);

	printf("f(xs) :\n");
	_fmpz_vec_print(as,n);
	printf("\n");

	printf("FLINT :\n");
	fmpz_poly_print(res2);
	printf("\n");

	printf("f(xs) :\n");
	_fmpz_vec_print(zs,n);
	printf("\n");


	fmpz_clear(mod);
	_fmpz_vec_clear(xs,n);
	_fmpz_vec_clear(ys,n);

	return 0;
}
Ejemplo n.º 7
0
int
main(void)
{
    int i, result;
    flint_rand_t state;

    printf("get/set_fft....");
    fflush(stdout);

    flint_randinit(state);
    
     /* convert back and forth and compare */
    for (i = 0; i < 10000; i++)
    {
        fmpz * a, * b;
        mp_bitcnt_t bits;
        long len, limbs;
        mp_limb_t ** ii, * ptr;
        long i, bt;

        bits = n_randint(state, 300) + 1;
        len = n_randint(state, 300) + 1;
        limbs = 2*((bits - 1)/FLINT_BITS + 1);
        
        ii = flint_malloc((len + len*(limbs + 1))*sizeof(mp_limb_t));
        ptr = (mp_limb_t *) ii + len;
        for (i = 0; i < len; i++, ptr += (limbs + 1))
           ii[i] = ptr;

        a = _fmpz_vec_init(len);
        b = _fmpz_vec_init(len);
        _fmpz_vec_randtest(a, state, len, bits);

        bt = _fmpz_vec_get_fft(ii, a, limbs, len);
        for (i = 0; i < len; i++)
           mpn_normmod_2expp1(ii[i], limbs);
        _fmpz_vec_set_fft(b, len, ii, limbs, bt < 0);
        
        result = (_fmpz_vec_equal(a, b, len));
        if (!result)
        {
            printf("FAIL:\n");
            _fmpz_vec_print(a, len), printf("\n\n");
            _fmpz_vec_print(b, len), printf("\n\n");
            abort();
        }

        _fmpz_vec_clear(a, len);
        _fmpz_vec_clear(b, len);
    }
        
     /* convert back and forth unsigned and compare */
    for (i = 0; i < 10000; i++)
    {
        fmpz * a, * b;
        mp_bitcnt_t bits;
        long len, limbs;
        mp_limb_t ** ii, * ptr;
        long i, bt;

        bits = n_randint(state, 300) + 1;
        len = n_randint(state, 300) + 1;
        limbs = 2*((bits - 1)/FLINT_BITS + 1);
        
        ii = flint_malloc((len + len*(limbs + 1))*sizeof(mp_limb_t));
        ptr = (mp_limb_t *) ii + len;
        for (i = 0; i < len; i++, ptr += (limbs + 1))
           ii[i] = ptr;

        a = _fmpz_vec_init(len);
        b = _fmpz_vec_init(len);
        _fmpz_vec_randtest_unsigned(a, state, len, bits);

        bt = _fmpz_vec_get_fft(ii, a, limbs, len);
        _fmpz_vec_set_fft(b, len, ii, limbs, bt < 0);
        
        result = (_fmpz_vec_equal(a, b, len));
        if (!result)
        {
            printf("FAIL:\n");
            _fmpz_vec_print(a, len), printf("\n\n");
            _fmpz_vec_print(b, len), printf("\n\n");
            abort();
        }

        _fmpz_vec_clear(a, len);
        _fmpz_vec_clear(b, len);
    }
        
    flint_randclear(state);
    _fmpz_cleanup();
    printf("PASS\n");
    return 0;
}
Ejemplo n.º 8
0
void frob(const mpoly_t P, const ctx_t ctxFracQt,
          const qadic_t t1, const qadic_ctx_t Qq,
          prec_t *prec, const prec_t *prec_in,
          int verbose)
{
    const padic_ctx_struct *Qp = &Qq->pctx;
    const fmpz *p = Qp->p;
    const long a  = qadic_ctx_degree(Qq);
    const long n  = P->n - 1;
    const long d  = mpoly_degree(P, -1, ctxFracQt);
    const long b  = gmc_basis_size(n, d);

    long i, j, k;

    /* Diagonal fibre */
    padic_mat_t F0;

    /* Gauss--Manin Connection */
    mat_t M;
    mon_t *bR, *bC;
    fmpz_poly_t r;

    /* Local solution */
    fmpz_poly_mat_t C, Cinv;
    long vC, vCinv;

    /* Frobenius */
    fmpz_poly_mat_t F;
    long vF;

    fmpz_poly_mat_t F1;
    long vF1;

    fmpz_poly_t cp;

    clock_t c0, c1;
    double c;

    if (verbose)
    {
        printf("Input:\n");
        printf("  P  = "), mpoly_print(P, ctxFracQt), printf("\n");
        printf("  p  = "), fmpz_print(p), printf("\n");
        printf("  t1 = "), qadic_print_pretty(t1, Qq), printf("\n");
        printf("\n");
        fflush(stdout);
    }

    /* Step 1 {M, r} *********************************************************/

    c0 = clock();

    mat_init(M, b, b, ctxFracQt);
    fmpz_poly_init(r);

    gmc_compute(M, &bR, &bC, P, ctxFracQt);

    {
        fmpz_poly_t t;

        fmpz_poly_init(t);
        fmpz_poly_set_ui(r, 1);
        for (i = 0; i < M->m; i++)
            for (j = 0; j < M->n; j++)
            {
                fmpz_poly_lcm(t, r, fmpz_poly_q_denref(
                                  (fmpz_poly_q_struct *) mat_entry(M, i, j, ctxFracQt)));
                fmpz_poly_swap(r, t);
            }
        fmpz_poly_clear(t);
    }

    c1 = clock();
    c  = (double) (c1 - c0) / CLOCKS_PER_SEC;

    if (verbose)
    {
        printf("Gauss-Manin connection:\n");
        printf("  r(t) = "), fmpz_poly_print_pretty(r, "t"), printf("\n");
        printf("  Time = %f\n", c);
        printf("\n");
        fflush(stdout);
    }

    {
        qadic_t t;

        qadic_init2(t, 1);
        fmpz_poly_evaluate_qadic(t, r, t1, Qq);

        if (qadic_is_zero(t))
        {
            printf("Exception (deformation_frob).\n");
            printf("The resultant r evaluates to zero (mod p) at t1.\n");
            abort();
        }
        qadic_clear(t);
    }

    /* Precisions ************************************************************/

    if (prec_in != NULL)
    {
        *prec = *prec_in;
    }
    else
    {
        deformation_precisions(prec, p, a, n, d, fmpz_poly_degree(r));
    }

    if (verbose)
    {
        printf("Precisions:\n");
        printf("  N0   = %ld\n", prec->N0);
        printf("  N1   = %ld\n", prec->N1);
        printf("  N2   = %ld\n", prec->N2);
        printf("  N3   = %ld\n", prec->N3);
        printf("  N3i  = %ld\n", prec->N3i);
        printf("  N3w  = %ld\n", prec->N3w);
        printf("  N3iw = %ld\n", prec->N3iw);
        printf("  N4   = %ld\n", prec->N4);
        printf("  m    = %ld\n", prec->m);
        printf("  K    = %ld\n", prec->K);
        printf("  r    = %ld\n", prec->r);
        printf("  s    = %ld\n", prec->s);
        printf("\n");
        fflush(stdout);
    }

    /* Initialisation ********************************************************/

    padic_mat_init2(F0, b, b, prec->N4);

    fmpz_poly_mat_init(C, b, b);
    fmpz_poly_mat_init(Cinv, b, b);

    fmpz_poly_mat_init(F, b, b);
    vF = 0;

    fmpz_poly_mat_init(F1, b, b);
    vF1 = 0;

    fmpz_poly_init(cp);

    /* Step 2 {F0} ***********************************************************/

    {
        padic_ctx_t pctx_F0;
        fmpz *t;

        padic_ctx_init(pctx_F0, p, FLINT_MIN(prec->N4 - 10, 0), prec->N4, PADIC_VAL_UNIT);
        t = _fmpz_vec_init(n + 1);

        c0 = clock();

        mpoly_diagonal_fibre(t, P, ctxFracQt);

        diagfrob(F0, t, n, d, prec->N4, pctx_F0, 0);
        padic_mat_transpose(F0, F0);

        c1 = clock();
        c  = (double) (c1 - c0) / CLOCKS_PER_SEC;

        if (verbose)
        {
            printf("Diagonal fibre:\n");
            printf("  P(0) = {"), _fmpz_vec_print(t, n + 1), printf("}\n");
            printf("  Time = %f\n", c);
            printf("\n");
            fflush(stdout);
        }

        _fmpz_vec_clear(t, n + 1);
        padic_ctx_clear(pctx_F0);
    }

    /* Step 3 {C, Cinv} ******************************************************/
    /*
        Compute C as a matrix over Z_p[[t]].  A is the same but as a series
        of matrices over Z_p.  Mt is the matrix -M^t, and Cinv is C^{-1}^t,
        the local solution of the differential equation replacing M by Mt.
     */

    c0 = clock();
    {
        const long K = prec->K;
        padic_mat_struct *A;

        gmde_solve(&A, K, p, prec->N3, prec->N3w, M, ctxFracQt);
        gmde_convert_soln(C, &vC, A, K, p);

        for(i = 0; i < K; i++)
            padic_mat_clear(A + i);
        free(A);
    }
    c1 = clock();
    c  = (double) (c1 - c0) / CLOCKS_PER_SEC;
    if (verbose)
    {
        printf("Local solution:\n");
        printf("  Time for C      = %f\n", c);
        fflush(stdout);
    }

    c0 = clock();
    {
        const long K = (prec->K + (*p) - 1) / (*p);
        mat_t Mt;
        padic_mat_struct *Ainv;

        mat_init(Mt, b, b, ctxFracQt);
        mat_transpose(Mt, M, ctxFracQt);
        mat_neg(Mt, Mt, ctxFracQt);
        gmde_solve(&Ainv, K, p, prec->N3i, prec->N3iw, Mt, ctxFracQt);
        gmde_convert_soln(Cinv, &vCinv, Ainv, K, p);

        fmpz_poly_mat_transpose(Cinv, Cinv);
        fmpz_poly_mat_compose_pow(Cinv, Cinv, *p);

        for(i = 0; i < K; i++)
            padic_mat_clear(Ainv + i);
        free(Ainv);
        mat_clear(Mt, ctxFracQt);
    }
    c1 = clock();
    c  = (double) (c1 - c0) / CLOCKS_PER_SEC;
    if (verbose)
    {
        printf("  Time for C^{-1} = %f\n", c);
        printf("\n");
        fflush(stdout);
    }

    /* Step 4 {F(t) := C(t) F(0) C(t^p)^{-1}} ********************************/
    /*
        Computes the product C(t) F(0) C(t^p)^{-1} modulo (p^{N_2}, t^K).
        This is done by first computing the unit part of the product
        exactly over the integers modulo t^K.
     */

    c0 = clock();
    {
        fmpz_t pN;
        fmpz_poly_mat_t T;

        fmpz_init(pN);
        fmpz_poly_mat_init(T, b, b);

        for (i = 0; i < b; i++)
        {
            /* Find the unique k s.t. F0(i,k) is non-zero */
            for (k = 0; k < b; k++)
                if (!fmpz_is_zero(padic_mat_entry(F0, i, k)))
                    break;
            if (k == b)
            {
                printf("Exception (frob). F0 is singular.\n\n");
                abort();
            }

            for (j = 0; j < b; j++)
            {
                fmpz_poly_scalar_mul_fmpz(fmpz_poly_mat_entry(T, i, j),
                                          fmpz_poly_mat_entry(Cinv, k, j),
                                          padic_mat_entry(F0, i, k));
            }
        }

        fmpz_poly_mat_mul(F, C, T);
        fmpz_poly_mat_truncate(F, prec->K);
        vF = vC + padic_mat_val(F0) + vCinv;

        /* Canonicalise (F, vF) */
        {
            long v = fmpz_poly_mat_ord_p(F, p);

            if (v == LONG_MAX)
            {
                printf("ERROR (deformation_frob).  F(t) == 0.\n");
                abort();
            }
            else if (v > 0)
            {
                fmpz_pow_ui(pN, p, v);
                fmpz_poly_mat_scalar_divexact_fmpz(F, F, pN);
                vF = vF + v;
            }
        }

        /* Reduce (F, vF) modulo p^{N2} */
        fmpz_pow_ui(pN, p, prec->N2 - vF);
        fmpz_poly_mat_scalar_mod_fmpz(F, F, pN);

        fmpz_clear(pN);
        fmpz_poly_mat_clear(T);
    }
    c1 = clock();
    c  = (double) (c1 - c0) / CLOCKS_PER_SEC;
    if (verbose)
    {
        printf("Matrix for F(t):\n");
        printf("  Time = %f\n", c);
        printf("\n");
        fflush(stdout);
    }

    /* Step 5 {G = r(t)^m F(t)} **********************************************/

    c0 = clock();
    {
        fmpz_t pN;
        fmpz_poly_t t;

        fmpz_init(pN);
        fmpz_poly_init(t);

        fmpz_pow_ui(pN, p, prec->N2 - vF);

        /* Compute r(t)^m mod p^{N2-vF} */
        if (prec->denR == NULL)
        {
            fmpz_mod_poly_t _t;

            fmpz_mod_poly_init(_t, pN);
            fmpz_mod_poly_set_fmpz_poly(_t, r);
            fmpz_mod_poly_pow(_t, _t, prec->m);
            fmpz_mod_poly_get_fmpz_poly(t, _t);
            fmpz_mod_poly_clear(_t);
        }
        else
        {
            /* TODO: We don't really need a copy */
            fmpz_poly_set(t, prec->denR);
        }

        fmpz_poly_mat_scalar_mul_fmpz_poly(F, F, t);
        fmpz_poly_mat_scalar_mod_fmpz(F, F, pN);

        /* TODO: This should not be necessary? */
        fmpz_poly_mat_truncate(F, prec->K);

        fmpz_clear(pN);
        fmpz_poly_clear(t);
    }
    c1 = clock();
    c  = (double) (c1 - c0) / CLOCKS_PER_SEC;
    if (verbose)
    {
        printf("Analytic continuation:\n");
        printf("  Time = %f\n", c);
        printf("\n");
        fflush(stdout);
    }

    /* Steps 6 and 7 *********************************************************/

    if (a == 1)
    {
        /* Step 6 {F(1) = r(t_1)^{-m} G(t_1)} ********************************/

        c0 = clock();
        {
            const long N = prec->N2 - vF;

            fmpz_t f, g, t, pN;

            fmpz_init(f);
            fmpz_init(g);
            fmpz_init(t);
            fmpz_init(pN);

            fmpz_pow_ui(pN, p, N);

            /* f := \hat{t_1}, g := r(\hat{t_1})^{-m} */
            _padic_teichmuller(f, t1->coeffs + 0, p, N);
            if (prec->denR == NULL)
            {
                _fmpz_mod_poly_evaluate_fmpz(g, r->coeffs, r->length, f, pN);
                fmpz_powm_ui(t, g, prec->m, pN);
            }
            else
            {
                _fmpz_mod_poly_evaluate_fmpz(t, prec->denR->coeffs, prec->denR->length, f, pN);
            }
            _padic_inv(g, t, p, N);

            /* F1 := g G(\hat{t_1}) */
            for (i = 0; i < b; i++)
                for (j = 0; j < b; j++)
                {
                    const fmpz_poly_struct *poly = fmpz_poly_mat_entry(F, i, j);
                    const long len               = poly->length;

                    if (len == 0)
                    {
                        fmpz_poly_zero(fmpz_poly_mat_entry(F1, i, j));
                    }
                    else
                    {
                        fmpz_poly_fit_length(fmpz_poly_mat_entry(F1, i, j), 1);

                        _fmpz_mod_poly_evaluate_fmpz(t, poly->coeffs, len, f, pN);
                        fmpz_mul(fmpz_poly_mat_entry(F1, i, j)->coeffs + 0, g, t);
                        fmpz_mod(fmpz_poly_mat_entry(F1, i, j)->coeffs + 0,
                                 fmpz_poly_mat_entry(F1, i, j)->coeffs + 0, pN);

                        _fmpz_poly_set_length(fmpz_poly_mat_entry(F1, i, j), 1);
                        _fmpz_poly_normalise(fmpz_poly_mat_entry(F1, i, j));
                    }
                }

            vF1 = vF;
            fmpz_poly_mat_canonicalise(F1, &vF1, p);

            fmpz_clear(f);
            fmpz_clear(g);
            fmpz_clear(t);
            fmpz_clear(pN);
        }
        c1 = clock();
        c  = (double) (c1 - c0) / CLOCKS_PER_SEC;
        if (verbose)
        {
            printf("Evaluation:\n");
            printf("  Time = %f\n", c);
            printf("\n");
            fflush(stdout);
        }
    }
    else
    {
        /* Step 6 {F(1) = r(t_1)^{-m} G(t_1)} ********************************/

        c0 = clock();
        {
            const long N = prec->N2 - vF;
            fmpz_t pN;
            fmpz *f, *g, *t;

            fmpz_init(pN);

            f = _fmpz_vec_init(a);
            g = _fmpz_vec_init(2 * a - 1);
            t = _fmpz_vec_init(2 * a - 1);

            fmpz_pow_ui(pN, p, N);

            /* f := \hat{t_1}, g := r(\hat{t_1})^{-m} */
            _qadic_teichmuller(f, t1->coeffs, t1->length, Qq->a, Qq->j, Qq->len, p, N);
            if (prec->denR == NULL)
            {
                fmpz_t e;
                fmpz_init_set_ui(e, prec->m);
                _fmpz_mod_poly_compose_smod(g, r->coeffs, r->length, f, a,
                                            Qq->a, Qq->j, Qq->len, pN);
                _qadic_pow(t, g, a, e, Qq->a, Qq->j, Qq->len, pN);
                fmpz_clear(e);
            }
            else
            {
                _fmpz_mod_poly_reduce(prec->denR->coeffs, prec->denR->length, Qq->a, Qq->j, Qq->len, pN);
                _fmpz_poly_normalise(prec->denR);

                _fmpz_mod_poly_compose_smod(t, prec->denR->coeffs, prec->denR->length, f, a,
                                            Qq->a, Qq->j, Qq->len, pN);
            }
            _qadic_inv(g, t, a, Qq->a, Qq->j, Qq->len, p, N);

            /* F1 := g G(\hat{t_1}) */
            for (i = 0; i < b; i++)
                for (j = 0; j < b; j++)
                {
                    const fmpz_poly_struct *poly = fmpz_poly_mat_entry(F, i, j);
                    const long len               = poly->length;

                    fmpz_poly_struct *poly2 = fmpz_poly_mat_entry(F1, i, j);

                    if (len == 0)
                    {
                        fmpz_poly_zero(poly2);
                    }
                    else
                    {
                        _fmpz_mod_poly_compose_smod(t, poly->coeffs, len, f, a,
                                                    Qq->a, Qq->j, Qq->len, pN);

                        fmpz_poly_fit_length(poly2, 2 * a - 1);
                        _fmpz_poly_mul(poly2->coeffs, g, a, t, a);
                        _fmpz_mod_poly_reduce(poly2->coeffs, 2 * a - 1, Qq->a, Qq->j, Qq->len, pN);
                        _fmpz_poly_set_length(poly2, a);
                        _fmpz_poly_normalise(poly2);
                    }
                }

            /* Now the matrix for p^{-1} F_p at t=t_1 is (F1, vF1). */
            vF1 = vF;
            fmpz_poly_mat_canonicalise(F1, &vF1, p);

            fmpz_clear(pN);
            _fmpz_vec_clear(f, a);
            _fmpz_vec_clear(g, 2 * a - 1);
            _fmpz_vec_clear(t, 2 * a - 1);
        }
        c1 = clock();
        c  = (double) (c1 - c0) / CLOCKS_PER_SEC;
        if (verbose)
        {
            printf("Evaluation:\n");
            printf("  Time = %f\n", c);
            printf("\n");
            fflush(stdout);
        }

        /* Step 7 {Norm} *****************************************************/
        /*
            Computes the matrix for $q^{-1} F_q$ at $t = t_1$ as the
            product $F \sigma(F) \dotsm \sigma^{a-1}(F)$ up appropriate
            transpositions because our convention of columns vs rows is
            the opposite of that used by Gerkmann.

            Note that, in any case, transpositions do not affect
            the characteristic polynomial.
         */

        c0 = clock();
        {
            const long N = prec->N1 - a * vF1;

            fmpz_t pN;
            fmpz_poly_mat_t T;

            fmpz_init(pN);
            fmpz_poly_mat_init(T, b, b);

            fmpz_pow_ui(pN, p, N);

            fmpz_poly_mat_frobenius(T, F1, 1, p, N, Qq);
            _qadic_mat_mul(F1, F1, T, pN, Qq);

            for (i = 2; i < a; i++)
            {
                fmpz_poly_mat_frobenius(T, T, 1, p, N, Qq);
                _qadic_mat_mul(F1, F1, T, pN, Qq);
            }

            vF1 = a * vF1;
            fmpz_poly_mat_canonicalise(F1, &vF1, p);

            fmpz_clear(pN);
            fmpz_poly_mat_clear(T);
        }
        c1 = clock();
        c  = (double) (c1 - c0) / CLOCKS_PER_SEC;
        if (verbose)
        {
            printf("Norm:\n");
            printf("  Time = %f\n", c);
            printf("\n");
            fflush(stdout);
        }
    }

    /* Step 8 {Reverse characteristic polynomial} ****************************/

    c0 = clock();

    deformation_revcharpoly(cp, F1, vF1, n, d, prec->N0, prec->r, prec->s, Qq);

    c1 = clock();
    c  = (double) (c1 - c0) / CLOCKS_PER_SEC;
    if (verbose)
    {
        printf("Reverse characteristic polynomial:\n");
        printf("  p(T) = "), fmpz_poly_print_pretty(cp, "T"), printf("\n");
        printf("  Time = %f\n", c);
        printf("\n");
        fflush(stdout);
    }

    /* Clean up **************************************************************/

    padic_mat_clear(F0);

    mat_clear(M, ctxFracQt);
    free(bR);
    free(bC);
    fmpz_poly_clear(r);

    fmpz_poly_mat_clear(C);
    fmpz_poly_mat_clear(Cinv);

    fmpz_poly_mat_clear(F);
    fmpz_poly_mat_clear(F1);
    fmpz_poly_clear(cp);
}
Ejemplo n.º 9
0
int
main(void)
{
    int i, result;
    FLINT_TEST_INIT(state);

    flint_printf("scalar_divexact_ui....");
    fflush(stdout);

    

    /* Check aliasing of a and b */
    for (i = 0; i < 1000 * flint_test_multiplier(); i++)
    {
        fmpz *a, *b;
        ulong n = n_randtest_not_zero(state);
        slong len = n_randint(state, 100);

        a = _fmpz_vec_init(len);
        b = _fmpz_vec_init(len);
        _fmpz_vec_randtest(a, state, len, 200);

        _fmpz_vec_scalar_mul_ui(a, a, len, n);
        _fmpz_vec_scalar_divexact_ui(b, a, len, n);
        _fmpz_vec_scalar_divexact_ui(a, a, len, n);

        result = (_fmpz_vec_equal(a, b, len));
        if (!result)
        {
            flint_printf("FAIL:\n");
            _fmpz_vec_print(a, len), flint_printf("\n\n");
            _fmpz_vec_print(b, len), flint_printf("\n\n");
            abort();
        }

        _fmpz_vec_clear(a, len);
        _fmpz_vec_clear(b, len);
    }

    /* Check that a * n / n == a */
    for (i = 0; i < 1000 * flint_test_multiplier(); i++)
    {
        fmpz *a, *b;
        ulong n = n_randtest_not_zero(state);
        slong len = n_randint(state, 100);

        a = _fmpz_vec_init(len);
        b = _fmpz_vec_init(len);
        _fmpz_vec_randtest(a, state, len, 200);

        _fmpz_vec_set(b, a, len);
        _fmpz_vec_scalar_mul_ui(a, a, len, n);
        _fmpz_vec_scalar_divexact_ui(a, a, len, n);

        result = (_fmpz_vec_equal(a, b, len));
        if (!result)
        {
            flint_printf("FAIL:\n");
            _fmpz_vec_print(a, len), flint_printf("\n\n");
            _fmpz_vec_print(b, len), flint_printf("\n\n");
            abort();
        }

        _fmpz_vec_clear(a, len);
        _fmpz_vec_clear(b, len);
    }

    FLINT_TEST_CLEANUP(state);
    
    flint_printf("PASS\n");
    return 0;
}
Ejemplo n.º 10
0
int
main(void)
{
    int i, result;
    flint_rand_t state;

    printf("scalar_submul_fmpz....");
    fflush(stdout);

    flint_randinit(state);

    /* Compare with fmpz_vec_scalar_submul_si */
    for (i = 0; i < 10000; i++)
    {
        fmpz *a, *b, *c;
        long len, n;
        fmpz_t n1;
        len = n_randint(state, 100);
        n = (long) n_randbits(state, FLINT_BITS - 1);
        if (n_randint(state, 2))
            n = -n;
        fmpz_init(n1);
        fmpz_set_si(n1, n);

        a = _fmpz_vec_init(len);
        b = _fmpz_vec_init(len);
        c = _fmpz_vec_init(len);
        _fmpz_vec_randtest(a, state, len, 200);
        _fmpz_vec_randtest(b, state, len, 200);
        _fmpz_vec_set(c, b, len);

        _fmpz_vec_scalar_submul_fmpz(b, a, len, n1);
        _fmpz_vec_scalar_submul_si(c, a, len, n);

        result = (_fmpz_vec_equal(c, b, len));
        if (!result)
        {
            printf("FAIL:\n");
            _fmpz_vec_print(c, len), printf("\n\n");
            _fmpz_vec_print(b, len), printf("\n\n");
            abort();
        }

        fmpz_clear(n1);
        _fmpz_vec_clear(a, len);
        _fmpz_vec_clear(b, len);
        _fmpz_vec_clear(c, len);
    }

    /* Compute a different way */
    for (i = 0; i < 10000; i++)
    {
        fmpz *a, *b, *c, *d;
        long len = n_randint(state, 100);
        fmpz_t n1;
        fmpz_init(n1);
        fmpz_randtest(n1, state, 200);

        a = _fmpz_vec_init(len);
        b = _fmpz_vec_init(len);
        c = _fmpz_vec_init(len);
        d = _fmpz_vec_init(len);
        _fmpz_vec_randtest(a, state, len, 200);
        _fmpz_vec_randtest(b, state, len, 200);
        _fmpz_vec_set(c, b, len);

        _fmpz_vec_scalar_submul_fmpz(b, a, len, n1);
        _fmpz_vec_scalar_mul_fmpz(d, a, len, n1);
        _fmpz_vec_sub(c, c, d, len);

        result = (_fmpz_vec_equal(c, b, len));
        if (!result)
        {
            printf("FAIL:\n");
            _fmpz_vec_print(c, len), printf("\n\n");
            _fmpz_vec_print(b, len), printf("\n\n");
            abort();
        }

        fmpz_clear(n1);
        _fmpz_vec_clear(a, len);
        _fmpz_vec_clear(b, len);
        _fmpz_vec_clear(c, len);
        _fmpz_vec_clear(d, len);
    }

    flint_randclear(state);
    _fmpz_cleanup();
    printf("PASS\n");
    return 0;
}
Ejemplo n.º 11
0
int
main(void)
{
    int i, result;
    flint_rand_t state;

    printf("scalar_mul_2exp....");
    fflush(stdout);

    flint_randinit(state);

    /* Check aliasing of a and b */
    for (i = 0; i < 10000; i++)
    {
        fmpz *a, *b;
        long len = n_randint(state, 100);
        ulong exp = n_randint(state, 200);

        a = _fmpz_vec_init(len);
        b = _fmpz_vec_init(len);
        _fmpz_vec_randtest(a, state, len, 200);

        _fmpz_vec_scalar_mul_2exp(b, a, len, exp);
        _fmpz_vec_scalar_mul_2exp(a, a, len, exp);

        result = (_fmpz_vec_equal(a, b, len));
        if (!result)
        {
            printf("FAIL:\n");
            printf("exp = %lu\n", exp);
            _fmpz_vec_print(a, len), printf("\n\n");
            _fmpz_vec_print(b, len), printf("\n\n");
            abort();
        }

        _fmpz_vec_clear(a, len);
        _fmpz_vec_clear(b, len);
    }

    /* Check aliasing of (a*2^e1)*2^e2 equals a*2^(e1+e2) */
    for (i = 0; i < 10000; i++)
    {
        fmpz *a, *b;
        long len = n_randint(state, 100);
        ulong e1 = n_randint(state, 200);
        ulong e2 = n_randint(state, 200);

        a = _fmpz_vec_init(len);
        b = _fmpz_vec_init(len);
        _fmpz_vec_randtest(a, state, len, 200);

        _fmpz_vec_scalar_mul_2exp(b, a, len, e1);
        _fmpz_vec_scalar_mul_2exp(b, b, len, e2);
        _fmpz_vec_scalar_mul_2exp(a, a, len, e1 + e2);

        result = (_fmpz_vec_equal(a, b, len));
        if (!result)
        {
            printf("FAIL:\n");
            printf("e1 = %lu, e2 = %lu\n", e1, e2);
            _fmpz_vec_print(a, len), printf("\n\n");
            _fmpz_vec_print(b, len), printf("\n\n");
            abort();
        }

        _fmpz_vec_clear(a, len);
        _fmpz_vec_clear(b, len);
    }

    flint_randclear(state);
    _fmpz_cleanup();
    printf("PASS\n");
    return 0;
}