Ejemplo n.º 1
0
static inline void _plot_face(uint8_t*** p_cell_status,int x,int y,int z,int len_x,int len_y,int len_z,const Vector3& voxelsize,const Face3& p_face) {

	AABB aabb( Vector3(x,y,z),Vector3(len_x,len_y,len_z));
	aabb.pos=aabb.pos*voxelsize;
	aabb.size=aabb.size*voxelsize;

	if (!p_face.intersects_aabb(aabb))
		return;

	if (len_x==1 && len_y==1 && len_z==1) {

		p_cell_status[x][y][z]=_CELL_SOLID;
		return;
	}
	
	
 
	int div_x=len_x>1?2:1;
	int div_y=len_y>1?2:1;
	int div_z=len_z>1?2:1;

#define _SPLIT(m_i,m_div,m_v,m_len_v,m_new_v,m_new_len_v)\
	if (m_div==1) {\
		m_new_v=m_v;\
		m_new_len_v=1;	\
	} else if (m_i==0) {\
		m_new_v=m_v;\
		m_new_len_v=m_len_v/2;\
	} else {\
		m_new_v=m_v+m_len_v/2;\
		m_new_len_v=m_len_v-m_len_v/2;		\
	}

	int new_x;
	int new_len_x;
	int new_y;
	int new_len_y;
	int new_z;
	int new_len_z;

	for (int i=0;i<div_x;i++) {
		
		
		_SPLIT(i,div_x,x,len_x,new_x,new_len_x);
				
		for (int j=0;j<div_y;j++) {

			_SPLIT(j,div_y,y,len_y,new_y,new_len_y);
			
			for (int k=0;k<div_z;k++) {

				_SPLIT(k,div_z,z,len_z,new_z,new_len_z);

				_plot_face(p_cell_status,new_x,new_y,new_z,new_len_x,new_len_y,new_len_z,voxelsize,p_face);
			}
		}
	}
}
Ejemplo n.º 2
0
void BakedLight::_plot_face(int p_idx, int p_level, const Vector3 *p_vtx, const Vector2* p_uv, const MaterialCache& p_material, const Rect3 &p_aabb) {



	if (p_level==cell_subdiv-1) {
		//plot the face by guessing it's albedo and emission value

		//find best axis to map to, for scanning values
		int closest_axis;
		float closest_dot;

		Vector3 normal = Plane(p_vtx[0],p_vtx[1],p_vtx[2]).normal;

		for(int i=0;i<3;i++) {

			Vector3 axis;
			axis[i]=1.0;
			float dot=ABS(normal.dot(axis));
			if (i==0 || dot>closest_dot) {
				closest_axis=i;
				closest_dot=dot;
			}
		}

		Vector3 axis;
		axis[closest_axis]=1.0;
		Vector3 t1;
		t1[(closest_axis+1)%3]=1.0;
		Vector3 t2;
		t2[(closest_axis+2)%3]=1.0;

		t1*=p_aabb.size[(closest_axis+1)%3]/float(color_scan_cell_width);
		t2*=p_aabb.size[(closest_axis+2)%3]/float(color_scan_cell_width);

		Color albedo_accum;
		Color emission_accum;
		float alpha=0.0;

		//map to a grid average in the best axis for this face
		for(int i=0;i<color_scan_cell_width;i++) {

			Vector3 ofs_i=float(i)*t1;

			for(int j=0;j<color_scan_cell_width;j++) {

				Vector3 ofs_j=float(j)*t2;

				Vector3 from = p_aabb.pos+ofs_i+ofs_j;
				Vector3 to = from + t1 + t2 + axis * p_aabb.size[closest_axis];
				Vector3 half = (to-from)*0.5;

				//is in this cell?
				if (!fast_tri_box_overlap(from+half,half,p_vtx)) {
					continue; //face does not span this cell
				}

				//go from -size to +size*2 to avoid skipping collisions
				Vector3 ray_from = from + (t1+t2)*0.5 - axis * p_aabb.size[closest_axis];
				Vector3 ray_to = ray_from + axis * p_aabb.size[closest_axis]*2;

				Vector3 intersection;

				if (!Geometry::ray_intersects_triangle(ray_from,ray_to,p_vtx[0],p_vtx[1],p_vtx[2],&intersection)) {
					//no intersect? look in edges

					float closest_dist=1e20;
					for(int j=0;j<3;j++) {
						Vector3 c;
						Vector3 inters;
						Geometry::get_closest_points_between_segments(p_vtx[j],p_vtx[(j+1)%3],ray_from,ray_to,inters,c);
						float d=c.distance_to(intersection);
						if (j==0 || d<closest_dist) {
							closest_dist=d;
							intersection=inters;
						}
					}
				}

				Vector2 uv = get_uv(intersection,p_vtx,p_uv);


				int uv_x = CLAMP(Math::fposmod(uv.x,1.0)*bake_texture_size,0,bake_texture_size-1);
				int uv_y = CLAMP(Math::fposmod(uv.y,1.0)*bake_texture_size,0,bake_texture_size-1);

				int ofs = uv_y*bake_texture_size+uv_x;
				albedo_accum.r+=p_material.albedo[ofs].r;
				albedo_accum.g+=p_material.albedo[ofs].g;
				albedo_accum.b+=p_material.albedo[ofs].b;
				albedo_accum.a+=p_material.albedo[ofs].a;

				emission_accum.r+=p_material.emission[ofs].r;
				emission_accum.g+=p_material.emission[ofs].g;
				emission_accum.b+=p_material.emission[ofs].b;
				alpha+=1.0;

			}
		}


		if (alpha==0) {
			//could not in any way get texture information.. so use closest point to center

			Face3 f( p_vtx[0],p_vtx[1],p_vtx[2]);
			Vector3 inters = f.get_closest_point_to(p_aabb.pos+p_aabb.size*0.5);

			Vector2 uv = get_uv(inters,p_vtx,p_uv);

			int uv_x = CLAMP(Math::fposmod(uv.x,1.0)*bake_texture_size,0,bake_texture_size-1);
			int uv_y = CLAMP(Math::fposmod(uv.y,1.0)*bake_texture_size,0,bake_texture_size-1);

			int ofs = uv_y*bake_texture_size+uv_x;

			alpha = 1.0/(color_scan_cell_width*color_scan_cell_width);

			albedo_accum.r=p_material.albedo[ofs].r*alpha;
			albedo_accum.g=p_material.albedo[ofs].g*alpha;
			albedo_accum.b=p_material.albedo[ofs].b*alpha;
			albedo_accum.a=p_material.albedo[ofs].a*alpha;

			emission_accum.r=p_material.emission[ofs].r*alpha;
			emission_accum.g=p_material.emission[ofs].g*alpha;
			emission_accum.b=p_material.emission[ofs].b*alpha;


			zero_alphas++;
		} else {

			float accdiv = 1.0/(color_scan_cell_width*color_scan_cell_width);
			alpha*=accdiv;

			albedo_accum.r*=accdiv;
			albedo_accum.g*=accdiv;
			albedo_accum.b*=accdiv;
			albedo_accum.a*=accdiv;

			emission_accum.r*=accdiv;
			emission_accum.g*=accdiv;
			emission_accum.b*=accdiv;
		}

		//put this temporarily here, corrected in a later step
		bake_cells_write[p_idx].albedo[0]+=albedo_accum.r;
		bake_cells_write[p_idx].albedo[1]+=albedo_accum.g;
		bake_cells_write[p_idx].albedo[2]+=albedo_accum.b;
		bake_cells_write[p_idx].light[0]+=emission_accum.r;
		bake_cells_write[p_idx].light[1]+=emission_accum.g;
		bake_cells_write[p_idx].light[2]+=emission_accum.b;
		bake_cells_write[p_idx].alpha+=alpha;

		static const Vector3 side_normals[6]={
			Vector3(-1, 0, 0),
			Vector3( 1, 0, 0),
			Vector3( 0,-1, 0),
			Vector3( 0, 1, 0),
			Vector3( 0, 0,-1),
			Vector3( 0, 0, 1),
		};

		for(int i=0;i<6;i++) {
			if (normal.dot(side_normals[i])>CMP_EPSILON) {
				bake_cells_write[p_idx].used_sides|=(1<<i);
			}
		}


	} else {
		//go down
		for(int i=0;i<8;i++) {

			Rect3 aabb=p_aabb;
			aabb.size*=0.5;

			if (i&1)
				aabb.pos.x+=aabb.size.x;
			if (i&2)
				aabb.pos.y+=aabb.size.y;
			if (i&4)
				aabb.pos.z+=aabb.size.z;

			{
				Rect3 test_aabb=aabb;
				//test_aabb.grow_by(test_aabb.get_longest_axis_size()*0.05); //grow a bit to avoid numerical error in real-time
				Vector3 qsize = test_aabb.size*0.5; //quarter size, for fast aabb test

				if (!fast_tri_box_overlap(test_aabb.pos+qsize,qsize,p_vtx)) {
				//if (!Face3(p_vtx[0],p_vtx[1],p_vtx[2]).intersects_aabb2(aabb)) {
					//does not fit in child, go on
					continue;
				}

			}

			if (bake_cells_write[p_idx].childs[i]==CHILD_EMPTY) {
				//sub cell must be created

				if (bake_cells_used==(1<<bake_cells_alloc)) {
					//exhausted cells, creating more space
					bake_cells_alloc++;
					bake_cells_write=PoolVector<BakeCell>::Write();
					bake_cells.resize(1<<bake_cells_alloc);
					bake_cells_write=bake_cells.write();
				}

				bake_cells_write[p_idx].childs[i]=bake_cells_used;
				bake_cells_level_used[p_level+1]++;
				bake_cells_used++;


			}


			_plot_face(bake_cells_write[p_idx].childs[i],p_level+1,p_vtx,p_uv,p_material,aabb);
		}
	}
}
Ejemplo n.º 3
0
PoolVector<Face3> Geometry::wrap_geometry(PoolVector<Face3> p_array, real_t *p_error) {

#define _MIN_SIZE 1.0
#define _MAX_LENGTH 20

	int face_count = p_array.size();
	PoolVector<Face3>::Read facesr = p_array.read();
	const Face3 *faces = facesr.ptr();

	Rect3 global_aabb;

	for (int i = 0; i < face_count; i++) {

		if (i == 0) {

			global_aabb = faces[i].get_aabb();
		} else {

			global_aabb.merge_with(faces[i].get_aabb());
		}
	}

	global_aabb.grow_by(0.01); // avoid numerical error

	// determine amount of cells in grid axis
	int div_x, div_y, div_z;

	if (global_aabb.size.x / _MIN_SIZE < _MAX_LENGTH)
		div_x = (int)(global_aabb.size.x / _MIN_SIZE) + 1;
	else
		div_x = _MAX_LENGTH;

	if (global_aabb.size.y / _MIN_SIZE < _MAX_LENGTH)
		div_y = (int)(global_aabb.size.y / _MIN_SIZE) + 1;
	else
		div_y = _MAX_LENGTH;

	if (global_aabb.size.z / _MIN_SIZE < _MAX_LENGTH)
		div_z = (int)(global_aabb.size.z / _MIN_SIZE) + 1;
	else
		div_z = _MAX_LENGTH;

	Vector3 voxelsize = global_aabb.size;
	voxelsize.x /= div_x;
	voxelsize.y /= div_y;
	voxelsize.z /= div_z;

	// create and initialize cells to zero
	//print_line("Wrapper: Initializing Cells");

	uint8_t ***cell_status = memnew_arr(uint8_t **, div_x);
	for (int i = 0; i < div_x; i++) {

		cell_status[i] = memnew_arr(uint8_t *, div_y);

		for (int j = 0; j < div_y; j++) {

			cell_status[i][j] = memnew_arr(uint8_t, div_z);

			for (int k = 0; k < div_z; k++) {

				cell_status[i][j][k] = 0;
			}
		}
	}

	// plot faces into cells
	//print_line("Wrapper (1/6): Plotting Faces");

	for (int i = 0; i < face_count; i++) {

		Face3 f = faces[i];
		for (int j = 0; j < 3; j++) {

			f.vertex[j] -= global_aabb.pos;
		}
		_plot_face(cell_status, 0, 0, 0, div_x, div_y, div_z, voxelsize, f);
	}

	// determine which cells connect to the outside by traversing the outside and recursively flood-fill marking

	//print_line("Wrapper (2/6): Flood Filling");

	for (int i = 0; i < div_x; i++) {

		for (int j = 0; j < div_y; j++) {

			_mark_outside(cell_status, i, j, 0, div_x, div_y, div_z);
			_mark_outside(cell_status, i, j, div_z - 1, div_x, div_y, div_z);
		}
	}

	for (int i = 0; i < div_z; i++) {

		for (int j = 0; j < div_y; j++) {

			_mark_outside(cell_status, 0, j, i, div_x, div_y, div_z);
			_mark_outside(cell_status, div_x - 1, j, i, div_x, div_y, div_z);
		}
	}

	for (int i = 0; i < div_x; i++) {

		for (int j = 0; j < div_z; j++) {

			_mark_outside(cell_status, i, 0, j, div_x, div_y, div_z);
			_mark_outside(cell_status, i, div_y - 1, j, div_x, div_y, div_z);
		}
	}

	// build faces for the inside-outside cell divisors

	//print_line("Wrapper (3/6): Building Faces");

	PoolVector<Face3> wrapped_faces;

	for (int i = 0; i < div_x; i++) {

		for (int j = 0; j < div_y; j++) {

			for (int k = 0; k < div_z; k++) {

				_build_faces(cell_status, i, j, k, div_x, div_y, div_z, wrapped_faces);
			}
		}
	}

	//print_line("Wrapper (4/6): Transforming Back Vertices");

	// transform face vertices to global coords

	int wrapped_faces_count = wrapped_faces.size();
	PoolVector<Face3>::Write wrapped_facesw = wrapped_faces.write();
	Face3 *wrapped_faces_ptr = wrapped_facesw.ptr();

	for (int i = 0; i < wrapped_faces_count; i++) {

		for (int j = 0; j < 3; j++) {

			Vector3 &v = wrapped_faces_ptr[i].vertex[j];
			v = v * voxelsize;
			v += global_aabb.pos;
		}
	}

	// clean up grid
	//print_line("Wrapper (5/6): Grid Cleanup");

	for (int i = 0; i < div_x; i++) {

		for (int j = 0; j < div_y; j++) {

			memdelete_arr(cell_status[i][j]);
		}

		memdelete_arr(cell_status[i]);
	}

	memdelete_arr(cell_status);
	if (p_error)
		*p_error = voxelsize.length();

	//print_line("Wrapper (6/6): Finished.");
	return wrapped_faces;
}
Ejemplo n.º 4
0
void GIProbe::_plot_mesh(const Transform& p_xform, Ref<Mesh>& p_mesh, Baker *p_baker, const Vector<Ref<Material> > &p_materials, const Ref<Material> &p_override_material) {


	for(int i=0;i<p_mesh->get_surface_count();i++) {

		if (p_mesh->surface_get_primitive_type(i)!=Mesh::PRIMITIVE_TRIANGLES)
			continue; //only triangles

		Ref<Material> src_material;

		if (p_override_material.is_valid()) {
			src_material=p_override_material;
		} else if (i<p_materials.size() && p_materials[i].is_valid()) {
			src_material=p_materials[i];
		} else {
			src_material=p_mesh->surface_get_material(i);
		}
		Baker::MaterialCache material = _get_material_cache(src_material,p_baker);

		Array a = p_mesh->surface_get_arrays(i);


		PoolVector<Vector3> vertices = a[Mesh::ARRAY_VERTEX];
		PoolVector<Vector3>::Read vr=vertices.read();
		PoolVector<Vector2> uv = a[Mesh::ARRAY_TEX_UV];
		PoolVector<Vector2>::Read uvr;
		PoolVector<int> index = a[Mesh::ARRAY_INDEX];

		bool read_uv=false;

		if (uv.size()) {

			uvr=uv.read();
			read_uv=true;
		}

		if (index.size()) {

			int facecount = index.size()/3;
			PoolVector<int>::Read ir=index.read();

			for(int j=0;j<facecount;j++) {

				Vector3 vtxs[3];
				Vector2 uvs[3];

				for(int k=0;k<3;k++) {
					vtxs[k]=p_xform.xform(vr[ir[j*3+k]]);
				}

				if (read_uv) {
					for(int k=0;k<3;k++) {
						uvs[k]=uvr[ir[j*3+k]];
					}
				}

				//test against original bounds
				if (!fast_tri_box_overlap(-extents,extents*2,vtxs))
					continue;
				//plot
				_plot_face(0,0,0,0,0,vtxs,uvs,material,p_baker->po2_bounds,p_baker);
			}



		} else {

			int facecount = vertices.size()/3;

			for(int j=0;j<facecount;j++) {

				Vector3 vtxs[3];
				Vector2 uvs[3];

				for(int k=0;k<3;k++) {
					vtxs[k]=p_xform.xform(vr[j*3+k]);
				}

				if (read_uv) {
					for(int k=0;k<3;k++) {
						uvs[k]=uvr[j*3+k];
					}
				}

				//test against original bounds
				if (!fast_tri_box_overlap(-extents,extents*2,vtxs))
					continue;
				//plot face
				_plot_face(0,0,0,0,0,vtxs,uvs,material,p_baker->po2_bounds,p_baker);
			}

		}
	}
}
Ejemplo n.º 5
0
void GIProbe::_plot_face(int p_idx, int p_level,int p_x,int p_y,int p_z, const Vector3 *p_vtx, const Vector2* p_uv, const Baker::MaterialCache& p_material, const Rect3 &p_aabb,Baker *p_baker) {



	if (p_level==p_baker->cell_subdiv-1) {
		//plot the face by guessing it's albedo and emission value

		//find best axis to map to, for scanning values
		int closest_axis;
		float closest_dot;

		Vector3 normal = Plane(p_vtx[0],p_vtx[1],p_vtx[2]).normal;

		for(int i=0;i<3;i++) {

			Vector3 axis;
			axis[i]=1.0;
			float dot=ABS(normal.dot(axis));
			if (i==0 || dot>closest_dot) {
				closest_axis=i;
				closest_dot=dot;
			}
		}

		Vector3 axis;
		axis[closest_axis]=1.0;
		Vector3 t1;
		t1[(closest_axis+1)%3]=1.0;
		Vector3 t2;
		t2[(closest_axis+2)%3]=1.0;

		t1*=p_aabb.size[(closest_axis+1)%3]/float(color_scan_cell_width);
		t2*=p_aabb.size[(closest_axis+2)%3]/float(color_scan_cell_width);

		Color albedo_accum;
		Color emission_accum;
		Vector3 normal_accum;

		float alpha=0.0;

		//map to a grid average in the best axis for this face
		for(int i=0;i<color_scan_cell_width;i++) {

			Vector3 ofs_i=float(i)*t1;

			for(int j=0;j<color_scan_cell_width;j++) {

				Vector3 ofs_j=float(j)*t2;

				Vector3 from = p_aabb.pos+ofs_i+ofs_j;
				Vector3 to = from + t1 + t2 + axis * p_aabb.size[closest_axis];
				Vector3 half = (to-from)*0.5;

				//is in this cell?
				if (!fast_tri_box_overlap(from+half,half,p_vtx)) {
					continue; //face does not span this cell
				}

				//go from -size to +size*2 to avoid skipping collisions
				Vector3 ray_from = from + (t1+t2)*0.5 - axis * p_aabb.size[closest_axis];
				Vector3 ray_to = ray_from + axis * p_aabb.size[closest_axis]*2;

				Vector3 intersection;

				if (!Geometry::ray_intersects_triangle(ray_from,ray_to,p_vtx[0],p_vtx[1],p_vtx[2],&intersection)) {
					//no intersect? look in edges

					float closest_dist=1e20;
					for(int j=0;j<3;j++) {
						Vector3 c;
						Vector3 inters;
						Geometry::get_closest_points_between_segments(p_vtx[j],p_vtx[(j+1)%3],ray_from,ray_to,inters,c);
						float d=c.distance_to(intersection);
						if (j==0 || d<closest_dist) {
							closest_dist=d;
							intersection=inters;
						}
					}
				}

				Vector2 uv = get_uv(intersection,p_vtx,p_uv);


				int uv_x = CLAMP(Math::fposmod(uv.x,1.0f)*bake_texture_size,0,bake_texture_size-1);
				int uv_y = CLAMP(Math::fposmod(uv.y,1.0f)*bake_texture_size,0,bake_texture_size-1);

				int ofs = uv_y*bake_texture_size+uv_x;
				albedo_accum.r+=p_material.albedo[ofs].r;
				albedo_accum.g+=p_material.albedo[ofs].g;
				albedo_accum.b+=p_material.albedo[ofs].b;
				albedo_accum.a+=p_material.albedo[ofs].a;

				emission_accum.r+=p_material.emission[ofs].r;
				emission_accum.g+=p_material.emission[ofs].g;
				emission_accum.b+=p_material.emission[ofs].b;

				normal_accum+=normal;

				alpha+=1.0;

			}
		}


		if (alpha==0) {
			//could not in any way get texture information.. so use closest point to center

			Face3 f( p_vtx[0],p_vtx[1],p_vtx[2]);
			Vector3 inters = f.get_closest_point_to(p_aabb.pos+p_aabb.size*0.5);

			Vector2 uv = get_uv(inters,p_vtx,p_uv);

			int uv_x = CLAMP(Math::fposmod(uv.x,1.0f)*bake_texture_size,0,bake_texture_size-1);
			int uv_y = CLAMP(Math::fposmod(uv.y,1.0f)*bake_texture_size,0,bake_texture_size-1);

			int ofs = uv_y*bake_texture_size+uv_x;

			alpha = 1.0/(color_scan_cell_width*color_scan_cell_width);

			albedo_accum.r=p_material.albedo[ofs].r*alpha;
			albedo_accum.g=p_material.albedo[ofs].g*alpha;
			albedo_accum.b=p_material.albedo[ofs].b*alpha;
			albedo_accum.a=p_material.albedo[ofs].a*alpha;

			emission_accum.r=p_material.emission[ofs].r*alpha;
			emission_accum.g=p_material.emission[ofs].g*alpha;
			emission_accum.b=p_material.emission[ofs].b*alpha;

			normal_accum*=alpha;


		} else {

			float accdiv = 1.0/(color_scan_cell_width*color_scan_cell_width);
			alpha*=accdiv;

			albedo_accum.r*=accdiv;
			albedo_accum.g*=accdiv;
			albedo_accum.b*=accdiv;
			albedo_accum.a*=accdiv;

			emission_accum.r*=accdiv;
			emission_accum.g*=accdiv;
			emission_accum.b*=accdiv;

			normal_accum*=accdiv;

		}

		//put this temporarily here, corrected in a later step
		p_baker->bake_cells[p_idx].albedo[0]+=albedo_accum.r;
		p_baker->bake_cells[p_idx].albedo[1]+=albedo_accum.g;
		p_baker->bake_cells[p_idx].albedo[2]+=albedo_accum.b;
		p_baker->bake_cells[p_idx].emission[0]+=emission_accum.r;
		p_baker->bake_cells[p_idx].emission[1]+=emission_accum.g;
		p_baker->bake_cells[p_idx].emission[2]+=emission_accum.b;
		p_baker->bake_cells[p_idx].normal[0]+=normal_accum.x;
		p_baker->bake_cells[p_idx].normal[1]+=normal_accum.y;
		p_baker->bake_cells[p_idx].normal[2]+=normal_accum.z;
		p_baker->bake_cells[p_idx].alpha+=alpha;

		static const Vector3 side_normals[6]={
			Vector3(-1, 0, 0),
			Vector3( 1, 0, 0),
			Vector3( 0,-1, 0),
			Vector3( 0, 1, 0),
			Vector3( 0, 0,-1),
			Vector3( 0, 0, 1),
		};

		/*
		for(int i=0;i<6;i++) {
			if (normal.dot(side_normals[i])>CMP_EPSILON) {
				p_baker->bake_cells[p_idx].used_sides|=(1<<i);
			}
		}*/


	} else {
		//go down

		int half = (1<<(p_baker->cell_subdiv-1)) >> (p_level+1);
		for(int i=0;i<8;i++) {

			Rect3 aabb=p_aabb;
			aabb.size*=0.5;

			int nx=p_x;
			int ny=p_y;
			int nz=p_z;

			if (i&1) {
				aabb.pos.x+=aabb.size.x;
				nx+=half;
			}
			if (i&2) {
				aabb.pos.y+=aabb.size.y;
				ny+=half;
			}
			if (i&4) {
				aabb.pos.z+=aabb.size.z;
				nz+=half;
			}
			//make sure to not plot beyond limits
			if (nx<0 || nx>=p_baker->axis_cell_size[0] || ny<0 || ny>=p_baker->axis_cell_size[1] || nz<0 || nz>=p_baker->axis_cell_size[2])
				continue;

			{
				Rect3 test_aabb=aabb;
				//test_aabb.grow_by(test_aabb.get_longest_axis_size()*0.05); //grow a bit to avoid numerical error in real-time
				Vector3 qsize = test_aabb.size*0.5; //quarter size, for fast aabb test

				if (!fast_tri_box_overlap(test_aabb.pos+qsize,qsize,p_vtx)) {
				//if (!Face3(p_vtx[0],p_vtx[1],p_vtx[2]).intersects_aabb2(aabb)) {
					//does not fit in child, go on
					continue;
				}

			}

			if (p_baker->bake_cells[p_idx].childs[i]==Baker::CHILD_EMPTY) {
				//sub cell must be created

				uint32_t child_idx = p_baker->bake_cells.size();
				p_baker->bake_cells[p_idx].childs[i]=child_idx;
				p_baker->bake_cells.resize( p_baker->bake_cells.size() + 1);
				p_baker->bake_cells[child_idx].level=p_level+1;

			}


			_plot_face(p_baker->bake_cells[p_idx].childs[i],p_level+1,nx,ny,nz,p_vtx,p_uv,p_material,aabb,p_baker);
		}
	}
}