Ejemplo n.º 1
0
/**
 * @brief Creates a new receptor
 *
 * allocates all the memory needed in the heap
 *
 * @param[in] r semantic ID for this receptor
 * @returns pointer to a newly allocated Receptor
 *
 * <b>Examples (from test suite):</b>
 * @snippet spec/receptor_spec.h testReceptorCreate
 */
Receptor *_r_new(SemTable *sem,SemanticID r) {
    T *t = _t_new_root(RECEPTOR_INSTANCE);
    _t_news(t,INSTANCE_OF,r);
    if (semeq(r,SYS_RECEPTOR)) {
        _t_newi(t,CONTEXT_NUM,0);
        _t_newi(t,PARENT_CONTEXT_NUM,-1);
    }
    else {
        _t_newi(t,CONTEXT_NUM,_d_get_receptor_context(sem,r));
        _t_newi(t,PARENT_CONTEXT_NUM,r.context);
    }
    T *state = _r_make_state();
    _t_add(t,state);
    return __r_init(t,sem);
}
Ejemplo n.º 2
0
// create a TREE_DELTA tree
T *makeDelta(Symbol sym,int *path,T *t,int count) {
    T *d = _t_new_root(sym);
    _t_new(d,TREE_DELTA_PATH,path,sizeof(int)*(_t_path_depth(path)+1));
    _t_add(_t_newr(d,TREE_DELTA_VALUE),_t_clone(t));
    if (count)
        _t_newi(d,TREE_DELTA_COUNT,count);
    return d;
}
Ejemplo n.º 3
0
T *_r_make_state() {
    T *t = _t_new_root(RECEPTOR_STATE);
    T *f = _t_newr(t,FLUX);
    __r_add_aspect(f,DEFAULT_ASPECT);
    _t_newr(t,PENDING_SIGNALS);
    _t_newr(t,PENDING_RESPONSES);
    _t_newr(t,CONVERSATIONS);
    _t_newi(t,RECEPTOR_ELAPSED_TIME,0);
    return t;
}
Ejemplo n.º 4
0
Receptor *__r_new(Symbol s,T *defs,T *aspects) {
    T *t = _t_new_root(s);
    _t_add(t,defs);
    _t_add(t,aspects);
    T *f = _t_newr(t,FLUX);
    T *a = _t_newi(f,ASPECT,DEFAULT_ASPECT);
    _t_newr(a,LISTENERS);
    _t_newr(a,SIGNALS);
    _t_newr(t,RECEPTOR_STATE);
    _t_newr(t,PENDING_SIGNALS);
    _t_newr(t,PENDING_RESPONSES);

    return __r_init(t);
}
Ejemplo n.º 5
0
void makeShell(VMHost *v,FILE *input, FILE *output,Receptor **irp,Receptor **orp,Stream **isp,Stream **osp) {
    // define and then create the shell receptor
    Symbol shell = _d_define_receptor(v->r->sem,"shell",__r_make_definitions(),DEV_COMPOSITORY_CONTEXT);
    Receptor *r = _r_new(v->sem,shell);
    Xaddr shellx = _v_new_receptor(v,v->r,shell,r);
    _v_activate(v,shellx);

    // create stdin/out receptors

    Stream *output_stream = *osp = _st_new_unix_stream(output,0);
    Stream *input_stream = *isp = _st_new_unix_stream(input,1);

    Receptor *i_r = *irp = _r_makeStreamEdgeReceptor(v->sem);
    _r_addReader(i_r,input_stream,r->addr,DEFAULT_ASPECT,parse_line,LINE,false);
    Xaddr ix = _v_new_receptor(v,v->r,STREAM_EDGE,i_r);
    _v_activate(v,ix);

    Receptor *o_r = *orp = _r_makeStreamEdgeReceptor(v->sem);
    _r_addWriter(o_r,output_stream,DEFAULT_ASPECT);
    Xaddr ox = _v_new_receptor(v,v->r,STREAM_EDGE,o_r);
    _v_activate(v,ox);

    // set up shell to express the line parsing protocol when it receives LINES from the stream reader
    Protocol clp;
    __sem_get_by_label(v->sem,"PARSE_COMMAND_FROM_LINE",&clp,DEV_COMPOSITORY_CONTEXT);
    T *bindings = _t_new_root(PROTOCOL_BINDINGS);
    T *res = _t_newr(bindings,RESOLUTION);
    T *w = _t_newr(res,WHICH_RECEPTOR);
    _t_news(w,ROLE,LINE_SENDER);
    __r_make_addr(w,ACTUAL_RECEPTOR,i_r->addr);
    res = _t_newr(bindings,RESOLUTION);
    w = _t_newr(res,WHICH_RECEPTOR);
    _t_news(w,ROLE,COMMAND_RECEIVER);
    __r_make_addr(w,ACTUAL_RECEPTOR,r->addr);
    res = _t_newr(bindings,RESOLUTION);
    w = _t_newr(res,WHICH_SYMBOL);
    _t_news(w,USAGE,COMMAND_TYPE);
    _t_news(w,ACTUAL_SYMBOL,SHELL_COMMAND);

    _o_express_role(r,clp,COMMAND_RECEIVER,DEFAULT_ASPECT,bindings);
    _t_free(bindings);

    // set up shell to use the CLOCK TELL_TIME protocol for the time command
    Protocol time;
    __sem_get_by_label(v->sem,"time",&time,CLOCK_CONTEXT);
    T *code = _t_new_root(INITIATE_PROTOCOL);
    _t_news(code,PNAME,time);
    _t_news(code,WHICH_INTERACTION,tell_time);
    bindings = _t_newr(code,PROTOCOL_BINDINGS);
    res = _t_newr(bindings,RESOLUTION);
    w = _t_newr(res,WHICH_RECEPTOR);
    _t_news(w,ROLE,TIME_HEARER);
    __r_make_addr(w,ACTUAL_RECEPTOR,r->addr);
    res = _t_newr(bindings,RESOLUTION);
    w = _t_newr(res,WHICH_RECEPTOR);
    _t_news(w,ROLE,TIME_TELLER);
    ReceptorAddress clock_addr = {3}; // @todo bogus!!! fix getting clock address somehow
    __r_make_addr(w,ACTUAL_RECEPTOR,clock_addr);
    res = _t_newr(bindings,RESOLUTION);
    w = _t_newr(res,WHICH_PROCESS);
    _t_news(w,GOAL,RESPONSE_HANDLER);

    addCommand(r,o_r->addr,"time","get time",code,w);

    // (expect (on flux SHELL_COMMAND:receptor) action (send std_out (convert_to_lines (send vmhost receptor-list))))

    code = _t_newi(0,MAGIC,MagicReceptors);
    addCommand(r,o_r->addr,"receptors","get receptor list",code,NULL);

    // (expect (on flux SHELL_COMMAND:receptor) action (send std_out (convert_to_lines (send vmhost shutdown)))
    code = _t_newi(0,MAGIC,MagicQuit);
    addCommand(r,o_r->addr,"quit","shut down the vmhost",code,NULL);

    // (expect (on flux SHELL_COMMAND:debug) action (send std_out (convert_to_lines (magic toggle debug)))
    code = _t_newi(0,MAGIC,MagicDebug);
    addCommand(r,o_r->addr,"debug","toggle debug mode",code,NULL);

}
Ejemplo n.º 6
0
/**
 * reduce system level processes in a run tree.  Assumes that the children have already been
 * reduced and all parameters have been filled in
 *
 * these system level processes are the equivalent of the instruction set of the ceptr virtual machine
 */
Error __p_reduce_sys_proc(R *context,Symbol s,T *code) {
    int b,c;
    char *str;
    Symbol sy;
    T *x,*t,*match_results,*match_tree;
    Error err = noReductionErr;
    switch(s.id) {
    case NOOP_ID:
        // noop simply replaces itself with it's own child
        x = _t_detach_by_idx(code,1);
        break;
    case IF_ID:
        t = _t_child(code,1);
        b = (*(int *)_t_surface(t)) ? 2 : 3;
        x = _t_detach_by_idx(code,b);
        break;
    case ADD_INT_ID:
        x = _t_detach_by_idx(code,1);
        c = *(int *)_t_surface(_t_child(code,1));
        *((int *)&x->contents.surface) = c+*((int *)&x->contents.surface);
        break;
    case SUB_INT_ID:
        x = _t_detach_by_idx(code,1);
        c = *(int *)_t_surface(_t_child(code,1));
        *((int *)&x->contents.surface) = *((int *)&x->contents.surface)-c;
        break;
    case MULT_INT_ID:
        x = _t_detach_by_idx(code,1);
        c = *(int *)_t_surface(_t_child(code,1));
        *((int *)&x->contents.surface) = *((int *)&x->contents.surface)*c;
        break;
    case DIV_INT_ID:
        x = _t_detach_by_idx(code,1);
        c = *(int *)_t_surface(_t_child(code,1));
        if (!c) {
            _t_free(x);
            return divideByZeroReductionErr;
        }
        *((int *)&x->contents.surface) = *((int *)&x->contents.surface)/c;
        break;
    case MOD_INT_ID:
        x = _t_detach_by_idx(code,1);
        c = *(int *)_t_surface(_t_child(code,1));
        if (!c) {
            _t_free(x);
            return divideByZeroReductionErr;
        }
        *((int *)&x->contents.surface) = *((int *)&x->contents.surface)%c;
        break;
    case EQ_INT_ID:
        x = _t_detach_by_idx(code,1);
        c = *(int *)_t_surface(_t_child(code,1));
        *((int *)&x->contents.surface) = *((int *)&x->contents.surface)==c;
        x->contents.symbol = BOOLEAN;
        break;
    case LT_INT_ID:
        x = _t_detach_by_idx(code,1);
        c = *(int *)_t_surface(_t_child(code,1));
        *((int *)&x->contents.surface) = *((int *)&x->contents.surface)<c;
        x->contents.symbol = BOOLEAN;
        break;
    case GT_INT_ID:
        x = _t_detach_by_idx(code,1);
        c = *(int *)_t_surface(_t_child(code,1));
        *((int *)&x->contents.surface) = *((int *)&x->contents.surface)>c;
        x->contents.symbol = BOOLEAN;
        break;
    case LTE_INT_ID:
        x = _t_detach_by_idx(code,1);
        c = *(int *)_t_surface(_t_child(code,1));
        *((int *)&x->contents.surface) = *((int *)&x->contents.surface)<=c;
        x->contents.symbol = BOOLEAN;
        break;
    case GTE_INT_ID:
        x = _t_detach_by_idx(code,1);
        c = *(int *)_t_surface(_t_child(code,1));
        *((int *)&x->contents.surface) = *((int *)&x->contents.surface)>=c;
        x->contents.symbol = BOOLEAN;
        break;
    case CONCAT_STR_ID:
        // if the first parameter is a RESULT SYMBOL then we use that as the symbol type for the result tree.
        x = _t_detach_by_idx(code,1);
        sy = _t_symbol(x);
        if (semeq(RESULT_SYMBOL,sy)) {
            sy = *(Symbol *)_t_surface(x);
            _t_free(x);
            x = _t_detach_by_idx(code,1);
        }
        //@todo, add a bunch of sanity checking here to make sure the
        // parameters are all CSTRINGS
        c = _t_children(code);
        // make sure the surface was allocated and if not, converted to an alloced surface
        if (c > 0) {
            if (!(x->context.flags & TFLAG_ALLOCATED)) {
                int v = *((int *)&x->contents.surface); // copy the string as an integer
                str = (char *)&v; // calculate the length
                int size = strlen(str)+1;
                x->contents.surface = malloc(size);
                memcpy(x->contents.surface,str,size);
                t->context.flags = TFLAG_ALLOCATED;
            }
        }
        // @todo this would probably be faster with just one total realloc for all children
        for(b=1;b<=c;b++) {
            str = (char *)_t_surface(_t_child(code,b));
            int size = strlen(str);
            x->contents.surface = realloc(x->contents.surface,x->contents.size+size);
            memcpy(x->contents.surface+x->contents.size-1,str,size);
            x->contents.size+=size;
            *( (char *)x->contents.surface + x->contents.size -1) = 0;
        }
        x->contents.symbol = sy;
        break;
    case RESPOND_ID:
        {
            T *signal = _t_parent(context->run_tree);
            if (!signal || !semeq(_t_symbol(signal),SIGNAL))
                return notInSignalContextReductionError;

            T *response_contents = _t_detach_by_idx(code,1);
            T *envelope = _t_child(signal,1);
            Xaddr to = *(Xaddr *)_t_surface(_t_child(envelope,1)); // reverse the from and to
            Xaddr from = *(Xaddr *)_t_surface(_t_child(envelope,2));
            Aspect a = *(Aspect *)_t_surface(_t_child(envelope,3));

            // add the response signal into the outgoing signals list of the root
            // run-tree (which is always the last child)
            R *root = context;
            while (context->caller) root = context->caller;
            int kids = _t_children(root->run_tree);
            T *signals;
            if (kids == 1 || (!semeq(SIGNALS,_t_symbol(signals = _t_child(root->run_tree,kids)))))
                signals = _t_newr(root->run_tree,SIGNALS); // make signals list if it's not there
            T *response = __r_make_signal(from,to,a,response_contents);
            _t_add(signals,response);

            x = _t_newi(0,TEST_INT_SYMBOL,0);
        }
        // @todo figure what RESPOND should return, since really it's a side-effect instruction
        // perhaps some kind of signal context symbol or something.  Right now using TEST_INT_SYMBOL
        // as a bogus placeholder.
        break;
    case QUOTE_ID:
        x = _t_detach_by_idx(code,1);
        break;
    case EXPECT_ACT_ID:
        // detach the carrier and expectation and construction params, and enqueue the expectation and action
        // on the carrier
        {
            T *carrier_param = _t_detach_by_idx(code,1);
            T *carrier = *(T **)_t_surface(carrier_param);
            _t_free(carrier_param);
            T *ex = _t_detach_by_idx(code,1);
            T *expectation = _t_new_root(EXPECTATION);
            _t_add(expectation,ex);
            T *params = _t_detach_by_idx(code,1);

            //@todo: this is a fake way to add an expectation to a carrier (as a c pointer
            // out of the params)
            // we probably actually need a system representation for carriers and an API
            // that will also make this thread safe.  For example, in the case of carrier being
            // a receptor's aspect/flux then we should be using _r_add_listener here, but
            // unfortunately we don't want to have to know about receptors this far down in the
            // stack...  But it's not clear yet how we do know about the listening context as
            // I don't think it should be copied into every execution context (the R struct)
            _t_add(carrier,expectation);
            _t_add(carrier,params);
            // the action is a pointer back to this context for now were using a EXPECT_ACT
            // with the c pointer as the surface because I don't know what else to do...  @fixme
            // perhaps this should be a BLOCKED_EXPECT_ACTION process or something...
            _t_new(carrier,EXPECT_ACT,&context,sizeof(context));
        }
        rt_cur_child(code) = 1; // reset the current child count on the code
        x = _t_detach_by_idx(code,1);

        // the actually blocking happens in redcueq which can remove the process from the
        // round-robin
        err = Block;
        break;
    case SEND_ID:
        {
            T *t = _t_detach_by_idx(code,1);
            Xaddr to = *(Xaddr *)_t_surface(t);
            _t_free(t);
            T* signal_contents = _t_detach_by_idx(code,1);

            Xaddr from = {RECEPTOR_XADDR,0};  //@todo how do we say SELF??
            x = __r_make_signal(from,to,DEFAULT_ASPECT,signal_contents);
        }
        err = Send;
        break;
    case INTERPOLATE_FROM_MATCH_ID:
        match_results = _t_child(code,2);
        match_tree = _t_child(code,3);
        x = _t_detach_by_idx(code,1);
        // @todo interpolation errors?
        _p_interpolate_from_match(x,match_results,match_tree);
        break;
    case RAISE_ID:
        return raiseReductionErr;
        break;
    case READ_STREAM_ID:
        {
            T *s = _t_detach_by_idx(code,1);
            FILE *stream =*(FILE**)_t_surface(s);
            _t_free(s);
            s = _t_detach_by_idx(code,1);
            sy = _t_symbol(s);
            if (semeq(RESULT_SYMBOL,sy)) {
                sy = *(Symbol *)_t_surface(s);
                _t_free(s);
                int ch;
                char buf[1000]; //@todo handle buffer dynamically
                int i = 0;
                while ((ch = fgetc (stream)) != EOF && ch != '\n' && i < 1000)
                    buf[i++] = ch;
                if (i>=1000) {raise_error0("buffer overrun in READ_STREAM");}

                buf[i++]=0;
                x = _t_new(0,sy,buf,i);
            }
            else {raise_error0("expecting RESULT_SYMBOL");}
        }
        break;
    default:
        raise_error("unknown sys-process id: %d",s.id);
    }

    // any remaining children of 'code' are the parameters which have all now been "used up"
    // so we can call the low-level __t_free the clean them up and then replace the contents of
    // the 'code' node with the contents of the 'x' node that was either detached or produced
    // by the the process that just ran
    __t_free(code);
    code->structure.child_count = x->structure.child_count;
    code->structure.children = x->structure.children;
    code->contents = x->contents;
    code->context = x->context;
    free(x);
    return err;
}
Ejemplo n.º 7
0
/**
 * reduce all the processes in a queue
 *
 * @param[in] q the queue to be processed
 */
Error _p_reduceq(Q *q) {
#ifdef debug_reduce
    printf("\n\nStarting reduce:\n");
#endif
    Qe *qe = q->active;
    Error next_state;
    struct timespec start, end;

    while (q->contexts_count) {

#ifdef debug_reduce
        R *context = qe->context;
        char *sn[]={"Ascend","Descend","Pushed","Pop","Eval","Block","Send","Done"};
        char *s = context->state <= 0 ? sn[-context->state -1] : "Error";
        printf("ID:%p -- State %s : %d\n",qe,s,context->state);
        printf("  idx:%d\n",context->idx);
        puts(_t2s(q->defs,context->run_tree));
        if (context) {
            if (context->node_pointer == 0) {
                printf("Node Pointer: NULL!\n");
            }
            else {
                printf("rt_cur_child:%d\n",rt_cur_child(context->node_pointer));
                int *path = _t_get_path(context->node_pointer);
                char pp[255];
                _t_sprint_path(path,pp);
                printf("Node Pointer:%s\n",pp);
                free(path);
            }
        }
        printf("\n");
#endif

        clock_gettime(CLOCK_MONOTONIC, &start);
        next_state = _p_step(q->defs, &qe->context); // next state is set in directly in the context
        clock_gettime(CLOCK_MONOTONIC, &end);
        qe->accounts.elapsed_time +=  diff_micro(&start, &end);

        Qe *next = qe->next;
        if (next_state == Done) {
            // remove from the round-robin
            __p_dequeue(q->active,qe);

            // add to the completed list
            __p_enqueue(q->completed,qe);
            q->contexts_count--;
        }
        else if (next_state == Block) {
            // remove from the round-robin
            __p_dequeue(q->active,qe);

            // add to the blocked list
            __p_enqueue(q->blocked,qe);
            q->contexts_count--;
        }
        else if (next_state == Send) {
            // remove from the round-robin
            __p_dequeue(q->active,qe);

            // take the signal off the run tree and send it, adding a send result in it's place
            T *signal = qe->context->node_pointer;
            T *parent = _t_parent(signal);

            //@todo figure out what that return value should be.  Probably some result from
            // the actual signal sending machinery, or at least what ever is going to
            // evaluate the destination address for validity.
            T *result = _t_newi(0,TEST_INT_SYMBOL,0);

            //@todo refactor this into a version of _t_replace that swaps out the given child and returns it
            // rather than freeing it.
            parent->structure.children[0] = result; // 0 is the first child
            result->structure.parent = parent;
            signal->structure.parent = NULL;

            _t_add(q->pending_signals,signal);

            // add to the blocked list
            __p_enqueue(q->blocked,qe);
            q->contexts_count--;
        }
        qe = next ? next : q->active;  // next in round robing or wrap
    };
    // @todo figure out what error we should be sending back here, i.e. what if
    // one process ended ok, but one did not.  What's the error?  Probably
    // the errors here would be at a different level, and the caller would be
    // expected to inspect the errors of the reduced processes.
    return 0;
}