void acb_hypgeom_m_asymp(acb_t res, const acb_t a, const acb_t b, const acb_t z, int regularized, slong prec) { acb_t t, u, v, c; acb_init(t); acb_init(u); acb_init(v); acb_init(c); acb_sub(c, b, a, prec); acb_neg(v, z); acb_hypgeom_u_asymp(t, a, b, z, -1, prec); acb_hypgeom_u_asymp(u, c, b, v, -1, prec); /* gamma(b-a) */ acb_rgamma(v, c, prec); acb_mul(t, t, v, prec); /* z^(a-b) */ acb_neg(c, c); acb_pow(v, z, c, prec); acb_mul(u, u, v, prec); /* gamma(a) */ acb_rgamma(v, a, prec); acb_mul(u, u, v, prec); /* exp(z) */ acb_exp(v, z, prec); acb_mul(u, u, v, prec); /* (-z)^(-a) */ acb_neg(c, a); acb_neg(v, z); acb_pow(v, v, c, prec); acb_mul(t, t, v, prec); acb_add(t, t, u, prec); if (!regularized) { acb_gamma(v, b, prec); acb_mul(t, t, v, prec); } if (acb_is_real(a) && acb_is_real(b) && acb_is_real(z)) { arb_zero(acb_imagref(t)); } acb_swap(res, t); acb_clear(t); acb_clear(u); acb_clear(v); acb_clear(c); }
void acb_hypgeom_bessel_jy(acb_t res1, acb_t res2, const acb_t nu, const acb_t z, slong prec) { acb_t jnu, t, u, v; acb_init(jnu); acb_init(t); acb_init(u); acb_init(v); acb_hypgeom_bessel_j(jnu, nu, z, prec); if (acb_is_int(nu)) { int is_real = acb_is_real(nu) && acb_is_real(z) && arb_is_positive(acb_realref(z)); acb_mul_onei(t, z); acb_hypgeom_bessel_k(t, nu, t, prec); acb_onei(u); acb_pow(u, u, nu, prec); acb_mul(t, t, u, prec); acb_const_pi(u, prec); acb_div(t, t, u, prec); acb_mul_2exp_si(t, t, 1); acb_neg(t, t); phase(v, acb_realref(z), acb_imagref(z)); acb_mul(u, jnu, v, prec); acb_mul_onei(u, u); acb_sub(res2, t, u, prec); if (is_real) arb_zero(acb_imagref(res2)); } else { acb_sin_cos_pi(t, u, nu, prec); acb_mul(v, jnu, u, prec); acb_neg(u, nu); acb_hypgeom_bessel_j(u, u, z, prec); acb_sub(v, v, u, prec); acb_div(res2, v, t, prec); } if (res1 != NULL) acb_set(res1, jnu); acb_clear(jnu); acb_clear(t); acb_clear(u); acb_clear(v); }
void _acb_poly_zeta_cpx_series(acb_ptr z, const acb_t s, const acb_t a, int deflate, slong d, slong prec) { ulong M, N; slong i; mag_t bound; arb_ptr vb; int is_real, const_is_real; if (d < 1) return; if (!acb_is_finite(s) || !acb_is_finite(a)) { _acb_vec_indeterminate(z, d); return; } is_real = const_is_real = 0; if (acb_is_real(s) && acb_is_real(a)) { if (arb_is_positive(acb_realref(a))) { is_real = const_is_real = 1; } else if (arb_is_int(acb_realref(a)) && arb_is_int(acb_realref(s)) && arb_is_nonpositive(acb_realref(s))) { const_is_real = 1; } } mag_init(bound); vb = _arb_vec_init(d); _acb_poly_zeta_em_choose_param(bound, &N, &M, s, a, FLINT_MIN(d, 2), prec, MAG_BITS); _acb_poly_zeta_em_bound(vb, s, a, N, M, d, MAG_BITS); _acb_poly_zeta_em_sum(z, s, a, deflate, N, M, d, prec); for (i = 0; i < d; i++) { arb_get_mag(bound, vb + i); arb_add_error_mag(acb_realref(z + i), bound); if (!is_real && !(i == 0 && const_is_real)) arb_add_error_mag(acb_imagref(z + i), bound); } mag_clear(bound); _arb_vec_clear(vb, d); }
void arb_hypgeom_coulomb_jet(arb_ptr F, arb_ptr G, const arb_t l, const arb_t eta, const arb_t z, slong len, slong prec) { acb_ptr tmp, tmpF, tmpG; slong k; if (len <= 0) return; if (len == 1) { arb_hypgeom_coulomb(F, G, l, eta, z, prec); return; } tmp = _acb_vec_init(3); tmpF = _acb_vec_init(len); tmpG = _acb_vec_init(len); acb_set_arb(tmp, l); acb_set_arb(tmp + 1, eta); acb_set_arb(tmp + 2, z); acb_hypgeom_coulomb_jet(F ? tmpF : NULL, G ? tmpG : NULL, NULL, NULL, tmp, tmp + 1, tmp + 2, len, prec); if (F != NULL) { if (acb_is_real(tmpF)) for (k = 0; k < len; k++) arb_set(F + k, acb_realref(tmpF + k)); else _arb_vec_indeterminate(F, len); } if (G != NULL) { if (acb_is_real(tmpG)) for (k = 0; k < len; k++) arb_set(G + k, acb_realref(tmpG + k)); else _arb_vec_indeterminate(G, len); } _acb_vec_clear(tmpF, len); _acb_vec_clear(tmpG, len); _acb_vec_clear(tmp, 3); }
/* assumes no aliasing of w and p */ void acb_lambertw_branchpoint_series(acb_t w, const acb_t t, int bound, slong prec) { slong i; static const int coeffs[] = {-130636800,130636800,-43545600,19958400, -10402560,5813640,-3394560,2042589,-1256320}; acb_zero(w); for (i = 8; i >= 0; i--) { acb_mul(w, w, t, prec); acb_add_si(w, w, coeffs[i], prec); } acb_div_si(w, w, -coeffs[0], prec); if (bound) { mag_t err; mag_init(err); acb_get_mag(err, t); mag_geom_series(err, err, 9); if (acb_is_real(t)) arb_add_error_mag(acb_realref(w), err); else acb_add_error_mag(w, err); mag_clear(err); } }
static void acb_log1p_tiny(acb_t r, const acb_t z, slong prec) { mag_t b, c; acb_t t; int real; mag_init(b); mag_init(c); acb_init(t); real = acb_is_real(z); /* if |z| < 1, then |log(1+z) - [z - z^2/2]| <= |z|^3/(1-|z|) */ acb_get_mag(b, z); mag_one(c); mag_sub_lower(c, c, b); mag_pow_ui(b, b, 3); mag_div(b, b, c); acb_mul(t, z, z, prec); acb_mul_2exp_si(t, t, -1); acb_sub(r, z, t, prec); if (real && mag_is_finite(b)) arb_add_error_mag(acb_realref(r), b); else acb_add_error_mag(r, b); mag_clear(b); mag_clear(c); acb_clear(t); }
void acb_lambertw_left(acb_t res, const acb_t z, const fmpz_t k, slong prec) { if (acb_contains_zero(z) && !(fmpz_equal_si(k, -1) && acb_is_real(z))) { acb_indeterminate(res); return; } if (arb_is_positive(acb_imagref(z))) { acb_lambertw(res, z, k, 0, prec); } else if (arb_is_nonpositive(acb_imagref(z))) { fmpz_t kk; fmpz_init(kk); fmpz_add_ui(kk, k, 1); fmpz_neg(kk, kk); acb_conj(res, z); acb_lambertw(res, res, kk, 0, prec); acb_conj(res, res); fmpz_clear(kk); } else { acb_t za, zb; fmpz_t kk; acb_init(za); acb_init(zb); fmpz_init(kk); acb_set(za, z); acb_conj(zb, z); arb_nonnegative_part(acb_imagref(za), acb_imagref(za)); arb_nonnegative_part(acb_imagref(zb), acb_imagref(zb)); fmpz_add_ui(kk, k, 1); fmpz_neg(kk, kk); acb_lambertw(za, za, k, 0, prec); acb_lambertw(zb, zb, kk, 0, prec); acb_conj(zb, zb); acb_union(res, za, zb, prec); acb_clear(za); acb_clear(zb); fmpz_clear(kk); } }
void arb_hypgeom_bessel_jy(arb_t res1, arb_t res2, const arb_t nu, const arb_t z, slong prec) { acb_t t, u; acb_init(t); acb_init(u); arb_set(acb_realref(t), nu); arb_set(acb_realref(u), z); acb_hypgeom_bessel_jy(t, u, t, u, prec); if (acb_is_finite(t) && acb_is_real(t)) arb_swap(res1, acb_realref(t)); else arb_indeterminate(res1); if (acb_is_finite(u) && acb_is_real(u)) arb_swap(res2, acb_realref(u)); else arb_indeterminate(res2); acb_clear(t); acb_clear(u); }
int acb_mat_is_real(const acb_mat_t mat) { slong i, j; for (i = 0; i < acb_mat_nrows(mat); i++) for (j = 0; j < acb_mat_ncols(mat); j++) if (!acb_is_real(acb_mat_entry(mat, i, j))) return 0; return 1; }
void acb_lambertw(acb_t res, const acb_t z, const fmpz_t k, int flags, slong prec) { acb_t ez1; if (!acb_is_finite(z)) { acb_indeterminate(res); return; } if (flags == ACB_LAMBERTW_LEFT) { acb_lambertw_left(res, z, k, prec); return; } if (flags == ACB_LAMBERTW_MIDDLE) { acb_lambertw_middle(res, z, prec); return; } if (acb_contains_zero(z) && !fmpz_is_zero(k)) { acb_indeterminate(res); return; } acb_init(ez1); /* precompute z*e + 1 */ arb_const_e(acb_realref(ez1), prec); acb_mul(ez1, ez1, z, prec); acb_add_ui(ez1, ez1, 1, prec); /* Compute standard branches */ /* use real code when possible */ if (acb_is_real(z) && arb_is_positive(acb_realref(ez1)) && (fmpz_is_zero(k) || (fmpz_equal_si(k, -1) && arb_is_negative(acb_realref(z))))) { arb_lambertw(acb_realref(res), acb_realref(z), !fmpz_is_zero(k), prec); arb_zero(acb_imagref(res)); } else { _acb_lambertw(res, z, ez1, k, flags, prec); } acb_clear(ez1); }
void arb_hypgeom_gamma_upper(arb_t res, const arb_t s, const arb_t z, int regularized, slong prec) { acb_t t, u; acb_init(t); acb_init(u); arb_set(acb_realref(t), s); arb_set(acb_realref(u), z); acb_hypgeom_gamma_upper(t, t, u, regularized, prec); if (acb_is_finite(t) && acb_is_real(t)) arb_swap(res, acb_realref(t)); else arb_indeterminate(res); acb_clear(t); acb_clear(u); }
void arb_hypgeom_hermite_h(arb_t res, const arb_t nu, const arb_t z, slong prec) { acb_t t, u; acb_init(t); acb_init(u); arb_set(acb_realref(t), nu); arb_set(acb_realref(u), z); acb_hypgeom_hermite_h(t, t, u, prec); if (acb_is_finite(t) && acb_is_real(t)) arb_swap(res, acb_realref(t)); else arb_indeterminate(res); acb_clear(t); acb_clear(u); }
void arb_hypgeom_pfq(arb_t res, arb_srcptr a, slong p, arb_srcptr b, slong q, const arb_t z, int regularized, slong prec) { acb_ptr t; slong i; t = _acb_vec_init(p + q + 1); for (i = 0; i < p; i++) arb_set(acb_realref(t + i), a + i); for (i = 0; i < q; i++) arb_set(acb_realref(t + p + i), b + i); arb_set(acb_realref(t + p + q), z); acb_hypgeom_pfq(t, t, p, t + p, q, t + p + q, regularized, prec); if (acb_is_finite(t) && acb_is_real(t)) arb_swap(res, acb_realref(t)); else arb_indeterminate(res); _acb_vec_clear(t, p + q + 1); }
void arb_hypgeom_beta_lower(arb_t res, const arb_t a, const arb_t b, const arb_t z, int regularized, slong prec) { acb_t t, u, v; acb_init(t); acb_init(u); acb_init(v); arb_set(acb_realref(t), a); arb_set(acb_realref(u), b); arb_set(acb_realref(v), z); acb_hypgeom_beta_lower(t, t, u, v, regularized, prec); if (acb_is_finite(t) && acb_is_real(t)) arb_swap(res, acb_realref(t)); else arb_indeterminate(res); acb_clear(t); acb_clear(u); acb_clear(v); }
void arb_hypgeom_legendre_q(arb_t res, const arb_t n, const arb_t m, const arb_t z, int type, slong prec) { acb_t t, u, v; acb_init(t); acb_init(u); acb_init(v); arb_set(acb_realref(t), n); arb_set(acb_realref(u), m); arb_set(acb_realref(v), z); acb_hypgeom_legendre_q(t, t, u, v, type, prec); if (acb_is_finite(t) && acb_is_real(t)) arb_swap(res, acb_realref(t)); else arb_indeterminate(res); acb_clear(t); acb_clear(u); acb_clear(v); }
/* f(z) = sin(1/z), assume on real interval */ int f_essing(acb_ptr res, const acb_t z, void * param, slong order, slong prec) { if (order > 1) flint_abort(); /* Would be needed for Taylor method. */ if ((order == 0) && acb_is_real(z) && arb_contains_zero(acb_realref(z))) { /* todo: arb_zero_pm_one, arb_unit_interval? */ acb_zero(res); mag_one(arb_radref(acb_realref(res))); } else { acb_inv(res, z, prec); acb_sin(res, res, prec); } return 0; }
void arb_hypgeom_jacobi_p(arb_t res, const arb_t n, const arb_t a, const arb_t b, const arb_t z, slong prec) { acb_t t, u, v, w; acb_init(t); acb_init(u); acb_init(v); acb_init(w); arb_set(acb_realref(t), n); arb_set(acb_realref(u), a); arb_set(acb_realref(v), b); arb_set(acb_realref(w), z); acb_hypgeom_jacobi_p(t, t, u, v, w, prec); if (acb_is_finite(t) && acb_is_real(t)) arb_swap(res, acb_realref(t)); else arb_indeterminate(res); acb_clear(t); acb_clear(u); acb_clear(v); acb_clear(w); }
void acb_hypgeom_bessel_i_asymp(acb_t res, const acb_t nu, const acb_t z, long prec) { acb_t A1, A2, C, U1, U2, s, t, u; int is_real, is_imag; acb_init(A1); acb_init(A2); acb_init(C); acb_init(U1); acb_init(U2); acb_init(s); acb_init(t); acb_init(u); is_imag = 0; is_real = acb_is_real(nu) && acb_is_real(z) && (acb_is_int(nu) || arb_is_positive(acb_realref(z))); if (!is_real && arb_is_zero(acb_realref(z)) && acb_is_int(nu)) { acb_mul_2exp_si(t, nu, -1); if (acb_is_int(t)) is_real = 1; else is_imag = 1; } acb_hypgeom_bessel_i_asymp_prefactors(A1, A2, C, nu, z, prec); /* todo: if Ap ~ 2^a and Am = 2^b and U1 ~ U2 ~ 1, change precision? */ if (!acb_is_finite(A1) || !acb_is_finite(A2) || !acb_is_finite(C)) { acb_indeterminate(res); } else { /* s = 1/2 + nu */ acb_one(s); acb_mul_2exp_si(s, s, -1); acb_add(s, s, nu, prec); /* t = 1 + 2 nu */ acb_mul_2exp_si(t, nu, 1); acb_add_ui(t, t, 1, prec); acb_mul_2exp_si(u, z, 1); acb_hypgeom_u_asymp(U1, s, t, u, -1, prec); acb_neg(u, u); acb_hypgeom_u_asymp(U2, s, t, u, -1, prec); acb_mul(res, A1, U1, prec); acb_addmul(res, A2, U2, prec); acb_mul(res, res, C, prec); if (is_real) arb_zero(acb_imagref(res)); if (is_imag) arb_zero(acb_realref(res)); } acb_clear(A1); acb_clear(A2); acb_clear(C); acb_clear(U1); acb_clear(U2); acb_clear(s); acb_clear(t); acb_clear(u); }
void acb_elliptic_p_jet(acb_ptr r, const acb_t z, const acb_t tau, slong len, slong prec) { acb_t t01, t02, t03, t04; acb_ptr tz1, tz2, tz3, tz4; acb_t t; int real; slong k; if (len < 1) return; if (len == 1) { acb_elliptic_p(r, z, tau, prec); return; } real = acb_is_real(z) && arb_is_int_2exp_si(acb_realref(tau), -1) && arb_is_positive(acb_imagref(tau)); acb_init(t); acb_init(t01); acb_init(t02); acb_init(t03); acb_init(t04); tz1 = _acb_vec_init(len); tz2 = _acb_vec_init(len); tz3 = _acb_vec_init(len); tz4 = _acb_vec_init(len); acb_modular_theta_jet(tz1, tz2, tz3, tz4, z, tau, len, prec); /* [theta_4(z) / theta_1(z)]^2 */ _acb_poly_div_series(tz2, tz4, len, tz1, len, len, prec); _acb_poly_mullow(tz1, tz2, len, tz2, len, len, prec); acb_zero(t); acb_modular_theta(t01, t02, t03, t04, t, tau, prec); /* [theta_2(0) * theta_3(0)] ^2 */ acb_mul(t, t02, t03, prec); acb_mul(t, t, t, prec); _acb_vec_scalar_mul(tz1, tz1, len, t, prec); /* - [theta_2(0)^4 + theta_3(0)^4] / 3 */ acb_pow_ui(t02, t02, 4, prec); acb_pow_ui(t03, t03, 4, prec); acb_add(t, t02, t03, prec); acb_div_ui(t, t, 3, prec); acb_sub(tz1, tz1, t, prec); /* times pi^2 */ acb_const_pi(t, prec); acb_mul(t, t, t, prec); _acb_vec_scalar_mul(r, tz1, len, t, prec); if (real) { for (k = 0; k < len; k++) arb_zero(acb_imagref(r + k)); } acb_clear(t); acb_clear(t01); acb_clear(t02); acb_clear(t03); acb_clear(t04); _acb_vec_clear(tz1, len); _acb_vec_clear(tz2, len); _acb_vec_clear(tz3, len); _acb_vec_clear(tz4, len); }
void acb_hypgeom_ci_asymp(acb_t res, const acb_t z, slong prec) { acb_t t, u, w, v, one; acb_init(t); acb_init(u); acb_init(w); acb_init(v); acb_init(one); acb_one(one); acb_mul_onei(w, z); /* u = U(1,1,iz) */ acb_hypgeom_u_asymp(u, one, one, w, -1, prec); /* v = e^(-iz) */ acb_neg(v, w); acb_exp(v, v, prec); acb_mul(t, u, v, prec); if (acb_is_real(z)) { arb_div(acb_realref(t), acb_imagref(t), acb_realref(z), prec); arb_zero(acb_imagref(t)); acb_neg(t, t); } else { /* u = U(1,1,-iz) */ acb_neg(w, w); acb_hypgeom_u_asymp(u, one, one, w, -1, prec); acb_inv(v, v, prec); acb_submul(t, u, v, prec); acb_div(t, t, w, prec); acb_mul_2exp_si(t, t, -1); } if (arb_is_zero(acb_realref(z))) { if (arb_is_positive(acb_imagref(z))) { arb_const_pi(acb_imagref(t), prec); arb_mul_2exp_si(acb_imagref(t), acb_imagref(t), -1); } else if (arb_is_negative(acb_imagref(z))) { arb_const_pi(acb_imagref(t), prec); arb_mul_2exp_si(acb_imagref(t), acb_imagref(t), -1); arb_neg(acb_imagref(t), acb_imagref(t)); } else { acb_const_pi(u, prec); acb_mul_2exp_si(u, u, -1); arb_zero(acb_imagref(t)); arb_add_error(acb_imagref(t), acb_realref(u)); } } else { /* 0 if positive or positive imaginary pi if upper left quadrant (including negative real axis) -pi if lower left quadrant (including negative imaginary axis) */ if (arb_is_positive(acb_realref(z))) { /* do nothing */ } else if (arb_is_negative(acb_realref(z)) && arb_is_nonnegative(acb_imagref(z))) { acb_const_pi(u, prec); arb_add(acb_imagref(t), acb_imagref(t), acb_realref(u), prec); } else if (arb_is_nonpositive(acb_realref(z)) && arb_is_negative(acb_imagref(z))) { acb_const_pi(u, prec); arb_sub(acb_imagref(t), acb_imagref(t), acb_realref(u), prec); } else { /* add [-pi,pi] */ acb_const_pi(u, prec); arb_add_error(acb_imagref(t), acb_realref(u)); } } acb_swap(res, t); acb_clear(t); acb_clear(u); acb_clear(w); acb_clear(v); acb_clear(one); }
void acb_hypgeom_u_asymp(acb_t res, const acb_t a, const acb_t b, const acb_t z, slong n, slong prec) { acb_struct aa[3]; acb_t s, t, w, winv; int R, p, q, is_real, is_terminating; slong n_terminating; if (!acb_is_finite(a) || !acb_is_finite(b) || !acb_is_finite(z)) { acb_indeterminate(res); return; } acb_init(aa); acb_init(aa + 1); acb_init(aa + 2); acb_init(s); acb_init(t); acb_init(w); acb_init(winv); is_terminating = 0; n_terminating = WORD_MAX; /* special case, for incomplete gamma [todo: also when they happen to be exact and with difference 1...] */ if (a == b) { acb_set(aa, a); p = 1; q = 0; } else { acb_set(aa, a); acb_sub(aa + 1, a, b, prec); acb_add_ui(aa + 1, aa + 1, 1, prec); acb_one(aa + 2); p = 2; q = 1; } if (acb_is_nonpositive_int(aa)) { is_terminating = 1; if (arf_cmpabs_ui(arb_midref(acb_realref(aa)), prec) < 0) n_terminating = 1 - arf_get_si(arb_midref(acb_realref(aa)), ARF_RND_DOWN); } if (p == 2 && acb_is_nonpositive_int(aa + 1)) { is_terminating = 1; if (arf_cmpabs_ui(arb_midref(acb_realref(aa + 1)), n_terminating) < 0) n_terminating = 1 - arf_get_si(arb_midref(acb_realref(aa + 1)), ARF_RND_DOWN); } acb_neg(w, z); acb_inv(w, w, prec); acb_neg(winv, z); /* low degree polynomial -- no need to try to terminate sooner */ if (is_terminating && n_terminating < 8) { acb_hypgeom_pfq_sum_invz(s, t, aa, p, aa + p, q, w, winv, n_terminating, prec); acb_set(res, s); } else { mag_t C1, Cn, alpha, nu, sigma, rho, zinv, tmp, err; mag_init(C1); mag_init(Cn); mag_init(alpha); mag_init(nu); mag_init(sigma); mag_init(rho); mag_init(zinv); mag_init(tmp); mag_init(err); acb_hypgeom_u_asymp_bound_factors(&R, alpha, nu, sigma, rho, zinv, a, b, z); is_real = acb_is_real(a) && acb_is_real(b) && acb_is_real(z) && (is_terminating || arb_is_positive(acb_realref(z))); if (R == 0) { /* if R == 0, the error bound is infinite unless terminating */ if (is_terminating && n_terminating < prec) { acb_hypgeom_pfq_sum_invz(s, t, aa, p, aa + p, q, w, winv, n_terminating, prec); acb_set(res, s); } else { acb_indeterminate(res); } } else { /* C1 */ acb_hypgeom_mag_Cn(C1, R, nu, sigma, 1); /* err = 2 * alpha * exp(...) */ mag_mul(tmp, C1, rho); mag_mul(tmp, tmp, alpha); mag_mul(tmp, tmp, zinv); mag_mul_2exp_si(tmp, tmp, 1); mag_exp(err, tmp); mag_mul(err, err, alpha); mag_mul_2exp_si(err, err, 1); /* choose n automatically */ if (n < 0) { slong moreprec; /* take err into account when finding truncation point */ /* we should take Cn into account as well, but this depends on n which is to be determined; it's easier to look only at exp(...) which should be larger anyway */ if (mag_cmp_2exp_si(err, 10 * prec) > 0) moreprec = 10 * prec; else if (mag_cmp_2exp_si(err, 0) < 0) moreprec = 0; else moreprec = MAG_EXP(err); n = acb_hypgeom_pfq_choose_n_max(aa, p, aa + p, q, w, prec + moreprec, FLINT_MIN(WORD_MAX / 2, 50 + 10.0 * prec)); } acb_hypgeom_pfq_sum_invz(s, t, aa, p, aa + p, q, w, winv, n, prec); /* add error bound, if not terminating */ if (!(is_terminating && n == n_terminating)) { acb_hypgeom_mag_Cn(Cn, R, nu, sigma, n); mag_mul(err, err, Cn); /* nth term * factor */ acb_get_mag(tmp, t); mag_mul(err, err, tmp); if (is_real) arb_add_error_mag(acb_realref(s), err); else acb_add_error_mag(s, err); } acb_set(res, s); } mag_clear(C1); mag_clear(Cn); mag_clear(alpha); mag_clear(nu); mag_clear(sigma); mag_clear(rho); mag_clear(zinv); mag_clear(tmp); mag_clear(err); } acb_clear(aa); acb_clear(aa + 1); acb_clear(aa + 2); acb_clear(s); acb_clear(t); acb_clear(w); acb_clear(winv); }
void acb_dirichlet_l(acb_t res, const acb_t s, const dirichlet_group_t G, const dirichlet_char_t chi, slong prec) { if (!acb_is_finite(s)) { acb_indeterminate(res); } else if (G == NULL || G->q == 1) { acb_dirichlet_zeta(res, s, prec); } else if (dirichlet_char_is_primitive(G, chi) && (arf_cmp_d(arb_midref(acb_realref(s)), -0.5) < 0 || (G->q != 1 && dirichlet_parity_char(G, chi) == 0 && arf_cmpabs_d(arb_midref(acb_imagref(s)), 0.125) < 0 && arf_cmp_d(arb_midref(acb_realref(s)), 0.125) < 0))) { /* use functional equation */ acb_t t, u, v; int parity; ulong q; parity = dirichlet_parity_char(G, chi); q = G->q; acb_init(t); acb_init(u); acb_init(v); /* gamma((1-s+p)/2) / gamma((s+p)/2) */ acb_add_ui(t, s, parity, prec); acb_mul_2exp_si(t, t, -1); acb_rgamma(t, t, prec); if (!acb_is_zero(t)) /* assumes q != 1 when s = 0 */ { acb_neg(u, s); acb_add_ui(u, u, 1 + parity, prec); acb_mul_2exp_si(u, u, -1); acb_gamma(u, u, prec); acb_mul(t, t, u, prec); /* epsilon */ acb_dirichlet_root_number(u, G, chi, prec); acb_mul(t, t, u, prec); /* (pi/q)^(s-1/2) */ acb_const_pi(u, prec); acb_div_ui(u, u, q, prec); acb_set_d(v, -0.5); acb_add(v, v, s, prec); acb_pow(u, u, v, prec); acb_mul(t, t, u, prec); acb_sub_ui(u, s, 1, prec); acb_neg(u, u); acb_conj(u, u); acb_dirichlet_l_general(u, u, G, chi, prec); acb_conj(u, u); acb_mul(t, t, u, prec); if (dirichlet_char_is_real(G, chi) && acb_is_real(s)) arb_zero(acb_imagref(t)); } acb_set(res, t); acb_clear(t); acb_clear(u); acb_clear(v); } else { acb_dirichlet_l_general(res, s, G, chi, prec); } }
void acb_hypgeom_pfq_sum_rs(acb_t res, acb_t term, acb_srcptr a, slong p, acb_srcptr b, slong q, const acb_t z, slong n, slong prec) { acb_ptr zpow; acb_t s, t, u; slong i, j, k, m; mag_t B, C; if (n == 0) { acb_zero(res); acb_one(term); return; } if (n < 0) abort(); m = n_sqrt(n); m = FLINT_MIN(m, 150); mag_init(B); mag_init(C); acb_init(s); acb_init(t); acb_init(u); zpow = _acb_vec_init(m + 1); _acb_vec_set_powers(zpow, z, m + 1, prec); mag_one(B); for (k = n; k >= 0; k--) { j = k % m; if (k < n) acb_add(s, s, zpow + j, prec); if (k > 0) { if (p > 0) { acb_add_ui(u, a, k - 1, prec); for (i = 1; i < p; i++) { acb_add_ui(t, a + i, k - 1, prec); acb_mul(u, u, t, prec); } if (k < n) acb_mul(s, s, u, prec); acb_get_mag(C, u); mag_mul(B, B, C); } if (q > 0) { acb_add_ui(u, b, k - 1, prec); for (i = 1; i < q; i++) { acb_add_ui(t, b + i, k - 1, prec); acb_mul(u, u, t, prec); } if (k < n) acb_div(s, s, u, prec); acb_get_mag_lower(C, u); mag_div(B, B, C); } if (j == 0 && k < n) { acb_mul(s, s, zpow + m, prec); } } } acb_get_mag(C, z); mag_pow_ui(C, C, n); mag_mul(B, B, C); acb_zero(term); if (_acb_vec_is_real(a, p) && _acb_vec_is_real(b, q) && acb_is_real(z)) arb_add_error_mag(acb_realref(term), B); else acb_add_error_mag(term, B); acb_set(res, s); mag_clear(B); mag_clear(C); acb_clear(s); acb_clear(t); acb_clear(u); _acb_vec_clear(zpow, m + 1); }
void acb_hypgeom_chi_asymp(acb_t res, const acb_t z, slong prec) { acb_t t, u, v, one; acb_init(t); acb_init(u); acb_init(v); acb_init(one); acb_one(one); /* u = U(1,1,z) */ acb_hypgeom_u_asymp(u, one, one, z, -1, prec); /* v = e^(-z) */ acb_neg(v, z); acb_exp(v, v, prec); acb_mul(t, u, v, prec); if (arb_is_zero(acb_realref(z))) { arb_div(acb_realref(t), acb_imagref(t), acb_imagref(z), prec); arb_zero(acb_imagref(t)); acb_neg(t, t); } else { /* u = U(1,1,-z) */ acb_neg(u, z); acb_hypgeom_u_asymp(u, one, one, u, -1, prec); acb_inv(v, v, prec); acb_submul(t, u, v, prec); acb_div(t, t, z, prec); acb_mul_2exp_si(t, t, -1); acb_neg(t, t); } if (acb_is_real(z)) { if (arb_is_positive(acb_realref(z))) { arb_zero(acb_imagref(t)); } else if (arb_is_negative(acb_realref(z))) { arb_const_pi(acb_imagref(t), prec); } else { /* add [-pi,pi]/2 i */ acb_const_pi(u, prec); arb_zero(acb_imagref(t)); arb_add_error(acb_imagref(t), acb_realref(u)); } } else { /* -pi/2 if positive real or in lower half plane pi/2 if negative real or in upper half plane */ if (arb_is_negative(acb_imagref(z))) { acb_const_pi(u, prec); acb_mul_2exp_si(u, u, -1); arb_sub(acb_imagref(t), acb_imagref(t), acb_realref(u), prec); } else if (arb_is_positive(acb_imagref(z))) { acb_const_pi(u, prec); acb_mul_2exp_si(u, u, -1); arb_add(acb_imagref(t), acb_imagref(t), acb_realref(u), prec); } else { /* add [-pi,pi]/2 i */ acb_const_pi(u, prec); acb_mul_2exp_si(u, u, -1); arb_add_error(acb_imagref(t), acb_realref(u)); } } acb_swap(res, t); acb_clear(t); acb_clear(u); acb_clear(v); acb_clear(one); }
/* error propagation based on derivatives */ void acb_hypgeom_airy_direct_prop(acb_t ai, acb_t aip, acb_t bi, acb_t bip, const acb_t z, slong n, slong prec) { mag_t aib, aipb, bib, bipb, zb, rad; acb_t zz; int real; mag_init(aib); mag_init(aipb); mag_init(bib); mag_init(bipb); mag_init(zb); mag_init(rad); acb_init(zz); real = acb_is_real(z); arf_set(arb_midref(acb_realref(zz)), arb_midref(acb_realref(z))); arf_set(arb_midref(acb_imagref(zz)), arb_midref(acb_imagref(z))); mag_hypot(rad, arb_radref(acb_realref(z)), arb_radref(acb_imagref(z))); acb_get_mag(zb, z); acb_hypgeom_airy_bound(aib, aipb, bib, bipb, z); acb_hypgeom_airy_direct(ai, aip, bi, bip, zz, n, prec); if (ai != NULL) { mag_mul(aipb, aipb, rad); if (real) arb_add_error_mag(acb_realref(ai), aipb); else acb_add_error_mag(ai, aipb); } if (aip != NULL) { mag_mul(aib, aib, rad); mag_mul(aib, aib, zb); /* |Ai''(z)| = |z Ai(z)| */ if (real) arb_add_error_mag(acb_realref(aip), aib); else acb_add_error_mag(aip, aib); } if (bi != NULL) { mag_mul(bipb, bipb, rad); if (real) arb_add_error_mag(acb_realref(bi), bipb); else acb_add_error_mag(bi, bipb); } if (bip != NULL) { mag_mul(bib, bib, rad); mag_mul(bib, bib, zb); /* |Bi''(z)| = |z Bi(z)| */ if (real) arb_add_error_mag(acb_realref(bip), bib); else acb_add_error_mag(bip, bib); } mag_clear(aib); mag_clear(aipb); mag_clear(bib); mag_clear(bipb); mag_clear(zb); mag_clear(rad); acb_clear(zz); }
/* todo: use log(1-z) when this is better? would also need to adjust strategy in the main function */ void acb_hypgeom_dilog_bernoulli(acb_t res, const acb_t z, slong prec) { acb_t s, w, w2; slong n, k; fmpz_t c, d; mag_t m, err; double lm; int real; acb_init(s); acb_init(w); acb_init(w2); fmpz_init(c); fmpz_init(d); mag_init(m); mag_init(err); real = 0; if (acb_is_real(z)) { arb_sub_ui(acb_realref(w), acb_realref(z), 1, 30); real = arb_is_nonpositive(acb_realref(w)); } acb_log(w, z, prec); acb_get_mag(m, w); /* for k >= 4, the terms are bounded by (|w| / (2 pi))^k */ mag_set_ui_2exp_si(err, 2670177, -24); /* upper bound for 1/(2pi) */ mag_mul(err, err, m); lm = mag_get_d_log2_approx(err); if (lm < -0.25) { n = prec / (-lm) + 1; n = FLINT_MAX(n, 4); mag_geom_series(err, err, n); BERNOULLI_ENSURE_CACHED(n) acb_mul(w2, w, w, prec); for (k = n - (n % 2 == 0); k >= 3; k -= 2) { fmpz_mul_ui(c, fmpq_denref(bernoulli_cache + k - 1), k - 1); fmpz_mul_ui(d, c, (k + 1) * (k + 2)); acb_mul(s, s, w2, prec); acb_mul_fmpz(s, s, c, prec); fmpz_mul_ui(c, fmpq_numref(bernoulli_cache + k - 1), (k + 1) * (k + 2)); acb_sub_fmpz(s, s, c, prec); acb_div_fmpz(s, s, d, prec); } acb_mul(s, s, w, prec); acb_mul_2exp_si(s, s, 1); acb_sub_ui(s, s, 3, prec); acb_mul(s, s, w2, prec); acb_mul_2exp_si(s, s, -1); acb_const_pi(w2, prec); acb_addmul(s, w2, w2, prec); acb_div_ui(s, s, 6, prec); acb_neg(w2, w); acb_log(w2, w2, prec); acb_submul(s, w2, w, prec); acb_add(res, s, w, prec); acb_add_error_mag(res, err); if (real) arb_zero(acb_imagref(res)); } else { acb_indeterminate(res); } acb_clear(s); acb_clear(w); acb_clear(w2); fmpz_clear(c); fmpz_clear(d); mag_clear(m); mag_clear(err); }