void Evaluator::preencrypt(const uint64_t *plain, int plain_coeff_count, int plain_coeff_uint64_count, uint64_t *destination)
    {
        // Extract encryption parameters.
        int coeff_count = poly_modulus_.coeff_count();
        int coeff_bit_count = poly_modulus_.coeff_bit_count();
        int coeff_uint64_count = divide_round_up(coeff_bit_count, bits_per_uint64);

        // Only care about coefficients up till coeff_count.
        if (plain_coeff_count > coeff_count)
        {
            plain_coeff_count = coeff_count;
        }

        // Multiply plain by scalar coeff_div_plaintext and reposition if in upper-half.
        if (plain == destination)
        {
            // If plain and destination are same poly, then need another storage for multiply output.
            Pointer temp(allocate_uint(coeff_uint64_count, pool_));
            for (int i = 0; i < plain_coeff_count; ++i)
            {
                multiply_uint_uint(plain, plain_coeff_uint64_count, coeff_div_plain_modulus_.pointer(), coeff_uint64_count, coeff_uint64_count, temp.get());
                bool is_upper_half = is_greater_than_or_equal_uint_uint(temp.get(), upper_half_threshold_.pointer(), coeff_uint64_count);
                if (is_upper_half)
                {
                    add_uint_uint(temp.get(), upper_half_increment_.pointer(), coeff_uint64_count, destination);
                }
                else
                {
                    set_uint_uint(temp.get(), coeff_uint64_count, destination);
                }
                plain += plain_coeff_uint64_count;
                destination += coeff_uint64_count;
            }
        }
        else
        {
            for (int i = 0; i < plain_coeff_count; ++i)
            {
                multiply_uint_uint(plain, plain_coeff_uint64_count, coeff_div_plain_modulus_.pointer(), coeff_uint64_count, coeff_uint64_count, destination);
                bool is_upper_half = is_greater_than_or_equal_uint_uint(destination, upper_half_threshold_.pointer(), coeff_uint64_count);
                if (is_upper_half)
                {
                    add_uint_uint(destination, upper_half_increment_.pointer(), coeff_uint64_count, destination);
                }
                plain += plain_coeff_uint64_count;
                destination += coeff_uint64_count;
            }
        }

        // Zero any remaining coefficients.
        for (int i = plain_coeff_count; i < coeff_count; ++i)
        {
            set_zero_uint(coeff_uint64_count, destination);
            destination += coeff_uint64_count;
        }
    }
Ejemplo n.º 2
0
        void poly_eval_poly(const uint64_t *poly_to_eval, 
            int poly_to_eval_coeff_count, 
            int poly_to_eval_coeff_uint64_count, 
            const uint64_t *value, int value_coeff_count, 
            int value_coeff_uint64_count, int result_coeff_count, 
            int result_coeff_uint64_count, uint64_t *result, MemoryPool &pool)
        {
#ifdef SEAL_DEBUG
            if (poly_to_eval == nullptr)
            {
                throw invalid_argument("poly_to_eval");
            }
            if (value == nullptr)
            {
                throw invalid_argument("value");
            }
            if (result == nullptr)
            {
                throw invalid_argument("result");
            }
            if (poly_to_eval_coeff_count <= 0)
            {
                throw invalid_argument("poly_to_eval_coeff_count");
            }
            if (poly_to_eval_coeff_uint64_count <= 0)
            {
                throw invalid_argument("poly_to_eval_coeff_uint64_count");
            }
            if (value_coeff_count <= 0)
            {
                throw invalid_argument("value_coeff_count");
            }
            if (value_coeff_uint64_count <= 0)
            {
                throw invalid_argument("value_coeff_uint64_count");
            }
            if (result_coeff_count <= 0)
            {
                throw invalid_argument("result_coeff_count");
            }
            if (result_coeff_uint64_count <= 0)
            {
                throw invalid_argument("result_coeff_uint64_count");
            }
#endif
            // Evaluate poly at value using Horner's method
            Pointer temp1(allocate_poly(result_coeff_count, result_coeff_uint64_count, pool));
            Pointer temp2(allocate_zero_poly(result_coeff_count, result_coeff_uint64_count, pool));
            uint64_t *productptr = temp1.get();
            uint64_t *intermediateptr = temp2.get();

            for (int coeff_index = poly_to_eval_coeff_count - 1; coeff_index >= 0; coeff_index--)
            {
                multiply_poly_poly(intermediateptr, result_coeff_count, result_coeff_uint64_count, value, value_coeff_count, value_coeff_uint64_count, result_coeff_count, result_coeff_uint64_count, productptr, pool);
                const uint64_t *curr_coeff = get_poly_coeff(poly_to_eval, coeff_index, poly_to_eval_coeff_uint64_count);
                add_uint_uint(productptr, result_coeff_uint64_count, curr_coeff, poly_to_eval_coeff_uint64_count, false, result_coeff_uint64_count, productptr);
                swap(productptr, intermediateptr);
            }
            set_poly_poly(intermediateptr, result_coeff_count, result_coeff_uint64_count, result);
        }
    ChooserPoly ChooserEvaluator::add_many(const std::vector<ChooserPoly> &operands)
    {
        if (operands.empty())
        {
            throw invalid_argument("operands vector can not be empty");
        }

        int sum_max_coeff_count = operands[0].max_coeff_count_;
        vector<ChooserPoly>::size_type largest_abs_value_index = 0;
        for (vector<ChooserPoly>::size_type i = 0; i < operands.size(); ++i)
        {
            // Throw if any of the operands is not initialized correctly
            if (operands[i].max_coeff_count_ <= 0 || operands[i].comp_ == nullptr)
            {
                throw invalid_argument("input operand is not correctly initialized");
            }

            if (operands[i].max_coeff_count_ > sum_max_coeff_count)
            {
                sum_max_coeff_count = operands[i].max_coeff_count_;
            }
            if (compare_uint_uint(operands[i].max_abs_value_.pointer(), operands[i].max_abs_value_.uint64_count(), operands[largest_abs_value_index].max_abs_value_.pointer(), operands[largest_abs_value_index].max_abs_value_.uint64_count() > 0))
            {
                largest_abs_value_index = i;
            }
        }

        int sum_max_abs_value_bit_count = operands[largest_abs_value_index].max_abs_value_.significant_bit_count() + get_significant_bit_count(operands.size());
        int sum_max_abs_value_uint64_count = divide_round_up(sum_max_abs_value_bit_count, bits_per_uint64);
        Pointer sum_max_abs_value(allocate_zero_uint(sum_max_abs_value_uint64_count, pool_));

        vector<Computation*> comps;
        for (vector<ChooserPoly>::size_type i = 0; i < operands.size(); ++i)
        {
            add_uint_uint(operands[i].max_abs_value_.pointer(), operands[i].max_abs_value_.uint64_count(), sum_max_abs_value.get(), sum_max_abs_value_uint64_count, false, sum_max_abs_value_uint64_count, sum_max_abs_value.get());
            comps.push_back(operands[i].comp_);
        }

        return ChooserPoly(sum_max_coeff_count, BigUInt(sum_max_abs_value_bit_count, sum_max_abs_value.get()), new AddManyComputation(comps));
    }
Ejemplo n.º 4
0
        void multiply_poly_poly(const uint64_t *operand1, 
            int operand1_coeff_count, int operand1_coeff_uint64_count, 
            const uint64_t *operand2, int operand2_coeff_count, 
            int operand2_coeff_uint64_count, int result_coeff_count, 
            int result_coeff_uint64_count, uint64_t *result, MemoryPool &pool)
        {
#ifdef SEAL_DEBUG
            if (operand1 == nullptr && operand1_coeff_count > 0 && 
                operand1_coeff_uint64_count > 0)
            {
                throw invalid_argument("operand1");
            }
            if (operand1_coeff_count < 0)
            {
                throw invalid_argument("operand1_coeff_count");
            }
            if (operand1_coeff_uint64_count < 0)
            {
                throw invalid_argument("operand1_coeff_uint64_count");
            }
            if (operand2 == nullptr && operand2_coeff_count > 0 && 
                operand2_coeff_uint64_count > 0)
            {
                throw invalid_argument("operand2");
            }
            if (operand2_coeff_count < 0)
            {
                throw invalid_argument("operand2_coeff_count");
            }
            if (operand2_coeff_uint64_count < 0)
            {
                throw invalid_argument("operand2_coeff_uint64_count");
            }
            if (result_coeff_count < 0)
            {
                throw invalid_argument("result_coeff_count");
            }
            if (result_coeff_uint64_count < 0)
            {
                throw invalid_argument("result_coeff_uint64_count");
            }
            if (result == nullptr && result_coeff_count > 0 && 
                result_coeff_uint64_count > 0)
            {
                throw invalid_argument("result");
            }
            if (result != nullptr && 
                (operand1 == result || operand2 == result))
            {
                throw invalid_argument("result cannot point to the same value as operand1 or operand2");
            }
#endif
            Pointer intermediate(allocate_uint(result_coeff_uint64_count, pool));

            // Clear product.
            set_zero_poly(result_coeff_count, result_coeff_uint64_count, result);

            operand1_coeff_count = get_significant_coeff_count_poly(
                operand1, operand1_coeff_count, operand1_coeff_uint64_count);
            operand2_coeff_count = get_significant_coeff_count_poly(
                operand2, operand2_coeff_count, operand2_coeff_uint64_count);
            for (int operand1_index = 0; operand1_index < operand1_coeff_count; operand1_index++)
            {
                const uint64_t *operand1_coeff = get_poly_coeff(
                    operand1, operand1_index, operand1_coeff_uint64_count);
                for (int operand2_index = 0; operand2_index < operand2_coeff_count; operand2_index++)
                {
                    int product_coeff_index = operand1_index + operand2_index;
                    if (product_coeff_index >= result_coeff_count)
                    {
                        break;
                    }

                    const uint64_t *operand2_coeff = get_poly_coeff(
                        operand2, operand2_index, operand2_coeff_uint64_count);
                    multiply_uint_uint(operand1_coeff, operand1_coeff_uint64_count, 
                        operand2_coeff, operand2_coeff_uint64_count, result_coeff_uint64_count, intermediate.get());
                    uint64_t *result_coeff = get_poly_coeff(
                        result, product_coeff_index, result_coeff_uint64_count);
                    add_uint_uint(result_coeff, intermediate.get(), result_coeff_uint64_count, result_coeff);
                }
            }
        }
    void Evaluator::multiply(const uint64_t *encrypted1, const uint64_t *encrypted2, uint64_t *destination)
    {
        // Extract encryption parameters.
        int coeff_count = poly_modulus_.coeff_count();
        int coeff_bit_count = poly_modulus_.coeff_bit_count();
        int coeff_uint64_count = divide_round_up(coeff_bit_count, bits_per_uint64);

        // Clear destatintion.
        set_zero_poly(coeff_count, coeff_uint64_count, destination);

        // Determine if FFT can be used.
        bool use_fft = polymod_.coeff_count_power_of_two() >= 0 && polymod_.is_one_zero_one();

        if (use_fft)
        {
            // Use FFT to multiply polynomials.

            // Allocate polynomial to store product of two polynomials, with poly but no coeff modulo yet (and signed).
            int product_coeff_bit_count = coeff_bit_count + coeff_bit_count + get_significant_bit_count(static_cast<uint64_t>(coeff_count)) + 2;
            int product_coeff_uint64_count = divide_round_up(product_coeff_bit_count, bits_per_uint64);
            Pointer product(allocate_poly(coeff_count, product_coeff_uint64_count, pool_));

            // Use FFT to multiply polynomials.
            set_zero_uint(product_coeff_uint64_count, get_poly_coeff(product.get(), coeff_count - 1, product_coeff_uint64_count));
            fftmultiply_poly_poly_polymod(encrypted1, encrypted2, polymod_.coeff_count_power_of_two(), coeff_uint64_count, product_coeff_uint64_count, product.get(), pool_);

            // For each coefficient in product, multiply by plain_modulus and divide by coeff_modulus and then modulo by coeff_modulus.
            int plain_modulus_bit_count = plain_modulus_.significant_bit_count();
            int plain_modulus_uint64_count = divide_round_up(plain_modulus_bit_count, bits_per_uint64);
            int intermediate_bit_count = product_coeff_bit_count + plain_modulus_bit_count - 1;
            int intermediate_uint64_count = divide_round_up(intermediate_bit_count, bits_per_uint64);
            Pointer intermediate(allocate_uint(intermediate_uint64_count, pool_));
            Pointer quotient(allocate_uint(intermediate_uint64_count, pool_));
            for (int coeff_index = 0; coeff_index < coeff_count; ++coeff_index)
            {
                uint64_t *product_coeff = get_poly_coeff(product.get(), coeff_index, product_coeff_uint64_count);
                bool coeff_is_negative = is_high_bit_set_uint(product_coeff, product_coeff_uint64_count);
                if (coeff_is_negative)
                {
                    negate_uint(product_coeff, product_coeff_uint64_count, product_coeff);
                }
                multiply_uint_uint(product_coeff, product_coeff_uint64_count, plain_modulus_.pointer(), plain_modulus_uint64_count, intermediate_uint64_count, intermediate.get());
                add_uint_uint(intermediate.get(), wide_coeff_modulus_div_two_.pointer(), intermediate_uint64_count, intermediate.get());
                divide_uint_uint_inplace(intermediate.get(), wide_coeff_modulus_.pointer(), intermediate_uint64_count, quotient.get(), pool_);
                modulo_uint_inplace(quotient.get(), intermediate_uint64_count, mod_, pool_);
                uint64_t *dest_coeff = get_poly_coeff(destination, coeff_index, coeff_uint64_count);
                if (coeff_is_negative)
                {
                    negate_uint_mod(quotient.get(), coeff_modulus_.pointer(), coeff_uint64_count, dest_coeff);
                }
                else
                {
                    set_uint_uint(quotient.get(), coeff_uint64_count, dest_coeff);
                }
            }
        }
        else
        {
            // Use normal multiplication to multiply polynomials.

            // Allocate polynomial to store product of two polynomials, with no poly or coeff modulo yet.
            int product_coeff_count = coeff_count + coeff_count - 1;
            int product_coeff_bit_count = coeff_bit_count + coeff_bit_count + get_significant_bit_count(static_cast<uint64_t>(coeff_count));
            int product_coeff_uint64_count = divide_round_up(product_coeff_bit_count, bits_per_uint64);
            Pointer product(allocate_poly(product_coeff_count, product_coeff_uint64_count, pool_));

            // Multiply polynomials.
            multiply_poly_poly(encrypted1, coeff_count, coeff_uint64_count, encrypted2, coeff_count, coeff_uint64_count, product_coeff_count, product_coeff_uint64_count, product.get(), pool_);

            // For each coefficient in product, multiply by plain_modulus and divide by coeff_modulus and then modulo by coeff_modulus.
            int plain_modulus_bit_count = plain_modulus_.significant_bit_count();
            int plain_modulus_uint64_count = divide_round_up(plain_modulus_bit_count, bits_per_uint64);
            int intermediate_bit_count = product_coeff_bit_count + plain_modulus_bit_count;
            int intermediate_uint64_count = divide_round_up(intermediate_bit_count, bits_per_uint64);
            Pointer intermediate(allocate_uint(intermediate_uint64_count, pool_));
            Pointer quotient(allocate_uint(intermediate_uint64_count, pool_));
            Pointer productmoded(allocate_poly(product_coeff_count, coeff_uint64_count, pool_));
            for (int coeff_index = 0; coeff_index < product_coeff_count; ++coeff_index)
            {
                const uint64_t *product_coeff = get_poly_coeff(product.get(), coeff_index, product_coeff_uint64_count);
                multiply_uint_uint(product_coeff, product_coeff_uint64_count, plain_modulus_.pointer(), plain_modulus_uint64_count, intermediate_uint64_count, intermediate.get());
                add_uint_uint(intermediate.get(), wide_coeff_modulus_div_two_.pointer(), intermediate_uint64_count, intermediate.get());
                divide_uint_uint_inplace(intermediate.get(), wide_coeff_modulus_.pointer(), intermediate_uint64_count, quotient.get(), pool_);
                modulo_uint_inplace(quotient.get(), intermediate_uint64_count, mod_, pool_);
                uint64_t *productmoded_coeff = get_poly_coeff(productmoded.get(), coeff_index, coeff_uint64_count);
                set_uint_uint(quotient.get(), coeff_uint64_count, productmoded_coeff);
            }

            // Perform polynomial modulo.
            modulo_poly_inplace(productmoded.get(), product_coeff_count, polymod_, mod_, pool_);

            // Copy to destination.
            set_poly_poly(productmoded.get(), coeff_count, coeff_uint64_count, destination);
        }
    }
    void Evaluator::multiply_plain(const BigPoly &encrypted1, const BigPoly &plain2, BigPoly &destination)
    {
        // Extract encryption parameters.
        int coeff_count = poly_modulus_.coeff_count();
        int coeff_bit_count = poly_modulus_.coeff_bit_count();
        int coeff_uint64_count = divide_round_up(coeff_bit_count, bits_per_uint64);

        // Verify parameters.
        if (encrypted1.coeff_count() != coeff_count || encrypted1.coeff_bit_count() != coeff_bit_count)
        {
            throw invalid_argument("encrypted1 is not valid for encryption parameters");
        }
#ifdef _DEBUG
        if (encrypted1.significant_coeff_count() == coeff_count || !are_poly_coefficients_less_than(encrypted1, coeff_modulus_))
        {
            throw invalid_argument("encrypted1 is not valid for encryption parameters");
        }
        if (plain2.significant_coeff_count() >= coeff_count || !are_poly_coefficients_less_than(plain2, plain_modulus_))
        {
            throw invalid_argument("plain2 is too large to be represented by encryption parameters");
        }
#endif
        if (destination.coeff_count() != coeff_count || destination.coeff_bit_count() != coeff_bit_count)
        {
            destination.resize(coeff_count, coeff_bit_count);
        }

        // Get pointer to inputs (duplicated if needed).
        ConstPointer encrypted1ptr = duplicate_poly_if_needed(encrypted1, encrypted1.pointer() == destination.pointer(), pool_);

        // Handle test-mode case.
        if (mode_ == TEST_MODE)
        {
            // Get pointer to inputs (duplicated and resized if needed).
            ConstPointer plain2ptr = duplicate_poly_if_needed(plain2, coeff_count, coeff_uint64_count, plain2.pointer() == destination.pointer(), pool_);

            // Resize second operand if needed.
            multiply_poly_poly_polymod_coeffmod(encrypted1ptr.get(), plain2ptr.get(), polymod_, mod_, destination.pointer(), pool_);
            return;
        }

        // Reposition coefficients.
        Pointer moved2ptr(allocate_poly(coeff_count, coeff_uint64_count, pool_));
        int plain_coeff_count = min(plain2.significant_coeff_count(), coeff_count);
        int plain2_coeff_uint64_count = plain2.coeff_uint64_count();
        const uint64_t *plain2_coeff = plain2.pointer();
        uint64_t *moved2_coeff = moved2ptr.get();
        for (int i = 0; i < plain_coeff_count; ++i)
        {
            set_uint_uint(plain2_coeff, plain2_coeff_uint64_count, coeff_uint64_count, moved2_coeff);
            bool is_upper_half = is_greater_than_or_equal_uint_uint(moved2_coeff, plain_upper_half_threshold_.pointer(), coeff_uint64_count);
            if (is_upper_half)
            {
                add_uint_uint(moved2_coeff, plain_upper_half_increment_.pointer(), coeff_uint64_count, moved2_coeff);
            }
            moved2_coeff += coeff_uint64_count;
            plain2_coeff += plain2_coeff_uint64_count;
        }
        for (int i = plain_coeff_count; i < coeff_count; ++i)
        {
            set_zero_uint(coeff_uint64_count, moved2_coeff);
            moved2_coeff += coeff_uint64_count;
        }

        // Use normal polynomial multiplication.
        multiply_poly_poly_polymod_coeffmod(encrypted1ptr.get(), moved2ptr.get(), polymod_, mod_, destination.pointer(), pool_);
    }