void allPath(s *r,int i) { if(r!=NULL) { a[i++]=r->data; allPath(r->left,i); allPath(r->right,i); if(r->left==NULL && r->right==NULL) { a[i--]='\0'; print(a); return; } } return;
bool AffinityTask::staticStrongAnalysis(const TaskSet& taskSet, Time overhead) { AffinityTask::Compare compare; std::unordered_map<AffinityTask*, Time> responseTime; Affinity allCPU; for(AffinityTask* task : taskSet) { responseTime.insert(std::pair<AffinityTask*, Time>(task, task->worstExecution)); for(auto cpu : task->affinity) allCPU.insert(cpu); } while(true) { bool changed = false; bool overflow = false; std::unordered_map<AffinityTask*, Time> newResponseTime; for(auto current : responseTime) { AffinityTask* curTask = current.first; std::set<Affinity> powerSet = AffinityTask::powerSet(curTask->affinity); Time currentResponse = responseTime.find(curTask)->second; TaskSet ignoreTask; ignoreTask.insert(curTask); Time min_sumInterfere = std::numeric_limits<Time>::max(); for(Affinity s : powerSet) { assert(s.size() != 0); Size s_Size = s.size(); //Time sumInterference = 0; std::unordered_map<CPUID, std::list<TaskSet>> possibleReplacement; for(auto cpu : s) { possibleReplacement.insert(std::pair<CPUID, std::list<TaskSet>> (cpu, std::list<TaskSet>())); } for(CPUID selectedCPU : s) { Affinity ignoreCPU(s); ignoreCPU.erase(selectedCPU); for(auto alternative : allCPU) { if(ignoreCPU.find(alternative) != ignoreCPU.end()) continue; auto allPaths = allPath(taskSet, selectedCPU, alternative, ignoreCPU, ignoreTask); for(auto path : allPaths) { if(path.size() > 0) { TaskSet ignoredTask; Affinity moreCheck; for(auto item : path) { if(item.isTask()) ignoredTask.insert(item.getTask()); else moreCheck.insert(item.getCPUID()); } TaskSet highTaskSet; for(AffinityTask* highPriorityTask : taskSet) { //if(compare(curTask, highPriorityTask)) // continue; if(highPriorityTask == curTask) continue; if(ignoredTask.find(highPriorityTask) != ignoredTask.end()) continue; bool intersect = false; for(auto cpu : highPriorityTask->affinity) { if(moreCheck.find(cpu) != moreCheck.end()) { intersect = true; break; } } if(!intersect) continue; highTaskSet.insert(highPriorityTask); } possibleReplacement.find(selectedCPU)->second.push_back(highTaskSet); } } } } for(auto possibleSet : combinePossibleTaskSet(possibleReplacement)) { Time sumInterference = 0; /* if(possibleSet.size() ==0) continue; assert(possibleSet.size() > 0); */ sumInterference += overhead; for(auto highPriorityTask : possibleSet) { Time interferenceCount = currentResponse/highPriorityTask->minPeriod; Time remaining = currentResponse % highPriorityTask->minPeriod; Time interference = interferenceCount * highPriorityTask->worstExecution + std::min(remaining, highPriorityTask->worstExecution); Time contextSwitchCount = interferenceCount; if(remaining > 0) contextSwitchCount++; sumInterference += 2*(contextSwitchCount) * overhead; if(compare(curTask, highPriorityTask)) continue; sumInterference += interference; } Time floorValue = floor((Real)sumInterference / (Real)s_Size); min_sumInterfere = std::min(min_sumInterfere, floorValue); } } assert(min_sumInterfere != std::numeric_limits<Time>::max()); Time nextResponse = curTask->worstExecution + min_sumInterfere; newResponseTime.insert(std::pair<AffinityTask*, Time>(curTask, nextResponse)); if(currentResponse != nextResponse) changed = true; if(currentResponse > curTask->minPeriod) overflow = true; } if(changed) responseTime = newResponseTime; else break; if(overflow) break; } bool possible = true; for(auto iter : responseTime) { if(iter.second > iter.first->minPeriod) { possible = false; iter.first->print_log(WARN, "Execution time: %lu, Period: %lu, Response time: %lu", iter.first->worstExecution, iter.first->minPeriod, iter.second); } else { iter.first->print_log(INFO, "Execution time: %lu, Period: %lu, Response time: %lu", iter.first->worstExecution, iter.first->minPeriod, iter.second); } } return possible; }
int main() { s *root=NULL; root=create('A'); root->left=create('B'); root->right=create('C'); root->left->left=create('D'); root->left->right=create('E'); root->left->right->left=create('I'); root->left->right->right=create('J'); root->left->right->right->left=create('K'); root->right->left=create('F'); root->right->right=create('G'); root->right->right->left=create('H'); int n,num,h; while(1) { printf("1. All possible paths\n"); printf("2. Height of the tree\n"); printf("3. In Order\n"); printf("4. Level Order\n"); printf("5. Spiral Order\n"); printf("6. Exit\n"); printf("\nSelect an option: "); scanf("%d",&num); system("cls"); switch(num) { case 1: allPath(root,0); getch(); system("cls"); break; case 2: h= height(root); printf("height = %d ",h); getch(); system("cls"); break; case 3: inOrder(root); printf("end"); getch(); system("cls"); break; case 4: printf("Enter the level you want to print: "); scanf("%d",&n); levelOrder(root,n); printf("end"); getch(); system("cls"); break; case 5: spiralOrder(root,height(root)); getch(); system("cls"); break; case 6: exit(0); default: printf("Invalid Input!!"); getch(); system("cls"); } } return 0;