address JNI_FastGetField::generate_fast_get_float_field0(BasicType type) { const char *name; switch (type) { case T_FLOAT: name = "jni_fast_GetFloatField"; break; case T_DOUBLE: name = "jni_fast_GetDoubleField"; break; default: ShouldNotReachHere(); } ResourceMark rm; BufferBlob* blob = BufferBlob::create(name, BUFFER_SIZE*wordSize); CodeBuffer cbuf(blob); MacroAssembler* masm = new MacroAssembler(&cbuf); address fast_entry = __ pc(); Label label1, label2; AddressLiteral cnt_addrlit(SafepointSynchronize::safepoint_counter_addr()); __ sethi (cnt_addrlit, O3); Address cnt_addr(O3, cnt_addrlit.low10()); __ ld (cnt_addr, G4); __ andcc (G4, 1, G0); __ br (Assembler::notZero, false, Assembler::pn, label1); __ delayed()->srl (O2, 2, O4); __ ld_ptr (O1, 0, O5); assert(count < LIST_CAPACITY, "LIST_CAPACITY too small"); speculative_load_pclist[count] = __ pc(); switch (type) { case T_FLOAT: __ ldf (FloatRegisterImpl::S, O5, O4, F0); break; case T_DOUBLE: __ ldf (FloatRegisterImpl::D, O5, O4, F0); break; default: ShouldNotReachHere(); } __ ld (cnt_addr, O5); __ cmp (O5, G4); __ br (Assembler::notEqual, false, Assembler::pn, label2); __ delayed()->mov (O7, G1); __ retl (); __ delayed()-> nop (); slowcase_entry_pclist[count++] = __ pc(); __ bind (label1); __ mov (O7, G1); address slow_case_addr; switch (type) { case T_FLOAT: slow_case_addr = jni_GetFloatField_addr(); break; case T_DOUBLE: slow_case_addr = jni_GetDoubleField_addr(); break; default: ShouldNotReachHere(); } __ bind (label2); __ call (slow_case_addr, relocInfo::none); __ delayed()->mov (G1, O7); __ flush (); return fast_entry; }
void C1_MacroAssembler::lock_object(Register Rmark, Register Roop, Register Rbox, Register Rscratch, Label& slow_case) { assert_different_registers(Rmark, Roop, Rbox, Rscratch); Label done; Address mark_addr(Roop, oopDesc::mark_offset_in_bytes()); // The following move must be the first instruction of emitted since debug // information may be generated for it. // Load object header ld_ptr(mark_addr, Rmark); verify_oop(Roop); // save object being locked into the BasicObjectLock st_ptr(Roop, Rbox, BasicObjectLock::obj_offset_in_bytes()); if (UseBiasedLocking) { biased_locking_enter(Roop, Rmark, Rscratch, done, &slow_case); } // Save Rbox in Rscratch to be used for the cas operation mov(Rbox, Rscratch); // and mark it unlocked or3(Rmark, markOopDesc::unlocked_value, Rmark); // save unlocked object header into the displaced header location on the stack st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes()); // compare object markOop with Rmark and if equal exchange Rscratch with object markOop assert(mark_addr.disp() == 0, "cas must take a zero displacement"); cas_ptr(mark_addr.base(), Rmark, Rscratch); // if compare/exchange succeeded we found an unlocked object and we now have locked it // hence we are done cmp(Rmark, Rscratch); brx(Assembler::equal, false, Assembler::pt, done); delayed()->sub(Rscratch, SP, Rscratch); //pull next instruction into delay slot // we did not find an unlocked object so see if this is a recursive case // sub(Rscratch, SP, Rscratch); assert(os::vm_page_size() > 0xfff, "page size too small - change the constant"); andcc(Rscratch, 0xfffff003, Rscratch); brx(Assembler::notZero, false, Assembler::pn, slow_case); delayed()->st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes()); bind(done); }
OopMapSet* Runtime1::generate_code_for(StubID id, StubAssembler* sasm) { OopMapSet* oop_maps = NULL; // for better readability const bool must_gc_arguments = true; const bool dont_gc_arguments = false; // stub code & info for the different stubs switch (id) { case forward_exception_id: { oop_maps = generate_handle_exception(id, sasm); } break; case new_instance_id: case fast_new_instance_id: case fast_new_instance_init_check_id: { Register G5_klass = G5; // Incoming Register O0_obj = O0; // Outgoing if (id == new_instance_id) { __ set_info("new_instance", dont_gc_arguments); } else if (id == fast_new_instance_id) { __ set_info("fast new_instance", dont_gc_arguments); } else { assert(id == fast_new_instance_init_check_id, "bad StubID"); __ set_info("fast new_instance init check", dont_gc_arguments); } if ((id == fast_new_instance_id || id == fast_new_instance_init_check_id) && UseTLAB && FastTLABRefill) { Label slow_path; Register G1_obj_size = G1; Register G3_t1 = G3; Register G4_t2 = G4; assert_different_registers(G5_klass, G1_obj_size, G3_t1, G4_t2); // Push a frame since we may do dtrace notification for the // allocation which requires calling out and we don't want // to stomp the real return address. __ save_frame(0); if (id == fast_new_instance_init_check_id) { // make sure the klass is initialized __ ldub(G5_klass, in_bytes(InstanceKlass::init_state_offset()), G3_t1); __ cmp_and_br_short(G3_t1, InstanceKlass::fully_initialized, Assembler::notEqual, Assembler::pn, slow_path); } #ifdef ASSERT // assert object can be fast path allocated { Label ok, not_ok; __ ld(G5_klass, in_bytes(Klass::layout_helper_offset()), G1_obj_size); // make sure it's an instance (LH > 0) __ cmp_and_br_short(G1_obj_size, 0, Assembler::lessEqual, Assembler::pn, not_ok); __ btst(Klass::_lh_instance_slow_path_bit, G1_obj_size); __ br(Assembler::zero, false, Assembler::pn, ok); __ delayed()->nop(); __ bind(not_ok); __ stop("assert(can be fast path allocated)"); __ should_not_reach_here(); __ bind(ok); } #endif // ASSERT // if we got here then the TLAB allocation failed, so try // refilling the TLAB or allocating directly from eden. Label retry_tlab, try_eden; __ tlab_refill(retry_tlab, try_eden, slow_path); // preserves G5_klass __ bind(retry_tlab); // get the instance size __ ld(G5_klass, in_bytes(Klass::layout_helper_offset()), G1_obj_size); __ tlab_allocate(O0_obj, G1_obj_size, 0, G3_t1, slow_path); __ initialize_object(O0_obj, G5_klass, G1_obj_size, 0, G3_t1, G4_t2); __ verify_oop(O0_obj); __ mov(O0, I0); __ ret(); __ delayed()->restore(); __ bind(try_eden); // get the instance size __ ld(G5_klass, in_bytes(Klass::layout_helper_offset()), G1_obj_size); __ eden_allocate(O0_obj, G1_obj_size, 0, G3_t1, G4_t2, slow_path); __ incr_allocated_bytes(G1_obj_size, G3_t1, G4_t2); __ initialize_object(O0_obj, G5_klass, G1_obj_size, 0, G3_t1, G4_t2); __ verify_oop(O0_obj); __ mov(O0, I0); __ ret(); __ delayed()->restore(); __ bind(slow_path); // pop this frame so generate_stub_call can push it's own __ restore(); } oop_maps = generate_stub_call(sasm, I0, CAST_FROM_FN_PTR(address, new_instance), G5_klass); // I0->O0: new instance } break; case counter_overflow_id: // G4 contains bci, G5 contains method oop_maps = generate_stub_call(sasm, noreg, CAST_FROM_FN_PTR(address, counter_overflow), G4, G5); break; case new_type_array_id: case new_object_array_id: { Register G5_klass = G5; // Incoming Register G4_length = G4; // Incoming Register O0_obj = O0; // Outgoing Address klass_lh(G5_klass, Klass::layout_helper_offset()); assert(Klass::_lh_header_size_shift % BitsPerByte == 0, "bytewise"); assert(Klass::_lh_header_size_mask == 0xFF, "bytewise"); // Use this offset to pick out an individual byte of the layout_helper: const int klass_lh_header_size_offset = ((BytesPerInt - 1) // 3 - 2 selects byte {0,1,0,0} - Klass::_lh_header_size_shift / BitsPerByte); if (id == new_type_array_id) { __ set_info("new_type_array", dont_gc_arguments); } else { __ set_info("new_object_array", dont_gc_arguments); } #ifdef ASSERT // assert object type is really an array of the proper kind { Label ok; Register G3_t1 = G3; __ ld(klass_lh, G3_t1); __ sra(G3_t1, Klass::_lh_array_tag_shift, G3_t1); int tag = ((id == new_type_array_id) ? Klass::_lh_array_tag_type_value : Klass::_lh_array_tag_obj_value); __ cmp_and_brx_short(G3_t1, tag, Assembler::equal, Assembler::pt, ok); __ stop("assert(is an array klass)"); __ should_not_reach_here(); __ bind(ok); } #endif // ASSERT if (UseTLAB && FastTLABRefill) { Label slow_path; Register G1_arr_size = G1; Register G3_t1 = G3; Register O1_t2 = O1; assert_different_registers(G5_klass, G4_length, G1_arr_size, G3_t1, O1_t2); // check that array length is small enough for fast path __ set(C1_MacroAssembler::max_array_allocation_length, G3_t1); __ cmp_and_br_short(G4_length, G3_t1, Assembler::greaterUnsigned, Assembler::pn, slow_path); // if we got here then the TLAB allocation failed, so try // refilling the TLAB or allocating directly from eden. Label retry_tlab, try_eden; __ tlab_refill(retry_tlab, try_eden, slow_path); // preserves G4_length and G5_klass __ bind(retry_tlab); // get the allocation size: (length << (layout_helper & 0x1F)) + header_size __ ld(klass_lh, G3_t1); __ sll(G4_length, G3_t1, G1_arr_size); __ srl(G3_t1, Klass::_lh_header_size_shift, G3_t1); __ and3(G3_t1, Klass::_lh_header_size_mask, G3_t1); __ add(G1_arr_size, G3_t1, G1_arr_size); __ add(G1_arr_size, MinObjAlignmentInBytesMask, G1_arr_size); // align up __ and3(G1_arr_size, ~MinObjAlignmentInBytesMask, G1_arr_size); __ tlab_allocate(O0_obj, G1_arr_size, 0, G3_t1, slow_path); // preserves G1_arr_size __ initialize_header(O0_obj, G5_klass, G4_length, G3_t1, O1_t2); __ ldub(klass_lh, G3_t1, klass_lh_header_size_offset); __ sub(G1_arr_size, G3_t1, O1_t2); // body length __ add(O0_obj, G3_t1, G3_t1); // body start __ initialize_body(G3_t1, O1_t2); __ verify_oop(O0_obj); __ retl(); __ delayed()->nop(); __ bind(try_eden); // get the allocation size: (length << (layout_helper & 0x1F)) + header_size __ ld(klass_lh, G3_t1); __ sll(G4_length, G3_t1, G1_arr_size); __ srl(G3_t1, Klass::_lh_header_size_shift, G3_t1); __ and3(G3_t1, Klass::_lh_header_size_mask, G3_t1); __ add(G1_arr_size, G3_t1, G1_arr_size); __ add(G1_arr_size, MinObjAlignmentInBytesMask, G1_arr_size); __ and3(G1_arr_size, ~MinObjAlignmentInBytesMask, G1_arr_size); __ eden_allocate(O0_obj, G1_arr_size, 0, G3_t1, O1_t2, slow_path); // preserves G1_arr_size __ incr_allocated_bytes(G1_arr_size, G3_t1, O1_t2); __ initialize_header(O0_obj, G5_klass, G4_length, G3_t1, O1_t2); __ ldub(klass_lh, G3_t1, klass_lh_header_size_offset); __ sub(G1_arr_size, G3_t1, O1_t2); // body length __ add(O0_obj, G3_t1, G3_t1); // body start __ initialize_body(G3_t1, O1_t2); __ verify_oop(O0_obj); __ retl(); __ delayed()->nop(); __ bind(slow_path); } if (id == new_type_array_id) { oop_maps = generate_stub_call(sasm, I0, CAST_FROM_FN_PTR(address, new_type_array), G5_klass, G4_length); } else { oop_maps = generate_stub_call(sasm, I0, CAST_FROM_FN_PTR(address, new_object_array), G5_klass, G4_length); } // I0 -> O0: new array } break; case new_multi_array_id: { // O0: klass // O1: rank // O2: address of 1st dimension __ set_info("new_multi_array", dont_gc_arguments); oop_maps = generate_stub_call(sasm, I0, CAST_FROM_FN_PTR(address, new_multi_array), I0, I1, I2); // I0 -> O0: new multi array } break; case register_finalizer_id: { __ set_info("register_finalizer", dont_gc_arguments); // load the klass and check the has finalizer flag Label register_finalizer; Register t = O1; __ load_klass(O0, t); __ ld(t, in_bytes(Klass::access_flags_offset()), t); __ set(JVM_ACC_HAS_FINALIZER, G3); __ andcc(G3, t, G0); __ br(Assembler::notZero, false, Assembler::pt, register_finalizer); __ delayed()->nop(); // do a leaf return __ retl(); __ delayed()->nop(); __ bind(register_finalizer); OopMap* oop_map = save_live_registers(sasm); int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, SharedRuntime::register_finalizer), I0); oop_maps = new OopMapSet(); oop_maps->add_gc_map(call_offset, oop_map); // Now restore all the live registers restore_live_registers(sasm); __ ret(); __ delayed()->restore(); } break; case throw_range_check_failed_id: { __ set_info("range_check_failed", dont_gc_arguments); // arguments will be discarded // G4: index oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_range_check_exception), true); } break; case throw_index_exception_id: { __ set_info("index_range_check_failed", dont_gc_arguments); // arguments will be discarded // G4: index oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_index_exception), true); } break; case throw_div0_exception_id: { __ set_info("throw_div0_exception", dont_gc_arguments); oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_div0_exception), false); } break; case throw_null_pointer_exception_id: { __ set_info("throw_null_pointer_exception", dont_gc_arguments); oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_null_pointer_exception), false); } break; case handle_exception_id: { __ set_info("handle_exception", dont_gc_arguments); oop_maps = generate_handle_exception(id, sasm); } break; case handle_exception_from_callee_id: { __ set_info("handle_exception_from_callee", dont_gc_arguments); oop_maps = generate_handle_exception(id, sasm); } break; case unwind_exception_id: { // O0: exception // I7: address of call to this method __ set_info("unwind_exception", dont_gc_arguments); __ mov(Oexception, Oexception->after_save()); __ add(I7, frame::pc_return_offset, Oissuing_pc->after_save()); __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), G2_thread, Oissuing_pc->after_save()); __ verify_not_null_oop(Oexception->after_save()); // Restore SP from L7 if the exception PC is a method handle call site. __ mov(O0, G5); // Save the target address. __ lduw(Address(G2_thread, JavaThread::is_method_handle_return_offset()), L0); __ tst(L0); // Condition codes are preserved over the restore. __ restore(); __ jmp(G5, 0); __ delayed()->movcc(Assembler::notZero, false, Assembler::icc, L7_mh_SP_save, SP); // Restore SP if required. } break; case throw_array_store_exception_id: { __ set_info("throw_array_store_exception", dont_gc_arguments); oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_array_store_exception), true); } break; case throw_class_cast_exception_id: { // G4: object __ set_info("throw_class_cast_exception", dont_gc_arguments); oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_class_cast_exception), true); } break; case throw_incompatible_class_change_error_id: { __ set_info("throw_incompatible_class_cast_exception", dont_gc_arguments); oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_incompatible_class_change_error), false); } break; case slow_subtype_check_id: { // Support for uint StubRoutine::partial_subtype_check( Klass sub, Klass super ); // Arguments : // // ret : G3 // sub : G3, argument, destroyed // super: G1, argument, not changed // raddr: O7, blown by call Label miss; __ save_frame(0); // Blow no registers! __ check_klass_subtype_slow_path(G3, G1, L0, L1, L2, L4, NULL, &miss); __ mov(1, G3); __ ret(); // Result in G5 is 'true' __ delayed()->restore(); // free copy or add can go here __ bind(miss); __ mov(0, G3); __ ret(); // Result in G5 is 'false' __ delayed()->restore(); // free copy or add can go here } case monitorenter_nofpu_id: case monitorenter_id: { // G4: object // G5: lock address __ set_info("monitorenter", dont_gc_arguments); int save_fpu_registers = (id == monitorenter_id); // make a frame and preserve the caller's caller-save registers OopMap* oop_map = save_live_registers(sasm, save_fpu_registers); int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, monitorenter), G4, G5); oop_maps = new OopMapSet(); oop_maps->add_gc_map(call_offset, oop_map); restore_live_registers(sasm, save_fpu_registers); __ ret(); __ delayed()->restore(); } break; case monitorexit_nofpu_id: case monitorexit_id: { // G4: lock address // note: really a leaf routine but must setup last java sp // => use call_RT for now (speed can be improved by // doing last java sp setup manually) __ set_info("monitorexit", dont_gc_arguments); int save_fpu_registers = (id == monitorexit_id); // make a frame and preserve the caller's caller-save registers OopMap* oop_map = save_live_registers(sasm, save_fpu_registers); int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, monitorexit), G4); oop_maps = new OopMapSet(); oop_maps->add_gc_map(call_offset, oop_map); restore_live_registers(sasm, save_fpu_registers); __ ret(); __ delayed()->restore(); } break; case deoptimize_id: { __ set_info("deoptimize", dont_gc_arguments); OopMap* oop_map = save_live_registers(sasm); int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, deoptimize)); oop_maps = new OopMapSet(); oop_maps->add_gc_map(call_offset, oop_map); restore_live_registers(sasm); DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob(); assert(deopt_blob != NULL, "deoptimization blob must have been created"); AddressLiteral dest(deopt_blob->unpack_with_reexecution()); __ jump_to(dest, O0); __ delayed()->restore(); } break; case access_field_patching_id: { __ set_info("access_field_patching", dont_gc_arguments); oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, access_field_patching)); } break; case load_klass_patching_id: { __ set_info("load_klass_patching", dont_gc_arguments); oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_klass_patching)); } break; case load_mirror_patching_id: { __ set_info("load_mirror_patching", dont_gc_arguments); oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_mirror_patching)); } break; case dtrace_object_alloc_id: { // O0: object __ set_info("dtrace_object_alloc", dont_gc_arguments); // we can't gc here so skip the oopmap but make sure that all // the live registers get saved. save_live_registers(sasm); __ save_thread(L7_thread_cache); __ call(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), relocInfo::runtime_call_type); __ delayed()->mov(I0, O0); __ restore_thread(L7_thread_cache); restore_live_registers(sasm); __ ret(); __ delayed()->restore(); } break; #if INCLUDE_ALL_GCS case g1_pre_barrier_slow_id: { // G4: previous value of memory BarrierSet* bs = Universe::heap()->barrier_set(); if (bs->kind() != BarrierSet::G1SATBCTLogging) { __ save_frame(0); __ set((int)id, O1); __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, unimplemented_entry), I0); __ should_not_reach_here(); break; } __ set_info("g1_pre_barrier_slow_id", dont_gc_arguments); Register pre_val = G4; Register tmp = G1_scratch; Register tmp2 = G3_scratch; Label refill, restart; bool with_frame = false; // I don't know if we can do with-frame. int satb_q_index_byte_offset = in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_index()); int satb_q_buf_byte_offset = in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_buf()); __ bind(restart); // Load the index into the SATB buffer. PtrQueue::_index is a // size_t so ld_ptr is appropriate __ ld_ptr(G2_thread, satb_q_index_byte_offset, tmp); // index == 0? __ cmp_and_brx_short(tmp, G0, Assembler::equal, Assembler::pn, refill); __ ld_ptr(G2_thread, satb_q_buf_byte_offset, tmp2); __ sub(tmp, oopSize, tmp); __ st_ptr(pre_val, tmp2, tmp); // [_buf + index] := <address_of_card> // Use return-from-leaf __ retl(); __ delayed()->st_ptr(tmp, G2_thread, satb_q_index_byte_offset); __ bind(refill); __ save_frame(0); __ mov(pre_val, L0); __ mov(tmp, L1); __ mov(tmp2, L2); __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, SATBMarkQueueSet::handle_zero_index_for_thread), G2_thread); __ mov(L0, pre_val); __ mov(L1, tmp); __ mov(L2, tmp2); __ br(Assembler::always, /*annul*/false, Assembler::pt, restart); __ delayed()->restore(); } break; case g1_post_barrier_slow_id: { BarrierSet* bs = Universe::heap()->barrier_set(); if (bs->kind() != BarrierSet::G1SATBCTLogging) { __ save_frame(0); __ set((int)id, O1); __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, unimplemented_entry), I0); __ should_not_reach_here(); break; } __ set_info("g1_post_barrier_slow_id", dont_gc_arguments); Register addr = G4; Register cardtable = G5; Register tmp = G1_scratch; Register tmp2 = G3_scratch; jbyte* byte_map_base = ((CardTableModRefBS*)bs)->byte_map_base; Label not_already_dirty, restart, refill; #ifdef _LP64 __ srlx(addr, CardTableModRefBS::card_shift, addr); #else __ srl(addr, CardTableModRefBS::card_shift, addr); #endif AddressLiteral rs(byte_map_base); __ set(rs, cardtable); // cardtable := <card table base> __ ldub(addr, cardtable, tmp); // tmp := [addr + cardtable] assert(CardTableModRefBS::dirty_card_val() == 0, "otherwise check this code"); __ cmp_and_br_short(tmp, G0, Assembler::notEqual, Assembler::pt, not_already_dirty); // We didn't take the branch, so we're already dirty: return. // Use return-from-leaf __ retl(); __ delayed()->nop(); // Not dirty. __ bind(not_already_dirty); // Get cardtable + tmp into a reg by itself __ add(addr, cardtable, tmp2); // First, dirty it. __ stb(G0, tmp2, 0); // [cardPtr] := 0 (i.e., dirty). Register tmp3 = cardtable; Register tmp4 = tmp; // these registers are now dead addr = cardtable = tmp = noreg; int dirty_card_q_index_byte_offset = in_bytes(JavaThread::dirty_card_queue_offset() + PtrQueue::byte_offset_of_index()); int dirty_card_q_buf_byte_offset = in_bytes(JavaThread::dirty_card_queue_offset() + PtrQueue::byte_offset_of_buf()); __ bind(restart); // Get the index into the update buffer. PtrQueue::_index is // a size_t so ld_ptr is appropriate here. __ ld_ptr(G2_thread, dirty_card_q_index_byte_offset, tmp3); // index == 0? __ cmp_and_brx_short(tmp3, G0, Assembler::equal, Assembler::pn, refill); __ ld_ptr(G2_thread, dirty_card_q_buf_byte_offset, tmp4); __ sub(tmp3, oopSize, tmp3); __ st_ptr(tmp2, tmp4, tmp3); // [_buf + index] := <address_of_card> // Use return-from-leaf __ retl(); __ delayed()->st_ptr(tmp3, G2_thread, dirty_card_q_index_byte_offset); __ bind(refill); __ save_frame(0); __ mov(tmp2, L0); __ mov(tmp3, L1); __ mov(tmp4, L2); __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, DirtyCardQueueSet::handle_zero_index_for_thread), G2_thread); __ mov(L0, tmp2); __ mov(L1, tmp3); __ mov(L2, tmp4); __ br(Assembler::always, /*annul*/false, Assembler::pt, restart); __ delayed()->restore(); } break; #endif // INCLUDE_ALL_GCS case predicate_failed_trap_id: { __ set_info("predicate_failed_trap", dont_gc_arguments); OopMap* oop_map = save_live_registers(sasm); int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, predicate_failed_trap)); oop_maps = new OopMapSet(); oop_maps->add_gc_map(call_offset, oop_map); DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob(); assert(deopt_blob != NULL, "deoptimization blob must have been created"); restore_live_registers(sasm); AddressLiteral dest(deopt_blob->unpack_with_reexecution()); __ jump_to(dest, O0); __ delayed()->restore(); } break; default: { __ set_info("unimplemented entry", dont_gc_arguments); __ save_frame(0); __ set((int)id, O1); __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, unimplemented_entry), O1); __ should_not_reach_here(); } break; } return oop_maps; }
/* execute instructions on this CPU until icount expires */ static int hd6309_execute(int cycles) /* NS 970908 */ { hd6309_ICount = cycles - hd6309.extra_cycles; hd6309.extra_cycles = 0; if (hd6309.int_state & (HD6309_CWAI | HD6309_SYNC)) { CALL_MAME_DEBUG; hd6309_ICount = 0; } else { do { pPPC = pPC; CALL_MAME_DEBUG; hd6309.ireg = ROP(PCD); PC++; #ifdef BIG_SWITCH switch( hd6309.ireg ) { case 0x00: neg_di(); break; case 0x01: oim_di(); break; case 0x02: aim_di(); break; case 0x03: com_di(); break; case 0x04: lsr_di(); break; case 0x05: eim_di(); break; case 0x06: ror_di(); break; case 0x07: asr_di(); break; case 0x08: asl_di(); break; case 0x09: rol_di(); break; case 0x0a: dec_di(); break; case 0x0b: tim_di(); break; case 0x0c: inc_di(); break; case 0x0d: tst_di(); break; case 0x0e: jmp_di(); break; case 0x0f: clr_di(); break; case 0x10: pref10(); break; case 0x11: pref11(); break; case 0x12: nop(); break; case 0x13: sync(); break; case 0x14: sexw(); break; case 0x15: IIError(); break; case 0x16: lbra(); break; case 0x17: lbsr(); break; case 0x18: IIError(); break; case 0x19: daa(); break; case 0x1a: orcc(); break; case 0x1b: IIError(); break; case 0x1c: andcc(); break; case 0x1d: sex(); break; case 0x1e: exg(); break; case 0x1f: tfr(); break; case 0x20: bra(); break; case 0x21: brn(); break; case 0x22: bhi(); break; case 0x23: bls(); break; case 0x24: bcc(); break; case 0x25: bcs(); break; case 0x26: bne(); break; case 0x27: beq(); break; case 0x28: bvc(); break; case 0x29: bvs(); break; case 0x2a: bpl(); break; case 0x2b: bmi(); break; case 0x2c: bge(); break; case 0x2d: blt(); break; case 0x2e: bgt(); break; case 0x2f: ble(); break; case 0x30: leax(); break; case 0x31: leay(); break; case 0x32: leas(); break; case 0x33: leau(); break; case 0x34: pshs(); break; case 0x35: puls(); break; case 0x36: pshu(); break; case 0x37: pulu(); break; case 0x38: IIError(); break; case 0x39: rts(); break; case 0x3a: abx(); break; case 0x3b: rti(); break; case 0x3c: cwai(); break; case 0x3d: mul(); break; case 0x3e: IIError(); break; case 0x3f: swi(); break; case 0x40: nega(); break; case 0x41: IIError(); break; case 0x42: IIError(); break; case 0x43: coma(); break; case 0x44: lsra(); break; case 0x45: IIError(); break; case 0x46: rora(); break; case 0x47: asra(); break; case 0x48: asla(); break; case 0x49: rola(); break; case 0x4a: deca(); break; case 0x4b: IIError(); break; case 0x4c: inca(); break; case 0x4d: tsta(); break; case 0x4e: IIError(); break; case 0x4f: clra(); break; case 0x50: negb(); break; case 0x51: IIError(); break; case 0x52: IIError(); break; case 0x53: comb(); break; case 0x54: lsrb(); break; case 0x55: IIError(); break; case 0x56: rorb(); break; case 0x57: asrb(); break; case 0x58: aslb(); break; case 0x59: rolb(); break; case 0x5a: decb(); break; case 0x5b: IIError(); break; case 0x5c: incb(); break; case 0x5d: tstb(); break; case 0x5e: IIError(); break; case 0x5f: clrb(); break; case 0x60: neg_ix(); break; case 0x61: oim_ix(); break; case 0x62: aim_ix(); break; case 0x63: com_ix(); break; case 0x64: lsr_ix(); break; case 0x65: eim_ix(); break; case 0x66: ror_ix(); break; case 0x67: asr_ix(); break; case 0x68: asl_ix(); break; case 0x69: rol_ix(); break; case 0x6a: dec_ix(); break; case 0x6b: tim_ix(); break; case 0x6c: inc_ix(); break; case 0x6d: tst_ix(); break; case 0x6e: jmp_ix(); break; case 0x6f: clr_ix(); break; case 0x70: neg_ex(); break; case 0x71: oim_ex(); break; case 0x72: aim_ex(); break; case 0x73: com_ex(); break; case 0x74: lsr_ex(); break; case 0x75: eim_ex(); break; case 0x76: ror_ex(); break; case 0x77: asr_ex(); break; case 0x78: asl_ex(); break; case 0x79: rol_ex(); break; case 0x7a: dec_ex(); break; case 0x7b: tim_ex(); break; case 0x7c: inc_ex(); break; case 0x7d: tst_ex(); break; case 0x7e: jmp_ex(); break; case 0x7f: clr_ex(); break; case 0x80: suba_im(); break; case 0x81: cmpa_im(); break; case 0x82: sbca_im(); break; case 0x83: subd_im(); break; case 0x84: anda_im(); break; case 0x85: bita_im(); break; case 0x86: lda_im(); break; case 0x87: IIError(); break; case 0x88: eora_im(); break; case 0x89: adca_im(); break; case 0x8a: ora_im(); break; case 0x8b: adda_im(); break; case 0x8c: cmpx_im(); break; case 0x8d: bsr(); break; case 0x8e: ldx_im(); break; case 0x8f: IIError(); break; case 0x90: suba_di(); break; case 0x91: cmpa_di(); break; case 0x92: sbca_di(); break; case 0x93: subd_di(); break; case 0x94: anda_di(); break; case 0x95: bita_di(); break; case 0x96: lda_di(); break; case 0x97: sta_di(); break; case 0x98: eora_di(); break; case 0x99: adca_di(); break; case 0x9a: ora_di(); break; case 0x9b: adda_di(); break; case 0x9c: cmpx_di(); break; case 0x9d: jsr_di(); break; case 0x9e: ldx_di(); break; case 0x9f: stx_di(); break; case 0xa0: suba_ix(); break; case 0xa1: cmpa_ix(); break; case 0xa2: sbca_ix(); break; case 0xa3: subd_ix(); break; case 0xa4: anda_ix(); break; case 0xa5: bita_ix(); break; case 0xa6: lda_ix(); break; case 0xa7: sta_ix(); break; case 0xa8: eora_ix(); break; case 0xa9: adca_ix(); break; case 0xaa: ora_ix(); break; case 0xab: adda_ix(); break; case 0xac: cmpx_ix(); break; case 0xad: jsr_ix(); break; case 0xae: ldx_ix(); break; case 0xaf: stx_ix(); break; case 0xb0: suba_ex(); break; case 0xb1: cmpa_ex(); break; case 0xb2: sbca_ex(); break; case 0xb3: subd_ex(); break; case 0xb4: anda_ex(); break; case 0xb5: bita_ex(); break; case 0xb6: lda_ex(); break; case 0xb7: sta_ex(); break; case 0xb8: eora_ex(); break; case 0xb9: adca_ex(); break; case 0xba: ora_ex(); break; case 0xbb: adda_ex(); break; case 0xbc: cmpx_ex(); break; case 0xbd: jsr_ex(); break; case 0xbe: ldx_ex(); break; case 0xbf: stx_ex(); break; case 0xc0: subb_im(); break; case 0xc1: cmpb_im(); break; case 0xc2: sbcb_im(); break; case 0xc3: addd_im(); break; case 0xc4: andb_im(); break; case 0xc5: bitb_im(); break; case 0xc6: ldb_im(); break; case 0xc7: IIError(); break; case 0xc8: eorb_im(); break; case 0xc9: adcb_im(); break; case 0xca: orb_im(); break; case 0xcb: addb_im(); break; case 0xcc: ldd_im(); break; case 0xcd: ldq_im(); break; /* in m6809 was std_im */ case 0xce: ldu_im(); break; case 0xcf: IIError(); break; case 0xd0: subb_di(); break; case 0xd1: cmpb_di(); break; case 0xd2: sbcb_di(); break; case 0xd3: addd_di(); break; case 0xd4: andb_di(); break; case 0xd5: bitb_di(); break; case 0xd6: ldb_di(); break; case 0xd7: stb_di(); break; case 0xd8: eorb_di(); break; case 0xd9: adcb_di(); break; case 0xda: orb_di(); break; case 0xdb: addb_di(); break; case 0xdc: ldd_di(); break; case 0xdd: std_di(); break; case 0xde: ldu_di(); break; case 0xdf: stu_di(); break; case 0xe0: subb_ix(); break; case 0xe1: cmpb_ix(); break; case 0xe2: sbcb_ix(); break; case 0xe3: addd_ix(); break; case 0xe4: andb_ix(); break; case 0xe5: bitb_ix(); break; case 0xe6: ldb_ix(); break; case 0xe7: stb_ix(); break; case 0xe8: eorb_ix(); break; case 0xe9: adcb_ix(); break; case 0xea: orb_ix(); break; case 0xeb: addb_ix(); break; case 0xec: ldd_ix(); break; case 0xed: std_ix(); break; case 0xee: ldu_ix(); break; case 0xef: stu_ix(); break; case 0xf0: subb_ex(); break; case 0xf1: cmpb_ex(); break; case 0xf2: sbcb_ex(); break; case 0xf3: addd_ex(); break; case 0xf4: andb_ex(); break; case 0xf5: bitb_ex(); break; case 0xf6: ldb_ex(); break; case 0xf7: stb_ex(); break; case 0xf8: eorb_ex(); break; case 0xf9: adcb_ex(); break; case 0xfa: orb_ex(); break; case 0xfb: addb_ex(); break; case 0xfc: ldd_ex(); break; case 0xfd: std_ex(); break; case 0xfe: ldu_ex(); break; case 0xff: stu_ex(); break; } #else (*hd6309_main[hd6309.ireg])(); #endif /* BIG_SWITCH */ hd6309_ICount -= cycle_counts_page0[hd6309.ireg]; } while( hd6309_ICount > 0 ); hd6309_ICount -= hd6309.extra_cycles; hd6309.extra_cycles = 0; } return cycles - hd6309_ICount; /* NS 970908 */ }
address JNI_FastGetField::generate_fast_get_long_field() { const char *name = "jni_fast_GetLongField"; ResourceMark rm; BufferBlob* blob = BufferBlob::create(name, BUFFER_SIZE*wordSize); CodeBuffer cbuf(blob); MacroAssembler* masm = new MacroAssembler(&cbuf); address fast_entry = __ pc(); Label label1, label2; AddressLiteral cnt_addrlit(SafepointSynchronize::safepoint_counter_addr()); __ sethi (cnt_addrlit, G3); Address cnt_addr(G3, cnt_addrlit.low10()); __ ld (cnt_addr, G4); __ andcc (G4, 1, G0); __ br (Assembler::notZero, false, Assembler::pn, label1); __ delayed()->srl (O2, 2, O4); __ ld_ptr (O1, 0, O5); __ add (O5, O4, O5); #ifndef _LP64 assert(count < LIST_CAPACITY-1, "LIST_CAPACITY too small"); speculative_load_pclist[count++] = __ pc(); __ ld (O5, 0, G2); speculative_load_pclist[count] = __ pc(); __ ld (O5, 4, O3); #else assert(count < LIST_CAPACITY, "LIST_CAPACITY too small"); speculative_load_pclist[count] = __ pc(); __ ldx (O5, 0, O3); #endif __ ld (cnt_addr, G1); __ cmp (G1, G4); __ br (Assembler::notEqual, false, Assembler::pn, label2); __ delayed()->mov (O7, G1); #ifndef _LP64 __ mov (G2, O0); __ retl (); __ delayed()->mov (O3, O1); #else __ retl (); __ delayed()->mov (O3, O0); #endif #ifndef _LP64 slowcase_entry_pclist[count-1] = __ pc(); slowcase_entry_pclist[count++] = __ pc() ; #else slowcase_entry_pclist[count++] = __ pc(); #endif __ bind (label1); __ mov (O7, G1); address slow_case_addr = jni_GetLongField_addr(); __ bind (label2); __ call (slow_case_addr, relocInfo::none); __ delayed()->mov (G1, O7); __ flush (); return fast_entry; }
// LP64 passes floating point arguments in F1, F3, F5, etc. instead of // O0, O1, O2 etc.. // Doubles are passed in D0, D2, D4 // We store the signature of the first 16 arguments in the first argument // slot because it will be overwritten prior to calling the native // function, with the pointer to the JNIEnv. // If LP64 there can be up to 16 floating point arguments in registers // or 6 integer registers. address AbstractInterpreterGenerator::generate_slow_signature_handler() { enum { non_float = 0, float_sig = 1, double_sig = 2, sig_mask = 3 }; address entry = __ pc(); Argument argv(0, true); // We are in the jni transition frame. Save the last_java_frame corresponding to the // outer interpreter frame // __ set_last_Java_frame(FP, noreg); // make sure the interpreter frame we've pushed has a valid return pc __ mov(O7, I7); __ mov(Lmethod, G3_scratch); __ mov(Llocals, G4_scratch); __ save_frame(0); __ mov(G2_thread, L7_thread_cache); __ add(argv.address_in_frame(), O3); __ mov(G2_thread, O0); __ mov(G3_scratch, O1); __ call(CAST_FROM_FN_PTR(address, InterpreterRuntime::slow_signature_handler), relocInfo::runtime_call_type); __ delayed()->mov(G4_scratch, O2); __ mov(L7_thread_cache, G2_thread); __ reset_last_Java_frame(); // load the register arguments (the C code packed them as varargs) Address Sig = argv.address_in_frame(); // Argument 0 holds the signature __ ld_ptr( Sig, G3_scratch ); // Get register argument signature word into G3_scratch __ mov( G3_scratch, G4_scratch); __ srl( G4_scratch, 2, G4_scratch); // Skip Arg 0 Label done; for (Argument ldarg = argv.successor(); ldarg.is_float_register(); ldarg = ldarg.successor()) { Label NonFloatArg; Label LoadFloatArg; Label LoadDoubleArg; Label NextArg; Address a = ldarg.address_in_frame(); __ andcc(G4_scratch, sig_mask, G3_scratch); __ br(Assembler::zero, false, Assembler::pt, NonFloatArg); __ delayed()->nop(); __ cmp(G3_scratch, float_sig ); __ br(Assembler::equal, false, Assembler::pt, LoadFloatArg); __ delayed()->nop(); __ cmp(G3_scratch, double_sig ); __ br(Assembler::equal, false, Assembler::pt, LoadDoubleArg); __ delayed()->nop(); __ bind(NonFloatArg); // There are only 6 integer register arguments! if ( ldarg.is_register() ) __ ld_ptr(ldarg.address_in_frame(), ldarg.as_register()); else { // Optimization, see if there are any more args and get out prior to checking // all 16 float registers. My guess is that this is rare. // If is_register is false, then we are done the first six integer args. __ br_null_short(G4_scratch, Assembler::pt, done); } __ ba(NextArg); __ delayed()->srl( G4_scratch, 2, G4_scratch ); __ bind(LoadFloatArg); __ ldf( FloatRegisterImpl::S, a, ldarg.as_float_register(), 4); __ ba(NextArg); __ delayed()->srl( G4_scratch, 2, G4_scratch ); __ bind(LoadDoubleArg); __ ldf( FloatRegisterImpl::D, a, ldarg.as_double_register() ); __ ba(NextArg); __ delayed()->srl( G4_scratch, 2, G4_scratch ); __ bind(NextArg); } __ bind(done); __ ret(); __ delayed()-> restore(O0, 0, Lscratch); // caller's Lscratch gets the result handler return entry; }
/* execute instructions on this CPU until icount expires */ static CPU_EXECUTE( m6809 ) /* NS 970908 */ { m68_state_t *m68_state = get_safe_token(device); m68_state->icount = cycles - m68_state->extra_cycles; m68_state->extra_cycles = 0; check_irq_lines(m68_state); if (m68_state->int_state & (M6809_CWAI | M6809_SYNC)) { debugger_instruction_hook(device, PCD); m68_state->icount = 0; } else { do { pPPC = pPC; debugger_instruction_hook(device, PCD); m68_state->ireg = ROP(PCD); PC++; #if BIG_SWITCH switch( m68_state->ireg ) { case 0x00: neg_di(m68_state); break; case 0x01: neg_di(m68_state); break; /* undocumented */ case 0x02: IIError(m68_state); break; case 0x03: com_di(m68_state); break; case 0x04: lsr_di(m68_state); break; case 0x05: IIError(m68_state); break; case 0x06: ror_di(m68_state); break; case 0x07: asr_di(m68_state); break; case 0x08: asl_di(m68_state); break; case 0x09: rol_di(m68_state); break; case 0x0a: dec_di(m68_state); break; case 0x0b: IIError(m68_state); break; case 0x0c: inc_di(m68_state); break; case 0x0d: tst_di(m68_state); break; case 0x0e: jmp_di(m68_state); break; case 0x0f: clr_di(m68_state); break; case 0x10: pref10(m68_state); break; case 0x11: pref11(m68_state); break; case 0x12: nop(m68_state); break; case 0x13: sync(m68_state); break; case 0x14: IIError(m68_state); break; case 0x15: IIError(m68_state); break; case 0x16: lbra(m68_state); break; case 0x17: lbsr(m68_state); break; case 0x18: IIError(m68_state); break; case 0x19: daa(m68_state); break; case 0x1a: orcc(m68_state); break; case 0x1b: IIError(m68_state); break; case 0x1c: andcc(m68_state); break; case 0x1d: sex(m68_state); break; case 0x1e: exg(m68_state); break; case 0x1f: tfr(m68_state); break; case 0x20: bra(m68_state); break; case 0x21: brn(m68_state); break; case 0x22: bhi(m68_state); break; case 0x23: bls(m68_state); break; case 0x24: bcc(m68_state); break; case 0x25: bcs(m68_state); break; case 0x26: bne(m68_state); break; case 0x27: beq(m68_state); break; case 0x28: bvc(m68_state); break; case 0x29: bvs(m68_state); break; case 0x2a: bpl(m68_state); break; case 0x2b: bmi(m68_state); break; case 0x2c: bge(m68_state); break; case 0x2d: blt(m68_state); break; case 0x2e: bgt(m68_state); break; case 0x2f: ble(m68_state); break; case 0x30: leax(m68_state); break; case 0x31: leay(m68_state); break; case 0x32: leas(m68_state); break; case 0x33: leau(m68_state); break; case 0x34: pshs(m68_state); break; case 0x35: puls(m68_state); break; case 0x36: pshu(m68_state); break; case 0x37: pulu(m68_state); break; case 0x38: IIError(m68_state); break; case 0x39: rts(m68_state); break; case 0x3a: abx(m68_state); break; case 0x3b: rti(m68_state); break; case 0x3c: cwai(m68_state); break; case 0x3d: mul(m68_state); break; case 0x3e: IIError(m68_state); break; case 0x3f: swi(m68_state); break; case 0x40: nega(m68_state); break; case 0x41: IIError(m68_state); break; case 0x42: IIError(m68_state); break; case 0x43: coma(m68_state); break; case 0x44: lsra(m68_state); break; case 0x45: IIError(m68_state); break; case 0x46: rora(m68_state); break; case 0x47: asra(m68_state); break; case 0x48: asla(m68_state); break; case 0x49: rola(m68_state); break; case 0x4a: deca(m68_state); break; case 0x4b: IIError(m68_state); break; case 0x4c: inca(m68_state); break; case 0x4d: tsta(m68_state); break; case 0x4e: IIError(m68_state); break; case 0x4f: clra(m68_state); break; case 0x50: negb(m68_state); break; case 0x51: IIError(m68_state); break; case 0x52: IIError(m68_state); break; case 0x53: comb(m68_state); break; case 0x54: lsrb(m68_state); break; case 0x55: IIError(m68_state); break; case 0x56: rorb(m68_state); break; case 0x57: asrb(m68_state); break; case 0x58: aslb(m68_state); break; case 0x59: rolb(m68_state); break; case 0x5a: decb(m68_state); break; case 0x5b: IIError(m68_state); break; case 0x5c: incb(m68_state); break; case 0x5d: tstb(m68_state); break; case 0x5e: IIError(m68_state); break; case 0x5f: clrb(m68_state); break; case 0x60: neg_ix(m68_state); break; case 0x61: IIError(m68_state); break; case 0x62: IIError(m68_state); break; case 0x63: com_ix(m68_state); break; case 0x64: lsr_ix(m68_state); break; case 0x65: IIError(m68_state); break; case 0x66: ror_ix(m68_state); break; case 0x67: asr_ix(m68_state); break; case 0x68: asl_ix(m68_state); break; case 0x69: rol_ix(m68_state); break; case 0x6a: dec_ix(m68_state); break; case 0x6b: IIError(m68_state); break; case 0x6c: inc_ix(m68_state); break; case 0x6d: tst_ix(m68_state); break; case 0x6e: jmp_ix(m68_state); break; case 0x6f: clr_ix(m68_state); break; case 0x70: neg_ex(m68_state); break; case 0x71: IIError(m68_state); break; case 0x72: IIError(m68_state); break; case 0x73: com_ex(m68_state); break; case 0x74: lsr_ex(m68_state); break; case 0x75: IIError(m68_state); break; case 0x76: ror_ex(m68_state); break; case 0x77: asr_ex(m68_state); break; case 0x78: asl_ex(m68_state); break; case 0x79: rol_ex(m68_state); break; case 0x7a: dec_ex(m68_state); break; case 0x7b: IIError(m68_state); break; case 0x7c: inc_ex(m68_state); break; case 0x7d: tst_ex(m68_state); break; case 0x7e: jmp_ex(m68_state); break; case 0x7f: clr_ex(m68_state); break; case 0x80: suba_im(m68_state); break; case 0x81: cmpa_im(m68_state); break; case 0x82: sbca_im(m68_state); break; case 0x83: subd_im(m68_state); break; case 0x84: anda_im(m68_state); break; case 0x85: bita_im(m68_state); break; case 0x86: lda_im(m68_state); break; case 0x87: sta_im(m68_state); break; case 0x88: eora_im(m68_state); break; case 0x89: adca_im(m68_state); break; case 0x8a: ora_im(m68_state); break; case 0x8b: adda_im(m68_state); break; case 0x8c: cmpx_im(m68_state); break; case 0x8d: bsr(m68_state); break; case 0x8e: ldx_im(m68_state); break; case 0x8f: stx_im(m68_state); break; case 0x90: suba_di(m68_state); break; case 0x91: cmpa_di(m68_state); break; case 0x92: sbca_di(m68_state); break; case 0x93: subd_di(m68_state); break; case 0x94: anda_di(m68_state); break; case 0x95: bita_di(m68_state); break; case 0x96: lda_di(m68_state); break; case 0x97: sta_di(m68_state); break; case 0x98: eora_di(m68_state); break; case 0x99: adca_di(m68_state); break; case 0x9a: ora_di(m68_state); break; case 0x9b: adda_di(m68_state); break; case 0x9c: cmpx_di(m68_state); break; case 0x9d: jsr_di(m68_state); break; case 0x9e: ldx_di(m68_state); break; case 0x9f: stx_di(m68_state); break; case 0xa0: suba_ix(m68_state); break; case 0xa1: cmpa_ix(m68_state); break; case 0xa2: sbca_ix(m68_state); break; case 0xa3: subd_ix(m68_state); break; case 0xa4: anda_ix(m68_state); break; case 0xa5: bita_ix(m68_state); break; case 0xa6: lda_ix(m68_state); break; case 0xa7: sta_ix(m68_state); break; case 0xa8: eora_ix(m68_state); break; case 0xa9: adca_ix(m68_state); break; case 0xaa: ora_ix(m68_state); break; case 0xab: adda_ix(m68_state); break; case 0xac: cmpx_ix(m68_state); break; case 0xad: jsr_ix(m68_state); break; case 0xae: ldx_ix(m68_state); break; case 0xaf: stx_ix(m68_state); break; case 0xb0: suba_ex(m68_state); break; case 0xb1: cmpa_ex(m68_state); break; case 0xb2: sbca_ex(m68_state); break; case 0xb3: subd_ex(m68_state); break; case 0xb4: anda_ex(m68_state); break; case 0xb5: bita_ex(m68_state); break; case 0xb6: lda_ex(m68_state); break; case 0xb7: sta_ex(m68_state); break; case 0xb8: eora_ex(m68_state); break; case 0xb9: adca_ex(m68_state); break; case 0xba: ora_ex(m68_state); break; case 0xbb: adda_ex(m68_state); break; case 0xbc: cmpx_ex(m68_state); break; case 0xbd: jsr_ex(m68_state); break; case 0xbe: ldx_ex(m68_state); break; case 0xbf: stx_ex(m68_state); break; case 0xc0: subb_im(m68_state); break; case 0xc1: cmpb_im(m68_state); break; case 0xc2: sbcb_im(m68_state); break; case 0xc3: addd_im(m68_state); break; case 0xc4: andb_im(m68_state); break; case 0xc5: bitb_im(m68_state); break; case 0xc6: ldb_im(m68_state); break; case 0xc7: stb_im(m68_state); break; case 0xc8: eorb_im(m68_state); break; case 0xc9: adcb_im(m68_state); break; case 0xca: orb_im(m68_state); break; case 0xcb: addb_im(m68_state); break; case 0xcc: ldd_im(m68_state); break; case 0xcd: std_im(m68_state); break; case 0xce: ldu_im(m68_state); break; case 0xcf: stu_im(m68_state); break; case 0xd0: subb_di(m68_state); break; case 0xd1: cmpb_di(m68_state); break; case 0xd2: sbcb_di(m68_state); break; case 0xd3: addd_di(m68_state); break; case 0xd4: andb_di(m68_state); break; case 0xd5: bitb_di(m68_state); break; case 0xd6: ldb_di(m68_state); break; case 0xd7: stb_di(m68_state); break; case 0xd8: eorb_di(m68_state); break; case 0xd9: adcb_di(m68_state); break; case 0xda: orb_di(m68_state); break; case 0xdb: addb_di(m68_state); break; case 0xdc: ldd_di(m68_state); break; case 0xdd: std_di(m68_state); break; case 0xde: ldu_di(m68_state); break; case 0xdf: stu_di(m68_state); break; case 0xe0: subb_ix(m68_state); break; case 0xe1: cmpb_ix(m68_state); break; case 0xe2: sbcb_ix(m68_state); break; case 0xe3: addd_ix(m68_state); break; case 0xe4: andb_ix(m68_state); break; case 0xe5: bitb_ix(m68_state); break; case 0xe6: ldb_ix(m68_state); break; case 0xe7: stb_ix(m68_state); break; case 0xe8: eorb_ix(m68_state); break; case 0xe9: adcb_ix(m68_state); break; case 0xea: orb_ix(m68_state); break; case 0xeb: addb_ix(m68_state); break; case 0xec: ldd_ix(m68_state); break; case 0xed: std_ix(m68_state); break; case 0xee: ldu_ix(m68_state); break; case 0xef: stu_ix(m68_state); break; case 0xf0: subb_ex(m68_state); break; case 0xf1: cmpb_ex(m68_state); break; case 0xf2: sbcb_ex(m68_state); break; case 0xf3: addd_ex(m68_state); break; case 0xf4: andb_ex(m68_state); break; case 0xf5: bitb_ex(m68_state); break; case 0xf6: ldb_ex(m68_state); break; case 0xf7: stb_ex(m68_state); break; case 0xf8: eorb_ex(m68_state); break; case 0xf9: adcb_ex(m68_state); break; case 0xfa: orb_ex(m68_state); break; case 0xfb: addb_ex(m68_state); break; case 0xfc: ldd_ex(m68_state); break; case 0xfd: std_ex(m68_state); break; case 0xfe: ldu_ex(m68_state); break; case 0xff: stu_ex(m68_state); break; } #else (*m6809_main[m68_state->ireg])(m68_state); #endif /* BIG_SWITCH */ m68_state->icount -= cycles1[m68_state->ireg]; } while( m68_state->icount > 0 ); m68_state->icount -= m68_state->extra_cycles; m68_state->extra_cycles = 0; } return cycles - m68_state->icount; /* NS 970908 */ }
address JNI_FastGetField::generate_fast_get_int_field0(BasicType type) { const char *name; switch (type) { case T_BOOLEAN: name = "jni_fast_GetBooleanField"; break; case T_BYTE: name = "jni_fast_GetByteField"; break; case T_CHAR: name = "jni_fast_GetCharField"; break; case T_SHORT: name = "jni_fast_GetShortField"; break; case T_INT: name = "jni_fast_GetIntField"; break; default: ShouldNotReachHere(); } ResourceMark rm; BufferBlob* b = BufferBlob::create(name, BUFFER_SIZE*wordSize); address fast_entry = b->instructions_begin(); CodeBuffer cbuf(fast_entry, b->instructions_size()); MacroAssembler* masm = new MacroAssembler(&cbuf); Label label1, label2; AddressLiteral cnt_addrlit(SafepointSynchronize::safepoint_counter_addr()); __ sethi (cnt_addrlit, O3); Address cnt_addr(O3, cnt_addrlit.low10()); __ ld (cnt_addr, G4); __ andcc (G4, 1, G0); __ br (Assembler::notZero, false, Assembler::pn, label1); __ delayed()->srl (O2, 2, O4); __ ld_ptr (O1, 0, O5); assert(count < LIST_CAPACITY, "LIST_CAPACITY too small"); speculative_load_pclist[count] = __ pc(); switch (type) { case T_BOOLEAN: __ ldub (O5, O4, G3); break; case T_BYTE: __ ldsb (O5, O4, G3); break; case T_CHAR: __ lduh (O5, O4, G3); break; case T_SHORT: __ ldsh (O5, O4, G3); break; case T_INT: __ ld (O5, O4, G3); break; default: ShouldNotReachHere(); } __ ld (cnt_addr, O5); __ cmp (O5, G4); __ br (Assembler::notEqual, false, Assembler::pn, label2); __ delayed()->mov (O7, G1); __ retl (); __ delayed()->mov (G3, O0); slowcase_entry_pclist[count++] = __ pc(); __ bind (label1); __ mov (O7, G1); address slow_case_addr; switch (type) { case T_BOOLEAN: slow_case_addr = jni_GetBooleanField_addr(); break; case T_BYTE: slow_case_addr = jni_GetByteField_addr(); break; case T_CHAR: slow_case_addr = jni_GetCharField_addr(); break; case T_SHORT: slow_case_addr = jni_GetShortField_addr(); break; case T_INT: slow_case_addr = jni_GetIntField_addr(); break; default: ShouldNotReachHere(); } __ bind (label2); __ call (slow_case_addr, relocInfo::none); __ delayed()->mov (G1, O7); __ flush (); return fast_entry; }